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Abstract
Bayesian variable selection is an important method for discovering variables which aremost useful for explaining the variation
in a response. The widespread use of this method has been restricted by the challenging computational problem of sampling
from the corresponding posterior distribution. Recently, the use of adaptive Monte Carlo methods has been shown to lead to
performance improvement over traditionally used algorithms in linear regression models. This paper looks at applying one
of these algorithms (the adaptively scaled independence sampler) to logistic regression and accelerated failure time models.
We investigate the use of this algorithm with data augmentation, Laplace approximation and the correlated pseudo-marginal
method. The performance of the algorithms is compared on several genomic data sets.

Keywords Pólya-gamma sampling · Correlated pseudo-marginal method · High-dimensional regression · Gene expression ·
Laplace approximation · Data augmentation

1 Introduction

The availability of large-scale data sets has led to interest in
variable selection for regression models with large number
of regressors. Typically, these variable selection problems
are called “large p, small n” variable selection problems.
Standard approaches to this problem include penalized max-
imum likelihood methods (Hastie et al. 2015) and Bayesian
variable selection (Chipman et al. 2001; O’Hara and Sil-
lanpää 2009; García-Donato and Martínez-Beneito 2013).
Linear regression is the mostly widely studied problem in
the literature, but other generalized linear models play an
important role in answering challenging scientific questions.
For example, Sanyal et al. (2017) use an iterative Bayesian
procedure to analyse a case–control study with 55,000 SNPs
and Nikooienejad et al. (2020) considered Bayesian variable
selection applied to two cancer survival data sets with 13,267
and 13,335 genes, respectively.

In Bayesian variable selection, a joint prior distribution
is placed on models defined by each possible subset of the
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potential regressors and the parameters of each of these mod-
els (the regression coefficients and other parameters such
as dispersion parameters). This defines a posterior distribu-
tion on the parameters of the model and the models which
can be used to investigate the importance of different vari-
ables or tomake predictions for future observations.Working
with this posterior distribution is challenging since (1) dif-
ferent models are defined on parameter spaces with different
sizes and (2) there are 2p possible models for p potential
regressors which leads to a vast space if p is large. The
first challenge can be circumvented in the linear regression
model by working with the marginal likelihood of the mod-
els (which is available analytically for commonly used prior
distributions), but this is not possible in other generalized
linearmodels. As discussed byGarcía-Donato andMartínez-
Beneito (2013), these issues can be addressed by sampling
from the posterior distribution using Markov chain Monte
Carlo algorithms which provide unbiased estimates of quan-
tities of interest such as the posterior inclusion probability
(PIP) for the j th variable, which is the marginal posterior
probability that the j th variable is included in the model,
or Bayesian model-averaged predictions. Designing MCMC
algorithms for Bayesian variable selection which mix well is
a computationally challenging task if p is large and a large
literature has developed around different approaches (see e.g.
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Schäfer and Chopin 2013; Titsias and Yau 2017; Shin et al.
2018; Zanella and Roberts 2019).

In this paper, we will concentrate on computational meth-
ods for Bayesian variable selection in logistic regression and
accelerated failure time models. In this case, the marginal
likelihood of the models is not available analytically. There
are three main approaches to addressing this issue. Firstly,
the marginal likelihood can be approximated, usually with a
Laplace approximation, to define an approximated posterior
which is sampled using MCMC. Secondly, data augmen-
tation methods introduce latent variables, whose marginal
distribution given the model only can be calculated analyt-
ically. This allows an MCMC scheme to be used where the
latent variables are updated from their full conditional and the
model is updated using methods for linear regression mod-
els. Thirdly, reversible jump MCMC can be used to work
directly on the joint posterior distribution of the model and
the parameters which moves between models by proposing
a new set of regression coefficients for the proposed model.

In binary data, there has been extensive work on variable
selection in probit regression (see e.g. Sha et al. 2003, 2004)
using the data augmentation approach of Albert and Chib
(1993), which was extended to logistic regression by Holmes
and Held (2006). Nikooienejad et al. (2016) use non-local
prior and a Laplace approximation to define a Gibbs sam-
pler. In time-to-event data, work has been divided between
accelerated failure time (AFT) models and Cox regression
models. Sha et al. (2006) initially demonstrated howMCMC
with data augmentation could be used for Bayesian variable
selection when the AFT model has a normal or t distribu-
tion. Newcombe et al. (2017) consider an AFT model with a
Weibull distribution and propose a reversible jump MCMC
sampler. Zhang et al. (2018) use a Dirichlet process mixture
of normals for the error distribution and use a Bayesian lasso
to induce sparsity in the regression coefficients. Held et al.
(2016) review previous work on Bayesian variable selection
in Cox regression models and develop a method based on
test Bayes factor to derive a posterior distribution on models.
Many authors have concentrated on finding high probability
models. Nikooienejad et al. (2020) use a non-local prior for
the regression coefficients and use a Laplace approximation
with the S5 algorithm (Shin et al. 2018). Annest et al. (2009)
use an iterative screening algorithm.Duan et al. (2018) derive
an EM algorithm to find high probability model using the
framework of EMVS (Rockova and George 2014).

This paper makes three main contributions. Firstly, we
extend the Adaptively Scaled Individual (ASI) adaptive
MCMC algorithm of Griffin et al. (2020) to binary response
(using logistic regression models) and time-to-event data
(using accelerated failure time models). Secondly, we pro-
pose a correlatedpseudo-marginal scheme forGLMs.Thirdly,
we compare the performance of the adaptive MCMC algo-
rithm to the Add–Delete–Swap Metropolis–Hastings sam-

pler using correlated pseudo-marginal methods, data aug-
mentation and the Laplace approximation in the large p
setting for both logistic regression and accelerated failure
time models.

The paper is organized in the following way. Section 2
reviews the Bayesian approach to variable selection in gen-
eralized linear models. Section 3 describes different compu-
tational strategies for Bayesian variable selection. Section 4
compares the performance of the methods on different real
data sets with many regressors and few observations. Sec-
tion 5 discusses the work and offers some guidelines for the
use of the algorithm.

2 Generalized linear models and Bayesian
variable selection

We assume that there are p variables available (for example,
a list of SNPs or gene expression measurements) and that we
wish to find a subset of these variables which explains the
variation in a response. We define γ = (γ1, . . . , γp) ∈ �

to be a vector of indicator variables with γ j = 1 if the j th
variable is included in the model (and γ j = 0 otherwise).
Let y be an (n × 1)-dimensional vector of responses which
is modelled by

yi ∼ F(μi , φ) (1)

where F(μ, φ) is a distribution in the exponential familywith
mean μ and dispersion parameter φ. We define the linear
predictor for the i th observation to be

ηi = ziα + x (γ )

i βγ (2)

where zi is a set of regressors which always appear in the
model (and which will usually include an intercept and could
include a treatment effect variable or other important vari-
ables), x (γ )

i is a vector which contains the value for the i th
observation of the variables included in the model (i.e. for
which γ j = 1), and α and βγ are vectors of regression coef-
ficients. We will write X to be a matrix whose rows are the
value for the i th observation of all variables, and Z and X (γ )

to be matrix whose rows are zi and x (γ )

i , respectively. The
linear predictor ηi is linked to the mean μi by ηi = g(μi )

where g is a link function. We define pα to be the dimension
of α and pγ = ∑p

j=1 γ j .
The logistic regressionmodel can be used to link a propor-

tion of successes to the linear predictors using a generalized
linear model. We let yi be the proportion of success and
assume that ni yi ∼ Bin(ni , pi ). The logistic regression
model assumes a linear relationship between the covariates
and the probability of success (measured on the log-odds
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scale),

ηi = log

(
pi

1 − pi

)

= ziα + x (γ )

i βγ , i = 1, . . . , n.

The accelerate failure time (AFT) can be used to model
time-to-event data which may be censored. We assume that
the time-to-event for the i th individual is ti but that this time
is only observed if ti < ci for some (right) censoring time ci
and, otherwise, we observe ci . We will define δi = I(ti > ci )
which is 1 if the i th observation is censored. The AFT model
(on the log-scale) can be written as

yi = log ti = ziα + x (γ )

i βγ + σεi , i = 1, . . . , n (3)

where the errors εi
i .i .d.∼ G for a standardized distribution

G, such as the standard normal or t distribution. This is a
parametric survival model that assumes that the individual
survival time ti depends on the multiplicative effect of an
unknown function of covariates over a baseline survival time
α. We will follow Sha et al. (2006) by using this model for
Bayesian variable selection with censored outcomes.

In Bayesian variable selection, a prior distribution is
assumed for the parameters of the model (α, βγ , φ and γ )
which defines a posterior distribution

p(α, βγ , φ, γ |X , Z , y) ∝ p(y|Z , X (γ ), α, βγ , φ, γ )

p(α, βγ , φ, γ ).

In someprobabilitymodels, such as the binomial distribution,
the dispersion parameter is known and so φ does not appear
in the prior or posterior distribution leading to

p(α, βγ , γ |X , Z , y) ∝ p(y|Z , X (γ ), α, βγ , γ )p(α, βγ , γ ).

We will assume the commonly used prior structure

p(α, βγ , γ |φ) ∝ p(βγ | φ, γ ) p(γ ) (4)

with βγ | σ 2, γ ∼ N(0, φVγ ), and p(γ ) = h pγ (1−h)p−pγ .
If the dispersion parameter is unknown, an additional prior
distribution is placed on φ. The hyperparameter 0 < h < 1 is
the prior probability that a particular variable is included in
the model and can be chosen by defining a prior expected
model size, p0, by h = p0

p . The prior can be further
extended with hyperpriors to define a heavier tailed prior
distribution for pγ by assuming that h ∼ Be(1, p−p0

p0
)

(Ley and Steel 2009). The scaled covariance matrix Vγ is
often chosen as proportional to the identity matrix (imply-
ing conditional prior independence between the regression
coefficients), (XT

γ Xγ )−1 (a g-prior) or mixtures of g-priors
(Liang et al. 2008; Li and Clyde 2018). Many computational

methods, and all methods described in this paper, can be eas-
ily adjusted to works with any of these priors.

3 Computational approaches

In this section, we will concentrate on computational meth-
ods for Bayesian variable selection in two generalized linear
models: logistic regression (for binary and some ordinal
responses) and accelerated failure time (AFT) models (for
time to response). We will write θγ for the parameters of
model γ ∈ � (which will be α, βγ and φ if the dispersion is
unknown and α and βγ otherwise). In the linear regression
models with normal errors, the marginal likelihood p(y|γ )

is analytically available. This leads to a simple Metropolis–
Hastings updating step where a proposed γ ′ is sampled from
a proposal where the probability of proposing γ ′ given cur-
rent value γ is q(γ, γ ′). The proposedmodel is acceptedwith
probability

α = min

{

1,
p(y|γ ′)p(γ ′)q(γ ′, γ )

p(y|γ )p(γ )q(γ, γ ′)

}

. (5)

In GLMs, the marginal likelihood is not directly analyti-
cally available. We will describe three approaches: the data
augmentation methods where latent variables ω are intro-
duced that allow p(y|ω, γ ) to be calculated analytically, the
Laplace approximation where p(y|γ ) is approximated lead-
ing to approximation error in the posterior and the correlated
pseudo-marginal methods where p(y|γ ) is approximated but
leads to no approximation error in the posterior. These meth-
ods can be used with any proposal on model space. We will
then describe how the ASI proposal (Griffin et al. 2020) can
be used with these approaches.

3.1 Algorithms

3.1.1 Data augmentation

Data augmentation (Tanner and Wong 1987) approaches
introduce latent variables tomake anMCMCsampler simpler
to implement. InBayesian variables, these schemes introduce
a fixed-dimension latent variable ω which allows p(y|γ, ω)

to be calculated analytically. This leads to a simple MCMC
scheme where γ can be updated conditional on ω using a
Metropolis–Hastings sampler with standard proposal distri-
bution on model space and ω is updated conditional on γ

(often by first simulating the parameters θγ ).
In the logistic regression model, the Pólya-gamma data

augmentation method (Polson et al. 2013) can be used (see
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e.g. Griffin et al. 2019). This exploits the following identity

(eψ)a

(1 + eψ)b
= 2−b exp{κψ}

∫ ∞

0
exp{−ωψ2/2} p(ω)dω

where κ = a − b/2, ωi ∼ PG(b, 0) and PG represents a
Pólya-gamma distribution, which is defined in Polson et al.
(2013). An extended likelihood with additional latent vari-
ables ω = (ω1, . . . , ωn) has the form

p(y, ω|θγ , γ ) ∝
n∏

i=1

[
2−ni exp

{
κi

(
zi α + x (γ )

i βγ

)}

× exp
{
−ωi (zi α + x (γ )

i βγ )2/2
}
p(ωi )

]

where κi = yi − ni/2 and p(ωi ) is the PG(ni , 0) distribu-
tion. The identity can be used to show that marginalizing
this distribution over ω leads to the likelihood of the logistic
regression model. If we let

J (γ ) =
(

Z
X (γ )

)

and assume that p(α, βγ ) ∼ N(μγ , Vγ ), the marginal likeli-
hood is

p(y|γ, ω) ∝ |Vγ |−1/2
∣
∣
∣ J̃ (γ ) T J̃ (γ ) + V−1

γ

∣
∣
∣
−1/2

× exp

{

−1

2
μT

γ V
−1
γ μγ + 1

2
AT B−1A

}

where A = J (γ ) T K + V−1
γ μγ , B = J̃ (γ ) T J̃ (γ ) + V−1

γ , J̃ γ

is (n × (pα + pγ ))-dimensional matrix with entries J̃ (γ )

i, j =
√

ωi X̃
(γ )

i, j and K is a (n× 1)-dimensional vector with entries
Ki = κi . The latent variables ω = (ω1, . . . , ωn) can be
updated by first sampling α, βγ according to

(α, βγ ) ∼ N
(
( J̃ (γ ) T J̃ (γ ) + V−1

γ )−1(J (γ ) T K + V−1
γ μγ ),

( J̃ (γ ) T J̃ (γ ) + V−1
γ )−1

)

and then sampling ωi ∼ PG(ni , zi α + x (γ )

i βγ ). Polson et al.
(2013) describe efficient algorithms for the generation of
Pólya-gamma distributed random variables.

In the accelerated failure time model, we introduce the
variables ωi = yi . These are latent if δi = 1, i.e. ωi is
the missing survival time if the i th observation is censored.
Conditional on the data and ω = (ω1, . . . , ωn), the accel-
erated failure time model in (3) is a linear regression. If
εi ∼ N(0, 1), we have a linear regression with normal errors.
If we define W to be an (n × 1)-dimensional vector with i th

entry ωi and assume that p(α, βγ ) ∼ N(μγ , σ 2 Vγ ), the
marginal likelihood is

p(y|γ, ω1, . . . , ωn) = |Vγ |−1/2
∣
∣
∣J (γ ) T J (γ ) + V−1

γ

∣
∣
∣
−1/2

× exp

{

−1

2
μT

γ V
−1
γ μγ + 1

2
AT B−1A

}

where A = (J (γ ) T W +V−1
γ μγ ) and B = J (γ ) T J (γ ) +V−1

γ

The latent variables ωi for δi = 1 can be updated
by first sampling (α, βγ , σ 2). If we assume that σ−2 ∼
Ga(a/2, b/2), then

σ−2 ∼ Ga
(
(a + n + pα + pγ )/2,

(
b + μT

γ V
−1
γ μγ

+WTW − AT B−1A
)

/2
)

and

(α, βγ ) ∼ N
(
B−1A, σ 2B−1

)
.

The latent variable ωi for δi = 1 can be sampled from its full
conditional distributionwhich is TN[ci ,∞)(zi α+x (γ )

i βγ , σ 2)

where TNA(μ, σ 2) represents a normal distribution with
mean μ and variance σ 2 truncated to the set A ∈ R.

3.1.2 Laplace approximation

The Laplace approximation has been widely used for vari-
able selection in generalized linear models. The marginal
likelihood is approximated by

p(y|γ ) ∝ p
(
y
∣
∣
∣θ̂γ

)
p

(
θ̂γ

)
| − Hγ |−1/2(2π)d/2

where d is the dimension of θγ , θ̂ is the posterior mode of θγ

and Hγ is the Hessian of log p
(
y|θγ

)+ log p
(
θγ

)
evaluated

at θ̂γ . The approximation follows from assuming that the
posterior distribution of θγ can be approximated by

pLaplace
(
θγ

) = N
(
θ̂γ , �

(γ )
Laplace

)
(6)

where �
(γ )
Laplace = (−Hγ

)−1.

3.1.3 Correlated pseudo-marginal sampler

The pseudo-marginal sampler (Andrieu and Roberts 2009)
targets a distribution where the prior is multiplied by aMonte
Carlo approximation p̂(y|γ ) of the intractable marginal like-
lihood p(y|γ ) and then runs a Metropolis–Hastings sampler
on this target distribution, i.e. the acceptance rate of the
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Metropolis–Hastings sampler is

α = min

{

1,
p̂(y|γ ′) p(γ ′) q(γ ′, γ )

p̂(y|γ ) p(γ ) q(γ, γ ′)

}

.

This would be the usual acceptance rate if p̂(y|γ ) = p(y|γ ),
but Andrieu and Roberts (2009) show that the method sam-
ples from the correct target distribution with the weaker
condition that E[ p̂(y|γ )] = p(y|γ ) (unbiased estimation).
The method has been extended to the correlated pseudo-
marginal method (Deligiannidis et al. 2018) were the random
numbers used to calculate p̂(y|γ ′) are positively correlated
with those used to calculate p̂(y|γ ). They show that this can
reduce the variance of the ratio p̂(y|γ ′)/ p̂(y|γ ) and help the
mixing of the Markov chain.

In Bayesian variable selection for GLMs, it is natural to
use the Laplace approximation of p(θγ |γ, y) in (6) as an
importance sampling distribution in an importance sampling
approximation to p̂(y|γ ). The approximation is

p̂(y|γ ) = 1

N

N∑

i=1

p
(
y
∣
∣
∣θ

(i)
γ , γ

)
p

(
θ

(i)
γ

)

pLaplace
(
θ

(i)
γ

)

where θ
(i)
γ

i .i .d.∼ pLaplace. The samples θ
(i)
γ can be written as

θ
(i)
γ = θ̂γ +Cγ �νi where � is a pγ × p-dimensional matrix,
where �i, j = 1 if the i-th variable included in the model
has index j and �i, j = 0 otherwise, Cγ is the Cholesky

decomposition of �
(γ )
Laplace and νi

i .i .d.∼ N
(
0, Ip

)
. A corre-

lated pseudo-marginal sampler can be implemented in the
following way. At iteration k, suppose that νi , . . . , νN are
the current values of the random variates before making the
proposal, then propose ν′

1, . . . , ν
′
N by

ν′
i,k = ρνi,k +

√
1 − ρ2λi,k

where λi,k
i .i .d.∼ N(0, 1). This implies that ηi follows an

autoregressive process of lag 1 with AR parameter ρ and
a standard normal stationary distribution. In practice, η′

i only
need to be simulated if γ ′

k = 1 and, if γk = 0 and γ ′
k = 1, we

can simulated νi,k ∼ N(0, 1). Lamnisos et al. (2009) suggest
using the automatic generic sampler (Green 2003) for logistic
regressionmodelwith their adaptive proposal. The correlated
pseudo-marginal is equivalent to this sampler when N = 1
and ρ = 1 (completed dependence between successive νi ) if
an extra Gibbs step is introduced where νi is updated from
its full conditional distribution. We use this additional step
for all values of ρ and so this correlated pseudo-marginal
sampler provides a generalization of the automatic generic
sampler for GLMs.

3.2 Adaptively scaled individual proposal

Griffin et al. (2020) develop a parameterized proposal dis-
tribution for Bayesian variable selection in linear regression
models and a method for adaptively tuning the parameters
during the MCMC run. They demonstrate that the method
can mix substantially faster than the standard Add–Delete–
Swap sampler. They also show that themethod can accurately
estimate the PIPs of each variable for a range of problems up
to thousands of regressors in a reasonable amount of time. For
example, they run their algorithm on two large data sets. One
data set had 22,575 variables and provided accurate results
in 25 min, whereas the other data set had 79,748 variables
and provided accurate results in 2.5 h, respectively.

The proposal on model space, �, is

qη(γ, γ ′) =
p∏

j=1

qη, j (γ j , γ
′
j )

whereη = (A, D) = (A1, . . . , Ap, D1, . . . , Dp),qη, j (γ j =
0, γ ′

j = 1) = A j and qη, j (γ j = 1, γ ′
j = 0) = Dj . Each

dimension of γ ′ is independently proposed conditional on γ .
The probability of proposing to add the j th variable if it is
currently excluded from the model is A j , and the probabil-
ity of proposing to delete the j th variable if it is currently
included in the model is Dj . They show that an effective
choice for (A, D) is

A j = ζ min

{

1,
π j

1 − π j

}

, Dj = ζ min

{

1,
1 − π j

π j

}

,

(7)

where π j is the PIP of the j th variable and 0 < ζ < 1
is a tuning parameter. They suggest estimating π j within
the Gibbs sampler using a Rao–Blackwellised estimate and
tuning ζ using a simple adaptation scheme. The proposal is

A(i)
j = ζ (i) min

{

1,
π

(i)
j

1 − π
(i)
j

}

,

D(i)
j = ζ (i) min

{

1,
1 − π

(i)
j

π
(i)
j

}

,

where π
(i)
j is a Rao–Blackwellised estimate of the PIP of

the j th variable calculate using the first i sample and ζ (i) is
updated using

logitε
(
ζ (i+1)

)
= logitε

(
ζ (i)

)
+ φi

(
aη(i)

(
γ (i), γ ′) − τ

)
,

(8)
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where logitε(x) = log(x−ε)− log(1− x−ε), φi = O(i−λ)

for some constant 1/2 < λ ≤ 1 aη(i) (γ (i), γ ′) is the
Metropolis–Hastings acceptance probability at the i th iter-
ation, and τ is a targeted acceptance rate. The algorithm is
summarized in Algorithm 1.

for i = 1 to i = M
sample γ ′ ∼ qη(i) (γ (i), ·) and U ∼ U (0, 1);
if U < aη(i) (γ (i), γ ′) then

γ (i+1):=γ ′
else

γ (i+1):=γ (i)

endif
Update π

(i+1)
1 , . . . , π

(i+1)
p and set π̃ (i+1)

j = ε + (1 − 2ε) π
(i+1)
j

Update ζ (i+1) as in (8)

Calculate A(i+1)
j = ζ (i+1) min

{
1, π̃ (i+1)

j /
(
1 − π̃

(i+1)
j

)}

for j = 1, . . . , p

Calculate D(i+1)
j = ζ (i+1) min

{
1,

(
1 − π̃

(i+1)
j

)
/π̃

(i+1)
j

}

for j = 1, . . . , p
endfor

Algorithm 1: Adaptively Scaled Individual Adaptation
(ASI)

The ASI algorithm uses a Rao–Blackwellised estimate
of the PIP’s π1, . . . , πp calculated in the run of the algo-
rithm. Griffin et al. (2020) show how the update of the
Rao–Blackwellised calculated in O(p) operations in the lin-
ear regressionmodel. This canbedirectly extended to thedata

augmentation approach. We assume that Vγ =
(
Vα 0
0T gIpγ

)

,

where Vα is (pα × pα)-dimensional matrix, Iq is the q × q
identity matrix and 0 is a (pα × pγ )-dimensional matrix
of 0’s. After N posterior samples, γ (1), . . . , γ (N ), the Rao–
Blackwellised estimate of π j = p(γ j = 1|y) is

π̂ j = 1

N

N∑

k=1

h̃(k)
j BF j

(
γ

(k)
− j

)

1 − h̃(k)
j + h̃(k)

j BF j

(
γ

(k)
− j

)

where h̃(k)
j = h if h is fixed or h̃(k)

j = #γ (k)
− j +1+a

p+a+b if h ∼
Be(a, b) and B = J̃ Tγ J̃γ + V−1

γ . If γ j = 0,

BF j (γ− j ) = d↑
j
−1/2

g−1/2 exp

⎧
⎨

⎩

1

d↑
j

(κT x j − κT Jγ B
−1 J̃ Tγ x̃ j )

2

⎫
⎬

⎭

with d↑
j = x̃ Tj x̃ j + g−1 − (x̃ Tj J̃γ )B−1( J̃ Tγ x̃ j ) and x̃ j is a

(n × 1)-dimensional vector with i th entry ˜xi, j = √
ωi xi, j .

In the case γ j = 1, it is useful to define q j to be ordered
position of the included variables (q j = 1 if j is the first

included variable, etc.); then,

BF j (γ− j ) = d↓
j

−1/2
g−1/2 exp

{

−1

2
d↓
j (κ

T Jγ (B−1)·,q j+pα )2
}

where d↓
j = 1/(B−1)q j+pα,q j+pα . Calculating the Rao–

Blackwellised estimate using the Laplace approximation
is time-consuming since this would involve an optimiza-
tion step to a posterior mode for each potential variable at
each iteration of the sampler. Therefore, in both the Laplace
approximation and correlated pseudo-marginal approaches,
the ASI algorithmwith data augmentation is run for N0 itera-
tion to calculated Rao–Blackwellised estimates of the PIP’s.
After this initial phase has been run, π

(N0)
1 , . . . , π

(N0)
p are

used as the estimate PIPs at every iteration and only ζ is
adaptively updated in the sampler (and often for only a finite
number of iterations of the sampler).

Adaptive MCMC algorithms do not necessarily lead to
ergodic Markov chains and so care is needed in their design.
Griffin et al. (2020) show that the ASI algorithm leads to
an ergodic chains in a linear regression model. In our algo-
rithms, adaptation only occurs for a fixed number of samples
during the burn-in phase and so the algorithms are ergodic
by design. However, it is interesting to think about whether
these samplers are ergodic if adaptation is allowed to con-
tinue indefinitely. Roberts and Rosenthal (2007) set out two
conditions for the ergodicity of adaptive MCMC algorithms.
Firstly, the algorithm must have diminishing adaptation that
is the adaptation of parameters tends to decrease as the sam-
pler runs. This property is established for theASI algorithm in
Griffin et al. (2020). The second is containment whichmeans
that the transition kernel (for any value of the adaptive param-
eter) reaches stationarity in bounded time. This property can
be easily established if the MCMC algorithm is uniformly
ergodic. This property can be easily established by restrict-
ing the state space of the adaptiveMCMCsampler to a (large)
bounded subset ofRpγ , for example, by bounding the regres-
sion coefficients in the Pólya-gamma sampler or the sampled
values in the importance sampler in the correlated pseudo-
marginal sampler. The property can also be easily established
if the sampler for Bayesian variable selection is run on the
posterior distribution of the model γ only since the finite
state space implies uniform ergodicity. If the marginal likeli-
hood p(y|γ ) is approximated using an importance sampler,
then the pseudo-marginal sampler is also uniformly ergodic
(Theorem 8, Andrieu and Roberts 2009) if the weights in the
importance sampler are bounded. The Pólya-gamma sam-
pling scheme is also uniformly ergodic (Choi and Hobert
2013) which implies that the adaptive scheme is uniformly
adaptive.
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4 Comparison of computational algorithms

The effective sample size of N MCMC draws of a parameter
θ is defined to be

ESSθ = N

1 + 2
∑t

k=1 ρ̂k

where ρ̂k is the estimated lag k autocorrelation of the chain
for θ and t is a suitably chosen threshold (see e.g. Liu 2001).
The ergodic average calculated using the N MCMC samples
has the same Monte Carlo error as an independent sampler
with ESSθ samples and so larger values of ESSθ for fixed
N imply a better mixing chain. The use of the ESS in this
adaptive context is justified since N0 is chosen to be smaller
than the burn-in phase and ζ is only adapted during the burn-
in phase. We measure the performance of each algorithm by
calculating the median of

ESS = median j=1,...,p(ESSγ j ).

This gives an overall measure of the mixing of the MCMC
chain but does not account for differences in the time taken
by different algorithms. To include time in the performance
measure,we define the time-normalized effective sample size
of algorithm A to be ESSA/TA where ESSA and TA are the
effective sample size and time taken to generate the MCMC
samples, respectively.

The results compare various algorithms:

• ASI-DA—ASI proposal with data augmentation sam-
pling.

• ADS-DA—Add–Delete–Swap proposal with data aug-
mentation sampling.

• ASI-Laplace—ASI proposal with a Laplace approxi-
mation of the marginal likelihood used directly (the
Rao–Blackwellised estimates in theASI proposal are cal-
culated using the Pólya-gamma sampling scheme).

• ADS-Laplace—Add–Delete–Swapproposalwith aLaplace
approximation of the marginal likelihood used directly

• ASI-CPM—ASI proposal with the correlated pseudo-
marginal sampler with a multivariate normal importance
distribution.

• ADS-CPM—ADS proposal with the correlated pseudo-
marginal sampler with a multivariate normal importance
distribution.

The ASI-DA, ADS-DA, ASI-CPM and ADS-CPM will pro-
vide samples for the true posterior, whereas the ASI-Laplace
and ADS-Laplace will sample from the posterior defined
by the Laplace approximation. The best ESS/Time for the
method which samples from the true posterior distribution is

the ASI-DA (6.6) with similar performance from the corre-
lated pseudo-marginal with normal importance, ρ = 1 and
N = 5. The methods performs about 3 times better than
their ADS counterparts. The ASI-Laplace provides the best
ESS/Time but only by a small amount.

The correlated pseudo-marginal method should become
more efficient than the PG sampling method when the sam-
ple size becomes larger since: 1) ESS will decreases for PG
sampling relative to correlated pseudo-marginal (due to the
introduction of more latent variables – one for every obser-
vation) and 2) increased sampling costs for the PG sampling
relative to the correlated pseudo-marginal (again, due to the
introduction of more latent variables).

4.1 Logistic regression

We begin by considering a simulation study which con-
verts the linear regression simulation study of Yang et al.
(2016) to logistic regression. They assume a linear pre-
dictor η = Xβ� and generated observations with normal
errors. In this simulation study, we use a logistic link to give
yi = exp{ηi }/(1 + exp{ηi }). Only the first 10 regression
coefficients are nonzero with values

β� = SNR(2,−3, 2, 2,−3, 3,−2, 3,−2, 3, 0, . . . , 0)T ∈ R
p

where SNR controls the signal-to-noise ratio. The i th vector
of regressors is generated as xi ∼ N(0, �) where � jk =
ρ| j−k|. In our examples, we use the value ρ = 0.6 which
represents a relative large correlation between the regres-
sors. We ran a simulation study to compare the performance
of the exact samplers for all combinations of n = 500, 1000
and p = 500, 5000. Each sampler was run for 105,000 iter-
ations with a burn-in of 5000. The adaptive parameters were
only adapted during the burn-in phase. The results are pre-
sented in Table 1. The CPM results correspond to N = 1 and
ρ = 1 which provided the largest time-normalized effective
sample sizes. The ASI algorithm outperforms the ADS algo-
rithm for both the DA and CPM updating schemes for all
simulated data sets apart from the data set with n = 500,
p = 5000 and SNR = 1. This is a low information data set
since it combines a small sample size, large number of regres-
sors and a low signal-to-noise ratio (the ASI only marginally
outperforms ADS in the lower signal-to-noise case where
SNR = 0.5). The CPM methods always outperform the DA
methods. The difference between the ASI method and the
ADS method with CPM updating tends to be larger for more
informative data sets (those with larger sample size, smaller
numbers of regressors and larger signal-to-noise ratios). The
posterior distribution in these cases is better able to distin-
guish between informative and uninformative variables in the
regression and the ASI method is better able to exploit this
information than the ADS sampler.
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Table 1 Time-normalized
effective sample size for various
computational methods for the
simulated logistic regression
data sets

(n, p) Adapt. Alg. MCMC Alg. SNR
0.5 1 2 3

(500, 500) ASI DA 2.3 2.5 1.5 1.5

ADS DA 1 1 1 1

ASI CPM 10.2 9.1 7.0 9.1

ADS CPM 5.3 3.6 3.0 2.2

(500, 5000) ASI DA 1.6 1.5 1.6 1.0

ADS DA 1 1 1 1

ASI CPM 2.7 2.8 4.2 4.9

ADS CPM 2.6 3.1 1.9 1.7

(1000, 500) ASI DA 2.2 2.2 1.5 5.8

ADS DA 1 1 1 1

ASI CPM 14.2 14.0 9.4 51.9

ADS CPM 8.6 8.4 3.4 3.0

(1000, 5000) ASI DA 1.4 1.9 2.1 1.4

ADS DA 1 1 1 1

ASI CPM 5.1 4.6 5.9 7.8

ADS CPM 4.0 3.2 2.7 2.3

The best performing method for each simulated data set is shown in bold

We consider four data sets which have been previously
analysed in the literature on computational methods for
Bayesian variable selection in logistic regression models
with a number of regressors (see e.g. Lamnisos et al. 2009):
Arthritis (Sha et al. 2003), Colon Tumor (Alon et al. 1999),
Leukemia (Armstrong et al. 2002) and Prostate (Singh et al.
2002). The sample size and number of regressors for each
data set are shown in Table 2. All variables were scaled to
have a sample standard deviation of one. The prior distri-
bution has the form α ∼ N(0, 100), p(βγ |γ ) ∼ N(0, I ),

γ j
i .i .d.∼ Bernoulli(h) for j = 1, . . . , p where h ∼

Be
(
1, p−5

p

)
. The samplers were run for 105,000 iterations

with a burn-in period of 5000 iterations. All samples after
the burn-in were used in the inference.

The time-normalized effective sample size for each
method and each data set is shown in Table 2. In the cor-
related pseudo-marginal sampler, we find that ρ = 1 leads
to the largest time-normalized effective sample size for both
the ASI and ADS sampler for all data sets and we choose
the number of random samplers in the importance sampler,
N , which gives the largest value for each data set (with that
value of N shown in Table). The results show some clear
patterns. The ASI correlated pseudo-marginal sampler is no
worse than the ADS correlated pseudo-marginal sampler for
all data sets. The Pólya-gammaASI sampler outperforms the
Pólya-gamma ADS sampler for the smaller data sets (Arthri-
tis, Colon Tumor and Leukemia) but not the largest data sets
(Prostate). The correlated pseudo-marginal ASI outperforms
the Pólya-gamma ADS for all data sets. The Laplace approx-

imation methods tend to have larger time-normalized ESS
than the exact methods (all data sets apart from Leukemia).

To understand the effects, it is also useful to look at effec-
tive sample sizes which are shown in Table 3. The relative
ESS for the ASI over the ADS method in the correlated
pseudo-marginal is much larger than for the Pólya-gamma
sampler. This reflects the effect of introducing latent vari-
ables in the data augmentation which slows the ASI methods
ability to make large jumps in model space. The effective
sample size for the correlated pseudo-marginal and Laplace
is very similar for both ASI and ADS for all data sets. The
differences in the time-normalized ESS reflect the additional
overhead of updating the regression coefficients and calcu-
lating the importance sampling approximation.

4.2 Accelerated failure timemodelling

Bayesian variable selection and associated computational
methods for survival analysis have been less developed than
approaches for logistic regression in the literature. Conse-
quently, there is no commonly used set of the data that is used
in previous work. We consider two data sets. The first looks
at survival following chemotherapy for diffuse large-b-cell
lymphoma (Rosenwald et al. 2002) (DLBCL). The second
breast cancer van’t Veer et al. (2002). The sample size, num-
ber of regressors and the percentage of censored observations
are shown in Table 4. In both cases, there are a large number
of variables and a large amount of censoring. The prior distri-

bution has the form p(α, σ−2) ∝ 1, γ j
i .i .d.∼ Bernoulli(h) for

j = 1, . . . , p where h ∼ Be
(
1, p−5

p

)
. The data sets were
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Table 2 Sample size n, number
of regressors p and
time-normalized effective
sample size for various
computational methods for the
four logistic regression data sets

n p DA CPM Laplace
ASI ADS ASI ADS ASI ADS

Arthritis 31 755 3.1 1 3.3 (N = 10) 1.0 (N = 1) 3.6 1.4

Colon Tumor 62 1224 1.6 1 1.3 (N = 2) 1.3 (N = 1) 2.2 1.7

Leukemia 72 3571 1.2 1 1.5 (N = 2) 0.8 (N = 1) 1.3 1.0

Prostate 136 10,150 0.7 1 2.0 (N = 4) 0.6 (N = 1) 3.3 2.0

The best performing method for each data set is shown in bold
In the CPM methods, the best performing value of N is shown in brackets

Table 3 Effective sample size
for various computational
methods on the four logistic
regression data sets

DA CPM Laplace
ASI ADS ASI ADS ASI ADS

Arthritis 73,487 60,893 226,874 (N = 10) 72,229 (N = 1) 227,171 74,259

Colon Tumor 57,863 59,454 113,629 (N = 2) 71,622 (N = 1) 110,815 72,242

Leukemia 55,581 64,887 118,348 (N = 2) 73,115 (N = 1) 123,032 74,748

Prostate 164,983 129,365 584,791 (N = 1) 131,426 (N = 1) 596,082 131,576

Table 4 Sample size n, number
of regressors p, the percentage
of censored observations (%)
and the time-normalized
effective sample size for various
computational methods on the
two survival data sets

n p % DA CPM Laplace
ASI ADS ASI ADS ASI ADS

DLBCL 235 7399 43.4 8.1 1 9.5 0.8 13.3 1.0

N = 25
ρ = 1

N = 25
ρ = 0.7

Breast 614 3378 78.1 1.45 1 0.39 0.26 0.7 0.3

Cancer
N = 5
ρ = 0.95

N = 5
ρ = 0.95

The best performing method for each data set is shown in bold

not standardized and the following priors were used for the
regression coefficients: p(βγ |γ ) ∼ N(0, 4 I ) for theDLBCL
data and p(βγ |γ ) ∼ N(0, 0.25 I ) for the breast cancer data.
The samplers were run for 105,000 iterations with a burn-in
period of 5000 iterations. All samples after the burn-in were
used in the inference.

The time-normalized effective sample size for each
method and each data set is shown in Table 4. Unlike
the logistic regression examples, in the correlated pseudo-
marginal sampler we find the optimal value of ρ differs
between data sets and the optimal value of N differs between
both data sets and algorithms. The results show that the ASI
methods outperform the corresponding ADS methods for
DA, CPM and Laplace in both data sets (with a substan-
tial improvement for the DLBCL data set). The ASI-CPM
and ASI-Laplace methods perform better than the ASI-DA
method for theDLBCLbut performworse for theBreastCan-
cer data sets. Althoughwe only have two data sets, the results
illustrate an important trade-off between the data augmenta-
tion methods and the CPM and Laplace methods. The data
augmentation scheme scales with number of censored obser-
vations. The CPM and Laplacemethods effectively scale like
the typical model size since most time is spent finding the

posterior mode for each update. The mixing of the CPM and
Laplace methods should be better than the data augmenta-
tion schemes since no latent variables are introduced. Since
the performance is largely effected by the typical model size
(which is often not known before the analysis), it is hard to
provide criteria for deciding when to use which algorithm.
Our recommendation is to use the DA method in problems
with sample sizes in the hundreds since this works well in
both cases. The performance of the DA will deteriorate rel-
ative to the CPM/Laplace methods for large values of n.

5 Discussion

In this paper, we have looked at several different schemes for
Bayesian variable selection in logistic regression or acceler-
ated failure time models. We find that the use of the adaptive
Metropolis–Hastings sampler provides better mixing chains
than the standard Add–Delete–Swap method in both mod-
els. The choice between data augmentation and the CPM or
Laplace method is less clear-cut. In the logistic regression
model, the CPM method outperforms the data augmentation
scheme in 3 out of 4 data sets. The CPMmethod is exact and
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performs similar to the (approximate) Laplace approxima-
tion method. Therefore, we suggest using the CPM with the
ASI method for logistic regression. The performance in the
accelerate failure time model is less clear. We find that the
performance of the CPM and Laplace methods is strongly
effected by the typical posterior model size. We recommend
using the data augmentation method with ASI for data sets
with sample sizes in the hundreds.
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