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Abstract: Projects to reduce emissions from deforestation and degradation (REDD) are designed
to reduce carbon emissions through avoided deforestation and degradation, and in many cases,
to produce additional community and biodiversity conservation co-benefits. While these co-benefits
can be significant, quantifying conservation impacts has been challenging, and most projects use
simple species presence to demonstrate positive biodiversity impact. Some of the same tools applied in
the quantification of climate mitigation benefits have relevance and potential application to estimating
co-benefits for biodiversity conservation. In western Tanzania, most chimpanzees live outside of
national park boundaries, and thus face threats from human activity, including competition for
suitable habitat. Through a case study of the Ntakata Mountains REDD project in western Tanzania,
we demonstrate a combined application of deforestation modelling with species distribution models
to assess forest conservation benefits in terms of avoided carbon emissions and improved chimpanzee
habitat. The application of such tools is a novel approach that we argue permits the better design of
future REDD projects for biodiversity co-benefits. This approach also enables project developers to
produce the more manageable, accurate and cost-effective monitoring, reporting and verification of
project impacts that are critical to verification under carbon standards.

Keywords: East Africa; great ape; co-benefits; conservation; carbon project

1. Introduction

Climate mitigation projects to reduce emissions from deforestation and degradation (REDD)
have been piloted since the mid-1990s, and currently are implemented globally on over 70 projects
registered under the Verified Carbon Standard (VCS) alone [1]. VCS is the most widely used standard
for carbon accounting. Many of these projects are also registered under the Climate, Community and
Biodiversity Standard (CCB), committing to the generation and reporting of positive impacts in select
community and biodiversity indicators. These co-benefits tend to be difficult to define and measure,
particularly biodiversity indicators, for which monitoring on many REDD projects has been restricted
to simple assessments of species’ presence/absence [1]. The demonstration of co-benefits is critical
to driving voluntary carbon market finance to conservation efforts, and tools are needed to improve
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the measuring, tracking and reporting of the conservation impacts of REDD projects. This study
demonstrates tools that improve how projects measure biodiversity co-benefits that can be widely
applied in REDD and CCB projects.

Approximately fifteen percent of the world’s terrestrial surface is under some form of formal
protection [2]. Although critical, protected areas will not alone secure the conservation of biodiversity,
effective conservation must also focus on other forms of protection such as community-based
conservation programs [3] and payments for ecosystem services [4] as well as connectivity between
these areas [5]. Maintaining and protecting lands and landscape connectivity, defined as the extent
to which a landscape facilitates or impedes the movements of organisms [6] is a major challenge in
Tanzania [7]. While Tanzania protects 27% of its land area under National Parks, Forest Reserves and
Game Reserves, the connectivity of these reserve areas is under significant threat [7,8]. When habitat
is fragmented, the absence of connectivity between these reserve areas can result in compromised
genetic variability within isolated wildlife populations due to a lack of immigration, an inability of
dwindling wildlife populations to be rescued from local extinction, and reduced opportunities for
range shifts in response to global climate change [7]. Connectivity can be analysed within the changing
landscape matrix over time for the further improvement of its utility for protective area design [9],
but this exploration is beyond the scope of the current study. Tanzania is one of the only countries in
Africa to clearly identify its wildlife corridors, providing clear targets for conservation interventions.
Carbon Tanzania (CT) is a small registered Tanzanian company headquartered in Arusha that works
with communities to preserve natural forests. Their work supports wider landscape conservation
through the development and implementation of REDD projects within villages in wildlife corridors
and the dispersal areas of high conservation priority. Ensuring communities are involved in the
development and operation of these types of conservation activities, and receive payments linked to
those successes, has been shown to create positive outcomes both for local livelihoods and land use
change [10,11]. In this sense, REDD projects produce similar benefits to government-based protected
areas, whilst simultaneously avoiding time-intensive legislative processes and implementing costly
formal protection requirements (e.g., infrastructure, ranger stations, etc.).

An increasingly common means of identifying conservation priority areas is through building
species distribution models (SDMs) [12,13], which are a widely used tool to assess the impact of climate
and land use changes on biodiversity distribution [14]. These models utilize known species’ occurrence
records and environmental variables to identify environmental conditions that are associated with
species presence. Modelling algorithms can then be used to predict species distributions across space
and time [15]. Different statistical (e.g., generalized linear models (GLMs) and generalized additive
models (GAMs)) and machine-learning (e.g., maximum entropy (MAXENT) and random forest (RF))
algorithms are widely available through many software packages (e.g., [16,17]) to expedite the analysis
of the resulting data. SDMs have become a popular tool in quantitative ecology [18] and offer potential
to support conservation planning (e.g., [19,20]). For example, [19] showed that orangutan poaching by
humans in Kalimantan, Indonesia, was more likely in villages that experienced variable seasonality
and those further from oil palm plantations, helping conservationists better design protective strategies.
These types of spatially explicit models can be critical for guiding conservation efforts.

Although the primary objective of REDD projects is to measure and monitor carbon emissions related
to forest cover change, they can also help to achieve other regional conservation needs. Specifically,
they can ensure the protection of suitable habitats for target species, which can facilitate species’ persistence
and increase overall ecosystem resilience [8]. Chimpanzees (Pan troglodytes schweinfurthii), like all great
ape species, have experienced a dramatic decline in population size in recent decades [21]. In Tanzania,
90% of the 2000–3000 remaining chimpanzees are found within the Greater Mahale Ecosystem (GME),
the majority of which live at low densities outside of national parks [22,23]. The Ntakata Mountains
REDD project area falls within this important region and offers the opportunity to link forest protection
with chimpanzee habitat conservation, and to test the tools for monitoring these joint outcomes.
The GME region and the Ntakata project area, specifically, are experiencing dramatic landscape
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changes. The loss, degradation, and fragmentation of suitable habitat impede animal movements,
reducing the potential for dispersal and therefore population viability [24]. Linking the analysis of
historic and predicted land cover change that is required in REDD project development with SDMs
provides a measure of how suitable habitat has changed as well as a window into likely changes in the
future. By leveraging the predicted forest cover change data typically used for modelling the carbon
benefit of prevented deforestation, conservationists can substantially improve the predictive abilities of
SDMs for wildlife of special conservation concern. For the development of the Ntakata REDD project
in western Tanzania, CT used SDMs, in combination with predictive forest cover change modelling,
to assess the expected impacts of the project activities for chimpanzee conservation. The objective of
this study is to demonstrate how the incorporation of SDMs to REDD project development, design and
monitoring can improve the conservation outcomes of these projects.

2. Materials and Methods

2.1. Study Area

The Ntakata Mountains REDD Project (NMRP) was initiated in May 2017 by CT and was validated
through the Verified Carbon Standard VM0007 methodology and triple gold Climate Community and
Biodiversity standard. The overall aim of the project was to engage and support local communities
in the protection of their village land forest reserves in order to contribute to the conservation of
important wildlife habitat and to mitigate climate change. The project covers 204,807 forested hectares,
located in Tanganyika District, in western Tanzania (Figure 1), an area experiencing dramatic landscape
changes over the past decade, with detrimental effects on forests and critically important species such
as chimpanzees [25]. This mosaic ecosystem is dominated by miombo-woodland, interspersed with
thin strips of riparian forest and offers an important diversity of resources for chimpanzees but is
under several pressures. Habitat loss occurs primarily through settlement expansion and conversion
to agriculture as well as grazing by pastoralists, mining, and the development of new infrastructure
(e.g., roads). These factors all negatively impact the landscape, with consequences for water resources
and livelihoods as well as for wildlife conservation [23,26].

Tanzania represents the eastern and southern limits of chimpanzee distribution and hosts two of the
longest studies of their behaviour (Gombe National Park: [27]; Mahale Mountains National Park: [28]).
As with all species of great apes, chimpanzees are classified as endangered by the International Union
for Conservation of Nature (IUCN) (one subspecies, Western Chimpanzees P. t. verus is classified as
critically endangered—[21]). However, several surveys have now revealed that 75% of Tanzania’s
chimpanzees live outside of two National Parks, with the majority (~1500) living in the Greater
Mahale Ecosystem (GME) [23,28–30]. The loss of habitat in the region is especially alarming given that
chimpanzees in this area are found at extremely low densities [31], with chimpanzee communities likely
covering extremely large home ranges to access widely distributed food sources [32,33]. Chimpanzees
rely on large expanses of habitat to maintain their fission-fusion sociality, whereby all individuals of a
chimpanzee community are never found together. Instead, individuals form smaller sub-groups (known
as ‘parties’) that are temporally and spatially ephemeral [34]. Therefore, sufficient suitable habitat and
corridors to facilitate movement throughout the landscape are critical to chimpanzee survival.

The Ntakata project area is located between S05.55′–06.30′ and E30.10′–30.50′ (GCS WGS84) with
an altitude range from 800 to 2000 m. The habitat is typical of the Zambezian (miombo) Woodland
Ecoregion characterised by Brachystegia and Julbernardia spp. which provide a high-quality habitat
for a variety of threatened mammal species, including chimpanzees, African wild dog (Lycaon pictus)
and the savanna elephant (Loxodonta africana africana). Covering 204,807 ha, the project area connects
Mahale Mountain National Park (MMNP) and the Tongwe West Forest Reserve (TWFR).
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Figure 1. Location of Ntakata (REDD) project in Tanzania. All maps are in projection WGS84 UTM
Zone 36S.

There are two clear seasons across the region, with a wet season from November to April, and a
dry season from May to October. Average rainfall is 1800 mm/year with temperatures ranging from
18 to 32 ◦C depending on the altitude and time of year. The region is characterized by forest lined
hills, miombo woodlands and thin strips of gallery forest, typically in valley bottoms. There are also
patches of seasonally inundated grasslands, wooded grasslands, rocky outcrops and expansive tracts
of native bamboo woodlands, especially along the eastern border of MMNP [35]. The Greater Mahale
Ecosystem is framed by Lake Tanganyika in the west and by major rivers—Malagarasi in the north,
Ugalla in the east—as well as smaller riverine systems that flow into Lake Tanganyika. The REDD
project works within eight villages: Bujombe, Kagunga, Kapanga, Katuma, Lugonesi, Lwega, Mpembe,
and Mwese with a total human population that was reported as 16,990 according to the most recent
Tanzania National Census of 2012. The total population in 2020 is potentially twice this. There is a
diverse mixture of cultural groups within the project area, both more recent arrivals, following a more
pastoralist and agriculturalist lifestyle as well as Tongwe and Bende peoples (Village Land Use Plans
(VLUP) see [36]). This cultural diversity has an impact on the participatory land use planning process
that include grazing areas and spiritually important sites, all of which disallow the cutting of trees
((VLUP) see [36]).

Carbon Tanzania, in partnership with The Tuungane Program, a partnership between The Nature
Conservancy and Pathfinder International, and the Tanganyika District Government, identified eight
villages that protected part of the core area for chimpanzee distribution and connected the landscape,
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between MMNP and the TWFR. These partners supported the participatory development of (VLUP)
within these eight villages, which was then followed by the development of Village Land Forest
Reserves through participatory forest management (PFM), decentralising the management of these
forests to the village governments. As is typical in these scenarios, there is a significant lack of revenue
to support forest management and provide a viable option for people to earn revenue other than to
deforest the landscape; this is where the Ntakata REDD project plays an important role. By channelling
carbon finance to support both protection and to encourage village communities to conserve their
natural resources, CT provides significant fiscal benefits to ensure forest protection. Thus, protecting
forests, and the chimpanzee habitat, is transformed from being perceived as lost potential revenue into
an economically viable option for local communities [36].

2.2. Land Cover Change and Predictions

The NMRP was developed as a joint Verified Carbon Standard (VCS) and Climate, Community and
Biodiversity Alliance (CCBA) project, applying the VCS VM0007 Methodology Framework (REDD-MF)
v.1.5 for accounting the impacts of avoiding unplanned (un-authorized) deforestation. As required
by VM0007, we developed a 10-year projection of deforestation in a baseline (without conservation
activities) scenario on the basis of historical (2007–2017) forest cover change, assessed via the land
cover classification of Landsat imagery. We derived annual estimates of deforestation within the
region by calculating the historical rate from 2007 to 2017. This historical rate of deforestation was
projected forward to 2027, and allocated across the landscape on the basis of spatially-explicit variables
correlated with past forest cover change (e.g., elevation, land tenure and distance to infrastructure) [36].
We conducted spatial analysis with the IDRISI TERRSET software [37] and the Land Change Modeler
(LCM) which is an integrated software environment. LCM is a spatially-explicit modelling tool that
we used to model the location of deforestation projected in the baseline for both the project area and
the region surrounding the project area where deforestation is most likely to shift to, referred to as
the leakage belt. The spatial modelling used a multi-layer perceptron neural network to predict the
likelihood of deforestation spatially based on historical correlations. The current land cover map (2017)
and predicted land cover (2027) we used to inform the location of forest cover in SDM (Figure 2).

Figure 2. Data sources and processing flow. Blue components are all required for REDD project
development. The green components are additional analyses used for Climate, Community and
Biodiversity Standard (CCB) validation.
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3. Species Distribution Modelling Framework

3.1. Occurrence Data

We based our species distribution model on chimpanzee presence records collected between
2008 and 2017 during surveys led by the Greater Mahale Ecosystem Research and Conservation
Project (GMERC). Survey teams collected data on 11,622 chimpanzee observations: nests (84%),
faeces (11%), feeding remains (2%), direct observations (2% of the total observations), prints (1%),
and tools (<1%) through a combination of transects and reconnaissance walks. Whereas line transects
follow a pre-determined bearing and distance [38], reconnaissance walks vary in distance and direction,
targeting areas of wildlife presence, disturbance, etc. [39]. We accounted for an unequal sampling
effort by spatial filtering and manipulating our presence records [40], resulting in 2328 occurrence
points used in the final model (Figure S1). For spatial filtering, we used Spatial Rarefy Tool in the
SDM ToolBox v2.2 under ArcGIS 10.7 (ArcGIS, ESRI, Redlands, CA, USA) to allow only one record per
60 × 60 m. We chose this value to allow sampling bias reduction and to keep a high spatial resolution
on how landscape features impact chimpanzee distribution. Because records were still heavily biased
toward the GMERC long-term field site, we further reduced the number of records in this area to
obtain a similar density as the average density of the total covered area [40].

3.2. Predictor Variables

We used a set of four biophysical variables fitted at 30-m resolution as predictors for chimpanzee
distribution: vegetation type, distance from the closed forest, elevation and distance from steep slope
(NASA Satellite Radar Topography Mission data derived). Vegetation type, including the distinction of
closed and open forest, we derived from a Landsat based classification of forest/non-forest updated with
a more detailed reclassification of forest into closed forest and open forest. The resulting land-cover
map comprised three classes representing non-forest, open forest and closed forest. For a future time
slice, we used a 2027 land-cover projection (forest/non-forest) that was developed in the land cover
prediction modelling, to predict deforestation. We then reclassified deforested areas to non-forest from
the 2017 final land-cover map to create a three-class land-cover map representing 2027. Each predictor
variable we selected based on their importance for chimpanzee ecology. Chimpanzees are highly
dependent upon fruiting trees representing their primary food source [41]. Such trees exhibit seasonal
fruiting patterns, where chimpanzees track their productivity, namely primarily in the woodlands
“(i.e., open forest)” during the dry season and the riparian forests “(i.e., closed forest)” during the wet
season [42]. Annually, chimpanzees range across these vegetation types [43]. Although chimpanzees
are found within a wide range of altitudes throughout Africa (up to 2900 m in Rwanda [44]), there is
an important relationship with altitude when looking at the national scale (relationship between
chimpanzee presence and altitude follows a bell-shaped curve) [44,45], which probably acts as a proxy
for suitable climate condition and fruiting tree distribution [46]. Finally, chimpanzees in western
Tanzania build nests for overnight sleep preferentially on steep slopes [47]. We checked predictor
variables for multicollinearity using the ‘usdm’ package in R [48,49] and detected no signal of a
collinearity problem (VIF < 1.3).

3.3. SDMs Approach

We used an ensemble of species distribution model algorithms in order to minimize the uncertainty
associated with single modelling techniques when projecting to a different time period [50,51]. We used
random forests, generalized boosted models and MAXENT, which have each been shown to perform
well when modelling species distributions [15,52,53]. We used the default settings in the biomod2
R package (Version 3.3-7) for each algorithm [17,54]. We fit our model with 10,000 pseudo absences
randomly sampled from the background extent [55], and replicated five runs with 70% of occurrences
randomly selected for model training and cross-validation, and the remaining 30% set aside for model
testing and independent validation. We used two approaches to evaluate the model performance, the



Forests 2020, 11, 1195 7 of 14

receiver operating characteristics, to determine an area under the curve (AUC) and the True Skill Statistic
(TSS). Models are considered to have reliable prediction performances with AUC values > 0.70 [56]
and TSS values > 0.40 [57]. Therefore, our ensemble models retained only models with AUC and TSS
scores of >0.70 and >0.40, respectively, and the contribution of each of the selected models to the final
ensemble was proportional to its goodness-of-fit statistics. This procedure minimizes uncertainties
since weak models receive less weight in the final ensemble. To help measure suitability change
across years, the continuous prediction outputs were converted to the presence/absence maps using
the sensitivity-specificity sum maximizer threshold for TSS (e.g., cut-off point [56]). The continuous
outputs are available in the Supplementary Materials.

4. Results

The NMRP started in 2017 and the ongoing monitoring of multiple project benefits reveals that
the project has reduced forest cover loss, reduced the loss of important chimpanzee habitat as well as
generating multiple benefits to the well-being of the communities. These benefits include revenue
which is mainly used for education and health, specifically medical insurance to community members,
the building of school classrooms, improving specialist medical provision, and governance [58].
The use of species distribution modelling for chimpanzees provides a means to tangibly measure
these conservation impacts. Our species distribution model indicated that 6984 km2 of the GME was
suitable in 2017 of which 1168 km2 was found within the NMRP boundaries (Figure 3). The fit of the
final chimpanzee species distribution model was 0.833 for TSS and 0.966 for AUC, indicating excellent
prediction. The predictive accuracy of individual models ranged from 0.787 to 0.791 for TSS and from
0.945 to 0.948 for AUC, depending on the algorithm (Table S1).The contribution of each variable to the
model was as follows: distance from the riparian forest (45.7%), distance from the steep slope (44.9%),
elevation (7.5%) and vegetation type (1.8%). The response curves produced by the model are presented
in Figure S2. Under current deforestation predictions, in the absence of conservation interventions,
we predict that more than 339 km2 of suitable habitat will be lost by 2027, of which 162 km2 was found
within the NMRP area, representing a reduction of more than 12% of suitable habitat within the project
area (Figure 3).

Figure 3. Habitat suitability maps for 2017 and 2027 within the Greater Mahale Ecosystem (GME).
All maps in projection WGS84 UTM Zone 36S.
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Forest cover change analysis shows that from 2017 to 2019 (Figure 4), significant forest cover
change was avoided (>20,000 ha based on predicted change) of which an estimated 2804 ha was
suitable chimpanzee habitat. The conservation efforts in the eight villages in Ntakata are financed by
revenue from the REDD project.

The project has supported the communities through capacity development and increased
knowledge through training and education on REDD (708 people), project governance (268 people),
forest management (36 Village Game Scouts (VGS)) as well as reproductive health (884 couples).
The project also provided employment for 45 villagers as project manager, Village Game Scouts
and Carbon Champions, thus providing immediate income to them and their families. In total,
2825 individuals participated in this work. The 173 patrols during that period also served to protect
natural resources, which the community relies on daily for firewood, clean water, as well as grazing
and medicinal uses [58].

Figure 4. Forest cover loss during the period 2017–2019 in the Ntakata Moutains REDD project (NMRP).
All maps are in projection WGS84 UTM Zone 36S.

5. Discussion

Chimpanzee populations across their geographic distribution have been in dramatic decline for
decades [21], with the western sub-species decreasing by as much as 80% since 1990 [59]. With the
majority of chimpanzees now living outside of protected areas in Tanzania, promoting alternate
ways to protect their habitat is critical. Providing communities with financial incentives for forest
conservation through REDD projects is one promising approach that CT is implementing in the NMRP,
and demonstrating the benefits of using SDMs for measuring and monitoring the impacts of these
projects is a step forward for understanding conservation outcomes.

Species distribution modelling is an increasingly widely applied and robust tool for understanding
habitat suitability for wildlife [15]. Relying on empirical data to explain and predict the distributions
of species, it provides a precise suitability surface at a fine scale. Nonetheless, numerous elements
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are reason for caution. First, survey data used to build the model were not collected systematically,
with sites chosen because of their likeliness to host chimpanzees. More importantly, most of the data
points represent chimpanzee nests, not actual encounters. As such, these occurrence data are skewed
towards sleeping sites rather than chimpanzee presence. Thus, it is possible that our predictions
have underestimated the importance of some environmental variables for feeding and travelling,
and therefore the suitability of certain habitats. Furthermore, with chimpanzees adapting their diet to
the extreme seasonality of the ecosystem [42], temporal variation of habitat suitability also remains to
be examined.

Here, we choose to derive our suitability map using an ensemble modelling, which reduce
uncertainty associated with each single algorithm [50]. However, other modelling techniques such as
the hierarchical occurrence model can account for the imperfect detection of individuals and might
reduce the bias associated with our sampling design [60].

Developing and operating long-term landscape conservation under REDD programs requires
monitoring the climate, biodiversity and community impacts. Biodiversity monitoring, required by
the VCS-Climate Community and Biodiversity (CCB) standard to verify a project’s impacts, should
be scientifically rigorous, but at the same time, be practical, achievable, and cost effective. For REDD
projects at landscape scales, and especially those monitoring highly mobile species like chimpanzees,
significant challenges are posed with traditional, demanding ground-based techniques, such as line
transects [44,61]. Furthermore, the complex social system of chimpanzees and their elusive nature
means that these apes are usually censused with indirect methods (e.g., nest counts) that are labour
intensive [62]. These rely on correction factors like nest decay rate that vary widely depending on
the location, season, etc., leading to imprecise and inaccurate estimates [61]. Since they are rarely
all together, not only can it take years to identify all the individuals within a single chimpanzee
community, but line-based transects often under-estimate population sizes [63]. Instead of designing
entirely disconnected methods for monitoring the biodiversity impacts of the project, CT developed
protocols to leverage the rigorous process of monitoring deforestation as already required by the
REDD methodology. As land cover data are updated, CT, in turn, updates suitable chimpanzee habitat.
Village Game Scouts (VGS) patrol and collect data on forest degradation, agricultural activity, poaching
incidents, and chimpanzee sightings or nests using a SMART (spatial monitoring and reporting
tool) [64]. As VGS patrols add to the collection of chimpanzee data over time, these data can be used to
further refine or update the SDM. Therefore, the use of SDMs both lowers the cost of future monitoring
requirements while providing accurate, continuous chimpanzee habitat data that might not otherwise
be financially and/or logistically attainable.

REDD projects are required to be monitored at the minimum every five years [65], though CT
intends to monitor every year. The first two years of monitoring results indicate that the project
activities have thus far been successful as measured by the avoided deforestation and protection of
chimpanzee habitat. The less than 1.5% of forest cover change detected across the Ntakata project area
shows that reduced deforestation is occurring (Figure 4). Continued annual monitoring of the project
area will aid in rapid adaptive response by the village communities and CT to prevent further forest
cover and chimpanzee habitat loss.

Patrolling and data collection by VGS monitors forest protection whilst revenue paid to both
district and village governments ensures that community members identify the benefits of forest
protection. Carbon Tanzania works directly with the village governments as the primary interface,
thus utilizing existing governance structures, whilst Tuungane aims to improve local governance
through seminars and workshops that bring district and village government leaders together to discuss
accountability and transparency, specifically on revenue sharing. As a result of the implementation of
a range of project activities, the NMRP is estimated to generate approximately 572,754 tCO2e (average
per year over the 10 year crediting period) in GHG emissions reductions on an average annual basis.
The NMRP adopts participatory developed land use plans as part of the overall project scheme, so there
is the full integration of community views and priorities in the project design [36]. In addition to land
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use planning, communities also contributed input on how the project will support development in the
village. During village meetings with the project team, they have raised various suggestions for how
financial flows from carbon revenues could be used most effectively in their village. For instance, in the
village of Mwese, representatives prioritized housing for teachers, nurses, and doctors. The NMRP is
thus designed in such a way that each village can set its own priorities and spending plan according to
the perceived needs. Financial planning happens every six months, where villages present records
of how they spent previously paid revenue and CT informs the village governments what the next
payment will be.

6. Conclusions

Traditional approaches to community conservation have often failed to provide forest adjacent
communities with the direct and clearly defined financial benefits needed to ensure improved land
management [4,66]. Without significant financial support at a community level, forest resources are
often monetised by both individuals and communities to meet their financial needs: needs that are
ubiquitous, such as health and education. The role of REDD in supporting land management plans
through results-based payments, as is the case in Ntakata, ensures that priority chimpanzee habitat
and connectivity across the landscape is both protected within land management plans and provides
significant revenue to meet community needs.

The limitations of REDD have been studied in the past, however, many of these studies, [67] have
predominantly focused on UNFCCC REDD approaches and REDD implementation by government
agencies that develop and follow their own procedures [68]. The limitations of these approaches on
forest conservation in Tanzania are well documented and beyond the scope of this paper [69]. One of
the key limitations of REDD relates to site selection, which includes understanding the cultural setting,
drivers of deforestation and legal pre-conditions of a potential project area. These factors influence
the additionality argument, and have impacts on methodology choices and project implementation.
Non-state REDD initiatives, like NMRP, follow international standards and approaches such as
VCS-CCB, which ensure rigour within the emission accounting and ex-post measurement of results.
Certification under these standards ensures marketability, saleability and therefore, the long-term
financial sustainability so critical to this approach. In addition, REDD is correctly understood to be an
unsuitable approach to areas where the primary causes of deforestation are charcoal production and
illegal timber cutting. In the case of the Ntakata Mountains REDD project, similar to other forests in
Tanzania, 81% of deforestation is driven by shifting cultivation, considerably more than charcoal at
12% [70]. Site selection is a critical part of NMRP, as Ntakata forest (which covers only 8% of the Ntakata
REDD project area) has been of historical importance to the Bende/Tongwe people, a forest-dwelling
tribe, the Bende/Tongwe who have long relied on this forest for various uses, e.g., medicinal plants,
religious ceremonies, etc. [71]. It is the tribes’ sustainable land use practices that have protected the area
to date. However, western Tanzania is increasingly drawing people from other regions in Tanzania [72],
transforming a once tribally homogenous region into a culturally diverse one. As such, the current
approach of land use planning and improved forest management legalizes the conversion of land to
multiple uses, where the protected areas generate sustainable revenue and multiple land use zones
allow for grazing and agriculture.

We recognize that this particular region has robust institutional backing for research and
collaboration between multiple organizations, which may not be readily available to REDD projects
in other regions of the world, and SDMs require specific expertise. Still, REDD projects generate a
wealth of data on forest cover and quality that are financed by carbon revenue, which can be used to
aid academic research and inform other conservation benefits. For example, leveraging the required
land cover change analysis (both historic change and predicted) from REDD projects provides greater
predictive capacity to SDMs.

Species distribution modelling can be incorporated at all stages of REDD projects to quantify
project impacts as well as to improve approaches to monitoring. SDMs provide project developers
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and communities with a prioritization of critical habitat areas, which can improve project design and
even assist in the identification of important project locations. During project development, land
cover classification and predictive modelling required by REDD methodologies, can be leveraged to
improve SDM and understand likely future habitat scenarios (Figure 2). After project implementation,
SDMs can be included in monitoring to measure project impacts.

For REDD projects like Ntakata, developing monitoring approaches that are complex and expensive
may be difficult to replicate for verification and presents a risk to its longevity. Whilst partnerships
with conservation organizations that are able to support monitoring activities work in the early stages
of a project, developing strategies that can be maintained by communities in the long term is needed.
A failure to achieve monitoring targets that make it feasible to verify the project and ensure issuance
can cause a failure of revenue flow to communities.

We propose that SDMs present a cost-effective way of providing meaningful data for annual
verification events and could be expanded to multiple species in other landscapes within Tanzania
where habitat loss and fragmentation are the primary reason for species declines.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4907/11/11/1195/s1,
Figure S1: Locations of the occurrence points used in the final habitat suitability model, Table S1: Predictive
accuracy and standard deviation (SD) of the 5 replicates for the 3 algorithms t, Figure S2: Response curves derived
by the ensemble prediction.
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