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Abstract  
 

 

Background 

Attention-deficit/hyperactivity disorder (ADHD) and Body Mass Index (BMI) are associated. 

However, it remains unclear whether this association reflects causal relationships in either 

direction, or confounding. Here, we implemented genetically informed methods to examine 

bidirectional causality and potential confounding.  

 

Methods 

Three genetically informed methods were employed: (1) cross-lagged twin-differences 

analysis to assess bidirectional effects of ADHD symptoms and BMI at ages 8, 12, 14 and 16 

years in 2,386 pairs of monozygotic twins from the Twins Early Development Study (TEDS), 

(2) within- and between-family ADHD and BMI polygenic score (PS) analysis in 3,320 pairs 

of dizygotic TEDS twins and (3) two-sample bidirectional Mendelian randomization (MR) 

using summary statistics from Genome-Wide Association Studies (GWAS) on ADHD 

(N=55,374) and BMI (N=806,834).  

 

Results 

Mixed results were obtained across the three methods. Twin-difference analyses provided 

little support for cross-lagged associations between ADHD symptoms and BMI over time. PS 

analyses were consistent with bidirectional relationships between ADHD and BMI with 

plausible time-varying effects from childhood to adolescence. MR findings were also 

consistent with bidirectional causal effects between ADHD and BMI. Multivariable MR 

suggested the presence of substantial confounding in bidirectional relationships.  

   



Conclusions 

The three methods converged to highlight multiple sources of confounding in the association 

between ADHD and BMI. PS and MR analyses suggested plausible causal relationships in 

both directions. Possible explanations for mixed causal findings across methods are discussed.  

 

Keywords:  ADHD, BMI, causal inference, Mendelian randomization, polygenic score, twin 

modelling
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Key messages  
 

• Within-family polygenic score and Mendelian randomization (MR) analyses were 

consistent with bidirectional causal effects between Attention-deficit/hyperactivity 

disorder (ADHD) and Body Mass Index (BMI). 

• Findings from different genetically informed methods suggested that multiple sources 

of confounding are at play, including genetic and shared environmental confounding, 

population stratification, assortative mating and dynastic effects.  

• The ADHD polygenic score increasingly associated with BMI phenotype from 

childhood to adolescence, suggesting an increasing role of ADHD in the aetiology of 

BMI across the development. Conversely, BMI polygenic score association with 

ADHD phenotypes tended to decrease across the development.    

• Addressing mixed evidence will require increased sample sizes to implement novel 

methods such as within-family MR. 
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Introduction  
 

Two meta-analyses confirm the association between Attention-Deficit Hyperactive Disorder 

(ADHD) and overweight/obesity with pooled odds ratios ranging from 1.22 to 1.27 (1, 2). 

Such positive associations between ADHD and obesity are more established in late 

adolescence and adulthood, while findings in children are frequently mixed (1-3). Prospective 

studies indicate that the relationships between ADHD and obesity may be bidirectional. 

Evidence showing that ADHD symptoms precede overweight and obesity (4, 5) and that 

overweight and obesity lead to manifestations of ADHD (6) (7) can all be found in the 

literature. Indeed, the behavioural characteristics of ADHD (e.g. lack of planning, poor 

impulse control) may increase the risk of overeating and abnormal eating behaviours, leading 

to weight gain and obesity (8). Conversely, obesity-related neurocognitive dysfunction (9), 

brain structural abnormality (10), inflammation (11) and sleep disruption (12) may cause 

impairment in attention and inhibitory control.  

 

In addition to plausible bidirectional causal relationships, it is also possible that the 

association between ADHD and obesity arises, totally or in part, from confounding. Previous 

investigations showed that the association between ADHD and overweight/obesity 

significantly reduced after adjusting for socioeconomic and lifestyle factors (13). 

Furthermore, family aggregation of overweight/obesity and ADHD was better explained by 

shared environmental factors than by direct effects between the two phenotypes (14). In 

addition to environmental confounding, genetic confounding can also play a role. Although 

positive genetic correlations (ranging from r = 0.21 to 0.26) and polygenic score associations 

between ADHD and Body Mass Index (BMI) have been identified (15-18), such genetic 

relationships may reflect a causal cascade (mediated pleiotropy, also called vertical 

pleiotropy), or genetic confounding (unmediated pleiotropy, also called horizontal pleiotropy), 
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or a combination of both (19, 20). Therefore, a genetic association can arise in the absence of 

causal relationships.   

   

To better differentiate between causality and confounding, a range of genetically informed 

methods for causal inference can be implemented (21). Importantly, using several such 

approaches to address the same question remains necessary to triangulate evidence, as results 

from genetically informed methods can still be biased or confounded. Triangulating evidence 

from different methods can not only identify potential sources of bias, but also strengthen 

causal inference if different methods point to the same conclusion (22). For example, a recent 

study used genetic variants associated with ADHD and BMI as instrumental variables in 

Mendelian randomization (MR) analyses and detected an effect from higher BMI to higher 

ADHD liability (23) but not in the reverse direction. These findings were at odds with 

previous observational reports (1). Nevertheless, MR is susceptible to unmeasured 

confounding such as dynastic effects (i.e. when associations between offspring genetic 

variants and offspring phenotypes also capture environmentally mediated parental genetic 

effects) and population stratification (24), it is important to validate these findings with 

methods controlling for aforementioned confounding, such as family-based genetically 

informed designs (e.g. within-family analysis) (21).   

 

In this study, we implemented three different genetically informed methods to investigate the 

nature of the relationship between ADHD and BMI: 1) cross-lagged twin-differences analysis 

in MZ twins to examine the causal effects across childhood and adolescence while 

controlling for shared genetic and shared environmental confounding, 2) between- and 

within-family polygenic score analyses, to account for dynastic effects, population 

stratification and assortative mating shared between siblings, and 3) Mendelian 
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randomization and corollary sensitivity analyses to account for unmediated pleiotropy. We 

aimed to investigate to what extent the association between ADHD and BMI is attributable to 

causal relationships and/or to other factors. 



8 
 

Methods 
The description, strengths and assumptions of the three genetically informed methods, 

namely (1) twin-differences, (2) polygenic scoring and (3) bidirectional Mendelian 

randomization are outlined in Table 1. The following sections detail the implementation of 

those methods in the current study.  

 

 

I. Twin-differences analyses 

Study Sample  

Data were drawn from the Twins Early Development Study (TEDS), a cohort of twins born 

between 1994 and 1996 in England and Wales. Additional details on the TEDS sample can be 

found elsewhere (25). Four waves of data collection including data on BMI and ADHD 

symptoms were analysed (ages 8, 12, 14 and 16 years).  In this study, we included twin pairs 

with complete information on zygosity and ratings of ADHD symptoms and BMI across at 

least one of the four assessment waves. Because only a subset of twin pairs has genotyping 

data, zygosity information was derived from an algorithm based on parent-reported 

phenotypic similarity. However, if a DNA zygosity test is available, the information was used 

as best estimate for a same-sex twin pair. The zygosity assignment by the algorithm has 

95.2% concordance with DNA findings in the TEDS sample (25, 26). Our final study sample 

comprised 6,655 twin pairs (48% males), including 2386 monozygotic twin (MZ) pairs and 

4,269 dizygotic twin (DZ) pairs.  

Ethical approval for the Twins Early Development Study (TEDS) was granted by King’s 

College London’s ethics committee for the Institute of Psychiatry, Psychology and 

Neuroscience. Written informed consent was obtained from parents before data collection. 
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Phenotypic measures for ADHD symptoms and BMI 

ADHD symptom scores were derived from parents’ ratings on the Conners’ Parent Rating 

Scale-Revised (CPRS-R) at ages 8, 12, 14 and 16 years. The CPRS-R consists of 18 items 

tapping inattentive and hyperactive/impulsive symptoms of ADHD (27). Evidence suggests 

that the CPRS-R is a reliable measure to assess ADHD and the diagnostic effectiveness of the 

CPRS-R has been demonstrated across different settings (28). All items were rated on a 0-3 

Likert scale, with 0 as ‘not at all’ and 3 as ‘very much true’. A sum score ranging from 0 to 

54 was calculated from the 18 items of the CPRS-R, indexing the levels of ADHD symptoms 

of each individual. The information was used in phenotypic, twin-differences, and polygenic 

score analyses. Standardised Cronbach alphas for the CPRS-R total scale ranged between 

0.91 and 0.92 across the 4 waves of data collection. BMI of the twins was obtained using 

parent-reported data on height (meter) and weight (kilogram) at age 8, and child-reported data 

at ages 12, 14 and 16 years. BMI values were converted to age- and sex-adjusted standardised 

deviation scores (SDS) using the LMS method (L (skewness), M (median), S (coefficient of 

variation)) (29) based on the British 1990 growth reference (30).  

 

Analyses  

All statistical analyses were conducted using R [version 3.5.2 (31)]. 

We used structural equation modelling [R package Lavaan (32)] to construct analysis with 

cross-lagged design (33) and derive the following estimates:  

• Cross-lagged phenotypic associations between earlier measures of ADHD symptoms 

(BMI SDS) and later measures of BMI SDS (ADHD symptoms), adjusted for 

observed confounds (sex, age, birth weight and parental education) on 6,655 unrelated 

individuals (one twin selected at random from each twin pair) across childhood and 

adolescence. 
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• A cross-lagged twin-differences model on MZ twins (2,386 pairs) to examine the 

relationships between differences in earlier measures of ADHD symptoms (BMI SDS) 

and later measures of BMI SDS (ADHD symptoms) across childhood and 

adolescence. Sex, age and parental education were adjusted by design and a twin- 

differences score in birth weight was included as a covariate (details in Table 1).  

To account for data non-normality, 95% confidence intervals (CI) were obtained using 

bootstrapping with 10,000 repetitions.  

  

  

II. Polygenic Score analyses  

 

Study Sample  

A subsample of 3,320 dizygotic (DZ) twin pairs from the TEDS that had complete phenotype 

data and passed the genotyping quality control procedures were included in the polygenic 

score analyses (details in (34)). Observations of each twin and the co-twin were entered in the 

multilevel model to conduct a family-based design analysis. Such approach provides 

association estimates of the polygenic scores on the phenotypic traits unbiased by dynastic 

effects, population stratification and assortative mating (definitions and details in Table 1) 

(35).  

 

Genotypic data and polygenic scores  

The ADHD and BMI polygenic scores (PSs) for the TEDS participants were generated in the 

software LDpred (36), using the TEDS genotype data and the summary statistics from 

genome-wide association studies (GWAS) on ADHD (N=55,374) (15) and BMI (N=806,834) 

(17). The PSs for each participant were computed based on a fraction of causal markers of 1 

in LDpred (see (37) for details on PS generation). LDpred method accounts for linkage 
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disequilibrium (LD) between SNPs. To facilitate interpretability, the PSs were z-standardised 

with a mean=0 and standard deviation=1.  The ADHD PS explained 1.1 to 1.8% of the total 

variance in ADHD symptoms, while the BMI PS explained 2.7 to 11.7 % of the total variance 

in BMI SDS (Supplementary Table S1). 

 

Analyses  

Multilevel models using the package “lme4” (38) were implemented to test the associations 

between ADHD/BMI PSs and their opposite phenotype. Because twins are nested within 

families, the model clustered standard errors by family and allowed for within-family 

correlations. ADHD ratings, BMI SDS, and the polygenic scores for ADHD and BMI were 

residualised on age, sex, and the first 10 principal components prior to estimating the 

multilevel model. 

For each multilevel model, we estimated the associations between the ADHD PS and BMI 

phenotypes and the BMI PS and ADHD ratings with:  

• The family mean PS (i.e. the averaged PS across the two twins): this estimates the 

between-family association. 

• The difference between the individual PS and the family mean PS: this estimates the 

within-family association.  

We then computed the following differences in estimates from the multilevel models: 

• Differences of the within-family and the between-family estimates (the within-

family minus the between-family estimates): to examine estimate change due to the 

three aforementioned sources of bias.  

• Differences of the within-family estimates between ages 16 and 8 years (estimate at 

age 16 minus estimate at age 8): to examine whether effects varied across 

development. 
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Differences were tested against the null using 95% bootstrap percentile intervals based on 

random sampling with replacement of DZ twin pairs (10,000 draws). 

 

It has been shown that the between-family estimates can be confounded by dynastic effects 

related to parental education (37). We therefore included parental education (standardized 

average of maternal and paternal highest educational level collected at first contact) in our 

model to test if it changed the between-family estimates. As above, we tested the following 

differences: 

• Differences of the within-family and the between-family estimates in the model, this 

time including parental education as a covariate. 

• Differences of the between-family estimate before and after adjusting for parental 

education. 

 

III. Bidirectional two-sample Mendelian Randomization (MR) analyses 

of ADHD and BMI  

 

Study Samples  

MR is a causal inference method that uses genetic variants associated with an exposure (e.g. 

SNPs associated with BMI) as instrumental variables to estimate the effect of this exposure 

on an outcome (Table 1 for details). We selected SNPs below the genome-wide significance 

p-value threshold of p<5e-8  (i.e. 5x10-8) for BMI (NSNPs=546) and SNPs below the 

suggestive p-value threshold of p<5e-5 for ADHD (NSNPs= 190) with clumping to ensure 

independence between SNPs (clumping r2 cut off =0.001 and clumping window=10,000kb) 

from recently published genome-wide association (GWA) summary data on BMI 

(N=806,834, (17)) and ADHD (N=55,374, (15)).  
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We also performed MR analyses with SNPs selected at the p-value threshold of p<5e-8 from 

the ADHD GWA summary data to check for the convergence in findings with analyses at the 

p-value threshold of p<5e-5.  

 

 

Analyses  

We used the TwoSampleMR package (39) for MR analyses. We considered ADHD and BMI 

as exposures in turn to evaluate bidirectional effects. Effect estimates from individual SNPs 

were combined using random-effects inverse-variance weighted (MR-IVW) regression as the 

primary analysis.  

To interrogate possible violations of key MR assumptions and to deal with a potential weak 

instrument bias, we conducted a number of sensitivity analyses, including (see details in 

Table 1):  

• MR-Egger analysis  

• Weighted median analysis  

• Weighted mode analysis 

• Robust adjusted profile score (MR-RAPS) analysis  

• Multivariable MR using the IVW estimator to estimate the direct effects of BMI and 

ADHD after controlling for confounding associated with educational attainment  

 

Previous findings showed that polygenic scores for educational attainment were associated 

with large dynastic effects on a number of traits including BMI (40). To examine whether 

controlling for educational attainment influences some of the reciprocal effects between 

ADHD and BMI, we compared the IVW MR estimator with the IVW  multivariable MR 

estimator using a test that accounts for the covariance between the two estimates (41). 
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Results 

I. Twin-differences analyses 

Sample baseline characteristics are shown in Supplementary Table S2. Figure 1 and 

Supplementary Table S3 present the autoregressive and cross-lagged phenotypic associations 

between ADHD symptoms and BMI SDS from ages 8 to 16 years, adjusted for age, sex, birth 

weight and parental education in unrelated individuals. Evidence indicated that ADHD 

symptoms were positively associated with subsequent BMI across the follow up (ß=0.028, 

95% bootstrap CI=0.022,0.034, ß=0.033, 95% bootstrap CI=0. 0.027,0.039 and ß=0.045, 

95% bootstrap CI=0.037,0.053 respectively) (Supplementary Table S3). Conversely, 

evidence supported that BMI at age 14 was negatively associated with ADHD symptoms at 

age 16 years (ß=-0.010, 95% bootstrap CI=-0.018,-0.002). 

Results of the twin-differences analyses on MZ twins are shown in Figure 1 and 

Supplementary Table S4. MZ twin-differences analyses provided little support that 

differences in earlier measures of ADHD symptoms were associated with subsequent changes 

in BMI (ß=-0.009, -0.074 and 0.005, all 95% bootstrap CI included 0) and vice versa (ß=-

0.040, -0.025 and 0.011, all 95% bootstrap CI included 0). Means and distribution of the 

differences in standardised ADHD symptom ratings and BMI SDS in MZ twins at ages 8, 12, 

14 and 16 are shown in Supplementary Figure S1.  

 

 

II. Polygenic score analyses 

ADHD Polygenic score to BMI SDS   

The associations between the ADHD PS and phenotypic BMI from the multilevel model are 

displayed in Figure 2 and Supplementary Table S5. Findings indicated positive between-

family associations at ages 12, 14 and 16 years (e.g. at age 12 years, Beta=0.057, 
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95%CI=0.016,0.098, i.e. one SD unit increase in the ADHD PS was associated with 0.057 

SD unit increase in BMI SDS). The within-family estimates provided evidence that a one SD 

unit increase in the individual ADHD PS from the family mean was associated with a 0.128 

(95%CI 0.025 to 0.228) SD unit increase in BMI SDS at age 16 years. There was little 

evidence that the ADHD PS associated with BMI within families at earlier ages. There was 

little evidence that the between-family and the within-family estimates differed (∆=-0.041 to 

0.040, bootstrap 95% CIs all across 0) (Supplementary Table S5). Overall, the within-family 

associations increased from age 8 to age 16 years (∆=0.088, 95% bootstrap CI 0.038,0.214).   

 

After including parental education level as a covariate, the between-family associations were 

attenuated at ages 8, 12 and 14 years (∆=-0.010, -0.016 and -0.009, bootstrap 95% CIs do not 

include 0), while the within-family associations remained unchanged. In sum, the effects of 

the ADHD PS on phenotypic BMI increased from childhood to adolescence and were 

confounded by parental education (Figure 2 and Supplementary Table S5).  

 

 BMI polygenic score to ADHD symptoms 

The associations between the BMI PS and ADHD symptoms are shown in Figure 2 and 

Supplementary Table S6. The BMI PS was positively associated with ADHD symptoms 

between families across the four time points (e.g. at age 8 years, Beta=0.808, 

95%CI=0.556,1.061, i.e. one SD unit increase in BMI PS was associated with 0.808-point 

increase in the score of ADHD symptoms at age 8 years), and there was evidence of within-

family associations at ages 8, 12 and 14 years (e.g. at age 8 years, one SD unit increase in the 

individual BMI PS from the family mean was associated with a 0.628-point (95%CI 

0.235,1.022) increase in the score of ADHD symptoms).  Evidence showed that the within-

family association was smaller than the between-family association at age 16 years (∆=-0.626, 
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bootstrap 95% CI -1.029,-0.217) (Supplementary Table S6) but not at earlier ages. In contrast 

to the ADHD PS, the effects of the BMI PS on ADHD symptoms decreased from age 8 to 

age 16 years (∆=-0.538, 95% bootstrap CI -0.988,-0.094).  

After including parental education level as a covariate, the between-family associations were 

attenuated at ages 8, 12 and 16 years (∆=-0.238, -0.220 and -0.434, bootstrap 95% CIs do not 

cross 0) (Supplementary Table S6). In sum, the effects of the BMI PS on ADHD symptoms 

decreased from childhood to adolescence and were confounded by parental education. 

 

III. Bidirectional two-sample Mendelian Randomization (TSMR) 

Effect of ADHD liability on BMI 

After harmonisation to exclude palindromic SNPs and variants that did not share the same 

allele pair between the exposure and the outcome GWAS, 131 of the 190 SNPs selected at 

the threshold of p<5e-5 were used as genetic instruments for ADHD.  Table 2 and Figure 3 

show the effect of the liability to ADHD on BMI estimated by different MR methods. The 

estimates suggested that a unit increase in odds ratio of ADHD lead to 0.028 SD unit increase 

in BMI (IVW ß =0.028, 95%CI 0.015-0.040, p<0.001). The sensitivity analyses using 

weighted median method and MR-RAPS were consistent with the IVW results. The weighted 

mode method and the MR Egger estimates were imprecise (Table 2). MR-Egger intercept 

provided little evidence of unbalanced horizontal pleiotropy (intercept=0.002, 95%CI -0.002-

0.005, p=0.330). The sensitivity analyses performed with the SNPs below the genome-wide 

significance of p<5e-8 showed that one unit increase in odds ratio of ADHD lead to 0.064 SD 

unit increase in BMI (IVW ß =0.064, 95%CI 0.004-0.125, p=0.036). The weighted median 

method was consistent with the IVW, but the weighted mode method and MR Egger 

provided little support for an effect (Supplementary Table S7).   



17 
 

The multivariable IVW estimate of the effect of liability to ADHD on BMI controlling for 

effects associated with education was smaller than the univariable IVW estimate 

(multivariable MR ß =0.019, 95%CI 0.005-0.033, p=0.010), as found in the test of 

differences (t(127)=2.362, p=0.020).  

 

 

Effect of BMI on the liability to ADHD  

After harmonisation, 463 of the 546 SNPs selected from the BMI GWAS below the genome-

wide significance of p<5e-8 were used as genetic instruments for BMI. As shown in Figure 4, 

different MR estimators consistently provided evidence that higher BMI increases liability to 

ADHD. The estimate of MR-IVW (IVW OR=1.923, 95%CI 1.715-2.157, p<0.001) suggested 

that a one SD unit increase in BMI nearly doubled the odds of ADHD. MR-Egger intercept 

provided little evidence of unbalanced horizontal pleiotropy (intercept=0.002, 95%CI -0.003-

0.007, p=0.362) (Table 2).  

The MVMR estimate also provided evidence that BMI had an effect on liability to ADHD 

that was independent of effects associated with education (multivariable MR-IVW OR=1.587, 

95%CI 1.395-7.583, p<0.001), although the effect was smaller as found in the test of 

difference (t(456)=5.636, p<0.001).  
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Discussion 
 

The current study used three different genetically informed methods (MZ twin-differences, 

polygenic score and Mendelian randomization analyses) to test the nature of the relationship 

between ADHD and BMI.  Triangulation of evidence from the three methods indicated 

multiple sources of confounding such as population stratification, assortative mating and 

dynastic effects underlying the relationship between ADHD and BMI. Findings suggested 

that some of the effects between ADHD and BMI may be confounded by effects associated 

with education. Possible explanations for mixed causal findings across methods are discussed.    

 

The relationship between ADHD and BMI 

Unidirectional or bidirectional? 

In cross-lagged phenotypic analyses on unrelated individuals, we found that ADHD 

symptoms predicted higher BMI at later ages but not the reverse. However, findings from 

cross-lagged MZ twin differences provided little support for an effect of ADHD on later BMI 

and vice versa. In contrast, polygenic score and MR analyses were consistent with the 

presence of bidirectional relationships between ADHD and BMI. There was more consistent 

evidence supporting the effect of BMI on ADHD across MR estimators. However, such a 

finding may be attributed to the more powerful genetic instruments available for BMI 

compared to ADHD. For example, when including additional genetic variants for ADHD (i.e. 

using a more liberal threshold when selecting SNPs as instrumental variables), we detected 

causal effects of ADHD on BMI that were undetected in a previous MR report (23). A more 

powerful GWAS for ADHD may, in the future, result in consistent findings for the effect of 

ADHD liability on BMI.  
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Causal or confounded? 

The results from our three genetically informed methods were consistent in highlighting 

multiple sources of confounding affecting the relationships between ADHD and BMI. First, 

the fact that there was little evidence of an effect in MZ twin-differences analyses suggests 

that shared genetic and environmental confounding may account for the relationship between 

ADHD symptoms and BMI. This finding corroborates previous studies using family-based 

approaches, showing that a substantial proportion of the association between ADHD and 

obesity is explained by genetic and environmental confounding (42) (14). However, twin 

differences analyses can be biased by non-shared factors such as measurement errors, which 

may lead to attenuations of within-twin pair associations and lower statistical power (43). 

Although we did not detect associations between twin differences scores in BMI and twin 

differences scores in ADHD symptoms, substantial auto-regressive pathways were found for 

both traits (e.g. twin differences in ADHD symptoms at ages 8 and 12 years). As such, twin 

differences scores showed some reliability and stability over time, suggesting that any 

undetected true associations between twin differences scores in ADHD symptoms and BMI 

were likely small. As such, replication of our twin-differences findings in a larger twin 

sample is needed to verify whether small bidirectional causal effects between ADHD 

symptoms and BMI can be excluded. Furthermore, cross-lagged models examine causal 

relationships at specific time lags (i.e. intervals between data collection points). It is possible 

that the effects between ADHD symptoms and BMI occurred within a different time frame 

(e.g. immediate effects or very long-term effects), which went undetected in our designs. Of 

note is that genetic instruments used in polygenic scores and MR reflect long-term exposures 

(e.g. long-term increased liability to BMI and ADHD), which may be one important source of 

divergence between findings from these two methods with findings from time-sensitive 

cross-lagged analyses.  
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Second, corroborating previous studies, we identified associations between the polygenic 

score for BMI and ADHD symptoms, and the polygenic score for ADHD and BMI (18, 44). 

However, the associations may arise from direct causal effects but also from confounding. 

Indeed, the within-family polygenic score estimate, which controlled for sources of 

confounding shared between siblings (e.g. population stratification, dynastic effects and 

assortative mating) revealed that the associations between the ADHD PS and the BMI PS 

with their opposite phenotypes were to some extent biased by the aforementioned factors. 

Furthermore, noticeable attenuation of the between-family estimates after controlling for 

parental education suggests that dynastic effects related to parental education may constitute 

an important source of confounding. This is in line with previous studies showing substantial 

confounding due to familial and parental factors in polygenic score studies of educational 

attainment (45, 46) and cognitive abilities (37). Our study demonstrates that such 

confounding is not specific to cognitive traits but may also extend to other traits and 

outcomes, namely ADHD and BMI.  

 

Third, multivariable MR analyses further implicated confounding in the relationship between 

ADHD and BMI. We found that the effects between ADHD and BMI were substantially 

attenuated after including educational attainment in multivariable MR analyses, suggesting 

that some of the effects between the two phenotypes may be due to educational attainment. 

These findings correspond to current knowledge that population stratification, assortative 

mating and dynastic effects can result in biased MR estimates (24). Further work 

implementing a within-family MR design that accounts for such confounding may provide 

more robust estimates of the causal effects of BMI on ADHD.  
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The developmental feature of bidirectional relationships between ADHD and BMI 

As part of twin-differences and polygenic score analyses, we tested whether effects between 

ADHD and BMI changed from childhood to adolescence. Notably, the BMI PS had a 

stronger effect on ADHD symptoms in childhood than in adolescence, suggesting that the 

genetic liability to higher BMI had stronger influences on ADHD symptoms during the 

childhood years. Interestingly, a recent study has also identified that higher BMI (47)and 

obesity may be associated with abnormal development of prefrontal cortex and diminished 

executive function in children (10).  

 

In the other direction, we found that the association between the ADHD PS and BMI 

increased from childhood to adolescence, suggesting that ADHD may more likely result in 

higher BMI in adolescence than in childhood. One plausible explanation for the increasing 

effects of ADHD with age is that individuals with ADHD symptoms may present more 

impulsive eating and difficulty in planning regular meals or maintaining a healthy lifestyle 

(48). Consequently, these behaviours may lead to weight gain in adolescence and beyond, 

when parental monitoring is less pronounced, and individuals are more autonomous in their 

food consumption patterns.  

 

 

Limitations 

In addition to the aforementioned methodological limitations associated with each design and 

limitations related to power, the following limitations should be considered. As we used BMI 

as the studied variable for our analyses, the interpretation may not be applicable when using 

obesity as the target. Similarly, ADHD symptoms were dimensionally assessed in our study 

sample, so the findings may not be readily applicable to clinical samples.  
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The GWAS for ADHD used in the current study is based on binary diagnosis. However, it is 

strongly concordant with the GWAS on childhood ADHD symptoms (genetic 

correlation=0.97) (15). In addition, previous studies have also demonstrated that the 

polygenic scores generated from the GWAS on ADHD diagnosis were highly correlated with 

dimensional ADHD symptoms in the general population (49) (50). Such high correlation 

suggests that risk alleles for the categorical diagnosis of ADHD overlap with those for 

inattentive and hyperactive/impulsive symptoms dimensionally distributed in the population. 

Finally, as we used ADHD liability as the exposure variable in MR analyses to study the 

effect of ADHD on BMI, this may potentially lead to violation of MR assumptions if there is 

a continuous effect of ADHD on BMI and hence prevents us from estimating the actual effect 

(51).  

 

 

Conclusion 

The three genetically informed methods implemented in this study converged to demonstrate 

that the relationships between ADHD and BMI are subject to shared genetic and 

environmental confounding. Polygenic score and MR analyses suggest plausible reciprocal 

causal relationships while findings from cross-lagged analyses were inconsistent. Polygenic 

score analyses further suggested that reciprocal relationships may be age specific. Future 

research using larger samples and additional designs are required to provide a definitive 

answer. A developmentally sensitive approach aiming to describe the timing of the causal 

effects may be required to elucidate apparently diverging findings. Such a developmentally 

sensitive approach will also provide invaluable information for prevention and early 

intervention programmes. 
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Table 1. Description of the three inference methods employed to study the relationship between Attention-deficit/hyperactivity disorder (ADHD) 

and Body Mass Index (BMI) 

 
Approach General description Rationale and aims for application in current 

study 

Main assumptions  

1. Twin-

differences 

analysis in 

monozygotic 

(MZ) twins 

Twin-differences analysis capitalises on 

the twins’ characteristics to control for 

potential confounding due to genetic and 

shared environmental effects. If one twin 

differs from the co-twin in one trait (e.g. 

BMI) also differs in the outcome of 

interest (e.g. ADHD), then it suggests 

effects are independent from genetic and 

shared environment influences.  

 

 

 

Twin-differences analysis in MZ twins 

• MZ twins provide a stringent control for 

genetic and shared environmental 

confounding. 

• The longitudinal design assesses whether 

differences in one trait associate with 

subsequent differences in the other trait.  

• Twin-differences analyses can inform if the 

effects are due to non-shared environment or 

confounding. 

MZ twins share 100% of their genetic material 

(although small divergences from this general rule 

can be observed). 
MZ twin-differences analysis assumes that there is 

no unobserved non-shared environmental 

confounding. Plausible observed confounders (here 

birth weight) can be adjusted for.    
  

2. Within-family 

Polygenic score 

(PS) analysis in 

dizygotic (DZ) 

twins 

A PS for a specific trait per individual is 

derived by computing the sum of the 

trait-associated alleles weighted by their 

relative effect sizes as reported in the 

genome-wide association summary 

statistics.  

 

 
 

Between- and within-family PS association in 

DZ twins 

• A PS indexes an individual’s genetic liability 

to a particular trait, thus can be used as a 

proxy of that trait in cross-trait analyses. 

Estimates obtained from a PS association can 

be mathematically identical to causal 

estimates obtained from the Inverse-variance 

weighted (IVW) estimator in Mendelian 

randomization (MR), as long as the same 

genetic variants and genome-wide association 

study (GWAS) estimates are used in both 

methods (see the MR section below). PS 

associations provide an initial indication of a 

possible causal relationship.  
• The within-family design controls for 

dynastic effects1, population stratification2 

and assortative mating3, which can bias PS 

association findings. 

• Implementing within-family polygenic score 

association as performed in the present study 

• The main assumption for the use of PS in the 

context of causal inference is the absence of 

pleiotropy. However, this assumption is most 

unlikely to hold. 
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addresses confounding of dynastic effects 

that are common to the PS association and 

the MR approach (see assumption column).  

 

3. Bidirectional 

Mendelian 

randomization 

(MR) analysis 

MR analysis builds on Mendel’s Laws of 

Inheritance, and utilises genetic variants 

associated with an exposure (e.g. SNPs 

associated with BMI) as instrumental 

variable (IV) to examine the causal effect 

of this exposure on an outcome.  

Bi-directional two-sample MR  

• Evaluate reciprocal relationships between 

ADHD and BMI. 

 

IVW-based method  

• The IVW regression estimates the causal 

effect by computing the slope of the weighted 

regression of instrument-outcome 

associations on instrument-exposure 

associations, with the intercept constrained to 

zero. 

 

MR-Egger regression  

• The intercept estimate can be interpreted as 

the average unbalanced horizontal pleiotropic 

effects across the IVs.  

 

Weighted-median method 

• Provides a valid causal estimate if the IVs 

that represent 50% of the weight in the 

estimate are valid. 

 

Weighted-mode method  

• Provides a valid causal estimate  if the IVs 

that represent the largest number of SNPs 

(mode) represent the true causal effect. It is 

robust to unbalanced horizontal pleiotropy 

and is unbiased when the majority of the IVs 

are invalid.  
 

Robust adjusted profile score (MR-RAPS) 

• Attributes different weights to the IVs 

according to their associative strengths to 

minimise the weak instrument bias. It enables 

• Three core instrumental assumptions regarding 

the IV should be met for all MR analyses:  
o Relevance assumption: the genetic 

variants are associated with the 

exposure. 

o Independence assumption: association 

between the genetic variants and the 

outcome is not confounded by 

unmeasured factors. 

o Exclusion restriction: genetic variants 

only affect the outcome through their 

effect on the exposure. Unmediated 

pleiotropy (also called horizontal 

pleiotropy4) violates this assumption.   

• IVW-estimator only accounts for balanced 

pleiotropy5, i.e. when average pleiotropic effect 

equals to zero, simply creating additional 

heterogeneity without modifying the point 

estimate. Conversely, MR-Egger provides an 

estimate of unbalanced horizontal pleiotropy 

and can yield a correct estimate even if all 

instruments are invalid. But MR-Egger has 

low power.  

• The weighted-median method can provide 

accurate causal estimates when > 50% of the 
instrument are valid and is more powerful than 

MR-Egger. 

• The weighted-mode method provides a valid 

causal estimate if the largest subset of IVs with 

the same ratio of effect is formed by valid 

instruments. 

• MR-RAPS can be employed to correct for the 

weak instrument bias and also accounts for 

balanced pleiotropy. 
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two-sample MR analysis to include more 

weak IVs, which is not recommended with 

other methods for MR, and increases 

efficiency of MR studies.   
 

Multivariable MR analysis 

• Provides effect estimates of multiple 

exposures on one outcome, thereby explicitly 

controlling for suspected sources of 

pleiotropy. Here, we implement multivariable 

MR by modelling genetic variants associated 

with educational attainment to test whether 

genetic nurture effects associated with 

educational attainment may explain away 

some of the reciprocal effects between 

ADHD and BMI.  

 

• Multivariable MR analysis provides accurate 

causal effects if sources of pleiotropy are 

effectively captured and explicitly modelled.       

Note: 1 Dynastic effect: non-transmitted alleles from parents influence offspring phenotype via the correlation between the environment parents create for 

their children and the non-transmitted gene. 2Population stratification: the presence of a systematic difference in allele frequencies between subgroups in a 

population. It mainly results from non-random mating due to geographic separation and low rates of migration. 3Assortative mating: individuals with similar 

phenotype mate with one another more frequently than that would be expected at random. For example, married couples often share similar level of education 

or socioeconomic background. 4Horizontal pleiotropy, when one genetic variant has independent effect on multiple traits. 5Balanced pleiotropy, on average 

the pleiotropic effects on the outcome equal to zero (hence balanced) and is independent of the pleiotropic effects on the exposure. When the average 

pleiotropic effect is positive or negative, the horizontal pleiotropy is unbalanced. 
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Table 2. Mendelian randomization: effects between ADHD and BMI 

Exposure 

 Univariable MR  Multivariable MR 

Method nSNP ß 
Lower 

95% CI 

Upper 

95% CI 
p-value  nSNP ß 

Lower 

95% CI 

Upper 

95% CI 
p-value 

ADHD 

IVW 

131 

0·028 0.015 0.040 <0·001  

130 0·019 0.005 0.033 0.010 

MR RAPS 0·020 0.010 0.031 <0·001  

Weighted 

median 

 

0·013 
0.004 0.023 

 

0.005 
 

Weighted 

mode 
0.002 -0.024 0.027 0.905  

MR Egger 0·008 -0.034 0.049 0.713  

MR Egger 

intercept 
0.002 -0.002 0.005 0.330  

BMI 

IVW 

463 

1.923* 1.715 2.157 <0.001  

459 1.587* 1.395 1.806 <0.001 

MR RAPS 1.910* 1.699 2.147 <0.001  

Weighted 

median 
1.973* 1.710 2.276 <0.001  

Weighted 

mode 
2.353* 1.570 3.527 <0.001  

MR Egger 1.679* 1.228 2.297 0.001  

MR Egger 

intercept 
0.002 -0.003 0.007 0.362  

Note: * is odds ratio (OR).
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Figure 1. Cross-lagged phenotypic relationships between Attention-deficit/hyperactivity 

disorder (ADHD) ratings and Body Mass Index standardised deviation score (BMI SDS)  

 

 

Note: Standardised estimates of phenotypic relationships (i.e. correlations) adjusted for age, 

sex, birth weight and parental education are shown in black (above the lines); estimates from 

twin-differences analyses in monozygotic (MZ) twins are in blue (below the lines); estimates 

with 95% bootstrap percentile intervals not including 0 are displayed in italic bold. Details of 

95% bootstrap percentile intervals can be found in Supplementary Table S3 and 

Supplementary Table S4. 
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Figure 2. Between- and within-family polygenic score (PS) associations 
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Note: PS, standardised polygenic score; B/Beta, unstandardised regression estimates. 
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Figure 3. Mendelian randomization: effects of ADHD on BMI
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Figure 4.  Mendelian randomization: effects of BMI on ADHD  
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Supplementary Table S1 Association between the polygenic risk scores for Attention-Deficit/Hyperactivity Disorder (ADHD) and Body Mass 

Index (BMI) and the corresponding phenotypes (ADHD symptoms and BMI standardised deviation score (BMI SDS)) 

Polygenic score for BMI 

phenotype β s.e. 

 

R2 

 

BMI SDS age 8 0.163 0.013 0.027 

BMI SDS age 12 0.296 0.013 0.088 

BMI SDS age 14 0.292 0.017 0.087 

BMI SDS age 16 0.340 0.020 0.117 

Polygenic score for ADHD 

phenotype β s.e. 
 

R2 

 

ADHD symptoms age 8 0.136 0.012 0.018 

ADHD symptoms age 12 0.120 0.012 0.014 

ADHD symptoms age 14 0.117 0.016 0.014 

ADHD symptoms age 16 0.106 0.013 0.011 
Note: BMI SDS: Body Mass Index converted to standardised deviation score (SDS) based on the British 1990 growth reference 
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Supplementary Table S2   

Demographics of the study sample from the Twins Early Development Study (TEDS) 

 

Total  

(6655 pairs) 

Monozygotic twin (MZ) 

(2386 pairs) 

Dizygotic twin (DZ) 

(4269 pairs) 

 n, mean %, sd n, mean %, sd n, mean %, sd 

       

Male 3196 48% 1107 46% 2089 49% 

Birthweight (kg) 2.50 0.56 2.43 0.56 2.54 0.55 

Birthweight SDS -0.52 1.06 -0.58 1.06 -0.48 1.06 

ADHD symptoms        

age 8 10.95 9.22 11.10 9.29 10.86 9.17 

age 12 9.75 8.55 9.68 8.47 9.79 8.60 

age 14 8.55 8.25 8.08 7.79 8.83 8.51 

age 16 6.49 7.13 5.93 6.76 6.82 7.32 

BMI (kg/m2)       

age 8 15.86 2.61 15.80 2.57 15.90 2.62 

age 12 17.85 3.14 17.80 2.96 17.88 3.24 

age 14 19.56 3.14 19.45 2.99 19.63 3.23 

age 16 20.93 3.29 20.90 3.27 20.95 3.31 

BMI SDS       

age 8 -0.14 1.50 -0.17 1.47 -0.12 1.52 

age 12 -0.02 1.25 -0.02 1.23 -0.02 1.26 

age 14 0.00 1.14 -0.03 1.12 0.02 1.16 

age 16 -0.09 1.16 -0.08 1.19 -0.09 1.15 
Note: Birth weight SDS: birth weight converted to standardised deviation score (SDS) based on British 1990 growth reference; ADHD symptoms: ADHD 

symptom ratings based on the Conners’ Parent Rating Scale-Revised CPRS-R); BMI: body mass index; BMI SDS: Body Mass Index converted to 

standardised deviation score (SDS) based on the British 1990 growth reference. 
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Supplementary Table S3   

Standardised Cross-lagged phenotypic relationship1 between ADHD symptoms and BMI SDS 

 

Unadjusted phenotypic correlation 

phenotype phenotype Correlation coefficient 95% CI2 

BMI SDS age 8 ADHD age 12 -0.016 -0.040,0.008 

BMI SDS age 12 ADHD age 14 0.017 -0.008,0.041 

BMI SDS age 14 ADHD age 16 -0.016 -0.042,0.011 

    

ADHD age 8 BMI SDS age 12 0.038 0.008,0.069 

ADHD age 12 BMI SDS age 14 0.021 -0.016,0.057 

ADHD age 14 BMI SDS age 16 0.067 0.024,0.11 

Adjusted phenotypic correlation3 

BMI SDS age 8 ADHD age 12 -0.013 -0.027,0.001 

BMI SDS age 12 ADHD age 14 0.010 0,0.020 

BMI SDS age 14 ADHD age 16 -0.010 -0.018,-0.002 

    

ADHD age 8 BMI SDS age 12 0.028 0.022,0.034 

ADHD age 12 BMI SDS age 14 0.033 0.027,0.039 

ADHD age 14 BMI SDS age 16 0.045 0.037,0.053 

Note: 1 Cross-lagged phenotypic relationship estimated on unrelated individuals (n=6655) in the TEDS sample. 2 Bootstrap 95% confidence 

intervals (CI) after 10,000 draws. 3 Estimates adjusted for age, sex, birthweight and parental education.
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Supplementary Table S4  Cross-lagged twin-differences analysis1 

 

Adjusted twin-differences phenotypic correlation2 

phenotype phenotype standardised estimates 

 

95% CI3 

 

BMI SDS age 8 ADHD age 12 -0.039 -0.094,0.013 

BMI SDS age 12 ADHD age 14 -0.025 -0.079,0.031 

BMI SDS age 14 ADHD age 16 0.011 -0.006,0.078 

ADHD age 8 BMI SDS age 12 -0.009 -0.065,0.046 

ADHD age 12 BMI SDS age 14 -0.074 -0.152,0.006 

ADHD age 14 BMI SDS age 16 0.005 -0.095,0.119 

Note: 1 Satndardised twin-differences phenotypic relationship estimated on monozygotic twin pairs (n= 2386 pairs) in the Twins Early 

Development Study (TEDS) sample.2 Twin-differences phenotypic relationship adjusted for birth weight differences.3 Bootstrap 95% confidence 

intervals (CI) after 10,000 draws.
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Supplementary Table S5   

Between- and within-family polygenic score association between ADHD PS1 and BMI SDS  

Phenotype PS Between-family Within-family 
Estimate difference  

(w-b)5 

Estimate difference 

(edu)6 

  Beta2 95% CI3 β4 Beta 95% CI β Beta 95% CI Beta 95% CI 

BMI age 8 ADHD 0.007 -0.043,0.059 0.004 0.040 -0.036,0.115 0.013 0.034 -0.057,0.124 - - 

BMI age 12 ADHD 0.057 0.016,0.098 0.041 0.045 -0.013,0.104 0.018 -0.009 -0.082,0.063 - - 

BMI age 14 ADHD 0.070 0.014,0.129 0.056 0.026 -0.062,0.116 0.011 -0.041 -0.146,0.065 - - 

BMI age 16 ADHD 0.096 0.027,0.165 0.074 0.128 0.025,0.228 0.057 0.040 -0.081,0.161 - - 

Controlling for parent educational level 

BMI age 8 ADHD -0.003 -0.054,0.049 -0.001 0.040 -0.036,0.115 0.013 0.044 -0.048,0.135 -0.010 -0.019,-0.001 

BMI age 12 ADHD 0.041 0,0.082 0.029 0.045 -0.013,0.104 0.018 0.007 -0.066,0.079 -0.016 -0.023,-0.009 

BMI age 14 ADHD 0.063 0.005,0.12 0.049 0.026 -0.062,0.116 0.011 -0.032 -0.138,0.073 -0.009 -0.017,-0.002 

BMI age 16 ADHD 0.089 0.02,0.158 0.069 0.128 0.025,0.228 0.057 0.047 -0.074,0.167 -0.007 -0.016,0 

Note: 1PS: Polygenic score. 2Beta: unstandardised regression coefficient. 3 Bootstrap 95% percentile intervals after10,000 draws. 4 β: 

standardised regression coefficient. 5 Estimate difference (w-b): within-family estimate minus between-family estimate. 6 Estimate difference 

(edu): differences in the between-family estimates before and after controlling for parental education.     
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Supplementary Table S6  Between- and within-family polygenic score association between BMI PS1 and ADHD symptoms  

Phenotype PS Between-family Within-family 
Estimate difference  

(w-b)5 

Estimate difference  

(edu)6 

  Beta2 95% CI3 β4  Beta 95% CI β Beta 95% CI Beta 95% CI 

ADHD age 8 BMI 0.808 0.556,1.061 0.081 0.628 0.235,1.022 0.033 -0.180 -0.649,0.293 - - 

ADHD age 12 BMI 0.837 0.59,1.082 0.089 0.470 0.079,0.856 0.027 -0.365 -0.825,0.088 - - 

ADHD age 14 BMI 0.475 0.162,0.78 0.052 0.499 0.018,0.973 0.030 0.024 -0.541,0.609 - - 

ADHD age 16 BMI 0.677 0.452,0.901 0.082 0.052 -0.285,0.392 0.003 -0.626 -1.029,-0.217 - - 

Controlling for parent educational level 

ADHD age 8 BMI 0.570 0.313,0.827 0.057 0.628 0.235,1.022 0.033 0.058 -0.412,0.538 -0.238 -0.303,-0.179 

ADHD age 12 BMI 0.616 0.37,0.864 0.065 0.470 0.079,0.856 0.027 -0.145 -0.606,0.308 -0.220 -0.283,-0.163 

ADHD age 14 BMI 0.250 -0.057,0.554 0.028 0.499 0.018,0.973 0.030 -0.225 -0.304,-0.152 0.249 -0.314,0.824 

ADHD age 16 BMI 0.486 0.263,0.712 0.059 0.052 -0.285,0.392 0.003 -0.192 -0.250,-0.139 -0.434 -0.841,-0.024 

 
1PS: Polygenic score. 2Beta: unstandardised regression coefficient. 3 Bootstrap 95% percentile intervals after10,000 draws. 4 β: standardised 

regression coefficient. 5 Estimate difference (w-b): within-family estimate minus between-family estimate. 6 Estimate difference (edu): 

differences in the between-family estimates before and after controlling for parental education.   
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Supplementary Table 7  

Mendelian randomization: effects between ADHD and BMI (SNPs below the genome-wide significance of p<5*10-8) 

 
 

Exposure 

 Univariable MR  Multivariable MR 

Method nSNP1 ß Lower  

95% CI 

Upper 

95% CI 

p-value  nSNP ß Lower  

95% CI 

Upper 

95% CI 

p-value 

ADHD IVW 

7 

0·064 0.004 0.125 0.036  

7 

0·069 0.016 0.122 0.011 

Weighted 

median 
0·044 0.001 0.078 0.001 

 

Weighted 

mode 
0.024 -0.048 0.097 0.533 

 

MR Egger -0·003 -0.308 0.301 0.983  

MR Egger 

intercept 
0.006 -0.020 0.032 0.655 

 

1 A total of 11 SNPs below the genome-wide significance of p<5*10-8 were identified in the ADHD genome-wide association (GWA) summary 

statistics, among which 8 were found in BMI GWA summary statistics. After harmonisation, 1 ambiguous SNP was removed due to strand 

ambiguity, leaving 7 SNPs as the instrumental variable for ADHD.  
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Supplementary Figure S1 Distribution of the differences in Attention-deficit/hyperactivity 

disorder (ADHD) ratings and Body Mass Index standardised deviation score (BMI SDS) 
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The Figure represents the distributions of the differences in standardised ADHD ratings and BMI SDS within 

each MZ twin pair. The red line represents the mean of the differences, which range from 0 to 0.03 for ADHD 

and -0.17 to -0.02 for BMI sds. 
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