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Abstract

Over the past decade, major advancements have been made in building stock energy modeling due to the ad-
vent of increased access to computing resources and metered building energy consumption data as well as new data
sources on building stock characteristics. Worldwide, buildings contribute 40% of global greenhouse gas emissions,
and building stock energy modeling has become an essential tool for the development of technology research and
deployment strategies. In addition to the enhanced capabilities of the newer generation of modeling tools, model
transferability and sharing has increased. Given the advancements in this �eld, a new scheme for classifying build-
ing stock energy models is needed to facilitate communication of modeling approaches and handling of speci�c
model dimensions such as time dynamics, uncertainty, and geographic and spatial resolution and extent. In this ar-
ticle, we present a new building stock energy model classi�cation framework that leverages international modeling
expertise from the participants of the International Energy Agency’s Annex 70 on Building Energy Epidemiology.
Drawing from existing classi�cation studies, we propose a scheme that is unique from previous approaches in its
non-hierarchical organization, coverage of and ability to incorporate emerging modeling techniques, and treatment
of modeling sub-layers and additional dimensions. The new classi�cation framework will be complemented by
a reporting protocol and online registry of existing models as part of ongoing work in Annex 70 to increase the
interpretability and utility of building stock energy models for energy policy making.

Highlights

• Building technology RD&D is needed to achieve deep reductions in global CO2 emissions.

• Building stock energy models are essential tools for technology RD&D strategy development.

• A new scheme for classifying building stock energy models is introduced.

• The scheme builds from previous classi�cations while addressing new technical developments.

• The classi�cation facilitates wider use of building stock energy models in energy policy making.
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1. Introduction

Buildings worldwide are responsible for 36% of energy use, emitting 40% of direct and indirect CO2 emissions.
These numbers are expected to rise due to growth in population and building �oor area, increased access to energy in
developing countries, and growth in energy-consuming devices [41]. Increasing energy e�ciency in buildings is an
essential strategy for reversing global growth in energy use and associated emissions and to reduce the likelihood of
catastrophic climate change. Indeed, the International Energy Agency (IEA) estimates that buildings in 2040 could be
40% more energy e�cient than today, with savings driven by reduced energy need for space heating, water heating,
and cooling [41].

The development of concrete strategies for decreasing building energy use remains a key challenge. Building
researchers and policy makers lack cross-country data and methods for understanding how building energy use
is expected to change over the next several decades, both of which are essential for identifying the speci�c e�-
ciency strategies that have the greatest impact on these changes. While access to these data at both a granular
spatio-temporal resolution and for the building stock as a whole is improving, gaps in data coverage, consistency,
and accessibility across countries must be addressed to support setting e�ective priorities for building technology
research, development, and deployment programs.

To address gaps in building energy use data at large scales, a group of international researchers that includes
the authors is collaborating on an International Energy Agency (IEA) Energy in Buildings and Communities (EBC)
Annex “Building Energy Epidemiology”, or IEA-EBC Annex 70. The concept of energy epidemiology as �rst de�ned
by Hamilton et al. [37] is the study of energy use in a large population of buildings. The scope of research that falls
within the energy epidemiology �eld is broad, including both modeling of energy use in the building stock under
di�erent sets of input conditions, analyses that identify correlations between energy use and in�uencing variables,
and testing of causal hypotheses about the e�ects of implementing energy e�ciency measures across representative
portions of a building stock.

The guiding objective of IEA-EBC Annex 70 is to develop realistic transition pathways to dramatic reductions
in building energy use and carbon emissions. In support of this objective, we seek to identify and compare models
of large-scale building stocks and their energy use that are broadly interpretable across the international buildings
research community. Accordingly, this paper proposes a framework for classifying building stock energy model that
builds upon existing classi�cation approaches while acknowledging emerging modeling techniques and covering a
wide range of important model dimensions. The intent is for the proposed classi�cation to serve as a common
framework for quickly comparing and assessing available models of building stock energy models across the scales
of cities, regions, and countries.

The scope of the proposed classi�cation scheme is models of the buildings sector that: (a) represent multiple,
geographically co-located buildings; (b) produce energy use metrics as an output; and (c) generate out-of-sample
predictions. Accordingly, the proposed classi�cation scheme does not pertain to models that: focus on a single
building’s energy use in isolation; do not yield energy use as a primary output (e.g., focus exclusively on other
building performance metrics such as indoor environmental quality or water use); or are purely explanatory or
descriptive in nature [85].

We begin by reviewing previous e�orts to develop building stock and energy model classi�cations, identifying
critical gaps, these existing classi�cations, and establishing the need for an updated classi�cation framework. We
then introduce a classi�cation scheme that builds upon the strengths of the existing model classi�cations while
addressing their shortcomings in the context of currently available data resources and computational capabilities.
New elements of the classi�cation approach are enumerated in detail along with examples from the literature that
demonstrate their relevance to the task of building stock energy modeling. The paper concludes by discussing
potential applications of the proposed classi�cation scheme, including its use in related IEA Annex 70 e�orts to
create a registry of building stock energy models and develop a complementary model reporting protocol, as well
as limitations to its future use by buildings researchers.

∗corresponding author details, janet.reyna@nrel.gov
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1.1. Summary of existing classi�cation approaches
To-date there have been multiple e�orts to classify building stock-level energy models by technique and pur-

pose. Foremost among these is a 2009 review by Swan and Ugursal [90], which summarizes major energy modeling
techniques for residential sector end uses. The Swan and Ugursal classi�cation has gained wide acceptance among
building stock modelers, as evidenced by its large number of citations to date in other studies 1. The designation
of “top-down” models, or those that begin with an aggregate view of a system that may subsequently be broken
down into constituent sub-systems, and “bottom-up” models, or those that begin with a detailed representation of a
system’s constituent parts that may be aggregated up to the whole-system level, has long been used for many types
of modeling. Swan and Ugursal [90] extended these concepts to the modeling of residential building stock energy
use, identifying eight major types of modeling techniques under the general top-down and bottom-up categories
(Figure 1).

Figure 1: Swan and Ugursal ’s 2009 model classi�cation. Models of residential energy use are classi�ed using a hierarchical tree structure
that includes two main branches: one for “top-down” models, or those that begin with an aggregate view of a system that may subsequently be
broken down into constituent sub-systems, and a second for “bottom-up” models, or those that begin with a detailed representation of a system’s
constituent parts that may be aggregated up to the whole-system level.

Other classi�cation systems de�ne the building stock energy modeling space more broadly than the Swan and
Ugursal classi�cation. For example, Keirstead et al. [43] reviewed all studies on urban energy system models, includ-
ing other major energy systems such as transportation, and classi�ed each model’s purposes and category. Building
stock energy modeling is a subclass of “building design” in their schema, but few details are given on the speci�c
techniques used for this model subclass.

Two other review papers discuss classi�cation in the context of appropriateness for building energy policy mak-
ing. Brøgger and Wittchen [10] adopt the general Swan and Ugursal classi�cation, while discussing the appropriate-
ness and accuracy of each model type in the context of European policy-making. Sousa et al. [87] present a review of
building stock energy models speci�c to the United Kingdom, comparing and contrasting the capabilities for each,
utilizing the general bottom-up and top-down divisions provided in Swan and Ugursal.

Few studies have attempted to expand upon the Swan and Ugursal classi�cation of top-down modeling tech-
niques. Li et al. [46] provide a classi�cation tree nearly identical to Swan and Ugursal, adding a few elements to
the top-down branch, including “other” and “statistical” top-down sub-branches as well as a statistical modeling

1https://scholar.google.com/scholar?rlz=1C5CHFA_enUS846US846&um=1&ie=UTF-8&lr&cites=464700330571940757 (accessed 10/17/2019).
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technique that relies on physical input variables. The majority of this review article, however, focuses on bottom-up
applications and the new top-down techniques are not explored in detail in the text.

For bottom-up models, the general division between “statistical” (i.e. data-driven/black-box) and “engineering”
(i.e. physics-based/white-box) models has endured in multiple works recategorizing models. For example, Nageler
et al. [58] utilize the general Swan and Ugursal classi�cation for bottom-up models. Kavgic et al. [42], another
heavily-cited paper, directly adopts this simpli�ed Swan and Ugursal bottom-up division, adding in a “hybrid” cate-
gory that combines data- and physics-driven approaches. Mastrucci et al. [52] also focus on bottom-up models using
this general classi�cation, but extend beyond demand modeling to include a multi-level life cycle analysis frame-
work to account for embodied energy. This article also makes a distinction between the energy modeling portion
of an assessment and the di�erent stock aggregation methods - something of increasing importance to bottom-up
models.

In the bottom-up, engineering sub-class of models of Figure 1, there has been additional publication activity
around classi�cation and methods. Reinhart and Davila [75] developed one of the �rst overview papers speci�cally
on the Urban Building Energy Modeling (UBEM) sub-class of models. The paper compares published models and
o�ers a high-level overview of approaches. Reyna et al. [76] developed an orthogonal classi�cation focused on
building interactions (building-building, building-transportation, etc.) and provide cases leveraging the Swan and
Ugursal classi�cation. Both reviews reference building stock energy modeling capabilities far beyond those outlined
in the original Swan and Ugursal paper. The development of new approaches necessitates renewed evaluation of
building stock energy modeling modeling and the advantages and disadvantages of emergent capabilities.

1.2. The need for an updated classi�cation
When the Swan and Ugursal classi�cation was published in 2009, models were limited in number and function-

ality. Three major developments have increased the capabilities and applications of current building stock energy
models: 1) big data-enabled through advances for example in the area of utility energy data access- has increased
the amount of empirical evidence that can be integrated into model development and calibration, and 2) computing
power has increased the availability and decreased the costs of large-scale simulation through cloud computing and
access to supercomputing, and 3) as modelers adapt to increased data and computational capabilities, many models
now use multiple modeling techniques to estimate both energy use and its driving variables; such models don’t
�t cleanly within a single category and/or include dimensions that are not captured by a high-level classi�cation
approach. These issues are detailed further below.

In the past ten years, increasing amounts of data have been collected on both model inputs (e.g., building charac-
teristics, geospatial information for individual buildings, operational schedules, and occupant behavior) and outputs
(e.g., energy use); these improved data can inform more accurate models of building stock energy with �ner spatio-
temporal resolutions. For example, European Energy Performance Certi�cates [23] and benchmarking mandates in
the United States [93] are increasing data collected on building characteristics and energy performance. Moreover,
while utilities have long restricted access to account-level energy use data, there is now a growing recognition that
these data are essential for decision making for the public good in the face of climate change [3]. In California, for
example, universities have been able to obtain account-level energy use data under non-disclosure agreements, and
municipalities are also able to access aggregated utility data for their jurisdictions [12]. Access to these data allows
linkages to be created through geocoding to building/parcel attributes, thereby revealing the relationships between
energy use and building vintage, use-type, square footage, and socio-demographic attributes [71, 29]. A transition
to using such granular, empirical energy use data is dramatically improving the spatial resolution and predictive
abilities of building stock energy models. Some classi�cation systems for whole (i.e. individual) building modeling
and calibration have been extended to cover these advancements (e.g. Fumo [31]), but stock-level energy modeling
classi�cation systems have not been extended to cover newer data-driven techniques.

Simultaneously, non-traditional data sources are augmenting available data on buildings. For example, remotely-
sensed data such as LiDAR and satellite imagery are being used to determine external characteristics such as building
height, geometry, shading, solar irradiance, and even externally-placed building equipment [35, 94, 106, 49, 54]. All
generate rich detail on the building stock, but require new modeling techniques to fully utilize. Such techniques
include geospatial simulation models [75], which simulate all or a representative subset of individual buildings
comprising a stock using whole building energy simulation engines and geospatial data; system dynamics and agent-
based models [28, 50], which are able to explore causal e�ects and interactions across modeled entities (e.g., across
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individual buildings, or occupants within a building); and machine learning models [2], which leverage big data
resources to predict changes in building energy use at scale.

Cloud-based computing has proven to be an important enabling technology for many of these computationally-
intensive models, as the cost of cloud computing has decreased and the availability of web-based resources has im-
proved [30]. Geospatial models, for example, dramatically expand upon the single-archetype assumption of previous
bottom-up engineering model classi�cations in their ability to represent every building in a city, region, or country
explicitly at a �nely grained temporal resolution. Moreover, models utilizing these big data and cloud computing
resources often combine multiple techniques that don’t �t neatly within the distinct “top-down” or “bottom-up”
Swan and Ugursal designations, and such models may also explicitly represent additional variables that in�uence
energy use as part of the model’s structure and outputs. Additional classi�cation categories and layers are needed
to capture the proliferation of such hybrid modeling techniques for representing both stock-level energy use and its
key correlates.

Beyond these gaps in existing classi�cations’ coverage of data-driven and simulation-based modeling techniques
and mixed modeling approaches, previous classi�cations also lack guidance on how to assess the transferability and
quality of models along dimensions that are implicit in the high-level classi�cation diagram. In 2009, most models
were bespoke and privately stored - standalone models developed to assess a single geographical area by a single
group of people for a single purpose. Increasingly, stock models have become designed for wider applicability,
allowing core modeling structures to be transferred to other cities or countries by varying model input data. As
model transfer is being considered, additional language is needed to appropriately communicate key characteristics
of the model such as handling of time dynamics, model and input uncertainty, and the geographic and spatial
resolution and extent of models. Accordingly, we see the need to identify and describe such additional dimensions
to complement a high-level model classi�cation approach.

2. Overview of proposed classi�cation scheme

The proposed classi�cation scheme (Figure 2) establishes a �exible framework for high-level model classi�cation
that: (a) builds from existing classi�cation frameworks while accounting for emerging simulation-based, data-driven,
and hybrid modeling techniques; (b) recognizes the potential sub-layers of a building stock energy model; and (c)
encourages the description of additional model dimensions that are not readily captured by a high-level classi�cation.
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Figure 2: An updated classi�cation scheme for building stock energy models. The scheme builds from existing classi�cation approaches while
contributing the following changes: 1) the classi�cation eschews a hierarchical structure in favor of a more �exible organization, grouping
models into four quadrants based on whether each is top-down or bottom-up and black-box or white-box; models are tagged by their applicable
quadrant(s) (Q1 for top-down/black-box, Q1/Q4 for hybrid, etc.), 2) emerging simulation-based and data-driven approaches are identi�ed (e.g.,
system dynamics, agent-based models, machine learning) 3) hybrid models are identi�ed that combine modeling techniques across quadrants, 4)
sub-layers representing key energy use determinants are represented; modeling approaches for each of these determinants could be mapped to
the same four quadrants of the energy layer, and 5) four additional modeling dimensions are identi�ed that should be described in parallel with
mapping a model to the high-level classi�cation quadrants.

In place of the hierarchical organization of existing classi�cations, the classi�cation diagram in Figure 2 groups
building stock energy modeling techniques into one of four quadrants: top-down/black box (Q1), top-down/white-
box (Q2), bottom-up/black-box (Q3), bottom-up/white-box (Q4). Here, black-box refers to models in which under-
lying processes leading to outcomes are not directly interpretable, while in white-box models the internal model
structure and in�uencing variables are directly interpretable.

To address the gaps we identi�ed in the coverage of modeling techniques in existing classi�cations, we in-
clude several emerging data-driven and simulation-based energy modeling techniques in the quadrants of Figure
2 (alongside the modeling techniques that have been identi�ed across most previous previous classi�cations): ma-
chine learning (Q4: bottom-up/white-box), system dynamics (Q2: top-down/white-box), agent-based modeling (Q4:
bottom-up/white-box), and physics-simulation (Q4). In between each of the four quadrants is an area devoted to
hybrid modeling techniques that combine techniques either within or across the quadrants. Details of all modeling
techniques covered by the classi�cation are discussed in the next section.

In addition to the energy modeling layer, which is the main focus of this classi�cation, Figure 2 shows three
supporting layers that concern the modeling of key energy use determinants: occupants’ energy-related behaviors
within the building stock of focus, the characteristics of the building stock itself, and environmental conditions (e.g.,
outdoor temperature, solar intensity). Modeling e�orts that directly represent such driving variables are expected to
map to the same four quadrants shown for the energy layer, though speci�c techniques within each quadrant may
be unique to the supporting layer. Where these variables are only implicitly addressed in a building stock energy
model, this should be made apparent as part of the model’s classi�cation.
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Finally, Figure 2 identi�es four additional modeling dimensions of interest: dynamics, system boundaries, spatio-
temporal resolution, and model uncertainty. These dimensions are not readily captured by the high-level classi�-
cation quadrants and modeling layers; however, their description alongside the high-level classi�cation provides
important context about a model that further facilitates its assessment by the research community and comparison
with similar building stock energy models.

The following sections expand upon the modeling techniques and additional dimensions shown in the classi�-
cation diagram of Figure 2, providing an overview of each and examples of their treatment in the recent building
stock energy modeling literature.

2.1. Quadrants of the Classi�cation
2.1.1. Q1: Top-down / Black-box

In the new classi�cation, top-down/black-box models remain mostly unchanged from previous classi�cation
schemes. This class of models estimates sector-level energy utilizing readily-available, sector-wide historic vari-
ables such as demographics or economic indicators. These models typically exclude end-use energy attribution.
While the models have the advantage of being easily to develop and may be accurate for representing incremental,
near-term changes, they cannot capture transformative sector-wide changes (e.g. wide-spread electric vehicle adop-
tion or major retail energy price changes). Our classi�cation maintains two major categories of top-down/black-box
modeling techniques, econometric and technological, consistent with existing classi�cation schemes. Increasingly,
top-down/black-box models utilize hybrid econometric - technological approaches. Fazeli et al. [24] give an overview
of many existing models of this type, focusing on models that capture the temperature response of building energy
demand.

Econometric

Econometric models apply statistics and mathematics based on economic theory to forecast speci�c outcomes. For
building stock energy modeling, commonly used economic indicators include fuel prices, household income, or gross
domestic product. Econometric models were originally developed in the 1970s, stemming from the economic �eld,
and particularly useful for exploring high-level trends. For example, Lin and Liu [47] develop an econometric fore-
cast of building energy consumption in China given heavy urbanization trends for three di�erent future scenarios,
including an uncertainty assessment on the predictions, and in a related assessment use the models to identify the
rebound e�ect of energy e�ciency. Fazeli et al. [24] explore three separate econometric techniques to forecast fuel
consumption associated with residential space heating in Nordic countries, a potentially impactful advancement for
modeling electri�cation and fuel switching within the top-down/black box modeling quadrant.

Technological

Technological models are often similar to econometric models, but expand upon inputs based on broad economic
and demographic trends to explicitly account for technological characteristics of the building stock such as appliance
saturation trends or adherence to building codes. Over the past decade, these models (and technological-econometric
hybrid models) have largely supplanted pure econometric approaches. For example, Eom et al. [22] developed an
integrated assessment model that utilizes demographic and economic as well as appliance e�ciency trends to look
at future energy consumption in China. Similarly, the Austrian Institute for Economic Research presents a working
paper exploring technology and economic impacts on residential energy demand [44]. The National Energy Mod-
eling System (NEMS) developed by the US Energy Information Administration uses a technological-econometric
approach to develop a long-term forecast of growth in the building and technology stock, which is combined with
bottom-up modeling techniques [97].

2.1.2. Q2: Top-down/White-box
Previous classi�cation schemes have generally neglected top-down/white-box models, which represent physi-

cal causality at the aggregate building and technology stock level. This approach is distinct from the two existing
top-down approaches that characterize correlated economic (econometric) or technology (technological) indicators.
Our classi�cation adds system dynamics as a top-down/white-box modeling technique that has not been addressed
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by previous classi�cations.

System dynamics

Typically, system dynamics models are characterized by: a) a conceptual diagram of the building and technology
stock and its aggregate-level feedback loops and b) quantitative models of aggregate-level building and technology
stocks and �ows. Stocks represent point-in-time quantities of interest (e.g. national residential building stock), while
�ows represent time-varying additions to or subtractions from stock totals (e.g. annual additions/subtractions to the
residential stock from construction/demolition).

There are several examples of system dynamics approaches in the building stock energy modeling literature.
Onat et al. [67] develop a system dynamics model of greenhouse gas emissions from the U.S. residential buildings
stock to explore the e�cacy of di�erent policies in stabilizing the increasing emissions trend. Model variables in-
clude carbon footprint and energy intensity of residential buildings, the number of new and existing green buildings,
retro�t rate, and employee travel characteristics, gross domestic product and total population. Eker et al. [20] use a
system dynamics framework to explore the interactions between the housing, energy and well-being aspects of the
United Kingdom’s housing stock. Causal loop diagrams are developed to assess as-built performance, retro�t rate
dynamics, and the well being of residents. At the urban scale, Feng et al. [25] develop a system dynamics model
of energy use and CO2 emissions trends for Beijing between 2005-2030. Six sub-models comprise socioeconomic,
agricultural, industrial, service, residential, and transport parameters, and �ows within and between the sub-models
are described using regression equations. At the level of policy makers, Motawa and Oladokun [57] model the in-
terrelationship between the buildings, occupants, and the environment (policy, climate, and economy) and simulate
the energy use and CO2 emissions in the UK.

2.1.3. Q3: Bottom-up/Black-box
Bottom-up/black-box models utilize historic information and regression analysis to attribute building energy

use to particular end-uses, assuming the conditions underlying the modeling prediction space mirror those of the
model training space. From these relationships, building-level end use estimates can be extended to the scale of the
entire building stock.

Classical statistical

Classical statistical techniques have traditionally been used to predict energy consumption at either the end-use
or whole-building scale. Typically, these techniques develop correlations between input and output parameters for
making inferences; classical approaches include both regression and conditional demand analysis as identi�ed in
previous classi�cation frameworks.

Classical statistical techniques are still used in building stock energy modeling, though often in tandem with
other approaches. Howard et al. [40] develop a regression model for end-use building energy consumption in New
York City, speci�cally linking consumption to spatial locations throughout the city. Similarly, Mastrucci et al. [51]
statistically downscale city energy use to the building level for Rotterdam using linear regression. Santin et al. [82]
utilize classical statistical techniques to identify the respective importance of building characteristics and occupant
behavior to stock-level residential energy consumption in the Netherlands.

Machine learning

Machine learning techniques focus on making predictions, rather than inferences, utilizing a wide range of algo-
rithms to �nd patterns in rich but large and unwieldy datasets. In the updated classi�cation, we generalize existing
identi�ed approaches (such as neural networks) to a broader set of machine learning approaches.

Machine learning models of building stock energy use have seen a large increase in the literature over the last
decade. Tso and Yau [95] compare classical statistical regression techniques to decision trees and neural networks
to evaluate the accuracy in predicting energy consumption in Hong Kong. The results indicate that all three models
are valid for this type of prediction, with the decision tree and neural network performing slightly better in the
summer and winter, respectively. Robinson et al. [78] use multiple machine learning methods (linear regression,
gradient boosting regression, and random forest regression) to estimate the energy use of the commercial building
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stock in di�erent U.S. metropolitan areas based on �oor area, principal building activity, number of �oors, and
heating/cooling degree days. Papadopoulos et al. [69] use an unsupervised learning algorithm to cluster buildings in
New York City based on their energy use. Papadopoulos and Kontokosta [70] use a gradient tree boosting method to
develop a building energy performance grading method; this method has shown improved performance over linear
models in predicting hourly and annual building energy use at the urban scale.

2.1.4. Q4: Bottom-up/White-box
Various forms of bottom-up/white-box models have been expanded over the last decade. This class of models

simulates the physical relationship of processes at the building or end-use level. In the expanded classi�cation, we
note the new advances in this area a�orded by high-performance and cloud computing along with simulation-based
techniques.

Appliance Distribution

This approach models distributions of appliance ownership and use with standard appliance e�ciency ratings to
calculate aggregate appliance end-use energy consumption across a regional or national scale, generally without
accounting for interactions between end-uses (e.g. interaction between refrigerator use and heating demands). This
type of model has the advantage of being relatively easy to assemble (where ownership surveys exist), capable of
capturing both future and emerging technologies, computationally inexpensive, and easy to interpret.

In recent years, appliance distribution models have been paired with other methods such as physics-simulation,
with the heat-balance methods covering heating and cooling portions of the model and appliance distribution mod-
els covering the other appliances. For example, Ghedamsi et al. [34] utilize a hybrid bottom-up model to project
future residential energy demand in Algeria. Similarly, Reyna and Chester [77] utilize appliance distribution mod-
eling combined with detailed physics-simulation of the thermal envelope to project residential building demand
under di�erent climate change scenarios in southern California. Scout [96, 45], a tool used by the United States
government for estimating national-wide building energy e�ciency savings, also utilizes appliance distributions to
represent disaggregated end use demand, combining this approach with NEMS projections of growth in the building
and technology stock, which are generated using a technological-econometric approach.

Agent-based models

Agent-based approaches represent causality at the individual building or district level, constructing aggregate-level
outcomes in a bottom-up manner. In many ways, agent-based models (ABM) are the bottom-up analogue to top-
down system dynamics models; like system dynamics, ABM is a technique in this classi�cation scheme that is not
found in previous classi�cations. Agent-based models use software representations of individual buildings and/or
decision-maker agents that have heterogeneous attributes as well as rules for interacting with other agents and their
physical/economic environments. Under an agent-based approach, aggregate stock and energy outcomes emerge
from individual-level behaviors – that is, macro-level outcomes are determined by the micromotives of agents with
endogenous behavior rules.

ABM has gained popularity in many modeling applications, and there are several notable examples for the build-
ings sector. Zhao et al. [107] developed the Commercial Buildings Sector Agent-based Model (CoBAM). CoBAM con-
siders U.S. commercial buildings of di�erent types and in di�erent climate zones as adaptive agents that are evolving
internally and interacting with energy e�ciency regulations, which in turn dictates the evolution of building energy
use over time. In another study focused on the residential sector, Moglia et al. [55] use an ABM to model the up-
take of low carbon and energy e�cient technologies and practices by households, considering both the in�uence of
social networks and the decision rules of several di�erent agent types that extend beyond homeowners. This study
adapts the decision-making algorithms of an earlier ABM published by Sopha et al. [86], which was used to model
uptake of energy e�cient heating in Norway. Azar et al. [4] use an ABM framework to calculate the thermal comfort
and energy use of multiple buildings on a campus at Abu Dhabi. Their model consists of three sub-models: people
movement, thermal comfort and energy consumption. Abdallah et al. [1] evaluate the impact of a non-intrusive
energy messaging intervention on energy use in the Belgian residential sector using an ABM that represents daily
energy-related occupant behaviors, peer pressure e�ects on energy use, and the e�ects of messaging interventions.
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Physics-simulation

Archetype modeling is a well-established approach that simulates energy performance of typical buildings that each
represents a segment of the building stock; results can be scaled up to represent total sector energy use in a de�ned
geographic area. Recent advances in computing and data have allowed improvement of the traditional archetype
approach to include modeling of hundreds or thousands of representative buildings, sometimes modeling every
individual building in a given geographic area. Our new classi�cation merges these two approaches into a single
“physics-simulation” category, recognizing that they are both based upon whole-building, physics-based energy
simulation. This class of models is sometimes referred to as urban-scale building energy modeling (UBEM) in pre-
vious literature[75], although the approach can be applied to other land use types besides urban land uses. Pure
archetype (i.e. non-geospatial) approaches are plentiful, including ResStock [61] and the Tabula project [5].

The use of building energy simulation in combination with spatial representation and modeling in geographic
information systems (GIS) is a rapidly developing physics-modeling approach that holds promise for generating
information required for energy and emissions-related policy making and planning by actors such as municipalities
and utilities already using GIS-based decision support. For this approach, geodatabases are developed that link build-
ing attributes and simulated energy use to common geographical references such as parcels or building footprints.
Commonly, archetype-based energy simulation is performed using software such as EnergyPlus for representative
buildings. Results are applied to actual buildings corresponding to the archetype in the stock, via the �oor area.
Often this can be done using actual building geometries. This is the approach used, for example, by SimStock in the
UK [98]. Less commonly, buildings are simulated individually.

Two examples of this approach include CityBES from Lawrence Berkeley National Laboratory (LBNL) and Au-
toBEM from Oak Ridge National Laboratory (ORNL). CityBES [39] is an online building energy analysis platform
containing simulations for o�ce and retail prototype buildings developed using EnergyPlus and Open Studio as well
as cost and energy performance data for several energy conservation measures (ECMs). The building stock is char-
acterized by 3D City Models developed in CityGML and GeoJSON, informed by building stock and GIS data, utility
rates and building codes. In AutoBEM [62], LiDAR data and aerial imagery is used to de�ne building footprints and
street view imagery creates 3D models and de�nes facade characteristics across the building stock of interest. API
calls and screen scraping tools geo-register buildings and con�rm their geometry. Building type characteristics are
de�ned through subject matter expert assumptions and relevant data sources. Millions of building energy models in
EnergyPlus and hundreds of variable representations may then be applied to analyzing scenarios of energy demand
across the stock.

2.1.5. All Quadrants: Hybrid models
In practice, many models will use mixed approaches that cross the quadrants of Figure 3, and thus fall into the

hybrid region shown in between the quadrants. For example, grey-box statistical models pair a partial theoretical
representation of the process being modeled (white-box) with variables that represent additional unexplained factors
that contribute to observed outcomes (black-box).

Examples of building stock energy models with hybrid elements are prevalent in recent years. The U.S. Energy
Information Administration’s National Energy Modeling System (NEMS), uses a top-down econometric model to
estimate overall rates of new construction while bottom-up appliance distribution models are used to estimate the
energy use intensity of all newly added buildings, as well as several existing building stock vintages [104]. In the
Canadian CHREM model, a machine learning model is used to predict the highly occupant sensitive domestic hot
water and lighting energy use, while an archetype model is used to predict space heating and cooling energy use
[91]. Sandberg et al. [81] use a hybrid model to simulate the long-term housing stock energy use in Norway, where
a technological (Q1) and system dynamics (Q2) model is used to simulate the development of the stock and an
archetype approach (Q4) is used for estimating demand. Colloricchio [15] make another hybrid model by adding an
econometric component to Sandberg et al.’s housing stock model. The model applies to a case study of the residential
sector in Italy.

2.2. Additional Model Dimensions
Given the increasing sophistication of building stock energy models, the high-level classi�cation quadrants of

Figure 2 may preclude the communication of important contextual details about the chosen modeling approach.
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Accordingly, we propose that a model’s treatment of four additional dimensions should be described in parallel with
its mapping to the high-level classi�cation quadrants of Figure 2; these additional dimensions are enumerated below.

2.2.1. System boundaries
In building stock energy modeling, the collection of buildings studied can be conceptualized as a system. This

means that a speci�c scope of study is selected, which is logically coherent and is considered su�cient to study
all relevant aspects of the studied object. One of the most critical parts of any type of system modeling is de�ning
the boundaries between systems, of the di�erent parts of the system and by that the system as a whole (Figure 3).
Di�erent boundaries will lead to di�erent system models, so choosing the appropriate boundaries for a modeling
goal is critical to the interpretability of model outputs.

Figure 3: Relationship between the modeled system and its environment. The boundary is represented as a conceptual line which separated
both (left). Interrelationship between two subsystems of one big system, the boundary of each subsystem also de�nes the interface between the
two subsystems (right) [79].

The spatial scope of a building stock energy model is de�ned by the geographical area covered in the study.
The spatial scope could be a given neighborhood (e.g. Cuerda et al., Sartori et al. [17, 84]), city (e.g. Ouyang et al.
[68]), region (e.g. Galante et al., Reyna and Chester [33, 77], country (e.g. Mata et al., Sandberg et al., Nägeli et al.
[53, 81, 59]) or countries (e.g. Urge-Vorsatz et al., Building Performance Institute Europe (BPIE), Vásquez et al., Mata
et al. [99, 11, 102, 53].

The temporal scope of a model is de�ned by the length of the time period under study. Static models commonly
describe the energy use in a speci�c year (e.g. Cuerda et al. [17]), whereas long-term dynamic models may describe
the development over long time periods up to 50 or even 100 years (e.g. Sandberg et al., Berardi [80, 7]). Other models
serve as an archival repository of historical consumption data and are continually updated [71]. The temporal scope
may therefore cover both historical and future development.

Furthermore, the range of choices to be made regarding de�nition of system boundaries for the case of building
stock energy models is, however, much broader than just spatio-temporal extent. The scope is often also limited to
a subset of the building stock, e.g. the residential (e.g. Csoknyai et al. [16]) or non-residential building stock (e.g.
Lindberg et al. [48]), or the public housing stock (e.g. Gagliano et al. [32]). Depending on the desired outcome,
speci�c energy end uses might be explicitly tracked in the analysis. Some studies focus on operational energy use
only (e.g., heating, cooling, domestic hot water), while others adopt a life cycle perspective and therefore include
other phases such as manufacturing, transportation, construction and demolition in the analysis.

Beyond the main system boundary, modelers should also describe any subsystems within the model and de�ne
each subsystem’s boundaries that determine its sphere of in�uence and control. This scoping of a given subsystem
is crucial in determining the nature of its interface with other systems for successful design. Typical subsystems
in building energy stock modeling include the physical buildings, energy demand, occupants, and HVAC systems.
Outdoor conditions such as weather are usually treated as inputs to the model, although some parts such as detailed
solar radiation and local wind pressure modeling are included as separate subsystems. Extended models may in-
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clude representations of the electric grid, transportation systems, and macro- and micro-economic processes, among
others.

2.2.2. Spatio-temporal resolution
A building stock energy model’s spatio-temporal resolution is the level of disaggregation within the overall

system boundary with which a speci�c type of model information/results are represented. Resolution suggests the
unit of observation in the model (e.g., ‘a house’ or ‘room-based’ or ‘meter-based,’ etc.). While a system boundary
represents the highest geographical or temporal aggregation of a model and therefore serves as an upper limit
on a model’s spatio-temporal resolution, the model’s unit of observation is the lower limit of its spatio-temporal
resolution.

Many building stock energy models study the energy demand within a given spatial boundary without any
details about the location or distribution of the buildings within the geographical area. The spatial resolution is
therefore equal to that entire area, even though the unit of observation might be a single dwelling. Other models
have a high spatial resolution and model the building stock energy use in relation to the location of the buildings,
e.g. by the use of geographical information systems (GIS). The geocoded model results are then commonly presented
in maps which adds important additional information about the distribution of the energy use (e.g. Mastrucci et al.,
Stephan and Athanassiadis, Möller et al. [51, 88, 56]). Where multiple data layers are incorporated, each layer may
have a di�erent spatial resolution (e.g., census tract, zip code) and therefore the analytical methods used to map
these layers to a common spatial unit is an important model attribute.

The temporal resolution is de�ned by the time steps of the analysis. In most of the studies previously mentioned,
the energy simulations are carried out per year, which is commonly the case in the studies with the longest temporal
scope. However, in models with a higher temporal resolution, simulations can be done per minute, hour (e.g. Sartori
et al. [84]), week or month.

2.2.3. Dynamics
Treatment of dynamics in building stock energy models can be sub-categorized in terms of the three support-

ing variable layers of Figure 2: 1) building usage/occupant behavior, 2) building stock, and 3) context/environment.
These variables may be tightly connected in the model function (e.g., building stock dynamics are a�ected by changes
in the model context).

Occupants/building use dynamics include the number of occupants (e.g. evolution of family composition, num-
ber of visitors on the premises, aging, typical occupant interactions), occupant’s energy-related behavior over time
(e.g. adjustment of thermostat set points and other controls, movement to and from di�erent spaces) and appliance
ownership (e.g., type of HVAC equipment, number of TVs, etc.). For multi-family or commercial buildings with
centralized control systems, operator decision-making can also fall into this sub-category.

Building stock dynamics refer to changes in the stock such as building demolition, renovation, and new construc-
tion, as well as the e�ect this has on the building stock composition, installed equipment, and resulting energy and
environmental impacts.

As Figure 4 shows, changes to the building stock may be represented using both static and dynamic approaches
[52]. Static models assess building stocks at a de�ned moment in time (e.g., for a single year). Such point-in-time
snapshots may be assessed in a status quo assessment or a comparative assessment, where the latter compares the
current state with a hypothetical future state (e.g., after the implementation of certain energy e�ciency measures).
In contrast, dynamic models capture the evolution of building stocks and their energy use over time by modeling
processes such as new construction, demolition, retro�ts and replacement of technologies. Such analyses can be
focused on historic development (ex-post), on forecasting future development (ex-ante) or a combination of both.
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Figure 4: Classi�cation of model dynamics in building stock models

Context/environment dynamics refer to changes in the energy system resulting in altered greenhouse gas emis-
sion factors (e.g. changing electric generation mix) or energy prices as well as population growth, structural changes
in the economy (e.g. growth of certain economic sectors) or the impact of climate change on building energy demand
via changing temperatures, humidity, etc.

Transparent descriptions of how such dynamics are handled in building stock energy models are crucial for
assessing the quality of model outputs. For example, as described in Sartori et al. [83], it is often found that pol-
icy roadmaps and other studies use rather detailed information on energy and emission intensities, whereas the
changes in the building stock itself– in terms of number of buildings or �oor area – are modeled using �xed rates
for construction, demolition and renovation, which may be overly simplistic. Alternatively, renovation rates may be
assumed to increase rapidly in order to reach the energy e�ciency goals for the stock. Sandberg et al. [80] demon-
strate how unrealistic assumptions about renovation dynamics can result in model outputs that overstate future
energy savings potential.

2.2.4. Quality assurance
It essential to understand the limitations of the predictive power of any model. No model can be a perfect

representation of the system it aims to emulate and all models inevitably contain uncertainty [73], which should
be quanti�ed as part of the model quality assurance process. Uncertainty can be de�ned as “any deviation from
the unachievable ideal of completely deterministic knowledge of the relevant system”[103]. It is to be expected
that as the systems being modeled increase in scale and complexity, the uncertainty in the model will also increase.
Consequently, it is inevitable that building stock energy models will contain a considerable number of uncertainties.
While some applications of building stock energy models, such as in early design, actively seek a range of possible
options, it is common to see building stock energy model outputs expressed as a single value [13]. Such point
values may yield misleading impressions about the certainty of model insights when used to support energy policy
decisions.

In the literature, several di�erent classi�cation schemes for uncertainty have been introduced [8, 66], but a
general consensus in terms of classi�cation as well as terminology does not seem to exist [74]. Although there is
a lack of agreement on the detailed categorization of sources of uncertainty, a review of 20 existing classi�cation
schemes highlighted a broad pattern with sources of uncertainty being grouped according to whether they related
to model inputs, the model itself or model outputs. This is summarized in Figure 5.
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Linguistic

- Inherent
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Figure 5: Sources of uncertainty identi�ed in literature (closely related to the scope of large-scale building energy models).

A review of the treatment of uncertainty in the literature relating to large scale building energy models under-
taken by Fennell et al. [26] concluded that Uncertainty Analysis (UA) and Sensitivity Analysis (SA) are not common
practice in building-stock energy modeling and that if UA and SA are performed, only a few parameters are assessed
and that methodologies are not standardized. In addition, although the literature suggests that model uncertainties
are likely to be a signi�cant source of uncertainty, the review did not identify any studies which addressed this
source of uncertainty.

Annex 70 work is underway to address the lack of evidence in the published literature on the treatment of
uncertainty in large scale building energy models. The initial phase of this work is focused on input uncertainty.
A wide range of research teams are participating in this work with a diverse range of modeling approaches. Each
model will be evaluated stochastically based on shared sets of uncertain inputs. A range of di�erent sensitivity
analysis techniques will be applied to each model to explore how model attributes such as geographic scale and
degree of aggregation a�ect the performance of di�erent techniques. Publications on this work and best practice
for uncertainty quanti�cation are forthcoming.

Model UA and SA are distinct from model validation, which compares model outputs with measured values for
energy consumption. The review undertaken by Reinhart and Davila [75] suggests that when aggregated city-scale
building energy use data are used for validation, individual building model errors tend to average out and overall
errors are in the range 7% - 21% for heating loads and 1 - 19% for total energy use intensity. However, simulation
errors may be much higher for individual buildings in the stock, which is not re�ected in the aggregate validation
statistics. In addition, Reddy et al. [72] highlight the highlight the high dimensionality of these models, underscoring
that small validation error only indicates that a local minimum has been achieved, and that model accuracy is not
guaranteed through aggregate validation alone. Validating against multiple external data sources can potentially
improve con�dence in model accuracy, but this is not always possible. Moreover, for building stock energy models
that project out into future years, validation data will not be available at all to compare model outputs against.
Complementary uncertainty assessments can address these shortcomings of model validation e�orts.

3. Discussion

The building stock energy modeling research area has seen a high degree of recent publication activity; the
model classi�cation approach presented in this paper will serve as a formal framework for comprehensively survey-
ing, assessing, and demonstrating use cases for a wide range of these existing and emerging modeling e�orts. At a
conceptual level, the classi�cation quadrants introduced in Figure 2 encourage quick comparisons of a wide range of
building stock energy models, including those that apply to di�erent regions of interest. Such comparisons support
stronger international collaborations around building stock energy modeling, which are needed to �nd pathways
for long-term reductions in building energy use and emissions that can contribute substantially to global climate
change mitigation e�orts. At the same time, this paper’s classi�cation scheme provides avenues for communicating
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richer technical information about a model, by including supporting modeling layers in the high-level classi�ca-
tion structure (buildings, people, environment) and encouraging modelers to describe their handling of additional
modeling dimensions that are not captured by the high-level structure.

Within Annex 70, the new classi�cation scheme is being used to generate high-level metadata to organize models
in an online repository. Models in the Annex 70 repository will be summarized in terms of the following attributes:

• general purpose and application,
• model classi�cation quadrant (top-down/bottom-up, white-box/black-box per Figure 2),
• modeling technique (system dynamics, statistical, machine learning, archetype, etc. per Figure 2),
• inclusion of additional layers (buildings, people, environment)
• treatment of additional dimensions (system boundaries, spatio-temporal resolution, dynamics, and uncer-

tainty), and
• accessibility of the model and supporting data sources.
Table 1 shows examples of how key models from each of the Annex’s participating member countries are being

described in terms of high-level attributes.

Table 1: Sample mapping of building stock energy models from IEA-EBC Annex 70 member countries to this paper’s proposed model classi�cation
scheme.

Country Model Name Model Use Model Classi�cation Quadrant Supporting Reference(s)

Belgium Delghurst Model

Assessment of the e�ect of
energy saving measures in
terms of reducing energy
consumption in relation
to costs in the residential sector

Q4 (physics-simulation)
Model
documentation [18, 19],
and application [9]

Canada

The Energy, Emissions
and Economy Model
for Canada (E3MC)

A macroeconomic model used
to develop projections for
Canada’s National Communication
and Biennial Reports to the
UNFCCC and Canada’s
Emissions Trends reports

Hybrid: Q1 (econometric)
to simulate macro-economic
trends and Q2 (system
dynamics) to simulate energy
demand.

Model documentation [21] [92]
and application [36]

CityInSight

Assessment of energy,
greenhouse gas emissions
and �nancial impacts of
changes in land use, building
type, building code, fuel mix,
equipment, renewables, district
energy, and behavior to
support municipal energy and
emissions planning

Hybrid: Q2 (systems-dynamics)
to simulate building stock
evolution and Q4 (physics-
simulation) to simulate energy
demand per unit stock

Model summary [89]

Netherlands
Vesta MAIS
spatial energy
model

Assessment of the e�ect of
energy saving measures in
terms of reducing CO2
emissions, energy consumption,
investment costs and energy
costs

Assessment of the e�ect of
changes in heat supply and
policy instruments including
taxes, and subsidies

Q4 (physics-simulation)
Model documentation [27],
GitHub repository [101],
and application [100]
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Table 1 continued from previous page

Country Model Name Model Use Model Classi�cation Quadrant Supporting Reference(s)

Norway RE-BUILDS

Assessment of the long-term
development of the Norwegian
residential building stock,
including its stock dynamics
and renewal in terms of new
construction, renovation and
demolition.

Assessment of long-term
development in energy
demand in the stock due
to di�erent development
paths in various scenarios.

Hybrid: Q1 (technological)
to estimate the total dwelling
stock size, Q2 (system dynamics)
to simulate stock dynamics and
Q4 (physics-simulation)
to estimate the energy demand
per building archetype across
the simulated stock.

Model
documentation [83, 81],
and application [80, 81]

Switzerland ABBSM

Assessment of the dynamics
of national building stocks
and its energy- and climate
-impact over time. In particular
how building owners decisions
to retro�t the building envelope
and replace heating systems
under di�erent policy
interventions a�ects this
development.

Hybrid: Q4 (physics-simulation)
to simulate energy demand, and
Q4 (agent-based) to model
building stock dynamics

Model documentation
and application [65, 64, 63]

United Kingdom SimStock

Assessment of the e�ects of
di�erent policy choices on
city-level energy consumption
including peak demands.
Heat exposure can also
be evaluated.

Q4 (physics-simulation) Underlying philosophy [14]

United States Scout

Assessment of national energy,
cost, and CO2 emissions impacts of
U.S. building e�ciency to assist
in R&D program design

Hybrid: Q1 (econometric)
to model technology stock
size and dynamics and
Q4 (appliance distribution)
to model energy use per
unit stock

Model documentation [96],
GitHub repository [38],
and application [45]

ResStock

Assessment of the impact of
energy e�ciency measures in
the residential sector, providing
detailed information on energy
time-series, cost-e�ectiveness,
technology, building type,
and location.

Q4 (physics-simulation)
Model documentation [61],
GitHub repository [60],
and application [105]

We acknowledge that this paper’s classi�cation scheme does not list or fully characterize all possible techniques
for modeling building stock energy use; this was not the aim of our e�ort. Rather, we provide a general, extensible
framework onto which particular techniques or combinations of techniques may be mapped, even if these techniques
are not explicitly called out by the classi�cation diagram in Figure 2. Indeed, as the research landscape around
building stock energy modeling changes, we anticipate the need to revise our classi�cation diagram accordingly,
much as we have adapted the Swan and Urgursal framework developed over a decade ago.

Moreover, while the classi�cation scheme presented herein is intended to facilitate quick model comparison
and assessment, it is not designed to yield deeper insights into a model’s design and execution that are needed to
accurately reproduce its use across the research community. Such insights may concern for example model licensing
and usage rights, guidance on running the model, and documentation of a model’s input and output datasets. To
address this limitation on the classi�cation scheme’s application, IEA EBC Annex 70 is developing a complementary
reporting protocol for building energy stock modeling. This reporting protocol is distinct from the classi�cation
scheme in its stronger emphasis on capturing the technical details needed to fully understand how a model works,
but draws upon the classi�cation framework to establish model metadata - much as the Annex model repository is
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doing. Other �elds have successfully deployed reporting protocols – notably health care [6] – and the intention is
to have modelers use the protocol to frame any publication that presents a building stock energy model, enabling
its e�ective use outside of the context for which it was developed.

4. Conclusion

This paper introduced a new framework for classifying models of building stock energy use at the urban, re-
gional, and national scales. The classi�cation scheme, which was developed as part of IEA-EBC Annex 70, builds
upon previous approaches for classifying building stock energy models, updating these approaches to account for
newer modeling techniques, establish a more intuitive and �exible high-level classi�cation structure, and account
for additional dimensions that are not captured by a high-level model classi�cation exercise. We reviewed exist-
ing literature that demonstrates the need for new elements of the classi�cation framework given the availability of
richer datasets on the building stock, expanded computational power, and the advent of modeling techniques that
take advantage of these resources. We concluded by discussing the practical utility of the classi�cation scheme in
promoting more e�ective sharing and assessment of models across the international research community, including
the use of the scheme to develop an online model registry and reporting protocol for Annex 70.
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Abstract16

Over the past decade, major advancements have been made in building stock energy modeling due to the advent17

of increased access to computing resources and metered building energy consumption data as well as new data18

sources on building stock characteristics. Worldwide, buildings
::::::::
Buildings

:
contribute 40% of global greenhouse19

gas emissions, and building stock energy modeling has become an essential tool
:
;
:::::::::
therefore,

::::::::
strategies

::::
that

::::
can20

::::::::::
substantially

::::::
reduce

:::::::::
emissions

::
of

:::
the

:::::::
building

::::
stock

:::
are

:::
key

:::::::::::
components

::
of

::::::
broader

::::::
e�orts

::
to

:::::::
mitigate

::::::
climate

:::::::
change21

:::
and

:::::::
achieve

::::::::::
sustainable

:::::::::::
development

:::::
goals.

:::::::
Models

::::
that

:::::::::
represent

:::
the

::::::
energy

::::
use

::
of

:::
the

::::::::
building

:::::
stock

::
at

:::::
scale22

:::::
under

::::::
various

::::::::
scenarios

:::
of

:::::::::
technology

:::::::::::
deployment

::::
have

:::::::
become

:::::::
essential

:::::
tools for the development of technology23

research and deployment strategies. In addition to the enhanced capabilities of a newer generation of modeling24

tools,
:::
and

::::::::::
assessment

::
of

::::
such

:::::::::
strategies.

:::::::
Within

:::
the

::::
past

:::::::
decade,

:::
the

:::::::::
capabilities

:::
of

:::::::
building

:::::
stock

::::::
energy

:::::::
models25

::::
have

::::::::
improved

:::::::::::
considerably,

:::::
while

:
model transferability and sharing has increased. Given the advancementsin this26

�eld
::::
these

::::::::::::
advancements, a new scheme for classifying building stock energy models is needed to facilitate com-27

munication of modeling approaches and handling of speci�c model dimensionssuch as time dynamics, uncertainty,28

and geographic and spatial resolution and extent
::
the

::::::::
handling

::
of

:::::::::
important

::::::
model

::::::::::
dimensions. In this article, we29

present a new building stock energy model classi�cation framework that leverages international modeling expertise30

from the participants of the International Energy Agency’s Annex 70 on Building Energy Epidemiology. Drawing31

from existing classi�cation studies, we propose a scheme that
:::::::::
multi-layer

:::::::
quadrant

:::::::
scheme

::::
that

:::::::
classi�es

:::::::::
modeling32

:::::::::
techniques

::
by

:::::
their

::::::
design

:::::::::
(top-down

::
or

::::::::::
bottom-up)

::::
and

::::::
degree

::
of

:::::::::::
transparency

:::::::::
(black-box

:::
or

::::::::::
white-box);

::::::
hybrid33

:::::::::
techniques

:::
are

::::
also

:::::::::
addressed.

::::
The

::::::::
quadrant

::::::
scheme

:
is unique from previous

:::::::::::
classi�cation approaches in its non-34

hierarchical organization, coverage of and ability to incorporate emerging modeling techniques, and treatment of35

::::::::
additional

:
modeling sub-layers and additional dimensions. The new classi�cation framework will be complemented36

by a reporting protocol and online registry of existing models as part of ongoing work in Annex 70 to increase the37

interpretability and utility of building stock energy models for energy policy making.38

Highlights39

• Building technology RD&D is needed to achieve deep reductions in global CO2 :::::::::
greenhouse

::::
gas emissions.40

• Building stock energy models are essential tools for technology RD&D strategy development.41

• A new
:::::::::
multi-layer

::::::::
quadrant scheme for classifying building stock energy models is introduced.42

• The scheme builds from previous classi�cations while addressing new technical developments.43
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• The classi�cation facilitates wider use
:::
new

:::::::::::
classi�cation

::::::::
facilitates

::::::::::
application of building stock energy models1

in energy policy making.2

Word Count: 79913

Keywords:4

Building stock energy models, urban building energy modeling, model classi�cation, energy epidemiology, IEA5

Annex 706

1. Introduction7

Buildings worldwide are responsible for 36% of energy use, emitting 40% of direct and indirect CO2 emissions
::::
[63]8

. These numbers are expected to rise due to growth in population and building �oor area, increased access to energy9

in developing countries, and growth in energy-consuming devices[63]. Increasing energy e�ciency in buildings is10

an essential strategy for reversing global growth in energy use and associated emissions to reduce the likelihood11

of
:
.
::::::::
Reducing

::::::::
building

::::::
energy

:::
use

::::
and

:::::::::
increasing

:::
the

::::::::
�exibility

:::
of

:::::::
building

:::::::::
operations

::::
are

:::::::
essential

:::::::::
strategies

:::
for12

::::::::
mitigating

::::
the

:::
risk

:::
of catastrophic climate change. Indeed, the International Energy Agency (IEA) estimates that13

buildings in 2040 could be 40% more energy e�cient than today, with savings driven by reduced energy need for14

space heating, water heating, and cooling [63].15

The development of concrete strategies for decreasing
::::::::
e�ectively

:::::::::
managing building energy use remains a key16

challenge. Building researchers and policy makers lack cross-country data for understanding how building energy17

use is expected to change over the next several decades, which is essential for identifying the speci�c e�ciency
:::
and18

::::::::
�exibility strategies that have the greatest impact on these changes. While access to these data at both a granular19

spatio-temporal resolution and for the building stock as a whole is improving, gaps in data coverage, consistency,20

and accessibility across countries must be addressed to support setting e�ective priorities for building technology21

research, development, and deployment programs.22

To address gaps in building energy use data at large scales, a group of international researchers that includes23

the authors is collaborating on an International Energy Agency (IEA) Energy in Buildings and Communities (EBC)24

Annex “Building Energy Epidemiology”, or IEA-EBC Annex 70. The concept of energy epidemiology as �rst de�ned25

by Hamilton et al. [55] is the study of energy use in a large population of buildings. The scope of research that falls26

within the energy epidemiology �eld is broad, including both modeling of energy use in the building stock under27

di�erent sets of input conditions, analyses that identify correlations between energy use and in�uencing variables,28

and testing of causal hypotheses about the e�ects of implementing energy e�ciency measures across representative29

portions of a building stock.30

The guiding objective of IEA-EBC Annex 70 is to develop realistic transition pathways to
:::::::
improve

:::
the

:::
use

::
of

::::
data31

:::
and

::::::
models

:::
of

:::::::
building

::::::
energy

::::
use

::
to

::::::::
facilitate dramatic reductions in building energy use and carbon emissions.32

In support of this objective, we seek to identify and compare models of large-scale building stocks and their energy33

use that are broadly interpretable
::::::::
applicable

:
across the international buildings research community. Accordingly,34

this paper proposes a framework for classifying building stock energy models that builds upon existing classi�-35

cation approaches while acknowledging emerging modeling techniques and covering a wide range of important36

model dimensions
:::::::::
identifying

:::::::::
additional

::::::::::
dimensions

::::
that

::::::::::
characterize

:::
the

::::::::::::
development

:::
and

::::
use

::
of

:::::
such

::::::
models.37

The intent is for the proposed classi�cation to serve as a common framework for quickly comparing and assessing38

available models of building stock energy models across the scales of cities, regions, and countries.
::::
This,

::
in

:::::
turn,39

:::
can

::::::::
facilitate

:::::::::::::
evidence-based

::::::::::::::
decision-making

::
to

:::::::
support

::::::::
concrete

::::::
actions

::
to

:::::::
reduce

:::
the

::::::
energy

::::
and

::::::::
emissions

:::
of40

:::
the

::::::::
buildings

::::::
sector,

:::::
while

::::::::
assisting

:::
the

:::::::::
increasing

:::::::
number

:::
of

::::::
global,

::::::::
national,

:::
and

:::::::::::
sub-national

:::::
scale

:::::::::
initiatives41

::
on

::::::::::
sustainable

:::::::::::
development,

:::::
such

::
as

:::
the

::::::::::
Sustainable

::::::::::::
Development

:::::
Goals

::::
and

:::
the

::::::
Global

:::::::::
Covenant

::
of

:::::::
Mayors

:::
for42

::::::
Climate

::::
and

:::::::
Energy,

::::::
among

::::::
others.43
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The scope of the proposed classi�cation scheme is
::::::
covers models of the buildings sector that: (a) represent1

multiple ,
::::::::
buildings

::::
that

:::
are

::::
often

:
geographically co-locatedbuildings; (b) produce energy use metrics as an output;2

and (c) generate out-of-sample predictions. Accordingly, the
:::
This

:::::::
includes

:::::::::::
multi-sector

::::::
energy

::::::
system

:::
and

:::::::::
integrated3

:::::::::
assessment

::::::
models

::
in

::::::
which

:::
the

::::::::
buildings

:::::
sector

::
is

::::::::::
represented.

::::
The proposed classi�cation scheme does not pertain4

to models that: focus on a single building’s energy use in isolation; do not yield energy use as a primary output (e.g.,5

focus exclusively on other building performance metrics such as indoor environmental quality or water use); or are6

purely explanatory or descriptive in nature [136].7

We begin by reviewing previous e�orts to develop building stock and energy model classi�cations, identifying8

critical gaps in these existing classi�cations and establishing the need for an updated classi�cation framework. We9

then introduce a
:::
new

:
classi�cation scheme that builds upon the strengths of the existing model classi�cations while10

addressing their shortcomings in the context of currently available data resources and computational capabilities.11

New
::::::
Unique elements of the classi�cation approach are enumerated in detail along with examples from the literature12

that demonstrate their relevance to the task of building stock energy modeling. The paper concludes by discussing13

potential applications of the proposed classi�cation scheme – including its use in related IEA Annex 70 e�orts to14

create a registry of building stock energy models and develop a complementary model reporting protocol – as well15

as limitations to its future use by buildings researchers.16

1.1. Summary of existing classi�cation approaches17

To-date there have been multiple e�orts to classify building stock-level energy models by technique and purpose.18

Foremost among these is a 2009 review by Swan and Ugursal [142], which summarizes major energy modeling19

techniques for residential sector end uses. The Swan and Ugursal classi�cation has gained wide acceptance among20

building stock modelers, as evidenced by its large number of citations to date in other studies1.
:
.1 The designation21

of “top-down” models, or those that begin with an aggregate view of a system that may subsequently be broken22

down into constituent sub-systems, and “bottom-up” models, or those that begin with a detailed representation of a23

system’s constituent parts that may be aggregated up to the whole-system level, has long been used for many types24

of modeling. Swan and Ugursal [142] extended these concepts to the modeling of residential building stock energy25

use, identifying eight major types of modeling techniques under the general top-down and bottom-up categories26

(Figure 1).27

1(accessed 10/17/2019).
1https://scholar.google.com/scholar?rlz=1C5CHFA_enUS846US846&um=1&ie=UTF-8&lr&cites=464700330571940757

::::::
(accessed

:::::::::
06/30/2020).

3

https://scholar.google.com/scholar?rlz=1C5CHFA_enUS846US846&um=1&ie=UTF-8&lr&cites=464700330571940757


Figure 1: Swan and Ugursal’s 2009 model classi�cation. Models of residential energy use are classi�ed using a hierarchical tree structure that
includes two main branches: one for “top-down” models, or those that begin with an aggregate view of a system that may subsequently be
broken down into constituent sub-systems, and a second for “bottom-up” models, or those that begin with a detailed representation of a system’s
constituent parts that may be aggregated up to the whole-system level.

Other classi�cation systems de�ne the building stock energy modeling space more broadly than the Swan and1

Ugursal classi�cation. For example, Keirstead et al. [67] reviewed all studies on urban energy system models, includ-2

ing other major energy systems such as transportation, and classi�ed each model’s purposes and category. Building3

stock energy modeling is a subclass of “building design” in their schema, but few details are given on the speci�c4

techniques used for this model subclass.
::::::::
Referring

::
to

::::
the

::::::::
OpenMod

:::::::::
initiative,

:::::::::::::
Limpens et al.

:::
[77]

:::::::::
performed

:::
an5

::::::::
extensive

::::::
review

::
of

::
53

:::::::
existing

::::::
energy

:::::::
models

:::
and

:::::
tools.

:::::
Most

::
of

:::::
them

:::::
adopt

::
an

::::::
energy

:::::::
systems

::::::::
analysis

::::::::
approach6

::::
with

:::
the

:::::::::
electricity

:::::
sector

:::
as

::::
their

:::::
main

::::::
scope.

::::::::::
Thirty-one

::
of

:::
the

:::::::
models

::::::::
reviewed

:::::
cover

:::
the

::::::::
"heating"

::::::
sector

:::
(of7

:::::
which

:::
the

::::::::
buildings

:::::
sector

::
is
::
a

::::
part),

::::::::
although

::::
half

::
of

::::
them

:::::
only

::
do

::
so

::::::::
partially

:::::::
(through

:::::::::
combined

::::
heat

:::
and

:::::::
power).8

::
In

:::::::
addition

::
to

:::
the

::::::
sector

::::::::
coverage,

:::::::::::::
Limpens et al.

::::
[77]

::::::
classify

:::
the

::::::
models

::
in
::::::

terms
::
of

:::::::::::
optimisation

:::
vs.

::::::::::
simulation,9

:::::::::
"openness"

:::
(in

:::::
terms

::
of

:::::
usage

::::
and

:::::
source

:::::
code)

::::
and

::::
time

:::::::::
(resolution

::::
and

:::
run

:::::
time).

:
10

Two other review papers discuss classi�cation in the context of appropriateness for building energy policy mak-11

ing. Brøgger and Wittchen [17] adopt the general Swan and Ugursal classi�cation, while discussing the appropri-12

ateness and accuracy of each model type in the context of European policy-making. Sousa et al. [139] present a13

review of building stock energy models speci�c to the United Kingdom, comparing and contrasting the capabilities14

for each, utilizing the general bottom-up and top-down divisions provided in Swan and Ugursal.15

Few studies have attempted to expand upon the Swan and Ugursal classi�cation of top-down modeling tech-16

niques.
:::::::::::
Ahmad et al.

:::
[3]

:::::::
perform

:
a
:::::::::::::
comprehensive

::::::::
literature

::::::::
inventory

::
of

:::::::
existing

::::::::::
data-driven

:::::::
building

:::::
stock

::::::
energy17

::::::::
modeling

::::::
studies,

::::::::
creating

::::
their

::::
own

::::
four

::::::::::::
classi�cations

:::
of

::::::::::
data-driven

::::::::
modeling

::
in

:::
the

:::::::
process

:::::
based

:::
on

:::::::
speci�c18

::::::::
statistical

:::
and

::::::::
machine

:::::::
learning

::::::::::
techniques.

:
Li et al. [76] provide a classi�cation tree nearly identical to Swan and19

Ugursal, adding a few elements to the top-down branch, including “other” and “statistical” top-down sub-branches20

as well as a statistical modeling technique that relies on physical input variables. The majority of this review article,21

however, focuses on bottom-up applications and the new top-down techniques are not explored in detail in the text.22

For bottom-up models, the general division between “statistical” (i.e. data-driven/black-box) and “engineering”23

(i.e. physics-based/white-box) models has endured in multiple works recategorizing models. For example, Nageler24

et al. [97] utilize the general Swan and Ugursal classi�cation for bottom-up models.
:::
The

:::::
same

::::::::::::::
physics-models25

::
vs

::::::::::
data-driven

::::::::
methods

::
is

:::::::
followed

:::
by

:::::::::
Gao et al.

::::
[50]

::
in

:
a
::::::
paper

:::
that

::::::::
provides

:::
an

::::::::
extensive

:::::::
review

::
of

:::
the

::::::
latter.26

::::::::::::::
Soto and Jentsch

:::::
[138]

:::::
accept

:::
the

:::::::::::
classi�cation

::::
and

::::::::::::
comparatively

::::::
review

:::
�ve

::::::::
statistical

::::
and

:::::
seven

:::::::
building

:::::::
physics27

4



:::::::::
bottom-up

::::::
energy

:::::::
models. Kavgic et al. [66], another heavily-cited paper, directly adopts this simpli�ed Swan and1

Ugursal bottom-up division, adding in a “hybrid” category that combines data- and physics-driven approaches.2

Mastrucci et al. [86] also focus on bottom-up models using this general classi�cation, but extend beyond demand3

modeling to include a multi-level life cycle analysis framework to account for embodied energy. This article also4

makes a distinction between the energy modeling portion of an assessment and the di�erent stock aggregation5

methods - something of increasing importance to bottom-up models.6

In
:::::
Other

:::::::::::
publications

::::
have

::::::::
expanded

:::::
upon

:
the bottom-up , engineering sub-class of models of Figure 1, there7

has been additional publication activity around classi�cation and methods. Reinhart and Davila [118] developed8

::
in

:::::
Figure

::
1.
::::::::::::::::::

Zhao and Magoulès
:::::
[167]

::::::
classify

:::::::
methods

:::
to

::::::
predict

:::::::
building

:::::::
energy

:::::::::::
consumption

::::
into

:::::::::::
engineering,9

::::::::
statistical,

::::::
neural

::::::::
networks,

:::::::
support

:::::
vector

::::::::
machines

::::
and

::::
grey

::::::
models,

::::::
where

:::
the

::::
latter

::::::::
combines

::::::::
methods.

:::::::::
Wei et al.10

:::::
[161]

::::
draw

::::::
further

:::
on

:::
the

:::::::::::::::::
Zhao and Magoulès

::::
[167]

:::::
paper

::
by

:::::::
de�ning

:::::::::
white-box

::::::
models

:::
as

::::
those

::::
that

:::::
input

:::::::
detailed11

:::::::
physical

::::::::::
information

::::
and

::::::::
black-box

:::::::
models

::
as

:::::
those

::::
that

:::::
input

::::::::
historical

:::::
data,

::::
with

::::::::
grey-box

::::::
models

::::::
again

:::::
using12

::::::::
combined

::::::::::
approaches.

::::
The

:::::::
authors

::::
also

::::::::::
distinguish

:::::::
between

::::::::::
data-driven

::::::::::
approaches

::::
that

:::
are

:::::
used

:::
for

:::::::::
prediction13

:::::
(ANN,

:::::::
support

:::::
vector

::::::::
machine,

::::::::
statistical

:::::::::
regression,

:::::::
decision

::::
tree

:::
and

::::::
genetic

::::::::::
algorithms)

:::
vs.

:::::::::::
classi�cation

::::::::
(k-means14

:::::::::
clustering,

::::::::::::::
self-organization

::::
map,

::::::::::
hierarchical

::::::::::
clustering).

:::::::::::::::::
Reinhart and Davila

:::::
[118]

::::::
develop one of the �rst overview15

papers speci�cally on the Urban Building Energy Modeling (UBEM) sub-class of
::::::::
botton-up

:
models. The paper com-16

pares published models and o�ers a high-level overview of approaches. Reyna et al. [120] developed
::::::
develop

:
an17

orthogonal classi�cation focused on building interactions (building-building, building-transportation, etc.) and pro-18

vide cases leveraging the Swan and Ugursal classi�cation. Both reviews
:::::::::::
Ahmad et al.

:::
[3]

::::::
conduct

::
a
:::::::::::::
comprehensive19

::::::
review

::
on

:::::::::::::
energy-demand

:::::::::
prediction

::::::
models

:::
for

::::::::
buildings

:
at
::::::
urban

:::
and

::::
rural

:::::::
building

::::::
levels.

::::
Each

::
of

:::::
these

::::::::::
publications20

reference building stock energy modeling capabilities far beyond those outlined in the original Swan and Ugursal21

paper. The development of new approaches necessitates renewed evaluation of building stock energy modeling and22

the advantages and disadvantages of emergent capabilities.23

1.2. The need for an updated classi�cation24

When the Swan and Ugursal classi�cation was published in 2009,
:::::::
building

:::::
stock

::::::
energy

:
models were limited25

in number and functionality. Three major developments have increased the capabilities and applications of current26

building stock energy models: 1) big data-enabled
::::
data,

:::::::
enabled through advances for example in the area of utility27

energy data access-
::::::
access, has increased the amount of empirical evidence that can be integrated into model devel-28

opment and calibration, and ;
:
2) computing power has increased the availability and decreased the costs of large-scale29

simulation through cloud computing and access to supercomputing,
:
; and 3) as modelers adapt to increased data30

and computational capabilities, many models now use multiple modeling techniques to estimate both energy use31

and its driving variables; such models don’t �t cleanly within a single category and/or include dimensions that are32

not captured by a high-level classi�cation approach. These issues are detailed further below
::::
here.33

In the past ten years, increasing amounts of data have been collected on both model inputs (e.g., building charac-34

teristics, geospatial information for individual buildings, operational schedules, and occupant behavior) and outputs35

(e.g., energy use); these improved data can inform more accurate models of building stock energy with �ner spatio-36

temporal resolutions. For example, European Energy Performance Certi�cates [36] and benchmarking mandates in37

the United States [145] are increasing data collected on building characteristics and energy performance. Moreover,38

while utilities have long restricted access to account-level energy use data, there is now a growing recognition that39

these data are essential for decision making for the public good in the face of climate change [9]. In California, for40

example, universities have been able to obtain account-level energy use data under non-disclosure agreements, and41

municipalities are also able to access aggregated utility data for their jurisdictions [22]. Access to these data allows42

linkages to be created through geocoding to building/parcel attributes, thereby revealing the relationships between43

energy use and building vintage, use-type, square footage, and socio-demographic attributes [113, 44]. A transition44

to using such granular, empirical energy use data is dramatically improving the spatial resolution and predictive45

abilities of building stock energy models. Some classi�cation systems for whole (i.e. individual) building modeling46

and calibration have been extended to cover these advancements (e.g. Fumo [46]), but stock-level energy modeling47

classi�cation systems have not been extended to cover newer data-driven techniques.48

Simultaneously, non-traditional data sources are augmenting available data on buildings. For example, remotely-49

sensed data such as LiDAR and satellite imagery are being used to determine external characteristics such as building50

height, geometry, shading, solar irradiance, and even externally-placed building equipment [53, 147, 164, 83, 93].51
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All generate rich detail on the building stock, but require new modeling techniques to fully utilize
:::
are

:::::::
required

:::
to1

:::::::
leverage

:::
this

:::::::::::
information

::
in

:::
full. Such techniques include geospatial simulation models [118], which simulate all or2

a representative subset of individual buildings comprising a stock using whole building energy simulation engines3

and geospatial data; system dynamics and agent-based models [43, 84], which are able to explore causal e�ects and4

interactions across modeled entities (e.g., across individual buildings, or occupants within a building); and machine5

learning models [8], which leverage big data resources to predict changes in building energy use at scale.6

Cloud-based computing has proven to be an important enabling technology for many of these computationally-7

intensive models, as the cost of cloud computing has decreased and the availability of web-based resources has im-8

proved [45]. Geospatial models, for example, dramatically expand upon the single-archetype assumption of previous9

bottom-up engineering model classi�cations in their ability to represent every building in a city, region, or country10

explicitly at a �nely grained temporal resolution. Moreover, models utilizing these big data and cloud computing11

resources often combine multiple techniques that don’t �t neatly within the distinct “top-down” or “bottom-up”12

Swan and Ugursal designations, and such models may also explicitly represent additional variables that in�uence13

energy use as part of the model’s structure and outputs. Additional classi�cation categories and layers are needed14

to capture the proliferation of such hybrid modeling techniques for representing both stock-level energy use and its15

key correlates.16

Beyond these gaps in existing classi�cations’ coverage of data-driven and simulation-based modeling techniques17

and mixed modeling approaches, previous classi�cations also lack guidance on how to assess the transferability and18

quality of models along dimensions that are implicit in the high-level classi�cation diagram. In 2009, most models19

were bespoke and privately stored - standalone models developed to assess a single geographical area by a single20

group of people for a single purpose. Increasingly, stock models have become designed for wider applicability,21

allowing core modeling structures to be transferred to other cities or countries by varying model input data. As22

model transfer is being considered, additional language is needed to appropriately communicate key characteristics23

of the model such as handling of time dynamics, model and input uncertainty, and the geographic and spatial24

resolution and extent of models. Accordingly, we see the
::::
there

::
is
::
a need to identify and describe such additional25

dimensions to complement a high-level model classi�cation approach.26

2. Overview of proposed classi�cation scheme27

The proposed
::::::
building

:::::
stock

::::::
energy

::::::
model

:
classi�cation scheme (Figure 2) establishes a �exible framework for28

high-level model classi�cation that: (a) builds from existing classi�cation frameworks while accounting for emerging29

simulation-based, data-driven, and hybrid modeling techniques; (b) recognizes the potential sub-layers of a building30

stock energy model; and (c) encourages the description of additional model dimensions that are not readily captured31

by a high-level classi�cation.32
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Figure 2: An updated classi�cation scheme for building stock energy models. The scheme builds from existing classi�cation approaches while
contributing the following changes: 1) the classi�cation eschews a hierarchical structure in favor of a more �exible organization, grouping models
into four quadrants based on whether each is top-down or bottom-up and black-box or white-box; models are tagged by their applicable quad-
rant(s) (Q1 for top-down/black-box, Q1/Q4 for hybrid, etc.), 2) examples of the emerging use of simulation-based and data-driven techniques in
building stock energy modeling are included (e.g., system dynamics, agent-based models, machine learning) 3) hybrid models are identi�ed that
combine modeling techniques across quadrants, 4) sub-layers representing key energy use determinants (e.g., people, building stock, environ-
ment) are represented; modeling approaches for each of these determinants could be mapped to the same or to a di�erent of the four quadrants
of the energy layer, and 5) additional dimensions (e.g., system boundary, spatio-temporal resolution, dynamics, and uncertainty) are identi�ed
that should be described in parallel with mapping a model to the high-level classi�cation quadrants.

In place of the hierarchical organization of existing classi�cations, the classi�cation diagram in Figure 2 groups1

building stock energy modeling techniques into one of four quadrants
::::
based

:::
on

::::
their

::::::
design

:::::::::::::::
(top-down/bottom

::::
up)2

:::
and

::::::
degree

::
of

:::::::::::
transparency

:::::::::::::::::::
(black-box/white-box).2

:::
The

::::
four

:::::::::::
classi�cation

::::::::
quadrants

:::
are

::::
thus: top-down/black box3

(Q1), top-down/white-box (Q2), bottom-up/black-box (Q3),
:::
and bottom-up/white-box (Q4). Here, black-box refers to4

models in which underlying processes leading to outcomes are not directly interpretable, while in white-box models5

the internal model structure and in�uencing variables are directly interpretable.6

To address the gaps we identi�ed
:::::::
illustrate

::::
how

:::
this

::::
new

:::::::::::
classi�cation

::::::::
approach

::::::::
addresses

::::
gaps in the coverage of7

:::::::
building

::::
stock

:::::::
energy modeling techniques in existing classi�cations, we include several

:::::
Figure

:
2
::::::::
includes

::::::::
examples8

::
of emerging data-driven and simulation-based energy modeling techniques in the quadrants of Figure 2 (alongside9

the modeling techniquesthat have been identi�ed across most previous previous classi�cations)
::::::::
techniques

:::::::::
alongside10

:::::::::
established

:::::::::
techniques: machine learning (Q4: bottom-up/white-box), system dynamics (Q2: top-down/white-box),11

agent-based modeling (Q4: bottom-up/white-box), and physics-simulation (Q4). In
:::::::::::
Additionally,

:::::
Figure

::
2

:::::::::
designates12

::
an

::::
area

:
between each of the four quadrants is an area devoted to

:::::::::::
classi�cation

:::::::::
quadrants

:::
for

:
hybrid modeling13

techniques that combine techniques either within or across
:::::
across

::::
(but

::::
not

::::::
within)

:
the quadrants. Details of all14

modeling techniques covered by the classi�cation
:::::::::
concerning

:::
the

:::::::
example

::::::::
modeling

::::::::::
techniques

::::::::
identi�ed

::
in

::::::
Figure15

2
:::
Here,

:::::::
black-box

::::
refers

::
to
:::::
models

::
in
:::::
which

::::::::
underlying

::::::
processes

::::::
leading

:
to
:::::::

outcomes
:::

are
:::
not

:::::
directly

:::::::::
interpretable,

:::::
while

:
in
::::::::

white-box
:::::
models

::
the

::::::
internal

::::
model

::::::
structure

:::
and

::::::::
in�uencing

::::::
variables

:::
are

:::::
directly

:::::::::
interpretable.
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:
2 are discussed in the next section.1

In addition to the energy modeling layer, which is the main focus of this classi�cation, Figure 2 shows three2

supporting layers that concern the modeling
:::::
Figure

:
2
::::::
shows

::::
three

:::::::::
additional

::::::::
modeling

:::::
layers

::::
that

:::::::
support

:::
the

:::::
main3

::::::
energy

::::
layer

:::
of

:::
the

:::::::::::
classi�cation.

::::::
These

::::::::::
supporting

:::::
layers

:::::::
concern

:::
the

:::::::::::::
representation of key energy use determi-4

nants: occupants’ energy-related behaviors within the building stock of focus
::::::
modeled

::::::::
building

::::
stock, the character-5

istics of the building stock itself, and environmental conditions (e.g., outdoor temperature , solar intensity
::::::
context6

:::::::
(physical

:::::::::
conditions

:::::
such

::
as

:::::::
outdoor

::::::::::
temperature

::::
and

::::
solar

::::::::
intensity

::
as

::::
well

::
as

:::::::::::::
socio-economic

:::::::::
conditions). Model-7

ing e�orts
:::::::::
techniques that directly represent such driving variables are expected to map to the same four quadrants8

shown
::
in

::::::
Figure

:
2
:

for the energy layer, though speci�c techniques within each quadrant may be unique to the9

supporting layer. Where these variables
:::::::::
supporting

::::::
layers are only implicitly addressed in a building stock energy10

model, this should be made apparent as part of
::::
noted

:::::::::
alongside the model’s classi�cation.11

Finally, Figure 2 identi�es four additional modeling dimensions of interest
:::
that

::::::
should

::
be

::::::::
described

::
as

::
a

::::::::::
complement12

::
to

:::
the

:::::::::
high-level

:::::::::::
classi�cation: dynamics, system boundaries, spatio-temporal resolution, and model uncertainty.13

These dimensions
::::
Each

::
of

::::
these

::::::::::
dimensions

:::::::::
represents

::
an

::::
axis

:::::
along

:::::
which

::::::::
modeling

:::::::::
approaches

::::
may

::::
vary

::::::::::::
independently14

::
of

:::
the

::::::::
high-level

:::::::::::
classi�cation

:::::::::
quadrants

:::
and

::::::
layers.

::::::
While

::::
such

::::::::::
dimensions are not readily captured by the

:
a high-15

level classi�cationquadrants and modeling layers; however, their description alongside the high-level classi�cation16

provides important context about a model that further facilitates its assessment by the research community and17

comparison with similar building stock energy models.18

The following sections expand upon the modeling techniques and additional
::::::::::
classi�cation

:::::::::
quadrants,

::::::::
example19

::::::::
modeling

::::::::::
techniques,

:::
and

:::::::::
additional

:::::
model

:
dimensions shown in the classi�cation diagram of Figure 2, providing20

an overview of each and examples of their treatment in
:::
key

:::::::
concepts

::::
and

:::::::
relevant

::::::
studies

:::::
from the recent building21

stock energy modeling literature
::::::::
literature.

:::::::::
Collection

::
of

:::::::
relevant

::::::::
literature

:::::::
sources

::::
was

::::::::
informed

::::::::
primarily

::
by

::::
the22

::::::
domain

::::::::
expertise

::
of

:::
the

::::::
Annex

::
70

:::::::
authors.

::
A
:::::::::
summary

::
of

:::
the

:::::::::::
classi�cation

:::::::::
quadrants,

:::
the

::::::::
strengths

:::
and

::::::::::
limitations23

::
of

:::
the

::::::::
modeling

::::::::::
approaches

::::
they

::::::::
represent,

::::
and

:::::::
example

::::::::
literature

:::::::::
references

::
is

::::::::
provided

::
in

:::::
Table

:
1.24
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Table 1:
::::::
Summary

::
of

::::::
proposed

::::::
building

::::
stock

:::::
energy

::::
model

:::::::::
classi�cation

::::::::
quadrants,

::
the

:::::::
strengths

::
and

::::::::
limitations

::
of

::
the

:::::::
modeling

::::::::
approaches

:::
they

:::::::
represent,

:::
and

:::::
example

:::::::
literature

:::::::
references.

:::::::::
Classi�cation
::::::
Quadrant

:::::::
Approach

::::::
Strengths

: ::::::::
Limitations

::::::
Example
:::::::
References
:::::::
(Modeling

:::::::
Technique)

::
Q1
:::::::
(Top-down
::::::::
/Black-box)

::::::
Estimate

::::::
aggregate

:::::
building

:::::
energy

:::
use

:::
from

::::::::
sector-wide

::::
socio-

::::::
economic

:::::
and/or

:::::::::
technological

::::::
variables

::::
Simple

:::
and

:::::::::::
computationally

::::::
tractable,

:::::
readily

::::
paired

:

:::
with

::::
other

::::::
modeling

:::::::::
frameworks

:::
(e.g.,

:::
with

::::::::
bottom-up

::::::::::
representations

:
of
:::::
energy

::::::
demand

::
in

:::::::
Integrated

::::::::
Assessment

:::::
Models)

::::::
Typically

:::::
unable

::
to

::::::
represent

:::::
impacts

::
of

:::::
speci�c

::::::::
technology

:
or
:::::::

operation
::::::::::
improvements/

::::::
measures;

:::::
unable

::
to

:::::::
represent

:::::::
disruptive

:::::
changes

::
to

::::::
building

:::
stock

:::::
energy

:::
use

:::
due

:
to
::::::

reliance
::
on

::::::
historical

:::
data

::::::::::::::
[78, 19, 41, 31, 114, 2]
:::::::::
(Econometric)
:::::::::::::
[70, 35, 75, 157, 49]
::::::::::
(Technological)

::
Q2
:::::::
(Top-down
::::::::
/White-box)

::::::
Represent

::::::
physical

::::::
causality

:
at
:::

the
::::::
aggregate

::::::
building

::
and

::::::::
technology

:::
stock

::::
level

:::
Able

::
to

::::::
represent

:::
the

:::::::
complexity

::
of

:::::
building

::::
stock

:::::
energy

:::
use

:::
and

::
its

::::::::
components

::
at

::
the

:::::::
aggregate

::::
level,

::::::
including

::::::::
technology

:::
and

:::::
building

::::
stocks,

::::
stock

:::::
�ows,

::
and

:::
the

::::::
evolution

:
of
:::
the

:::::
system

:::
over

:::
time

:::::
Unable

:
to
:::
link

:::::::
aggregate

:::::
building

:::::
energy

:::
use

::
to

:::::::::
building-level

::::::::
operations;

::::::::
challenging

:
to
:::::::
represent

:::::
spatial

:::::::
dimension;

:

:::
may

:::::
require

::::::
extensive

::::
data,

::::
time,

::
and

:::::
expert

::::::::
knowledge

:
to
::::
fully

::::::
represent

:::::
system

::::::::
components

:::
and

:

::::
causal

::::
�ows

::::::::::::::::
[33, 109, 32, 96, 39, 168]
:::::
(System

:::::::
dynamics)

::
Q3
::::::::
(Bottom-up
::::::::
/Black-box)

::::::
Attribute

:::::::::
building-level

:::::
energy

::
use

::
to

:::::::
particular

:::::
energy

::
end

::::
uses

:::
(e.g.

::::
space

:::::
heating,

::
hot

::::
water

:::::
usage,

:::::::
household

::::::::
appliances)

:::::
utilizing
::::::
statistical

::::::
analysis

::
of

::::::
historical

:::
data

:::
Able

::
to

::::
reveal

:::::::
important

:::::::::
relationships

::::::
between

::::
energy

:::
end

:::
use

:::::
outputs

::
and

::::::
relevant

::::
input

:::::::
variables;

::::::
relatively

::::
simple

:::::
models

::::
with

:::
low

:::
data

:::::::::
requirements

:::
may

:::
yield

::::
high

::::::::
explanatory

::
or

:::::::
predictive

::::::::
performance

:::::
Unable

:
to
:::::::
explicitly

::::::
represent

:

::
key

:::::::
dynamics

::::::::
in�uencing

:::::
energy

::
end

::::
uses

:
in
:::::::
buildings

:::
(e.g.,

:

::::::
occupant

::::::
behavior,

::::
heat

:::::
transfer

:

:::::
through

:::
the

:::::::
envelope);

::
in

:::::
certain

:::
cases

:::::
require

::::
large

::::::
datasets

:
to
::::

yield
:::
good

:::::::
predictive

:::::::::
performance

:::
(e.g.,

:

::::::
machine

:::::
learning

::::::
models)

:::::::::::::::
[131, 80, 61, 85, 4, 146]
:::::
(Classic

:::::::
statistical)

::::::::::::::::
[122, 112, 69, 103, 112, 5]
::::::
(Machine

::::::
learning)

::
Q4
::::::::
(Bottom-up
::::::::
/White-box)

::::::
Simulate

::
the

::::::
physical

::::::::
relationships

::
of
:::::::
proccesses

:
at
:::
the

::::::
building

:
or
:::::
energy

:::::
end-use

::::
level

:::
Able

::
to

::::::
explicitly

:::::::
represent

::
key

::::::
dynamics

::::::::
in�uencing

::::::
building

:::::
energy

::
end

::::
uses,

::::::
building

::::
stock

::::::
diversity,

:::
and

::
the

:::::::
aggregate

:::::
energy

::::
e�ects

::
of

::::::
changes

:
to
::::::::
operations

:
at
:::
the

:::::::
individual

:::::
building

::::
level

:::::
Require

:::::::
extensive

:::
data

:
to
:::::::

represent
:::::
detailed

::::::::::
characteristics

::
of

::
the

::::::
building

::::
stock

:::
and

:::::
drivers

:
of

::
its

::
end

:::
use

::::::
patterns,

:::::::::::
computationally

:

::::::
intensive,

::::::::
potentially

::::::::
challenging

:
to
:::
pair

::::
with

::::
other

::::::
modeling

::::::::
frameworks

::::::::::::
[154, 153, 121, 18]
::::::
(End-use

::::::::
distribution)

:::::::::::::::
[166, 94, 137, 99, 10, 1]
:::::::::
(Agent-based)
:::::::::::::::::::
[101, 66, 138, 60, 102, 87, 11]
:::::::::::::
(Physics-simulation)

::::::
Multiple
:::::::
Quadrants
::::::
(Hybrid)

::::::
Combine

::::::
elements

::
of

::
the

:

::::::
modeling

::::::::
approaches

::::
across

:::
the

:::
four

::::::::
classi�cation

:::::::
quadrants

:::
May

:::::
address

:::
the

:::::::
limitations

::
of

:::
one

::::::
modeling

:::::::
approach

::
by

::::::::::
complementing

:::
with

::
the

:::::::
strengths

::
of

::::::
another;

:::::::
potentially

::::
more

:::::
�exible

::
in

:::::::
application

:::
and

:::
able

::
to

:::::
answer

:
a
:::::
broader

::
set

::
of
::::::
analysis

::::::
questions

::::
Often

:::
more

::::::
complex

::
in

:::::
design

:::
and

::::::::::
implementation

::
–

::
and

::
by
::::::::

extension,
:::
more

::::::
di�cult

::
to

:::::::::
communicate

:::
and

::::::
replicate

:
–
:::::
because

::
of
:::
the

:::
need

::
to

:::::::
harmonize

::::::
multiple

::::::
modeling

:

:::::::
approaches

:::
that

::::
may

:::::
concern

:::::::
disparate

::::
scales

:::
and

::::::
variables

::
of

:::
focus

:::::::::::::::
[150, 72, 91, 64, 81, 82]
::::::::::::::::::
(Technological-econometric

:

::
and

::::::
end-use

::::::::
distribution)

::::
[143]

::::::
(Machine

::::::
learning

::
and

::::::::::::::
physics-simulation)

::::::
[128, 26]

::::::::::
(Technological,

:::::
system

:::::::
dynamics,

::
and

:

:::::::
archetype)

2.1. Quadrants of the Classi�cation1

2.1.1. Q1: Top-down / Black-box2

In the new classi�cation, top-down/black-box models remain mostly unchanged from previous classi�cation3

schemes. This class of models estimates sector-level energy utilizing readily-available, sector-wide historic variables4

such as demographics or economic indicators. These models typically exclude end-use energy attribution . While the5

models have the advantage of being easily to develop and may be accurate for representing incremental, near-term6

changes, they cannot capture transformative sector-wide changes (e.g. wide-spread electric vehicle adoption or7

major retail energy price changes)
::
or

::::
rely

::
on

:::::::::
aggregate

:::::::
end-use

::::::::
functions

::::
that

:::
link

:::::::
energy

:::::::
demand

:::
and

::::::::::
underlying8

:::::::::::::
socio-economic

::::::
factors. Our classi�cation maintains two major categories of top-down/black-box modeling tech-9

niques, econometric and technological, consistent with existing classi�cation schemes.Increasingly, top-down/black-box10
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models utilize hybrid econometric - technological approaches. Fazeli et al. [38] give an overview of many existing1

models of this type, focusing on models that capture the temperature response of building energy demand.2

3

Econometric4

Econometric models apply statistics and mathematics based on economic theory to forecast speci�c outcomes. For5

building stock energy modeling, commonly used economic indicators include
::::::::::::
demographics,

:
fuel prices, household6

income, or
:::
the gross domestic product

::
of

::
an

::::::::
economy

:::
as

:
a
::::::
whole,

::::::
which

::::
may

::
be

::::::::
assessed

::
at

::::::::
regional,

:::::::
national,

:::
or7

:::::
global

:::::
scales. Econometric models were originally developed in the 1970s, stemming from the economic �eld, and8

particularly useful for exploring high-level trends. For example, Lin and Liu [78] develop an econometric forecast9

of building energy consumption in China given heavy urbanization trends for three di�erent future scenarios, in-10

cluding an uncertainty assessment on the predictions, and in a related assessment use the models to identify the11

rebound e�ect of energy e�ciency. Fazeli et al. [38]
::::::::::
Broin et al.

:::
[19]

::::::
model

::::::
energy

:::::::
demand

:::
for

:::::
space

::::
and

::::::
water12

::::::
heating

:::::
from

::::
1970

::
to

::::
2005

:::
in

:::
the

:::::::::
residential

::::::
sector

::
of

::::
four

:::
EU

::::::::
countries

:::::
using

:::::
index

:::::::::::::
decomposition3

:
,
:::::::::::
econometric13

::::::
models

:::
and

::::::::::::
cointegration

:::::::
analysis.

::::
The

::::::
spatial

::::
and

::::::::
temporal

:::::::::
in�uences

::
on

:::::::
energy

:::::::
demand

::
in

::::
each

:::::::
country

::
of

::::
the14

::::::
number

:::
of

::::::::::
households,

:::::
�oor

::::
area

:::
per

:::::::::
household

::::
and

::::
unit

:::::::::::
consumption

:::
for

:::::
space

::::
and

:::::
water

:::::::
heating

:::
are

::::::::
isolated.15

::::::::::
Fazeli et al.

:::
[37] explore three separate econometric techniques to forecast fuel consumption associated with res-16

idential space heating in Nordic countries, a potentially impactful advancement for modeling electri�cation and17

fuel switching within the top-down/black box modeling quadrant. .
:::::::::::::::::

Filippini and Hunt
:::
[41]

:::::::
estimate

::
a
:::::::::
stochastic18

::::::
frontier

::::::::
function

:::
for

::::
U.S.

:::::::::
residential

:::::::::
aggregate

:::::::
energy

:::::::
demand

:::::
using

::::::
panel

::::
data

:::
for

:::
48

:::::
states

:::::
from

::::::::::
1995–2007.19

:::::::::::::::
Dilaver and Hunt

::::
[31]

::::::
forecast

:::
the

::::::::::
relationship

::::::::
between

::::::
Turkish

:::::::::
household

::::
�nal

::::::
energy

::::::::::::
consumption

:::::::::::
expenditures20

:::
and

:::::::::
residential

:::::::::
electricity

::::::
prices

::
by

::::::::
applying

::
a
::::::::
structural

:::::
time

:::::
series

::::::
model

::
to

::::::
annual

::::
data

:::::
over

:::
the

::::::
period

:::::
from21

:::::::::
1960–2008.

::::::::::::::::::::
Pourazarm and Cooray

:::::
[114]

:::::::
similarly

::::::
employ

::::
unit

::::
root

::::
tests,

::::::::::::
cointegration

:::
and

:::::::::::::
error-correction

:::::::
models22

::
on

::::::
annual

::::
time

:::::
series

::
of

:::::::::
residential

::::::::
electricity

:::::::::::
consumption

::
in

::::
Iran

:::
for

:::
the

:::::
period

:::::::::
1967–2009

:::
and

:::::::
forecast

:::::::::::
consumption23

:::::::
through

::::
2020.

:::::::::::::::
Adom and Bekoe

:::
[2]

:::::
study

::::::::
electricity

:::
use

::
in
::::::
Ghana

::::::
across

::::::
sectors

:::::
using

:::
two

:::::::::::
econometric

::::::::::
approaches24

:
–
:::::
ARDL

::::
and

:::::
PAM.

:::::::::::
Hussain et al.

::::
[62]

:::::
study

::::::::::
cross-sector

::::::::
electricity

:::
use

::
in

::::::::
Pakistan

::::
using

:::::::::::
Holt-Winter

:::
and

:::::::::::::
Autoregressive25

::::::::
Integrated

:::::::
Moving

:::::::
Average

::::::::
(ARIMA)

::::::
models

:::
and

::::
time

:::::
series

::::
data

::::
from

::::::::::
1980–2011;

::::::
similar

:::::::::
approaches

:::
are

::::::::::
summarized26

::
in

:::::::::::::
[71, 125, 65, 14].27

28

Technological29

Technological models are often similar to econometric models, but expand upon inputs based on broad economic and30

demographic trends
:::::
expand

:::::
upon

:::
the

:::::
inputs

::
of
:::::::::::
econometric

::::::
models

:
to explicitly account for technological character-31

istics of the building stock,
:
such as appliance saturation trends or adherence to building codes. Over the past decade,32

these models (and
::::::::
combined technological-econometric hybrid models

::::::
models,

::
as

::::::::
reviewed

::
in

::::
[38]) have largely sup-33

planted pure econometric approaches. For example, Eom et al. [35] developed an integrated assessment model that34

utilizes demographic and economic as well as appliance e�ciency trends to look at future energy consumption in35

China. Similarly, the Austrian Institute for Economic Research presents a working paper exploring technology and36

economic impacts on residential energy demand [70]. The National Energy Modeling System (NEMS) developed37

by the US Energy Information Administration uses a technological-econometric approach to develop a long-term38

forecast of growth in the building and technology stock, which is combined with bottom-up modeling techniques39

[150]
:::::::::
Integrated

::::::::::
Assessment

::::::
Models

:::::::
(IAMs)

::::
often

::::
also

::::::
derive

::::
total

:::::::
energy

:::::::
demand

:::::
based

:::
on

:::::::::::
technological

:::
as

::::
well40

::
as

:::::::::::
demographic

::::::::::
(population,

:::::::::
population

::::::::
density),

::::::::
economic

:::::::
(income

:::
per

:::::::
capita),

:::
and

:::::::::::::
climate-related

:::::
inputs

::::::::
(heating41

::
or

::::::
cooling

::::::
degree

:::::
days).

::::
For

::::::::
example,

:::::::::
Eom et al.

:::
[35]

:::::
utilize

:::::::::
appliance

::::::::
e�ciency

::::::
trends

::::::::
alongside

:::::::::::
demographic

::::
and42

::::::::
economic

::::::
trends

::
to

::::::
project

::::::
future

::::::
energy

::::::::::::
consumption

::
in

::::::
China.

::::::
Other

:::::
IAMs

::::
that

:::::
have

:::::::::::
technological

:::::::::
modeling43

:::::::
elements

:::::::
include:

:::
the

::::::
EDGE

::::::
model,

:::::
which

::::
was

::::
used

::
to

:::::::
explore

::::::::
scenarios

::
of

::::::
energy

:::::::::::
consumption

:::::
until

::::
year

::::
2100

:::
for44

:::
the

:::::
entire

:::::
world

:::
in

:
7
:::::::
regions

::::
[75];

:::
the

:::::::
IMAGE

::::::
model,

::::::
which

::::
was

::::
used

::
to

:::::::
explore

:::::::
lifestyle

:::::::
changes

::
in

:::
the

::::::::
housing45

::::::
domain

::::::::
including

:::::::
reduced

:::::::
demand

:::
for

:::::
space

::::
and

:::::
water

:::::::
heating,

:
a
::::
cap

::
on

:::::
home

::::
size,

::::
and

:::::::
reduced

::::
rates

::
of

:::::::::
appliance46

:::::::::
ownership

::::
[157]

:
;
:::
and

:::
the

:::::::::::
compilation

::
of

::::::
results

::::
from

::
5

::::::
models

:::::::
(GCAM,

:::::::
IMAGE,

::::::::::
MESSAGE,

:::::::
MERGE

:::
and

:::::::::
REMIND)47

::
on

::::::
energy

:::::::
demand

::::::::
scenarios

::::
that

:::::::
achieve

:
2
::
°C

::::
and

::::::::::
well-below

:
2
::
°C

:::::::
climate

::::::
targets

::::
[49].48

3
::::::::::
Decomposition

:::::::
approaches

:::
are

::::
noted

::
in

:::::
multiple

::::
other

:::::
studies

::::
(e.g.,

::::::::
[59, 119, 21]

:
).
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2.1.2. Q2: Top-down/White-box1

Previous classi�cation schemes have generally neglected top-down/white-box models, which represent physi-2

cal causality at the aggregate building and technology stock level. This approach is distinct from the two existing3

top-down approaches that characterize correlated
::::::::
correlate economic (econometric) or technology (technological)4

indicators . Our classi�cationadds
::::
with

:::::::
building

:::::::
energy

:::::::
demand.

:::
In

:::
the

::::
new

::::::::::::
classi�cation,

:::
we

::::::::
highlight

:
system5

dynamics as
::
an

::::::::
example

::
of

::::
such a top-down/white-box modeling techniquethat has not been addressed by previous6

classi�cations.7

8

System dynamics9

Typically, system dynamics models are characterized by: a) a conceptual diagram of the building and technology10

stock and its aggregate-level feedback loops and b) quantitative models of aggregate-level building and technol-11

ogy stocks and �ows. Stocks represent point-in-time quantities of interest (e.g.
:
,
:::
the

:
national residential build-12

ing stock), while �ows represent time-varying additions to or subtractions from stock totals (e.g.,
:

annual addi-13

tions/
:::::::::
alterations/subtractions to the residential stock from construction/

:::::::
retro�ts/demolition).14

There are several examples of system dynamics approaches in the building stock energy modeling literature.
::::
The15

::::::
Energy

::::::
Policy

::::::::
Simulator

::::
[33]

::
is

:
a
:::::::
system

::::::::
dynamics

::::::
model

:::
that

::::::::::
represents

:::
the

::::::::
economy

:::
and

:::::::
energy

::::::
system

::::::
across16

:::
the

::::::::
buildings

:::::
sector

:::
as

::::
well

::
as

:::
the

:::::::::::::
transportation,

:::::::::
electricity

::::::
supply,

::::::::
industry,

::::
and

::::
land

:::::::::::
use/forestry

::::::
sectors.

:::::
The17

::::::::
Simulator

:::::::
assesses

:::
the

::::::
e�ects

::
of

::::::::
national

::::::
energy

:::
and

:::::::::::::
environmental

:::::::
policies

::
on

:::::::::
emissions,

::::
cash

::::::
�ows,

::::::::::
consumers,18

:::
and

:::
the

:::::::::::
composition

::
of

::::::::
electricity

::::::::::
generation,

::::::
among

:::::
other

:::::::
metrics,

:::
and

::
it
:::
has

:::::
been

:::::::
adapted

:::
for

:::
use

:::::
across

::::::::
multiple19

::::::::
countries.

:
Onat et al. [109] develop a system dynamics model of greenhouse gas emissions from the U.S. residential20

buildings
:::::::
building stock to explore the e�cacy of di�erent policies in stabilizing the

::
an increasing emissions trend.21

Model variables include
:::
the carbon footprint and energy intensity of residential buildings, the number of new and22

existing green buildings, retro�t rate, and employee travel characteristics, gross domestic product,
:
and total pop-23

ulation. Eker et al. [32] use
:::::::::::::::::::
Motawa and Oladokun

::::
[96]

::
use

:::::::
system

::::::::
dynamics

::
to

:::::::::::
characterize

::::::::::
relationship

::::::::
between24

:::
the

:::::::
building

:::::
stock,

:::::::::
occupants,

::::
and

:::
the

:::::::::::
environment

::::::
(policy,

:::::::
climate,

:::
and

:::::::::
economy)

:::
and

::::::::
simulate

:::
UK

::::::
energy

:::
use

::::
and25

:::
CO2:::::::::

emissions.
::::::::::
Eker et al.

:::
[32]

::::
build

:
a system dynamics framework to explore the interactions between the housing,26

energy and well-being
:::::::::
interactions

::::::::
between

::::::
various

:
aspects of the United Kingdom

:::
UK’s housing stock. Causal loop27

diagrams are developed to assess as-built
:::::::
as–built performance, retro�t rate dynamics, and the well being

:::::::::
well–being28

of residents. At the
::::::::
Similarly,

::::::::::
Zhou et al.

:::::
[168]

::
use

::
a
::::::
system

::::::::
dynamics

:::::::::
approach

::
to

::::::
explore

::::
the

:::::::
turnover

:::::::::
dynamics29

::
of

:::
the

:::::::
Chinese

:::::::::
residential

::::::::
building

:::::
stock.

:::::::
Finally,

::
at

::::
the urban scale, Feng et al. [39] develop a system dynamics30

model of energy use and CO2 emissions trends for Beijing between 2005-2030
::::::::
2005–2030. Six sub-models comprise31

socioeconomic, agricultural, industrial, service, residential, and transport parameters, and �ows within and between32

the sub-models are described using regression equations. At the level of policy makers, Motawa and Oladokun [96]33

model the interrelationship between the buildings, occupants, and the environment (policy, climate, and economy)34

and simulate the energy use and CO2 emissions in the UK.35

2.1.3. Q3: Bottom-up/Black-box36

Bottom-up/black-box models utilize historic information and regression analysis to attribute building energy37

use to particular end-uses, assuming the conditions underlying the modeling
:::::
model prediction space mirror those38

of the model training space. From these relationships, building-level end use estimates can be extended to the scale39

of the entire building stock.40

41

Classical statistical42

Classical
:::::::
Classical

:::::::::
bottom-up

:
statistical techniques have traditionally been used to predict energy consumption at43

either
:::::
either

::::::
whole

:::::::
building

:::
or

:::
end

::::
use

::::::
energy

::::::::::::
consumption,

:::::::::
developing

:::::::::::
correlations

:::::::
between

:::::
these

:::::::
outputs

::::
and44

:::
key

:::::
input

::::::::::
parameters.

:::
In

:::
the

:::::
new

:::::::::::
classi�cation,

::::
this

::::::::
category

:::::::::::
encompasses

:::::
both the end-use or whole-building45

scale. Typically, these techniques develop correlations between input and output parametersfor making inferences;46

classical approaches include both regression
::::::::::::::
regression-based

:
and conditional demand analysis as

:::::::::
techniques iden-47

ti�ed in previous classi�cation frameworks .
::::
[142]

:
.
::::::
When

:::::::
covering

:::::::::
economic

::::::
inputs,

:::::::::
bottom-up

::::::::
statistical

:::::::
models48

::::
di�er

:::::
from

:::
the

::::::::::::::::
macro-econometric

:::::::
models

::
of

:::
Q1

::
in

::::
that

::::
they

::::::
enable

:::::::::::::
micro-economic

:::::::
studies

::::
with

:
a
::::::
higher

::::
level

:::
of49

:::::
detail

:::
and

:::::
often

::::
cover

:::
the

:::::::::::
interactions

:::::::
between

:::::::::
households

::::
and

:::::::::
individuals

::::
(e.g.

:::::::
building

:::::::
owners)

::::
and

::::::::::::
organizations,50

11



:::::::
enabling

::::::
further

:::::::
insights

::::
into

::::::
energy

:::::::::::
consumption

::::
[87]

::::
(e.g.,

::
in

::::::
studies

::
of

:::
the

:::
UK

::::
and

::::::::
Germany

:::
[14]

:
,
:::::
China

::::
[80],

::::
and1

::::::::
Denmark

:::
[74]

:
).
:

2

Classical statistical techniques are still used in
:::::::::
Bottom-up

::::::::
statistical

::::::
models

:::
are

::::::
found

:::::
across

::::::::
national,

::::::::
regional,3

:::
and

:::::
urban

:::::
scale

::::::
studies

::
of

:
building stock energy modeling, though often in tandem with other approaches.

:::
use.

:::
At4

:::
the

:::::::
national

:::::
scale,

:::::::::::
Santin et al.

::::
[131]

:::::
utilize

::::::::::
bottom-up

::::::::
statistical

:::::::::
techniques

:::
to

:::::::
identify

:::
the

::::::
relative

::::::::::
importance

:::
of5

:::::::
building

::::::::::::
characteristics

::::
and

::::::::
occupant

::::::::
behavior

::
to

:::::::::
stock-level

::::::::::
residential

::::::
energy

:::::::::::
consumption

::
in

::::
the

:::::::::::
Netherlands.6

::::::::
Liu et al.

:::
[80]

:::::
study

:::
the

:::::
e�ect

:::
of

:
a
::::
new

:::::
type

::
of

:::::::::::
urbanization

:::
on

::::::
energy

::::::::::::
consumption

::
in

::::::
China

:::::::
through

::
a

::::::
spatial7

::::::::::
econometric

::::::::
analysis.

::
At

:::
the

:::::
urban

:::::
scale,

:
Howard et al. [61] develop a regression model for end-use building energy8

consumption in New York City, speci�cally linking consumption to spatial
:::::::
speci�c locations throughout the city.9

Similarly, Mastrucci et al. [85] statistically downscale city energy use to the building level for Rotterdam using linear10

regression. Santin et al. [131] utilize classical
:::::
Some

::::::
studies

:::
also

::::
use

:::::::::
bottom-up statistical techniques to identify the11

respective importance of building characteristics and occupant behavior to stock-level residential energy
:::::::
support12

::::::
energy

:::::::
utilities,

:::::::::
developing

::::::::
forecasts

:
of
:::::::::
day-ahead

::::::
energy

:::::::
demand

::::
that

::::::
inform

::::::::::
utility-scale

:::::::::::
management,

::::::
control

::::
and13

:::::::::
veri�cation

:::::::::
strategies.

::::
For

::::::::
example,

:::::::::::::::::::
Akpinar and Yumuşak

:::
[4]

::::::
predict

:::::::::
household

::::::
natural

::::
gas consumption in the14

Netherlands.
::::::
Turkish

:::::::
Sakarya

::::::::
Province

::
by

:::::
using

::
a

::::::
sliding

:::::::
window

::::::::
technique

::::
with

::::::::
multiple

:::::
linear

::::::::
equations

:::::::
(MLRs)15

::
to

:::::
select

:::
the

:::::
most

:::::::
suitable

::::
data

:::
set

:::::
sizes,

:::::
based

:::
on

::::
data

:::::
from

:::
409

:::::
days

:::::::::
containing

:::::::::::::
meteorological

::::
data,

:::::::::
customer16

::::::::
numbers,

:::
and

::::::::
holidays.

:::::::::
Tian et al.

:::::
[146]

:::::::::
investigate

:::
the

::::::
locally

:::::::
varying

::::::
energy

:::
use

::::::::
intensity

:::
for

:::::::::
electricity

:::
and

::::
gas17

::
in

::::::
London

:::::
using

:::::::::::::
geographically

::::::::
weighted

:::::::::
regression,

::
a
:::::
mixed

::::::
model,

::::
and

:
a
::::::::
Bayesian

::::::::::
hierarchical

::::::
model.18

19

Machine learning20

Machine learning techniques focus on making predictions, rather than inferences,
:::
aim

::::::::
primarily

::
at

::::::::
predictive

::::::::
accuracy,21

utilizing a wide range of algorithms to �nd patterns in rich but large and unwieldy datasets. In the updated22

classi�cation, we generalize existing identi�ed approaches (such as neural networks
:::
The

:::::::
primary

::::::::
di�erence

::::::::
between23

:::::::
machine

:::::::
learning

:::::::
models

::::
and

:::::::
classical

:::::::::
bottom-up

:::::::::
statistical

:::::::::
techniques

::
is

:::
the

::::::::
former’s

::::::::::::::
nearly-exclusive

:::::
focus

:::
on24

::::::::
predictive

::::::::
accuracy,

:::::
while

::::::::
statistical

:::::::
models

:::
are

:::::
often

:::
also

::::
used

:::
to

::::::
identify

:::::::::::
relationships

::::::::
between

::::::::
variables

:::
and

::::
test25

::::
their

::::::::::
signi�cance

::::
(i.e.,

:::::
these

::::::
models

::::
are

:::::::::
commonly

::::
used

:::
for

:::::::::
inference).

::::
The

:::::
new

:::::::::::
classi�cation

:::::::::
generalizes

:::::::
related26

::::::
models

::::::::
identi�ed

:::
in

:::::::
existing

::::::::::::
classi�cations

::::
(e.g.,

::::::
neural

::::::::
networks

:::
in

:::::
[142]) to a broader set of machine learning27

approaches
:::::::::
techniques.28

Machine learning models of building stock energy use have seen a large increase in the literature over the last29

decade. ,
::::::
though

:::::
they

:::
are

:::::
rarely

::::
used

::
at

:::
the

:::::::
regional

::::
and

:::::::
national

:::::
scales

::::
due

::
to

::::
their

::::::
heavy

::::
data

:::
and

:::::::::::::
computational30

:::::::::::
requirements

:::
(see

:::::::
reviews

::
in

:::
[7]

:::
and

:::::
[123]

:
).
::
At

:::
the

::::::
urban

::::
scale,

:
Tso and Yau [148] compare classical statistical regres-31

sion techniques to decision trees and neural networks to evaluate the accuracy in predicting energy consumption in32

Hong Kong. The results indicate that all three models are valid for this type of prediction, with the decision tree and33

neural network performing slightly better in the summer and winter, respectively. Robinson et al. [122] use multiple34

machine learning methods (linear regression, gradient boosting regression, and random forest regression) to esti-35

mate the energy use of the commercial building stock in di�erent U.S. metropolitan areas based on �oor area, princi-36

pal building activity, number of �oors, and heating/cooling degree days.
::::::::::
Zhang et al.

:::::
[165]

:::
use

:
a
:::::::
similarly

:::::
wide

:::::
range37

::
of

:::::::
machine

:::::::
learning

::::::::::
techniques

::
to

::::::
model

::::::::
electricity

::::
and

::::::
natural

::::
gas

:::::::::::
consumption

::
in

::::
U.S.

::::::
homes,

:::::::::::::
complementing

::
a38

:::::::
separate

:::::::
analysis

::
of

::::::::::::::::::
transportation-related

::::::
energy

::::
use.

:
Papadopoulos et al. [111] use an unsupervised learning algo-39

rithm to cluster buildings in New York City based on their energy use.
:::::::::::::::::
Kontokosta and Tull

:::
[69]

:::::::
develop

:
a
:::::::::
predictive40

:::::
model

::
of

:::::::::
electricity

::::
and

::::::
natural

::::
gas

:::
use

::
at

::::
the

:::::::
building,

:::::::
district,

::::
and

::::
city

:::::
scales

:::::
using

::::::::
training

::::
data

::::
from

:::::::
energy41

::::::::
disclosure

:::::::
policies

:::
and

:::::::::
predictors

:::::
from

:::::::::::::
widely-available

::::::::
property

::::
and

::::::
zoning

::::::::::
information.

::::::
Three

:::::::
di�erent

::::::::
machine42

:::::::
learning

:::::::::
algorithms

:::::
(least

:::::::
squares

::::::::::
regression,

:::::::
support

::::::
vector

:::::::::
machines,

::::
and

:::::::
random

::::::
forest)

:::
are

:::
�t

::
to

:::
the

::::::
city’s43

::::::
energy

::::::::::::
benchmarking

::::
data

::::
and

::::
used

::
to

::::::
predict

:::::::
energy

:::
use

:::
for

:::::
every

::::::::
property

::
in

::::
New

::::
York

:::::
City.

:::::::::::::::
Nutkiewicz et al.44

:::::
[103]

::::::
propose

::
a

::::::::::::
network-based

::::
ML

:::::
model

::
to
:::::

learn
:::
the

:::::::
hidden

::::::
energy

::::::::::
connections

::::
and

:::::::::::::::
interdependencies

::::::::
between45

::::::::
buildings

:
at
::::::::
multiple

:::::
scales

::::
(e.g.,

::::::::
individual

:::::::
building

:::::
scale,

::::::::::
community

:::::
scale,

:::
and

:::::
urban

:::::
scale),

::::::
tested

::
for

:::
US

::::::::::
commercial46

::::::::
buildings.

:
Papadopoulos and Kontokosta [112] use a gradient tree boosting method to develop a building en-47

ergy performance grading method; this method has shown improved performance over linear models in predicting48

hourly and annual building energy use at the urban scale.
::::::
Finally,

::::::::::::::
Al Tarhuni et al.

:::
[5]

:::
use

:::::::
random

:::::
forest

:::::::::
regression49

:::
and

:::::
deep

:::::::
learning

::::::
neural

::::::::
network

::::::::::
approaches

::
to

:::::::
predict

:::
the

::::::::
monthly

::::::
natural

::::
gas

:::::::::::
consumption

:::
of

::::::::
hundreds

:::
of50

::::::::::::::
university-owned

:::::::
student

:::::::::
residences

::
in

:::
the

::::
U.S.

:::::::
Midwest

:::::
from

::::::
readily

::::::::
accessible

::::::::
building

::::::::
geometry,

::::::
energy

:::::::
system51

12



::::::::::::
characteristics,

::::
and

::::::
energy

:::::::::::
consumption

::::
data.

:
1

2.1.4. Q4: Bottom-up/White-box2

Various forms of bottom-up/white-box models have been expanded over the last decade. This class of models3

simulates the physical relationship of processes at the building or end-use level. In the expanded
:::
new

:
classi�cation,4

we note the new advances in this area a�orded by high-performance and cloud computing along with simulation-5

based techniques.6

7

Appliance Distribution
:::::::
End-use

::::::::::::
distribution8

This approach models distributions of appliance ownership and use with standard appliance e�ciency ratings to9

calculate aggregate appliance
:::
the

::::::::::
distribution

::
of

::::::
energy

:::::::
demand

:::
per

:
end-use energy consumption across a regional10

or national scale ,
::
or

::::::::
appliance

:::::
type

::
to

::::::::
calculate

::::
total

:::::::
end-use

::
or

:::::::::
appliance

::::::
energy

:::::::::::
consumption

::
at
:::::

scale
::
– gener-11

ally without accounting for interactions between end-uses(e. g. interaction between refrigerator use and heating12

demands). This type of model has the advantage of being relatively easy to assemble (where ownership surveys13

exist), capable of capturing both future and emerging technologies, computationally inexpensive, and easy to interpret.14

15

In recent years, appliance distribution models have been paired with other methods such as physics-simulation,16

with the heat-balance methods covering heating and cooling portions of the model and appliance distribution17

models covering the other appliances. For example, Ghedamsi et al. [51] utilize a hybrid bottom-up model to project18

future residential energy demand in Algeria. Similarly,
:
.
::::::::::
Standalone

:::::::
end-use

::::::::::
distribution

:::::::
models

:::
are

::::::::::
uncommon19

::
in

:::
the

:::::::
existing

:::::::::
literature,

:::
as

:::::
these

::::::
models

::::
are

:::::
often

::::::::
combined

:::::
with

:::::
other

:::::::::
modeling

:::::::::
techniques

:::
to

::::
form

:::::::
hybrid20

::::::::::
approaches.

::::
The

::::
U.S.

:::::
RECS

:::
and

:::::::
CBECS

:::::::
surveys

:::
rely

:::
on

:::::::
end-use

::::::::::
distribution

:::::::
models

::
to

:::::::::
apportion

:::::
whole

::::::::
building21

:::::::::
residential

:::
and

::::::::::
commercial

::::::::
building

::::::
energy

::::
use

::::::::
collected

::::
from

::::::
billing

:::::
data

:::::
across

:::::::::::
contributing

:::::::
energy

:::
end

:::::
uses22

::::::::
[154, 153].

:::::::::::
Engineering

::::::::
estimates

::::
are

:::::
made

::
of

:::
the

::::::::
expected

:::::::::::
consumption

::
of

::::
each

::::
end

::::
use,

:::
and

:::::
these

::::::::
estimates

::::
are23

::::::
entered

:::
as

:::::
inputs

:::
to

::::::::::
regressions

::::
with

:::::::::
measured

::::
total

:::::::
building

:::::::
energy

:::
use

::
as

::::
the

:::::::::
dependent

::::::::
variable,

::
to

::::::::
calibrate24

:::
the

:::
end

:::
use

:::::::::::
attributions.

:
Reyna and Chester [121] utilize appliance distribution modeling combined with detailed25

physics-simulation of the thermal envelope to project residential building demand under di�erent climate change26

scenarios in southern California. Scout [149, 72], a tool used by the United States government for estimating27

national-wide building energy e�ciency savings, also utilizes appliance distributions to represent disaggregated end28

use demand, combining this approach with NEMS projections of growth in the building and technology stock, which29

are generated using a technological-econometric approach
:::::::::
Broin et al.

::::
[18]

:::
pair

:::::::::::
exogenously

:::::::
derived

:::::::::::
assumptions30

:::::
about

::::::
annual

:::::::
changes

::
in

:::::::
energy

::::::
carrier

:::::
mixes,

:::::::::::::
improvements

::
in

::::::::
appliance

:::::::::
e�ciency,

::::
and

:::::::::::
construction

::::
rates

:::::
with31

::
an

::::
end

:::::::::::::::
use-disaggregated

:::::
model

:::
of

::::::
energy

:::::::
demand

::
in

:::
EU

:::::::::
residential

::::
and

::::::
service

:::::::::
buildings,

:::::::::
estimating

::::
total

::::::
useful32

::::::
energy

:::::::
demand

::
in

::::
new

:::
and

:::::::
existing

::::::::
vintages

::
of

::::
these

::::::::
building

:::::
types

:::::
across

::
a

:::::::::
multi-year

::::
time

:::::::
horizon.33

34

Agent-based models35

Agent-based approaches
::::::
models

::::::
(ABMs)

:
represent causality at the individual building or district level, construct-36

ing aggregate-level
:::::::::
stock-level

:::::::
building

:::::::
energy

:::
use outcomes in a bottom-up manner. In many ways, agent-based37

models (ABM) are the bottom-up analogue to top-down system dynamics models; like system dynamics, ABM is38

a technique in this classi�cation scheme that is not found in previous classi�cations. Agent-based models
:::::
ABMs39

use software representations of individual buildings and/or decision-maker agents that have heterogeneous at-40

tributes as well as rules for interacting with other agents and their physical /
::
or economic environments. Under41

an agent-based approach, aggregate
::::::::
Aggregate

:
stock and energy outcomes emerge from individual-level behaviors42

–
:
– that is, macro-level outcomes are determined by the micromotives

:::::::::::
micro-motives

:
of agents with endogenous be-43

havior rules.
:
In

:::::
many

::::::
ways,

::::::::::
agent-based

::::::
models

:::
are

:::
the

:::::::::
bottom-up

::::::::
analogue

::
to

::::::::
top-down

:::::::
system

::::::::
dynamics

:::::::
models;44

:::
like

::::::
system

:::::::::
dynamics,

:::::::::::
agent–based

:::::::::
techniques

:::
are

:::
not

::::::::::
highlighted

::
in

::::::::
previous

::::::::::::
classi�cations.

:
45

ABM has gained popularity in many modeling
:::::
ABMs

::::
have

::::::
gained

::
in

:::::::::
popularity

::::::
across

:::::
many

:
applications, and46

there are several notable examples for the buildings sector. Zhao et al. [166] developed the Commercial Buildings47

Sector Agent-based Model (CoBAM). CoBAM considers U.S. commercial buildings of di�erent types and in di�er-48

ent climate zones as adaptive agents that are evolving internally and interacting with energy e�ciency regulations,49

which in turn dictates the evolution of building energy use over time. In another study focused on the residential50

13



sector, Moglia et al. [94] use an ABM to model the uptake of low carbon and energy e�cient technologies and prac-1

tices by households, considering both the in�uence of social networks and the decision rules of several di�erent2

agent types that extend beyond homeowners. This study adapts the decision-making algorithms of an earlier ABM3

published by Sopha et al. [137], which was used to model uptake of energy e�cient heating in Norway.
::::::::
Similarly,4

::::::::::
Nägeli et al.

::::
[99]

::::::::
developed

:::
an

::::
ABM

::
of

:::
the

::::::::
building

::::
stock

::::
that

::::
uses

:
a
:::::::
decision

::::::
model

::
to

:::::::
simulate

:::::::
building

::::::::::
renovation5

:::
and

:::::::
heating

::::::
system

::::::::::
substitution

::::::::
decisions

:::
of

:::::::
building

::::::
owners

:::::::
coupled

:::::
with

:
a
::::::::::::
physics-based

::::::
model

::
to

:::::::
simulate

::::
the6

:::::::
resulting

::::::
energy

::::::::
demand

::::
over

::::
time.

:
Azar et al. [10] use an ABM framework to calculate the thermal comfort and7

energy use of multiple buildings on a campus at
::
in

:
Abu Dhabi. Their model consists of three sub-models: people8

movement, thermal comfort and energy consumption. Abdallah et al. [1] evaluate the impact of a non-intrusive9

energy messaging intervention on energy use in the Belgian residential sector using an ABM that represents daily10

energy-related occupant behaviors, peer pressure e�ects on energy use, and the e�ects of messaging interventions.11

12

Physics-simulation13

::::::::::::::::
Physics-simulation

::::::
models

:::
are

:
a
::::
new

::::::::
category

::
in

::::
this

:::::::::::
classi�cation

:::
that

::::::::::::
encompasses

::::
both

:::
the

::::::::
archetype

:::::::::
modeling14

::::::::
technique

::
of

::::::::
previous

:::::::::::
classi�cations

::::
and

::::::::
emerging

:::::::::
geo-spatial

:::::::
models,

::::::::::
recognizing

:::
the

::::::::
common

:::::::
reliance

::
of

::::
both

:::
on15

:::::::::::
physics-based

::::::::::
simulations

:::
of

:::::
whole

::::::::
building

::::::
energy

::::
use.

:
Archetype modeling is a well-established

::::::::::::
physics-based16

approach that simulates
::
the

:
energy performance of typical buildings that each represents a

:
a
::::::
single

:::::::
building

:::
or17

::::::::
collection

::
of

::::::::
buildings

::::
that

:::::::::
represents

:
a
::::::

larger segment of the building stock; results can be scaled up to represent18

total sector energy use in a de�ned geographic area.
::::
Pure

::::::::
archetype

::::::::::
approaches

:::
are

::::::::
plentiful,

:::::::::
including

::::::::
ResStock19

:::::
[101]

:::
and

:::
the

::::::
Tabula

:::::
project

::::
[11]

:
,
:::::
along

::::
with

:::::::
similar

::::::
models

::::::::
compiled

:::
for

::::
the

:::
UK

::
in

::::
[66]

:
,
:::
for

::::::::
Germany

::
in

::::::
[138]20

:::
and

:::::::::
worldwide

:::
in

::::
[88].

::
Recent advances in computing and data have allowed improvement of the traditional

:
,21

::::::::::::
single-building

:
archetype approach to include modeling of hundreds or thousands of representative buildings ,22

sometimes
::::
(e.g.,

:::::::::
ResStock),

::::::::::
sometimes

::::
even

:
modeling every individual building in a given geographic area

::::
(e.g.,23

:::::::
ECCABS

::::
[87]

:
).Our new classi�cation merges these two approaches into a single “physics-simulation” category,24

recognizing that they are both based upon whole-building, physics-based energy simulation.This class of models25

is sometimes referred to as urban-scale building energy modeling (UBEM)in previous literature[118], although the26

approach can be applied to other land use types besides urban land uses. Pure archetype (i.e. non-geospatial)27

approaches are plentiful, including ResStock [101] and the Tabula project [11]4
::
As

:::::
such,

::::
the

::::::::::::
methodologies

:::::
used28

::
to

:::::::
generate

::::
the

:::::::
building

::::::::::
archetypes

::::
may

:::
be

:::::::
diverse,

::::::::
including

::::::::
arti�cial

::::::::
reference

::::::::
buildings

:::::::
[92, 89]

:
,
::::::::::
statistically29

:::::::
sampled

::::::::
reference

::::::::
buildings

::::
[88],

::::::::
synthetic

::::::::
buildings

:::::::
[99, 98]

::
or

::::::::::
data-driven

::::::::::
approaches

::::::
[6, 169].30

The use of
:::::::::
Geospatial

:::::::::
modeling,

:::::
which

::::
uses

:
building energy simulation in combination with spatial represen-31

tation and modeling in geographic information systems (GIS),
:
is a rapidly developing physics-modeling approach32

that holds promise for generating information required for energy and emissions-related policy making and plan-33

ning by actors such as municipalities and utilities already using GIS-based decision support. For
:
In

:
this approach,34

geodatabases are developed that link building attributes and simulated energy use to common geographical ref-35

erences such as parcels or building footprints. Commonly, archetype-based energy simulation is performed using36

software such as EnergyPlus for representative buildings .
::::
(e.g.,

::::::::
CityBES

:::
[60]

:
).
:

Results are applied to actual build-37

ings corresponding to the archetype in the stock , via the �oor area. Often this can be done
:
–

::
in

:::::
some

:::::
cases using38

actual building geometries
::::
(e.g.,

:::::
[151]). This is the approach used, for example, by SimStock in the UK [151]. Less39

commonly, buildings are simulated individually .
::::
(e.g.,

:::::::::
AutoBEM

::::
[102]

:
).
:

40

Two examples of this approach include CityBES from Lawrence Berkeley National Laboratory (LBNL) and41

AutoBEM from Oak Ridge National Laboratory (ORNL). CityBES [60] is an online building energy analysis platform42

containing simulations for o�ce and retail prototype buildings developed using EnergyPlus and Open Studio as43

well as cost and energy performance data for several energy conservation measures (ECMs). The building stock44

is characterized by 3D City Models developed in CityGML and GeoJSON, informed by building stock and GIS45

data, utility rates and building codes. In AutoBEM [102], LiDAR data and aerial imagery is used to de�ne building46

footprints and street view imagery creates 3D models and de�nes facade characteristics across the building stock47

of interest. API calls and screen scraping tools geo-register buildings and con�rm their geometry. Building type48

4
::
This

:::::::
advanced

::::
kind

:
of
:::::::
archetype

:::::
model

:
is
::::::::
sometimes

:::::
labeled

::::::::
urban-scale

::::::
building

:::::
energy

::::::
modeling

::::::
(UBEM)

::
in

::::::
previous

::::::
literature

::::
[118]

:
,

::::::
although

::
the

:::::::
approach

::
can

::
be
::::::
applied

:
to
::::
other

:::
land

:::
use

::::
types

:::::
besides

::::
urban

:::
land

::::
uses.

14



characteristics are de�ned through subject matter expert assumptions and relevant data sources. Millions of building1

energy models in EnergyPlus and hundreds of variable representations may then be applied to analyzing scenarios2

of energy demand across the stock.3

:::::::::::
Multi-module

:::::::
models

::::
that

::::::::
integrate

::::::
several

:::
of

:::
the

::::::::::::::::::
bottom-up/white-box

::::::::::
approaches

::::::
above

:::
are

::::::::
common

::::
and4

:::::::
typically

:::::
focus

::
on

:::::::::
electricity

::::
use,

:::::::::
distributed

:::::::::
renewable

::::::
energy

:::
and

:::::
other

:::::::::::::
demand/supply

:::::::::::
interactions.

:::
For

::::::::
instance,5

:::::::::::
Sandels et al.

:::::
[129]

:::::::
forecasts

:::::::::
electricity

:::
load

:::::::
pro�les

::::::
hourly

::
for

:
a
::::::::::
population

::
of

:::::::
Swedish

:::::::::
households

:::::
living

::
in

::::::::
detached6

::::::
houses

::::
with

:
a
::::::
model

::::::::::
constructed

::
of

::::
three

:::::::
separate

::::::::
modules:

:::::::::
appliance

:::::
usage,

::::::::
domestic

:::
hot

:::::
water,

::::
and

:::::
space

:::::::
heating.7

:::
The

:::::
latter

:::::::
module

:::::::::
represents

:::
the

::::::::::::::
thermodynamic

:::::::
aspects

::
of

:::
the

:::::::::
buildings,

::::::::
weather

::::::::
dynamics,

::::
and

::::
the

::::
heat

::::
loss8

:::::
output

:::::
from

:::
the

::::::::::::::
aforementioned

::::::::
modules.

:::::::::::::
Subsequently,

::
a

:::
use

::::
case

:::
for

::
a
::::::::::::
neighborhood

:::
of

::::::::
detached

::::::
houses

:::
in9

::::::
Sweden

::
is
:::::::::

simulated
:::::
using

::
a
::::::
Monte

:::::
Carlo

:::::::::
approach.

:::::::
Similar

::::::::::
approaches

:::
are

::::
used

:::
by

::::::::::::
Nyholm et al.

::::
[104]

:
,
::::::
where10

::::::
heating

:::::::
demand

::::::::
estimates

:::::
from

:::
the

:::::::
ECCABS

::::::
model

:::
are

::::::::::::
supplemented

::::
with

::::::
hourly

:::::::
pro�les

::
for

::::::::
electrical

:::::
uses,

:::::
using11

:
a
::::::::::
statistically

:::::::
sampled

:::::::::
description

::
of

:::::::
Swedish

::::::::::
households

::::
with

::::::::
electrical

:::::::
heating.

::::
This

::::::::
approach

::
is

::::::
further

:::::::::
developed12

:::
into

:::
the

::::::
EBUC

:::::
model

:::
in

::::
[124]

:
,
:::::
which

::::
adds

::
a
::::::
district

:::::::
heating

::::
(DH)

:::::::
module,

::::
and

::
in

:::
the

::::::::
MOSAIC

:::::::
method

::::
[68],

::::::
which13

::::
uses

:
a
:::::::::
bottom-up

:::::::::
simulation

::::::::
approach

::
to

:::::::::
determine

::::::
current

::::
and

:::::
future

:::::::::::
consumption

::::
and

:::::::::
production

::::
load

::::::
curves

:::
for14

::
an

::::
area,

::::::::::
calibrating

::::::::
estimates

::
by

::::::::::
comparing

::::::::
simulated

::::
load

::::::
curves

::::
with

:::::::::::
observations.

:
15

16

2.1.5. All
:::::::
Multiple Quadrants: Hybrid models

::::::
Models17

In practice, many models will use mixed approaches that cross the quadrants of Figure 3,
:
2
:
and thus fall into the18

hybrid region shown in between the quadrants. For example, grey-box statistical models pair a partial theoretical19

representation of the process being modeled (white-box) with variables that represent additional unexplained factors20

that contribute to observed outcomes (black-box).21

Examples of building stock energy models with hybrid elements are prevalent in recent years. The
:::
For

::::::::
example,22

::::::
NEMS,

::
an

:::::::::
integrated

::::::::::
multi-sector

::::::
energy

::::::::
modeling

:::::::::
framework

:::::::::
developed

::
by

:::
the U.S. Energy Information Administration’s23

National Energy Modeling System (NEMS)
:::
EIA, uses a top-down econometric model to estimate overall rates of24

new construction while
::::::::::::::::::::::
technological-econometric

::::::::
approach

::::
(Q1)

::
to

:::::::
develop

:
a
:::::::::
long-term

:::::::
forecast

::
of

::::::
growth

::
in
::::
the25

:::::::
building

:::
and

::::::::::
technology

:::::
stock,

:::::
which

::
is
:::::::::
combined

::::
with bottom-up

::::::::
modeling appliance distribution models are used26

::::
(Q4) to estimate the energy use intensity of all newly added buildings, as well as several

::::
new

:::
and

:
existing building27

stock vintages [162].
::::::::
[150, 162]

:
.
::::::
Scout,

::::
[72]

:
a
::::::::
buildings

:::::::::::::
sector-speci�c

:::
U.S

::::::
model

::::
that

:::::
draws

:::
its

:::::::
baseline

:::::::
energy28

:::
use

:::::::
scenario

:::::
from

::::::
NEMS,

::::::
adopts

:::
the

:::::
same

::::::
Q1/Q4

::::::::
modeling

::::::::
approach.

:
In the Canadian CHREM model, a machine29

learning model
:::::::
machine

:::::::
learning

::::
(Q3) is used to predict the highly occupant sensitive

::::::::::::::
occupant–driven domestic hot30

water and lighting energy use, while an archetype model
::::
(Q4) is used to predict space heating and cooling energy31

use [143].
:::::
gTech

::::
[91],

:::::::
another

::::::::
Canadian

:::::::
model,

::::::
merges

:::
the

::::::::::
capabilities

::
of

:::
the

::::::::::
previously

::::::::
developed

::::::
CIMS

::::::
hybrid32

::::::::::::::
energy-economy

:::::
model

:::::::
(Q1/Q4)

:::::
[64]

:::
with

:::::
other

:::::::::
top-down

::::::::
modeling

::::::::::
approaches. Sandberg et al. [128] use a hybrid33

model to simulate the long-term housing stock energy use in Norway, where a
:::::
using technological (Q1) and system34

dynamics (Q2) model is used
::::::::
techniques

:
to simulate the development of the stock and an archetype approach (Q4) is35

used for estimating
::
to

:::::::
estimate demand. Colloricchio [26] make another hybrid model by adding

:::
add an econometric36

component
:::
(Q1)

:
to Sandberg et al.’s housing stock model . The model applies

::::
(Q2),

:::::::
applying

::::
the

:::::
hybrid

::::::
model

:
to a37

case study of the residential sector in Italy.38

:::::::::
Prominent

::::::::::
multi-sector

::::::
energy

::::::
system

::::::
models

::::
such

::
as

:::::::::
MARKAL

:::
and

::::::
TIMES

:::::::
similarly

::::::::
combine

:::::::::
bottom-up

::::::::
functions39

::
for

::::::::::::
disaggregated

:::::::
energy

:::::::
demand

::::
(Q3)

:::::
with

::::::::
top-down

::::::::::::::
representations

::
of

::::::::::::::
macro-economic

::::::
e�ects

:::
on

:::
the

:::::::
energy40

::::::
system

::::
(Q1)

::::::
[81, 82].

::::::
TIMES

::::
has

::::
been

:::::::
adapted

::
for

:::
use

::::::
across

::::::
several

::::::::
countries

::
in

:::::
recent

:::::
years,

:::::::::
sometimes

::
to

:::::::::
investigate41

::::::
energy

:::
use

::
in

::::
the

::::::::
buildings

::::::
sector.

::::
For

:::::::
example,

::::::
using

:::
the

::::::
Global

::::::
TIMES

::::::
model,

:::::::::::
Wang et al.

::::
[160]

::::::::
simulated

::::
the42

::::::::::::
transformation

:::::::::
pathways

::
of

::::
the

:::::
global

:::::::
energy

::::::
system

::::::
under

:::::::
2-degree

::::
and

:::::::::
1.5-degree

:::::::
climate

:::::::
targets,

:::::::::
analyzing43

:::
the

:::::::
features

::::
and

:::::::::
challenges

::
of

::::::::
building

:::::
sector

:::::::::
transition

:::::::::
pathways

::
in

:::
14

::::
high,

:::::::
middle,

::::
and

::::
low

::::::
income

::::::::
regions.44

::::::::::
Seljom et al.

:::::
[134]

:::
use

:
a
:::::::::

stochastic
:::::::
TIMES

:::::
model

:::::
with

::
an

:::::::
explicit

:::::::::::::
representation

::
of

::::::::::
uncertainty

::
in
::::

the
:::::::::
electricity45

:::::
supply

::::
and

:::::::
building

:::::::
heating

:::::::
demand

::
to

::::::::::
demonstrate

::::
that

:::
the

:::::::::::
Scandinavian

::::::
energy

::::::
system

::
is
:::::::
capable

::
of

:::::::::
integrating

::
a46

::::
large

:::::::
amount

::
of

::::::::::
zero-energy

::::::::
buildings

::::
with

::::::::::
intermittent

:::
PV

:::::::::
production.

:::::::::::::::
Cayla and Maïzi

::::
[23]

::::::
develop

:
a
::::::::::::::::
TIMES-Households47

:::::
model

::::
that

:::::::::
represents

:::::::::
household

:::::
daily

::::::
energy

:::::::::::
consumption

::::
and

:::::::::
equipment

::::::::::
purchasing

::::::::
behavior

::::
with

::
a
:::::
focus

:::
on48

:::
the

::::::
French

:::::::::
residential

:::::::
building

::::
and

::::::::
transport

:::::::
sectors.

::::::::
Shi et al.

:::::
[135]

::
use

::::::
China

::::::
TIMES

::
to

::::::
model

:::
the

:::::
future

:::::::
energy49

:::::::::::
consumption

:::
and

::::::
carbon

:::::::::
emissions

::
in

:::::::
building

::::::
sector

:::
and

::::
�nd

::::
that,

:::::::::
including

::::::::
renewable

:::::::
energy

::::
used

::
in

:::::::::
buildings,50

::::::
China’s

::::::::
building

:::::
sector

::::
can

:::::
reach

:
a
::::::::
relatively

::::::::::
low-carbon

::::::
future

::::
with

:::::
more

::::
low-

::::
and

::::::::::
non-carbon

::::
fuels

::::::::::
consumed.51
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::
In

:::::::
general,

:::::::
demand

::::::
sectors

::
in

::::::
TIMES

::::::
models

::
–
::::::::
including

::::::
energy

::::
use

::
in

::::::::
buildings

:
–
:::::
have

::::
often

:::::
been

:::::::
handled

::::
with

::
a1

::::::
limited

::::::
degree

::
of

:::::
detail

:::::
[134].

:::::
This

:::
can

:::
be

::::::::::
problematic

:::::
since

:
a
::::
too

:::::
coarse

::::::::::
description

::
of

::::::
energy

::::::::
demand

::::
may

::::
lead2

::
to

:::::::::
unrealistic

::::::
results,

:::::
with

:::::
small

::::
price

::::::::
changes

::::::
leading

::::::
either

::
to

::
no

:::::::
impact

::
or

::::::
sudden

::::::::::::
technological

:::::::
changes

::::
[23]

:
.3

:::::::::::
Furthermore,

:::
the

:::::::
bene�ts

::
of

:::::::
energy

::::::
savings

:::
on

:::
the

::::::
wider

::::::::
economy

::::
[73]

:::
and

:::::::::
behavioral

::::::::::
preferences

:::
or

:::::::::
“rebound”4

:::::
e�ects

:::::
[130]

:::
are

::::::::
typically

::::::::::
disregarded.

:
5

:::::
Many

::
of

:::
the

:::::
above

::::::
hybrid

:::::::
models

::::
rely

::::
more

:::::::
heavily

:::
on

:::
one

::
of
::::

the
:::::::::::
classi�cation

::::::::
quadrants

:::::
from

::::::
Figure

:
2
:::::
than6

:::::
others

::
–

:::::::
TIMES,

:::
for

:::::::
example,

::
is
::

a
::::::::
primarily

::::::::::
bottom-up

:::::::::
framework

::::
that

::::::::
"reaches

:::
up"

::
to

:::::::
capture

::::::
certain

::::::
e�ects

:::
of7

:::
the

:::::
larger

::::::::
economy

:::
on

:::
the

::::::
energy

::::::
system

::::
[81].

:::::::
Making

:::
the

:::::::::::
classi�cation

:::::::::
quadrants

::::
and

:::
the

:::::::::
conceptual

::::::::::
di�erences8

:::::
across

:::::
them

::::::
explicit

::
in

:::
the

::::::::
proposed

:::::::
scheme

::::::::
mitigates

:::
the

::::
loss

::
of

::::::::::
information

::::
that

:::::
would

:::::
result

:::::
from

::::::
simply

::::::
adding9

:
a
::::::
hybrid

::::::
branch

::
to

:::
the

::::::::::
hierarchical

::::::::::::
organizations

::
of

:::::::
existing

::::::::::::
classi�cations.

:
10

2.2. Additional Model Dimensions11

Given the increasing sophistication of building stock energy models, the high-level classi�cation quadrants
:::
and12

:::::
layers of Figure 2 may preclude the communication of

::
be

:::::::::
insu�cient

::
to
::::::::::::
communicate

:
important contextual details13

about the chosen modeling approach. Accordingly, we propose that a model’s treatment of
::
at

::::
least four additional14

dimensions should be described in parallel with its mapping to the high-level classi�cation quadrants of Figure 2;15

these additional dimensions are enumerated below.16

2.2.1. System boundaries17

In building stock energy modeling, the collection of buildings studied can be conceptualized as a system . This18

means that a speci�c scope of study is selected, which is logically coherent and is considered su�cient to study19

all relevant aspects of the studied object. One of the most critical parts of any type of system modeling is de�ning20

the boundaries between systems, of the di�erent parts of the system and by that the system as a whole (
::::
that

::
is21

:::::::
bounded

::
in

:::::
time

:::
and

::::::
space

::
in

::
a

:::::::
manner

:::::::::
consistent

::::
with

::::::::
principle

::::::::
modeling

:::::::::
questions

::::
and

:::::::::::
applications.

:::::::
System22

:::::::::
boundaries

:::
are

::::::::
identi�ed

::
at

:::
the

::::::::
interface

:::::::
between

::::
the

:::::
entire

:::::::
modeled

::::::
system

::::
and

:::
the

:::::::
external

::::::::::::
environment,

::
as

::::
well23

::
as

::
at

:::
the

::::::::::
interface(s)

:::::::
between

::::::::
modeled

:::::::::::
sub-systems.

:
(Figure 3). Di�erent boundaries will lead to di�erent system24

models, so choosing the
::::::::
Choosing

:::
and

::::::::::::::
communicating appropriate boundaries for a modeling goal

:::
the

::::::::
modeled25

::::::
system

:::
and

:::::::::::
sub-systems

::::::::::
represented

::
by

::
a
:::::::
building

:::::
stock

::::::
energy

::::::
model is critical to

:::::::
ensuring

:
the interpretability of26

model outputs.
::::
Here

:::
we

::::::
present

:::::::
further

::::::::::::
considerations

::::::::
regarding

:::
the

:::::::::
de�nition

::
of

:
a
::::::::
building

:::::
stock

::::::
energy

:::::::
model’s27

:::::::::::::
spatio-temporal

:::::
scope,

:::
as

::::
well

::
as

:::::
other

::::::
aspects

::::::::::
concerning

:
a
:::::::
model’s

::::::
overall

::::::
extent

:::
and

::::::::::
sub-system

::::::::::
boundaries.28

Figure 3: Relationship between the modeled system and its environment; the overall system boundary is represented as a conceptual line
between the two (left). Interrelationship between two subsystems within a larger system, with a boundary de�ned at the interface between the
two subsystems (right) [126].

The spatial scope of a building stock energy model is de�ned by the geographical area covered in the study.29

The spatial scope could be a given neighborhood (e.g. Cuerda et al., Sartori et al. [28, 133]), city (e.g. Ouyang et al.30

[110]), region (e.g. Galante et al., Reyna and Chester [48, 121], country (e.g. Mata et al., Sandberg et al., Nägeli31
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et al. [90, 128, 98]) or countries (e.g. Urge-Vorsatz et al., Building Performance Institute Europe (BPIE), Vásquez1

et al., Mata et al. [152, 20, 158, 90].
:::::::::::
Combinations

:::
are

::::
not

:::::::
unusual

:
–
::::

e.g.,
:::::::::::::::
Hargreaves et al.

::::
[57]

:::::::
integrate

::::::::
regional2

:::
and

:::::
urban

::::
[56]

::::::::
modeling

::::
with

:::
the

::::::
DECM

::::::
model

::
at

:::
the

:::::::
building

::::
scale

::
to

:::::::
forecast

::::
how

::::::
spatial

:::::::
planning

:::::::
policies

::::::
would3

::::
a�ect

::::
the

::::::::
suitability

::
of

::::::::::
retro�tting

:::
and

::::::::::::
decentralised

::::::
supply

:::
and

::::
how

::::
this

:::::
would

:::::
vary

:::::::
between

::::
area

:::::
types.

:
4

The temporal scope of a model is de�ned by the length of the
:::::
year(s)

:::
or time period under study. Static models5

commonly describe the energy use in a speci�c year (e.g. Cuerda et al. [28]), whereas long-term dynamic models may6

describe the development over long time periods up to 50 or even 100 years (e.g. Sandberg et al., Berardi [127, 13]).7

Other models serve as an archival repository of historical consumption data and are continually updated [113]. The8

temporal scope may therefore cover both historical and future development
:
of

:::
the

::::::::
modeled

:::::::
building

::::::
energy

::::::
system.9

Furthermore, the range of choices to be made regarding de�nition of system boundaries for the case of
::::
The10

::::::
system

:::::::::
boundaries

:::
of

:
a
:
building stock energy models is, however, much broader than just

:::::
model

::::
may

:::
be

:::::::
de�ned11

::
by

:::::
more

::::
than

:
spatio-temporal extent. The scope is often also

:::::::::::::
considerations.

::::::::
Building

:::::
stock

::::::
energy

::::::
models

::::
are12

::::
often

:::::
used

::
as

::::
part

::
of

::
a
::::::
larger,

::::::::::::
multi-sectorial

:::::::::
modeling

::::::::::
frameworks

:::::
such

::
as

:::
the

::::::::::::::::
partial-equilibrium

::::::
NEMS

::::::
[150]13

:::
and

:::::::::::::::
MARKAL/TIMES

::::::
models

:::::::
[82, 81]

:::
and

:::::::
general

::::::::::
equilibrium

:::::::::
Integrated

:::::::::::
Assessment

::::::
Models

::::::::::::::::
[70, 35, 75, 157, 49]

:
.14

::::::
Within

:::
the

::::::::
buildings

:::::
sector

::::::
focus,

:::::
model

::::::::::
application

::::
may

:::
also

:::
be limited to a subset of the building stock ,

:
– e.g.the15

residential (e.g. ,
:::::::::
residential

::
(Csoknyai et al. [27]) or non-residential building stock (e.g. Lindberg et al. [79]), or the16

public housing stock (e.g. Gagliano et al. [47]). Depending on the desired outcome, speci�c energy end uses might be17

explicitly tracked
::::::
targeted

:
in the analysis. Some studies focus on operational energy use only (e.g., heating, cooling,18

domestic hot water), while others adopt a life cycle perspective and therefore include other phases
::
of

::::::
energy

::::
use19

:::
and

:::::::::
emissions such as manufacturing, transportation, construction and demolition in the analysis.20

Beyond the main
::
In

:::::::
addition

::
to

::::::::::
addressing

::::
these

:::::::::::::
considerations

:::::
about

:
a
:::::::
model’s

::::::
overall system boundary, mod-21

elers should also describe any subsystems within the model and de�ne each subsystem’s
:::
the boundaries that de-22

termine its sphere of in�uenceand control. This scoping of a given subsystem is crucial in determining the nature23

of its interface with other systems for successful design. Typical subsystems
::::
their

:::::::
spheres

::
of

::::::::
in�uence.

::::::::
Typical24

:::::::::
subsystems

:::::::::::
represented in building energy stock modeling include the physical buildings,

::::::
models

::::::
include

:
energy25

demand, occupants, and HVAC systems
::::::
physical

::::::::
building

::::::::::::
characteristics

::::
and

:::::::
systems,

::::
and

::::::::::::
environmental

::::::::
context,26

::
as

::::::::
suggested

:::
by

:::
the

::::::::
modeling

:::::::::
sub-layers

::::::
shown

::
in

:::::
Figure

::
2. Outdoor conditions such as weather are usually treated27

as inputs to the model, although some parts such as detailed solar radiation and local wind pressure modeling are28

included as separate subsystems. Extended models may include representations of the electric grid, transportation29

systems, and macro- and micro-economic processes, among others.30

2.2.2. Spatio-temporal resolution31

A
:::
The

::::::::::::::
spatio-temporal

::::::::
resolution

:::
of

:
a
:
building stock energy model ’s spatio-temporal resolution is the level of32

disaggregation within the overall system boundary with which a speci�c type of model information /
::::
with

::::::
which33

:::
key

::::::
model

::::::::::
information

::::
and results are represented. Resolution suggests the

::::
Each

::::::
model

:::
has

::
a

:::::::::::
fundamental unit34

of observation in the model
:
at

::::::
which

::::::::::
calculations

:::
are

:::::
done,

::::::
across

::::
both

:::::
space

:
(e.g., ‘a house’or ,

:
‘room-based’or

:
,35

‘meter-based,’ etc.) .
:::
and

::::
time

::::
(e.g.

::::::
hourly,

::::::::::
15-minute,

::::::::::
sub-section,

:::::::
annual).

:
While a system boundary represents36

the highest geographical or temporal aggregation of a model and therefore serves as an upper limit on a model’s37

spatio-temporal resolution, the model’s unit of observation is the lower limit of its spatio-temporal resolution.38

Many building stock energy models study the energy demand within a given spatial boundary without any39

details about the location or distribution of the buildings within the geographical area. The spatial resolution is40

therefore equal to that entire area, even though the unit of observation might be a single dwelling. Other models41

have a high spatial resolution and model the building stock energy use in relation to the location of the buildings,42

::
tie

:::::::
building

:::::::
energy

:::
use

::
to

:::::::
speci�c

::::::::
locations

::
– e.g.by ,

:::::::
through

:
the use of geographical information systems (GIS).43

The geocoded model results are then commonly presented in maps which adds important additional information44

about the distribution of the energy use (e.g. Mastrucci et al., Stephan and Athanassiadis, Möller et al. [85, 140, 95]).45

Where multiple data layers are incorporated, each layer may have a di�erent spatial resolution (e.g., census tract,46

zip code) and therefore the analytical methods used to map these layers to a common spatial unit is an important47

model attribute.48

The temporal resolution is de�ned by the time steps of
::
of

:::::::
building

:::::
stock

::::::
energy

:::::::
models

:::::::
concerns

::::
the

::::
time

::::
step49

:::
that

::
is
:::::
used

::
to

::::::::
generate

::::::
results.

:::
In

:
the analysis. In most of the studies previously mentioned , the

::::
with

::::::
longer50

:::::::
temporal

:::::::
scopes, energy simulations are

::::::::
typically carried out per year , which is commonly the case in the studies51
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with the longest temporal scope
:::
(e.g.,

:::::::::::::
Giraudet et al.

:::
[52]

:
). However, in models with a higher temporal resolution,1

simulations can be done per minute, hour
::::::
studies

::::
also

::::::::::
demonstrate

::::::
higher

::::
time

::::::::::
resolutions

:
(e.g.Sartori et al. [133]2

), week or month.
:
,
:::
per

::::::
minute

::
or

:::::
hour

::
as

::
in

:::::::::::::::::::::::::::::::::::::
Sartori et al., Reyna and Chester, Mata et al.

:::::::::::
[133, 121, 88]

:
).

::
A

:::::::
model’s3

:::::::
temporal

:::::::::
resolution

:::::::::
determines

:::
the

::::
type

::
of

::::::::
questions

::::
that

::
it

:::
can

::::::
answer

::
–

::
for

::::::::
example,

::
an

::::::
hourly

:::::::::
resolution

:
is
:::::::
needed4

::
to

:::::::::
investigate

:::::::::::
demand-side

::::::
energy

::::::::
�exibility

:::::::::
strategies,

::
as

::::
clear

::::::
diurnal

:::::::::
variations

:::::
occur

::
in

:::::::
building

:::::
loads;

:
a
::::::::
monthly5

::::::::
resolution

::
is

:::::::
relevant

:::
for

:::
the

:::::
study

::
of

::::
total

:::::::
heating

:::
and

:::::::
cooling

:::::::
demand;

::::
and

::
an

::::::
annual

:::::::::
resolution

::
is

::::::::::
appropriate

:::
for6

:::::::
studying

:::::::
building

:::::::::::
renovations.

:
7

2.2.3. Dynamics8

Treatment of dynamics in building stock energy models can be sub-categorized in terms
::::::::
described

:::::
along

::::
the9

::::
lines

:
of the three supporting variable layers of Figure 2: 1) building usage/occupant behavior, 2) building stock,10

and 3) context/environment. These
::
In

::::::::
practice,

:::::
these variables may be tightly connected in the model function11

:::::::::::::
implementation (e.g., building stock dynamics are a�ected by changes in the model context).12

13

Occupants/building use dynamics
:::::::::::::::
Occupant/building

:::
use

::::::::
dynamics include the number of occupants (e.g.,

:
evo-14

lution of family composition, number of visitors on the premises, aging, typical occupant interactions), occupant’s15

:::::::::
occupants’ energy-related behavior

::::::::
behaviors over time (e.g.,

:
adjustment of thermostat set points and other controls,16

movement to and from di�erent spaces)and appliance ownership
:
,
:::
and

:::::::
changes

::
in

:::::::::
appliance

:::::::::
ownership

:::::
trends

:
(e.g.,17

type of HVAC equipment, number of TVs, etc.). For multi-family or commercial buildings with centralized control18

systems, operator decision-making can
:::::
would

:
also fall into this sub-category

:::::::
category

::
of

::::::::
dynamics.19

20

Building stock dynamics
:::::::
Building

::::
stock

::::::::
dynamics refer to changes in the stock such as building demolition, reno-21

vation, and new construction, as well as the e�ect this has on the building stock composition, installed equipment,22

and resulting energy and environmental impacts.23

As Figure 4 shows, changes
::::::::
Changes to the building stock may be represented using both static and dynamic24

approaches
::::::
(Figure

::
4) [86]. Static models assess building stocks at a de�ned moment in time (e.g., for a single year).25

Such point-in-time snapshots may be assessed in a status quo assessment or a comparative assessment, where the latter26

compares the current state with a hypothetical future state (e.g., after the implementation of certain energy e�ciency27

measures). In contrast, dynamic models capture the evolution of building stocks and their energy use over time by28

modeling processes such as new construction, demolition, retro�ts and replacement of technologies. Such analyses29

can be focused on historic development (ex-post
::::::
ex-post), on forecasting future development (ex-ante

::::::
ex-ante) or a30

combination of both.31

Building
stock models

Static Dynamic

Status quo
assessment

Comparative
assessment

Ex-ante
assessment

Ex-post
assessment

Figure 4: Approaches for representing changes to the building stock may be static (assessing stocks at a speci�c moment in time) or dynamic
(capturing the evolution of building stocks over time); each approach is suitable for di�erent types of modeling assessments.
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Context/environment dynamics refer to
:::::::::::::::::
Context/environment

::::::::
dynamics

::::::
concern

:
changes in the energy system1

resulting in
:::
that

:::::
result

:::
in

:::
(for

::::::::
example)

:
altered greenhouse gas emission factors (e.g. changing electric generation2

mix)or energy pricesas well as ,
:::::::
changes

:::
in

::::::
energy

::::::
prices, population growth, structural changes in the economy3

(e.g. growth of certain economic sectors) or the impact of climate change on building energy demand via changing4

temperatures , humidity, etc
:
–
::::
e.g.,

:::
via

:::::
rising

:::::::::::
temperatures

::::
and

:::::::::
day-to-day

:::::::
weather

:::::::::
conditions.5

Transparent descriptions of how such dynamics are
::::
each

::
of

:::::
these

::::::
types

::
of

::::::::
dynamics

::
is
:

handled in building6

stock energy models are crucial for assessing the quality of model outputs. For example, as described in Sartori et al.7

[132], it is often found
:::
the

::::
case that policy roadmaps and other studies use rather detailed information

::::::::::::
time-resolved8

:::::
inputs

:
on energy and emission intensities, whereas the

:::
but

::::::::
represent

:
changes in the building stock itself– in terms9

of number of buildings or �oor area – are modeled using �xed rates for construction, demolition and renovation,10

which may be overly simplistic. Alternatively, renovation rates may be assumed to increase rapidly in order to reach11

the
:::::::::
stock-level energy e�ciency goalsfor the stock. Sandberg et al. [127] demonstrate how unrealistic assumptions12

about renovation dynamics can result in model outputs that overstate future energy savings potential.13

2.2.4. Quality assurance14

It
:
is essential to understand the limitations of the predictive powerof any model

:
a

:::::::
building

:::::
stock

::::::
energy

:::::::
model’s15

::::::::
predictive

::::::
power. No model can be a perfect representation of the system it aims to emulate and all models inevitably16

contain uncertainty [116], which should be quanti�ed as part of the model quality assurance process. Uncertainty17

can be de�ned as “any deviation from the unachievable ideal of completely deterministic knowledge of the relevant18

system”[159]. It is to be expected that as the systems being modeled increase in scale and complexity, the uncertainty19

in the model will also increase. Consequently, it is inevitable that building stock energy models will contain a20

considerable number of uncertainties. While some applications of building stock energy models, such as in early21

design, actively seek a range of possible options, it is common to see building stock energy model outputs expressed22

as a single value [24]. Such point values may yield misleading impressions about the certainty of model insights23

when used to support energy policy decisions.24

In the literature, several di�erent classi�cation schemes for
:::::::
focused

:::::::::
speci�cally

:::
on

:::::
model uncertainty have been25

introduced [15, 108], but a general consensus in terms of classi�cation as well as
::::::::::
uncertainty

:::::::::::
classi�cation

::::
and26

::::::
related terminology does not seem

:::::
appear

:
to exist [117]. Although there is a lack of agreement on the detailed27

categorization of sources of uncertainty, a review of 20 existing
:::::::::
uncertainty

:
classi�cation schemes highlighted a28

broad pattern with sources of uncertainty being grouped according to whether they related to model inputs, the29

model itself or model outputs . This is summarized in Figure 5
:::::
(Figure

:::
5).30

INPUTS MODEL OUTPUT

Aleatory Epistemic Model Structural Model Technical Model Outcome

Linguistic

- Inherent
randomness
- Natural variation

- Context
- Linguistic
- Heterogenity
- Modeler

- Modeller
- Missing physics

- Software error
- Hardware error
- Numerical error

Figure 5: Sources of model uncertainty identi�ed in existing uncertainty classi�cation schemes. Sources of uncertainty may be grouped by
whether they relate to model inputs, the model itself, or model outputs.).

A review of the treatment of uncertainty in the literature relating to large scale building energy models under-31

taken by Fennell et al. [40] concluded that Uncertainty Analysis (UA) and Sensitivity Analysis (SA) are not common32
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practice in building-stock energy modeling and that if UA and SA are performed, only a few parameters are assessed1

and that methodologies are not standardized. In addition, although the literature suggests that model uncertainties2

are likely to be a signi�cant source of
::::::
overall uncertainty, the review did not identify any studies which addressed3

this source of uncertainty.4

::::::
Parallel

:
Annex 70 work is underway to address the lack of evidence in the published literature on the treatment5

of uncertainty in large scale building
:::::::
building

::::
stock

:
energy models. The initial phase of this work is focused on input6

uncertainty. A wide range of research teams are participating in this work with a diverse range of modeling ap-7

proaches.
:::
The

::::::
initial

:::::
phase

::
of

:::
the

:::::
work

:
is
:::::::
focused

:::
on

:::::
input

::::::::::
uncertainty. Each model will be evaluated stochastically8

based on shared sets of uncertain inputs. A range of di�erent sensitivity analysis techniques will be applied to each9

model to explore how model attributes such as geographic scale and degree of aggregation a�ect the performance10

of di�erent techniques. Publications on this work and best practice for uncertainty quanti�cation are forthcoming.11

Model UA and SA are distinct from model validation , which compares model outputs with measured valuesfor12

energy consumption
::::::
Finally,

:::
we

::::
note

::::
that

::::::
model

:::::::::
validation

::
is

::
an

:::::::::
additional

::::::
aspect

::
of

::::::
quality

::::::::::
assurance,

::
in

::::::
which13

:::::
model

:::::::
outputs

:::
are

::::::::
compared

::
to

::::::::
measured

::::::
values. The review undertaken by Reinhart and Davila [118] suggests that14

when aggregated city-scale building energy use data are used for validation, individual building model errors tend to15

average out and overall errors are in the range 7% - 21% for heating loads and 1 - 19% for total energy use intensity.16

However, simulation errors may be much higher for individual buildings in the stock, which is not re�ected in17

the aggregate validation statistics. In addition, Reddy et al. [115] highlight the highlight the high dimensionality18

of these
:::::
many

::::::
classes

:::::::
building

:::::
stock

::::::
energy

:
models, underscoring that small validation error only indicates that a19

local minimum has been achieved, and that model accuracy is not guaranteed through aggregate validation alone.20

Validating against multiple external data sources can potentially improve con�dence in model accuracy, but this is21

not always possible. Moreover, for building stock energy models that project out into future years, validation data22

will not be available at all to compare model outputs against. Complementary
:::::
model uncertainty assessments can23

::::
help address these shortcomingsof model validation e�orts.24

3. Discussion25

The building stock energy modeling research area has seen a high degree of recent publication activity; the26

model classi�cation approach presented in this paper will serve as
:::::::
provides

:
a formal framework for comprehensively27

surveying, assessing, and demonstrating use cases for a
::
the

:
wide range of these existing and emerging modeling28

e�orts
:::::::
building

:::::
stock

::::::
energy

::::::::
modeling

:::::::::
approaches

::::
that

::::
have

:::::
been

::::::::
published

::
in

:::::
recent

::::::
years,

::
as

::::
well

::
as

::::
those

::::
that

::::
will29

::
be

::::::::
published

::
in

:::
the

:::::
years

::
to

::::
come. At a conceptual level, the classi�cation quadrants introduced in Figure 2 encourage30

quick comparisons of a wide range of
::::::
across building stock energy models, including those that apply to di�erent31

regions
:::
and

:::::::
building

::::::
stocks

:
of interest. Such comparisons support stronger international collaborations around32

building stock energy modeling, which are needed to �nd pathways for long-term reductions in building energy use33

and emissions that can contribute substantially to global climate change mitigation e�orts. At the same time, this34

paper’s classi�cation scheme provides avenues for communicating richer technical information about a model, by35

including supporting modeling layers in the high-level classi�cation structure (buildings, people, environment) and36

::
by encouraging modelers to describe their handling of additional modeling dimensions that are not captured by the37

high-level structure.38

Within Annex 70, the new classi�cation scheme is being used to generate high-level metadata to organize39

:::::::
metadata

::::
for

:::::::::
organizing

:
models in an online repository. Models in the Annex 70 repository will be summarized40

in terms of the following attributes:41

• [
:
–] general purpose and application,42

• [
:
–] model classi�cation quadrant (top-down/bottom-up, white-box/black-box per Figure 2),43

• [
:
–] modeling technique (system dynamics, statistical, machine learning, archetype, etc. per Figure 2),44

• [
:
–] inclusion of additional layers (buildings, people, environment)45

• [
:
–] treatment of additional dimensions (system boundaries, spatio-temporal resolution, dynamics, and uncer-46

tainty), and47

• [
:
–] accessibility of the model and supporting data sources.48
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Table 1
:
2 shows examples of how key models from each of the Annex’s participating member countries are being1

described in terms of high-level attributes.2
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Table 2: Sample mapping of building stock energy models from IEA-EBC Annex 70 member countries to this paper’s proposed model classi�cation scheme.

Country Model Name Model Use Model Classi�cation Quadrant Supporting Reference(s)
:::::::
Additional

:::::
Details

:

Belgium Delghurst
::::::
Delghust Model Assessment of the e�ect of

energy saving measures in
terms of reducing energy
consumption in relation
to costs in the residential sector

Q4 (physics-simulation)
::::::::::::
physics-simulation Model

documentation [29, 30],
and application [16]

Canada The Energy, Emissions
and Economy Model
for Canada ( E3MC)

A macroeconomic model used
to develop projections for
Canada’s National Communication
and Biennial Reports to the
UNFCCC and Canada’s
Emissions Trends reports

Hybrid: Q1 (econometric)
::::::::
econometric

to simulate macro-economic
trends and Q2 (system

::::
system

dynamics)
::::::
dynamics to simulate energy

demand.

Model documentation [34] [144]
and application [54]

CityInSight
Assessment of energy,
greenhouse gas emissions
and �nancial impacts of
changes in land use, building
type, building code, fuel mix,
equipment, renewables, district
energy, and behavior to
support municipal energy and
emissions planning

Hybrid: Q2 (systems-dynamics)
:::::::::::
system-dynamics

to simulate building stock
evolution and Q4 (physics-

:::::
physics-

simulation)
:::::::
simulation to simulate energy

demand per unit stock

Model summary [141]

Netherlands Vesta MAIS
spatial energymodel

Assessment of the e�ect of
energy saving measures in
terms of reducing CO2
emissions, energy consumption,
investment costs and energy
costs

Assessment of the e�ect of
changes in heat supply and
policy instruments including
taxes, and subsidies

Q4 (physics-simulation)
::::::::::::
physics-simulation Model documentation [42],

GitHub repository [156],
and application [155]
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Table 2 continued from previous page

Country Model Name Model Use Model Classi�cation Quadrant Supporting Reference(s)
:::::::
Additional

:::::
Details

:

Norway RE-BUILDS Assessment of the long-term
development of the Norwegian
residential building stock,
including its stock dynamics
and renewal in terms of new
construction, renovation and
demolition.

Assessment of long-term
development in energy
demand in the stock due
to di�erent development
paths in various scenarios.

Hybrid: Q1 (technological)
::::::::
technological

to estimate the total dwelling
stock size, Q2 (system dynamics)

:::::
system

::::::
dynamics

to simulate stock dynamics and
Q4 (physics-simulation)

:::::::::::
physics-simulation

to estimate the energy demand
per building archetype across
the simulated stock.

Model
documentation [132, 128],
and application [127, 128]

:::::
Sweden

::::::
ECCABS

::::::::
Assessment

:
of
:::::::
potentials

:::
and

:::
costs

:::
for

::::
energy

::::::
savings

::
and

::::
CO2

:::::::
emissions

:::::::
reductions

:
of
:::
the

:::::::
long-term

::::::::::
transformation

:
of
:
a
::::::

building
::::
stock

::
Q4

:::::
physics

:::::::
simulation

:::::::::::
building-speci�c

:::::::
calculation

::
of

:::::
energy

:::::
savings

:::
and

::::::::
agent-based

:::::
market

::::
share

:
of
:::::::::
technologies

:::
and

::::::::
constrained

:::::::
investment

::
and

:::::
retro�t

::::
rates.

::::
Model
::::::::::
documentation

:::
[88],

::
and

::::::::
application

:::::
[90, 87]

Switzerland ABBSM Assessment of the dynamics
of national building stocks
and its energy- and climate
-impact over time. In particular
how building owners decisions
to retro�t the building envelope
and replace heating systems
under di�erent policy
interventions a�ects this
development.

Hybrid: Q4 (physics-simulation)
:::::::::::
physics-simulation

to simulate energy demand, and
Q4 (agent-based)

::::::::
agent-based to model

building stock dynamics

Model documentation
and application [107, 106, 105]

::::::::
[99, 106, 105]

United Kingdom SimStock Assessment of the e�ects of
di�erent policy choices on
city-level energy consumption
including peak demands.
Heat exposure can also
be evaluated.

Q4 (physics-simulation)
::::::::::::
physics-simulation Underlying philosophy [25]

United States Scout Assessment of national energy,
cost, and CO2 emissions impacts of
U.S. building e�ciency to assist

::::
energy

:::::::
e�ciency

:::
and

::::::
�exibility

::
to

::::
assist in R&D program

design

Hybrid: Q1 (econometric)
:::::::::
technological-

to model technology stocksize
:::::::
econometric

:
to

::::
model

::::::
building

:

::
and

::::::::
technology

::::
stock

:::
size

and dynamics and Q4 (appliance distribution)
to

:::::
end-use

:::::::
distribution

:
to

model energy use per unit
:::
unit

stock

Model documentation [149],
GitHub repository [58],
and application [72]
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Table 2 continued from previous page

Country Model Name Model Use Model Classi�cation Quadrant Supporting Reference(s)
:::::::
Additional

:::::
Details

:

ResStock Assessment of the impact of
energy e�ciency measures in
the residential sector, providing
detailed information on energy
time-series, cost-e�ectiveness,
technology, building type,
and location.

Q4 (physics-simulation)
::::::::::::
physics-simulation Model documentation [101],

GitHub repository [100],
and application [163]
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We acknowledge that this paper’s classi�cation scheme does not1

3.1.
::::::::
Challenges

:::
for

:::::::
building

:::::
stock

:::::
energy

::::::
model

::::::::::
classi�cation

::::
and

:::::::::::::
complementary

:::::
e�orts2

:::
The

:::::
large

::::::
number

::
of

::::
new

:::::::
building

:::::
stock

::::::
energy

::::::
models

::::
that

::::
have

::::
been

:::::::::
published

::::
over

:::
the

:::
last

::::::
decade

::::::::::
collectively3

::::::::
represent

:
a
:::::::
variety

::
of

::::::::
modeling

::::::::
methods

:::
and

:::::::::
outcomes.

::::::
While

:::
the

::::::::
proposed

::::::::::::
classi�cation

:::::::::
framework

::::::::::
establishes4

:
a
::::::::
common

::::::::
language

:::
by

:::::
which

::::::::::
researchers

:::::
may

:::::::::
e�ectively

::::::::::::
communicate

::::
such

:::::::
models,

:::
we

::::::::::::
acknowledge

::::
that

:::
no5

:::::::::::
classi�cation

::::::
scheme

::::
can list or fully characterize all possible techniques for modeling building stock energy use;

:
.6

::::::
Indeed,

:
this was not the aim of our e�ort. Rather;

::::::
rather, we provide a general,

:::::::::::::::
multidimensional,

::::
and extensible7

framework onto which particular techniques or combinations of techniques may be mapped, even if these techniques8

are not explicitly called out by the classi�cation diagram in Figure 2. Indeed, as
::
As

:
the research landscape around9

building stock energy modeling changes
::::::::
continues

::
to

::::::
change, we anticipate the need to revise our classi�cation dia-10

gram accordingly, much as we have adapted the Swan and Urgursal framework developed over a decadeago
::::::::
elements11

::
of

:::::::
existing

:::::::::::
classi�cations

:::::::::
published

::::
over

:::
the

:::
last

::::::
decade.12

Moreover, while the classi�cation scheme presented herein is intended to facilitate quick model comparison13

and assessment, it is not designed to yield deeper insights into a model’s design and execution that are needed to14

accurately reproduce its use across the research community. Such insights may concern for example model
::::::::
Mapping15

:::::::
between

:::::::
research

::::::::
question

:::
and

::::::::
modeling

::::::::
approach

::
is
::::::::
complex

:::
and

::::::::
informed

::
as

:::::
much

:::
by

:::::::
practical

:::::::::::::
considerations

::
of16

:::
data

::::::::::
availability,

::::::::
expertise

:::
of

:::
the

::::::::
modeling

:::::
team

:::
and

::::::
access

::
to

::::::::::
computing

::::::::
resources

::
as

:::
by

:::::::::::::
methodological

:::::::
drivers.17

:::::::::
Additional

:::::
details

::::
will

::
be

::::::
needed

:::
on

::::::
overall

:::::
model

::::::::
objectives

::::
(e.g.,

::::::::::
simulation

::
vs.

:::::::::::
optimization

:::
vs.

::::::::::
accounting),

::::::
model18

licensing and usage rights,
:::::
model

::::::::
analysis

::::::::::
components

::::
and

::::::::::::::
sub-components,

:
guidance on running the model, and19

documentation of a model’s input and output datasets
:::
data

:::::::::
structures,

::::::
among

:::::
other

:::::
items. To address this limitation20

on the classi�cation scheme’s application, IEA EBC Annex 70 is developing a complementary reporting protocol for21

building energy stock modeling. This reporting protocol is distinct from the classi�cation scheme in its stronger22

emphasis on capturing the technical details needed to fully understand how a model works, but draws upon the23

classi�cation framework to establish model metadata - much as the Annex model repository is doing. Other �elds24

have successfully deployed reporting protocols – notably health care [12] – and the intention is to have modelers25

use the protocol to frame any publication that presents a building stock energy model, enabling its e�ective use26

outside of the context for which it was developed.527

4. Conclusion28

This paper introduced a new framework for classifying models of building stock energy use at the urban, re-29

gional, and national scales. The classi�cation scheme, which was developed as part of IEA-EBC Annex 70, builds30

upon previous approaches for classifying building stock energy models , updating these approachesto account
:::::
while31

:::::::::
addressing

:::
the

:::::
need

::
to

::::::
update

:::::
these

:::::::::::
approaches,

:::::
given

:::
the

::::::::::
availability

:::
of

:::::
richer

:::::::
datasets

:::
on

::::
the

:::::::
building

::::::
stock,32

::::::::
expanded

::::::::::::
computational

:::::::
power,

:::
and

::::
the

::::::
advent

::
of

:::::::::
modeling

:::::::::
techniques

::::
that

::::
take

:::::::::
advantage

:::
of

:::::
these

:::::::::
resources.33

::::::::::
Accordingly,

:::
the

::::::::
updated

:::::::::::
classi�cation

::::::
scheme

::::::::
accounts for newer modeling techniques, establish a more intuitive34

and
:::::::::
establishes

::
a

::::
more

:
�exible high-level classi�cation structure, and account for additional

:::::::
accounts

:::
for

:::::::::
additional35

:::::
model

:
dimensions that are not captured by a

:::
this

:
high-level model classi�cation exercise. We reviewed existing36

literature that demonstrates the need for new elements of the classi�cation framework given the availability of37

richer datasets on the building stock , expanded computational power, and the advent of modeling techniques that38

take advantage of these resources
::::::::::
Speci�cally,

:::
the

::::::
scheme

::::
uses

::
a
:::::::::
multi-layer

::::::::
quadrant

::::::::
structure

::
to

::::::
classify

:::::::::
modeling39

:::::::::
techniques

:::::
based

::
on

:::::
their

:::::
design

:::::::::
(top-down

::
or

::::::::::
bottom-up)

:::
and

::::::
degree

::
of

:::::::::::
transparency

:::::::::
(black-box

::
or

::::::::::
white-box),

::::
also40

:::::::::::::
accommodating

::::::
hybrid

::::::::
modeling

::::::::::
techniques.

::::
We

::::::::
provided

::::::::
guidance

:::
on

:::
the

::::::::::
description

::
of

::::
four

:::::::::
additional

::::::
model41

:::::::::
dimensions

::
–
:::::::
system

::::::::::
boundaries,

::::::::::
geographic

:::
and

::::::
spatial

::::::::::
resolution,

:::::::::
dynamics,

::::
and

::::::::::
uncertainty

::
–

::::::::
alongside

::::
the42

::::::::
high-level

::::::::
quadrant

::::::::
structure

::::
and

::::::::
modeling

::::::
layers.

::
A

:::::::
selection

:::
of

::::::
existing

:::::::::
literature

::::::
studies

::::
were

:::::::::::
summarized

::::
that43

::::::::
exemplify

:::
the

:::::::::
relevance

::
of

:::
the

:::::::::
high-level

:::::::::::
classi�cation

::::::::
elements

:::
and

:::::::::
additional

::::::
model

::::::::::
dimensions

::
to

:::
the

::::::::
building44

5
:
In

::
the

::::::
absence

::
of

:::
such

::::::
reporting

:::::::
guidance,

:::::::
modeling

:::::::
techniques

:::
that

::
fall

::
in

::::::
principle

:::
into

::
the

:::::::
white-box

:::::::
quadrants

::
of

:::
our

::::::::
classi�cation

::::
may

::
be

::::::
perceived

::
in

:::::
practice

:
to
::
be

:::::::
black-box

:::
due

:
to
::::

poor
::::::::::
understanding

::
of

:::::
detailed

:::::
model

::::::
elements

:::::
among

::::::::
researchers

:::
that

::
are

:::
not

:::
part

::
of

::
the

::::
core

::::
model

:::::::::
development

:::
team

::::
(due

:
to
:::

too
::::
many

:::::::
equations,

::::::
disparate

::::
input

::::::
datasets,

::::::
unclear

:::::
variable

:::::::::
relationships,

::::
etc.).
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::::
stock

:::::::
energy

::::::::
modeling

::::
�eld. We concluded by discussing the practical utility of the classi�cation scheme in pro-1

moting more e�ective sharing and assessment of models across the international research community, including the2

use of the scheme to develop an online model registry and reporting protocol for Annex 70.3
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Abstract16

Buildings contribute 40% of global greenhouse gas emissions; therefore, strategies that can substantially re-17

duce emissions of the building stock are key components of broader e�orts to mitigate climate change and achieve18

sustainable development goals. Models that represent the energy use of the building stock at scale under various sce-19

narios of technology deployment have become essential tools for the development and assessment of such strategies.20

Within the past decade, the capabilities of building stock energy models have improved considerably, while model21

transferability and sharing has increased. Given these advancements, a new scheme for classifying building stock22

energy models is needed to facilitate communication of modeling approaches and the handling of important model23

dimensions. In this article, we present a new building stock energy model classi�cation framework that leverages24

international modeling expertise from the participants of the International Energy Agency’s Annex 70 on Build-25

ing Energy Epidemiology. Drawing from existing classi�cation studies, we propose a multi-layer quadrant scheme26

that classi�es modeling techniques by their design (top-down or bottom-up) and degree of transparency (black-box27

or white-box); hybrid techniques are also addressed. The quadrant scheme is unique from previous classi�cation28

approaches in its non-hierarchical organization, coverage of and ability to incorporate emerging modeling tech-29

niques, and treatment of additional modeling dimensions. The new classi�cation framework will be complemented30

by a reporting protocol and online registry of existing models as part of ongoing work in Annex 70 to increase the31

interpretability and utility of building stock energy models for energy policy making.32

Highlights33

• Building technology RD&D is needed to achieve deep reductions in global greenhouse gas emissions.34

• Building stock energy models are essential tools for technology RD&D strategy development.35

• A multi-layer quadrant scheme for classifying building stock energy models is introduced.36

• The scheme builds from previous classi�cations while addressing new technical developments.37

• The new classi�cation facilitates application of building stock energy models in energy policy making.38
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Annex 704

1. Introduction5

Buildings worldwide are responsible for 36% of energy use, emitting 40% of direct and indirect CO2 emissions6

[62]. These numbers are expected to rise due to growth in population and building �oor area, increased access7

to energy in developing countries, and growth in energy-consuming devices. Reducing building energy use and8

increasing the �exibility of building operations are essential strategies for mitigating the risk of catastrophic climate9

change. Indeed, the International Energy Agency (IEA) estimates that buildings in 2040 could be 40% more energy10

e�cient than today, with savings driven by reduced energy need for space heating, water heating, and cooling [62].11

The development of concrete strategies for e�ectively managing building energy use remains a key challenge.12

Building researchers and policy makers lack data for understanding how building energy use is expected to change13

over the next several decades, which is essential for identifying the speci�c e�ciency and �exibility strategies that14

have the greatest impact on these changes. While access to these data at both a granular spatio-temporal resolution15

and for the building stock as a whole is improving, gaps in data coverage, consistency, and accessibility across16

countries must be addressed to support setting e�ective priorities for building technology research, development,17

and deployment programs.18

To address gaps in building energy use data at large scales, a group of international researchers that includes19

the authors is collaborating on an International Energy Agency (IEA) Energy in Buildings and Communities (EBC)20

Annex “Building Energy Epidemiology”, or IEA-EBC Annex 70. The concept of energy epidemiology as �rst de�ned21

by Hamilton et al. [54] is the study of energy use in a large population of buildings. The scope of research that falls22

within the energy epidemiology �eld is broad, including both modeling of energy use in the building stock under23

di�erent sets of input conditions, analyses that identify correlations between energy use and in�uencing variables,24

and testing of causal hypotheses about the e�ects of implementing energy e�ciency measures across representative25

portions of a building stock.26

The guiding objective of IEA-EBC Annex 70 is to improve the use of data and models of building energy use to27

facilitate dramatic reductions in building energy use and carbon emissions. In support of this objective, we seek to28

identify and compare models of large-scale building stocks and their energy use that are broadly applicable across the29

international buildings research community. Accordingly, this paper proposes a framework for classifying building30

stock energy models that builds upon existing classi�cation approaches while acknowledging emerging modeling31

techniques and identifying additional dimensions that characterize the development and use of such models. The in-32

tent is for the proposed classi�cation to serve as a common framework for quickly comparing and assessing available33

building stock energy models across the scales of cities, regions, and countries. This, in turn, can facilitate evidence-34

based decision-making to support concrete actions to reduce the energy and emissions of the buildings sector, while35

assisting the increasing number of global, national, and sub-national scale initiatives on sustainable development,36

such as the Sustainable Development Goals and the Global Covenant of Mayors for Climate and Energy, among37

others.38

The scope of the proposed classi�cation scheme covers models of the buildings sector that: (a) represent multiple39

buildings that are often geographically co-located; (b) produce energy use metrics as an output; and (c) generate40

out-of-sample predictions. This includes multi-sector energy system and integrated assessment models in which41

the buildings sector is represented. The proposed classi�cation scheme does not pertain to models that: focus on42

a single building’s energy use in isolation; do not yield energy use as a primary output (e.g., focus exclusively on43

other building performance metrics such as indoor environmental quality or water use); or are purely explanatory44

or descriptive in nature [134].45
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We begin by reviewing previous e�orts to develop building stock and energy model classi�cations, identifying1

critical gaps in these existing classi�cations and establishing the need for an updated classi�cation framework. We2

then introduce a new classi�cation scheme that builds upon the strengths of the existing model classi�cations while3

addressing their shortcomings in the context of currently available data resources and computational capabilities.4

Unique elements of the classi�cation approach are enumerated in detail along with examples from the literature5

that demonstrate their relevance to the task of building stock energy modeling. The paper concludes by discussing6

potential applications of the proposed classi�cation scheme – including its use in related IEA Annex 70 e�orts to7

create a registry of building stock energy models and develop a complementary model reporting protocol – as well8

as limitations to its future use by buildings researchers.9

1.1. Summary of existing classi�cation approaches10

To-date there have been multiple e�orts to classify building stock-level energy models by technique and purpose.11

Foremost among these is a 2009 review by Swan and Ugursal [140], which summarizes major energy modeling12

techniques for residential sector end uses. The Swan and Ugursal classi�cation has gained wide acceptance among13

building stock modelers, as evidenced by its large number of citations to date in other studies.1 The designation14

of “top-down” models, or those that begin with an aggregate view of a system that may subsequently be broken15

down into constituent sub-systems, and “bottom-up” models, or those that begin with a detailed representation of a16

system’s constituent parts that may be aggregated up to the whole-system level, has long been used for many types17

of modeling. Swan and Ugursal [140] extended these concepts to the modeling of residential building stock energy18

use, identifying eight major types of modeling techniques under the general top-down and bottom-up categories19

(Figure 1).20

Figure 1: Swan and Ugursal’s 2009 model classi�cation. Models of residential energy use are classi�ed using a hierarchical tree structure that
includes two main branches: one for “top-down” models, or those that begin with an aggregate view of a system that may subsequently be
broken down into constituent sub-systems, and a second for “bottom-up” models, or those that begin with a detailed representation of a system’s
constituent parts that may be aggregated up to the whole-system level.

Other classi�cation systems de�ne the building stock energy modeling space more broadly than the Swan and21

Ugursal classi�cation. For example, Keirstead et al. [66] reviewed all studies on urban energy system models, includ-22

ing other major energy systems such as transportation, and classi�ed each model’s purposes and category. Building23

1https://scholar.google.com/scholar?rlz=1C5CHFA_enUS846US846&um=1&ie=UTF-8&lr&cites=464700330571940757 (accessed 06/30/2020).
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stock energy modeling is a subclass of “building design” in their schema, but few details are given on the speci�c1

techniques used for this model subclass. Referring to the OpenMod initiative, Limpens et al. [76] performed an2

extensive review of 53 existing energy models and tools. Most of them adopt an energy systems analysis approach3

with the electricity sector as their main scope. Thirty-one of the models reviewed cover the "heating" sector (of4

which the buildings sector is a part), although half of them only do so partially (through combined heat and power).5

In addition to the sector coverage, Limpens et al. [76] classify the models in terms of optimisation vs. simulation,6

"openness" (in terms of usage and source code) and time (resolution and run time).7

Two other review papers discuss classi�cation in the context of appropriateness for building energy policy mak-8

ing. Brøgger and Wittchen [17] adopt the general Swan and Ugursal classi�cation, while discussing the appropri-9

ateness and accuracy of each model type in the context of European policy-making. Sousa et al. [137] present a10

review of building stock energy models speci�c to the United Kingdom, comparing and contrasting the capabilities11

for each, utilizing the general bottom-up and top-down divisions provided in Swan and Ugursal.12

Few studies have attempted to expand upon the Swan and Ugursal classi�cation of top-down modeling tech-13

niques. Ahmad et al. [3] perform a comprehensive literature inventory of existing data-driven building stock energy14

modeling studies, creating their own four classi�cations of data-driven modeling in the process based on speci�c15

statistical and machine learning techniques. Li et al. [75] provide a classi�cation tree nearly identical to Swan and16

Ugursal, adding a few elements to the top-down branch, including “other” and “statistical” top-down sub-branches17

as well as a statistical modeling technique that relies on physical input variables. The majority of this review article,18

however, focuses on bottom-up applications and the new top-down techniques are not explored in detail in the text.19

For bottom-up models, the general division between “statistical” (i.e. data-driven/black-box) and “engineering”20

(i.e. physics-based/white-box) models has endured in multiple works recategorizing models. For example, Nageler21

et al. [96] utilize the general Swan and Ugursal classi�cation for bottom-up models. The same physics-models vs22

data-driven methods is followed by Gao et al. [50] in a paper that provides an extensive review of the latter. Soto and23

Jentsch [136] accept the classi�cation and comparatively review �ve statistical and seven building physics bottom-24

up energy models. Kavgic et al. [65], another heavily-cited paper, directly adopts this simpli�ed Swan and Ugursal25

bottom-up division, adding in a “hybrid” category that combines data- and physics-driven approaches. Mastrucci26

et al. [85] also focus on bottom-up models using this general classi�cation, but extend beyond demand modeling27

to include a multi-level life cycle analysis framework to account for embodied energy. This article also makes a28

distinction between the energy modeling portion of an assessment and the di�erent stock aggregation methods -29

something of increasing importance to bottom-up models.30

Other publications have expanded upon the bottom-up sub-class of models in Figure 1. Zhao and Magoulès [165]31

classify methods to predict building energy consumption into engineering, statistical, neural networks, support vec-32

tor machines and grey models, where the latter combines methods. Wei et al. [159] draw further on the Zhao and33

Magoulès [165] paper by de�ning white-box models as those that input detailed physical information and black-box34

models as those that input historical data, with grey-box models again using combined approaches. The authors also35

distinguish between data-driven approaches that are used for prediction (ANN, support vector machine, statistical36

regression, decision tree and genetic algorithms) vs. classi�cation (k-means clustering, self-organization map, hier-37

archical clustering). Reinhart and Davila [116] develop one of the �rst overview papers speci�cally on the Urban38

Building Energy Modeling (UBEM) sub-class of botton-up models. The paper compares published models and o�ers39

a high-level overview of approaches. Reyna et al. [118] develop an orthogonal classi�cation focused on building40

interactions (building-building, building-transportation, etc.) and provide cases leveraging the Swan and Ugursal41

classi�cation. Ahmad et al. [3] conduct a comprehensive review on energy-demand prediction models for buildings42

at urban and rural building levels. Each of these publications reference building stock energy modeling capabilities43

far beyond those outlined in the original Swan and Ugursal paper. The development of new approaches necessi-44

tates renewed evaluation of building stock energy modeling and the advantages and disadvantages of emergent45

capabilities.46

1.2. The need for an updated classi�cation47

When the Swan and Ugursal classi�cation was published in 2009, building stock energy models were limited48

in number and functionality. Three major developments have increased the capabilities and applications of current49

building stock energy models: 1) big data, enabled through advances for example in the area of utility energy data ac-50

cess, has increased the amount of empirical evidence that can be integrated into model development and calibration;51
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2) computing power has increased the availability and decreased the costs of large-scale simulation through cloud1

computing and access to supercomputing; and 3) as modelers adapt to increased data and computational capabili-2

ties, many models now use multiple modeling techniques to estimate both energy use and its driving variables; such3

models don’t �t cleanly within a single category and/or include dimensions that are not captured by a high-level4

classi�cation approach. These issues are detailed further here.5

In the past ten years, increasing amounts of data have been collected on both model inputs (e.g., building charac-6

teristics, geospatial information for individual buildings, operational schedules, and occupant behavior) and outputs7

(e.g., energy use); these improved data can inform more accurate models of building stock energy with �ner spatio-8

temporal resolutions. For example, European Energy Performance Certi�cates [36] and benchmarking mandates in9

the United States [143] are increasing data collected on building characteristics and energy performance. Moreover,10

while utilities have long restricted access to account-level energy use data, there is now a growing recognition that11

these data are essential for decision making for the public good in the face of climate change [9]. In California, for12

example, universities have been able to obtain account-level energy use data under non-disclosure agreements, and13

municipalities are also able to access aggregated utility data for their jurisdictions [22]. Access to these data allows14

linkages to be created through geocoding to building/parcel attributes, thereby revealing the relationships between15

energy use and building vintage, use-type, square footage, and socio-demographic attributes [111, 44]. A transition16

to using such granular, empirical energy use data is dramatically improving the spatial resolution and predictive17

abilities of building stock energy models. Some classi�cation systems for whole (i.e. individual) building modeling18

and calibration have been extended to cover these advancements (e.g. Fumo [46]), but stock-level energy modeling19

classi�cation systems have not been extended to cover newer data-driven techniques.20

Simultaneously, non-traditional data sources are augmenting available data on buildings. For example, remotely-21

sensed data such as LiDAR and satellite imagery are being used to determine external characteristics such as building22

height, geometry, shading, solar irradiance, and even externally-placed building equipment [52, 145, 162, 82, 92]. All23

generate rich detail on the building stock, but new modeling techniques are required to leverage this information24

in full. Such techniques include geospatial simulation models [116], which simulate all or a representative subset of25

individual buildings comprising a stock using whole building energy simulation engines and geospatial data; system26

dynamics and agent-based models [43, 83], which are able to explore causal e�ects and interactions across modeled27

entities (e.g., across individual buildings, or occupants within a building); and machine learning models [8], which28

leverage big data resources to predict changes in building energy use at scale.29

Cloud-based computing has proven to be an important enabling technology for many of these computationally-30

intensive models, as the cost of cloud computing has decreased and the availability of web-based resources has im-31

proved [45]. Geospatial models, for example, dramatically expand upon the single-archetype assumption of previous32

bottom-up engineering model classi�cations in their ability to represent every building in a city, region, or country33

explicitly at a �nely grained temporal resolution. Moreover, models utilizing these big data and cloud computing34

resources often combine multiple techniques that don’t �t neatly within the distinct “top-down” or “bottom-up”35

Swan and Ugursal designations, and such models may also explicitly represent additional variables that in�uence36

energy use as part of the model’s structure and outputs. Additional classi�cation categories and layers are needed37

to capture the proliferation of such hybrid modeling techniques for representing both stock-level energy use and its38

key correlates.39

Beyond these gaps in existing classi�cations’ coverage of modeling techniques and mixed modeling approaches,40

previous classi�cations also lack guidance on how to assess the transferability and quality of models along dimen-41

sions that are implicit in the high-level classi�cation diagram. In 2009, most models were bespoke and privately42

stored - standalone models developed to assess a single geographical area by a single group of people for a single43

purpose. Increasingly, stock models have become designed for wider applicability, allowing core modeling structures44

to be transferred to other cities or countries by varying model input data. As model transfer is being considered,45

additional language is needed to appropriately communicate key characteristics of the model such as handling of46

time dynamics, model and input uncertainty, and the geographic and spatial resolution and extent of models. Ac-47

cordingly, there is a need to identify and describe such additional dimensions to complement a high-level model48

classi�cation approach.49
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2. Overview of proposed classi�cation scheme1

The proposed building stock energy model classi�cation scheme (Figure 2) establishes a �exible framework for2

high-level model classi�cation that: (a) builds from existing classi�cation frameworks while accounting for emerging3

simulation-based, data-driven, and hybrid modeling techniques; (b) recognizes the potential sub-layers of a building4

stock energy model; and (c) encourages the description of additional model dimensions that are not readily captured5

by a high-level classi�cation.6

Figure 2: An updated classi�cation scheme for building stock energy models. The scheme builds from existing classi�cation approaches while
contributing the following changes: 1) the classi�cation eschews a hierarchical structure in favor of a more �exible organization, grouping models
into four quadrants based on whether each is top-down or bottom-up and black-box or white-box; models are tagged by their applicable quad-
rant(s) (Q1 for top-down/black-box, Q1/Q4 for hybrid, etc.), 2) examples of the emerging use of simulation-based and data-driven techniques in
building stock energy modeling are included (e.g., system dynamics, agent-based models, machine learning) 3) hybrid models are identi�ed that
combine modeling techniques across quadrants, 4) sub-layers representing key energy use determinants (e.g., people, building stock, environ-
ment) are represented; modeling approaches for each of these determinants could be mapped to the same or to a di�erent of the four quadrants
of the energy layer, and 5) additional dimensions (e.g., system boundary, spatio-temporal resolution, dynamics, and uncertainty) are identi�ed
that should be described in parallel with mapping a model to the high-level classi�cation quadrants.

In place of the hierarchical organization of existing classi�cations, the classi�cation diagram in Figure 2 groups7

building stock energy modeling techniques into one of four quadrants based on their design (top-down/bottom up)8

and degree of transparency (black-box/white-box).2 The four classi�cation quadrants are thus: top-down/black box9

(Q1), top-down/white-box (Q2), bottom-up/black-box (Q3), and bottom-up/white-box (Q4).10

To illustrate how this new classi�cation approach addresses gaps in the coverage of building stock energy model-11

ing techniques in existing classi�cations, Figure 2 includes examples of emerging data-driven and simulation-based12

techniques alongside established techniques: machine learning (Q4: bottom-up/white-box), system dynamics (Q2:13

top-down/white-box), agent-based modeling (Q4: bottom-up/white-box), and physics-simulation (Q4). Additionally,14

2Here, black-box refers to models in which underlying processes leading to outcomes are not directly interpretable, while in white-box
models the internal model structure and in�uencing variables are directly interpretable.
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Figure 2 designates an area between each of the four classi�cation quadrants for hybrid modeling techniques that1

combine techniques across (but not within) the quadrants. Details concerning the example modeling techniques2

identi�ed in Figure 2 are discussed in the next section.3

Figure 2 shows three additional modeling layers that support the main energy layer of the classi�cation. These4

supporting layers concern the representation of key energy use determinants: occupants’ energy-related behaviors5

within the modeled building stock, the characteristics of the building stock itself, and environmental context (phys-6

ical conditions such as outdoor temperature and solar intensity as well as socio-economic conditions). Modeling7

techniques that directly represent such variables are expected to map to the same four quadrants shown in Figure8

2 for the energy layer, though speci�c techniques within each quadrant may be unique to the supporting layer.9

Where these supporting layers are only implicitly addressed in a building stock energy model, this should be noted10

alongside the model’s classi�cation.11

Finally, Figure 2 identi�es four additional modeling dimensions that should be described as a complement to the12

high-level classi�cation: dynamics, system boundaries, spatio-temporal resolution, and model uncertainty. Each of13

these dimensions represents an axis along which modeling approaches may vary independently of the high-level14

classi�cation quadrants and layers. While such dimensions are not readily captured by a high-level classi�cation,15

their description provides important context about a model that further facilitates its assessment by the research16

community and comparison with similar building stock energy models.17

The following sections expand upon the classi�cation quadrants, example modeling techniques, and additional18

model dimensions shown in Figure 2, providing an overview of key concepts and relevant studies from the recent19

building stock energy literature. Collection of relevant literature sources was informed primarily by the domain20

expertise of the Annex 70 authors. A summary of the classi�cation quadrants, the strengths and limitations of the21

modeling approaches they represent, and example literature references is provided in Table 1.22
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Table 1: Summary of proposed building stock energy model classi�cation quadrants, the strengths and limitations of the modeling approaches
they represent, and example literature references.

Classi�cation
Quadrant

Approach Strengths Limitations Example
References
(Modeling Technique)

Q1
(Top-down
/Black-box)

Estimate aggregate
building energy use from
sector-wide socio-
economic and/or
technological variables

Simple and computationally
tractable, readily paired
with other modeling frameworks
(e.g., with bottom-up representations
of energy demand in Integrated
Assessment Models)

Typically unable to represent
impacts of speci�c technology
or operation improvements/
measures; unable to represent
disruptive changes to building
stock energy use due to reliance
on historical data

[77, 19, 41, 31, 112, 2]
(Econometric)
[69, 35, 74, 155, 49]
(Technological)

Q2
(Top-down
/White-box)

Represent physical
causality at the
aggregate building
and technology
stock level

Able to represent the complexity of
building stock energy use and
its components at the aggregate level,
including technology and building
stocks, stock �ows, and the evolution
of the system over time

Unable to link aggregate
building energy use to
building-level operations; challenging
to represent spatial dimension;
may require extensive data, time,
and expert knowledge to fully
represent system components and
causal �ows

[33, 107, 32, 95, 39, 166]
(System dynamics)

Q3
(Bottom-up
/Black-box)

Attribute building-level
energy use to particular
energy end uses
(e.g. space heating,
hot water usage,
household appliances)
utilizing
statistical analysis of
historical data

Able to reveal important relationships
between energy end use outputs
and relevant input variables; relatively
simple models with low data
requirements may yield high
explanatory or predictive
performance

Unable to explicitly represent
key dynamics in�uencing energy
end uses in buildings (e.g.,
occupant behavior, heat transfer
through the envelope); in certain
cases require large datasets to yield
good predictive performance (e.g.,
machine learning models)

[129, 79, 60, 84, 4, 144]
(Classic statistical)
[120, 110, 68, 102, 110, 5]
(Machine learning)

Q4
(Bottom-up
/White-box)

Simulate the physical
relationships of proccesses
at the building or energy
end-use level

Able to explicitly represent key
dynamics in�uencing building
energy end uses, building stock
diversity, and the aggregate energy
e�ects of changes to operations at the
individual building level

Require extensive data to represent
detailed characteristics of
the building stock and drivers of
its end use patterns, computationally
intensive, potentially challenging
to pair with other modeling
frameworks

[152, 151, 119, 18]
(End-use distribution)
[164, 93, 135, 98, 10, 1]
(Agent-based)
[100, 65, 136, 59, 101, 86, 11]
(Physics-simulation)

Multiple
Quadrants
(Hybrid)

Combine elements of the
modeling approaches
across the four
classi�cation quadrants

May address the limitations of one
modeling approach by complementing
with the strengths of another;
potentially more �exible in
application and able to answer
a broader set of analysis questions

Often more complex in design and
implementation – and by extension,
more di�cult to communicate and
replicate – because of the need to
harmonize multiple modeling
approaches that may concern disparate
scales and variables of focus

[148, 71, 90, 63, 80, 81]
(Technological-econometric
and end-use distribution)
[141] (Machine learning
and physics-simulation)
[126, 26] (Technological,
system dynamics, and
archetype)

2.1. Quadrants of the Classi�cation1

2.1.1. Q1: Top-down / Black-box2

In the new classi�cation, top-down/black-box models remain mostly unchanged from previous classi�cation3

schemes. This class of models estimates sector-level energy utilizing readily-available, sector-wide historic vari-4

ables such as demographics or economic indicators. These models typically exclude end-use energy attribution or5

rely on aggregate end-use functions that link energy demand and underlying socio-economic factors. Our classi�-6

cation maintains two major categories of top-down/black-box modeling techniques, econometric and technological,7

consistent with existing classi�cation schemes.8

9

Econometric10

Econometric models apply statistics and mathematics based on economic theory to forecast speci�c outcomes. For11
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building stock energy modeling, commonly used economic indicators include demographics, fuel prices, household1

income, or the gross domestic product of an economy as a whole, which may be assessed at regional, national, or2

global scales. Econometric models were originally developed in the 1970s, stemming from the economic �eld, and3

particularly useful for exploring high-level trends. For example, Lin and Liu [77] develop an econometric forecast of4

building energy consumption in China given heavy urbanization trends for three di�erent future scenarios, includ-5

ing an uncertainty assessment on the predictions, and in a related assessment use the models to identify the rebound6

e�ect of energy e�ciency. Broin et al. [19] model energy demand for space and water heating from 1970 to 2005 in7

the residential sector of four EU countries using index decomposition3, econometric models and cointegration anal-8

ysis. The spatial and temporal in�uences on energy demand in each country of the number of households, �oor area9

per household and unit consumption for space and water heating are isolated. Fazeli et al. [37] explore three separate10

econometric techniques to forecast fuel consumption associated with residential space heating in Nordic countries.11

Filippini and Hunt [41] estimate a stochastic frontier function for U.S. residential aggregate energy demand using12

panel data for 48 states from 1995–2007. Dilaver and Hunt [31] forecast the relationship between Turkish house-13

hold �nal energy consumption expenditures and residential electricity prices by applying a structural time series14

model to annual data over the period from 1960–2008. Pourazarm and Cooray [112] similarly employ unit root tests,15

cointegration and error-correction models on annual time series of residential electricity consumption in Iran for16

the period 1967–2009 and forecast consumption through 2020. Adom and Bekoe [2] study electricity use in Ghana17

across sectors using two econometric approaches – ARDL and PAM. Hussain et al. [61] study cross-sector electricity18

use in Pakistan using Holt-Winter and Autoregressive Integrated Moving Average (ARIMA) models and time series19

data from 1980–2011; similar approaches are summarized in [70, 123, 64, 14].20

21

Technological22

Technological models expand upon the inputs of econometric models to explicitly account for technological char-23

acteristics of the building stock, such as appliance saturation trends or adherence to building codes. Over the past24

decade, these models (and combined technological-econometric models, as reviewed in [38]) have largely supplanted25

pure econometric approaches. For example, the Austrian Institute for Economic Research presents a working pa-26

per exploring technology and economic impacts on residential energy demand [69]. Integrated Assessment Models27

(IAMs) often also derive total energy demand based on technological as well as demographic (population, population28

density), economic (income per capita), and climate-related inputs (heating or cooling degree days). For example,29

Eom et al. [35] utilize appliance e�ciency trends alongside demographic and economic trends to project future30

energy consumption in China. Other IAMs that have technological modeling elements include: the EDGE model,31

which was used to explore scenarios of energy consumption until year 2100 for the entire world in 7 regions [74];32

the IMAGE model, which was used to explore lifestyle changes in the housing domain including reduced demand for33

space and water heating, a cap on home size, and reduced rates of appliance ownership [155]; and the compilation of34

results from 5 models (GCAM, IMAGE, MESSAGE, MERGE and REMIND) on energy demand scenarios that achieve35

2 °C and well-below 2 °C climate targets [49].36

2.1.2. Q2: Top-down/White-box37

Previous classi�cation schemes have generally neglected top-down/white-box models, which represent physi-38

cal causality at the aggregate building and technology stock level. This approach is distinct from the two existing39

top-down approaches that correlate economic (econometric) or technology (technological) indicators with building40

energy demand. In the new classi�cation, we highlight system dynamics as an example of such a top-down/white-41

box modeling technique.42

43

System dynamics44

Typically, system dynamics models are characterized by: a) a conceptual diagram of the building and technology45

stock and its aggregate-level feedback loops and b) quantitative models of aggregate-level building and technol-46

ogy stocks and �ows. Stocks represent point-in-time quantities of interest (e.g., the national residential build-47

3Decomposition approaches are noted in multiple other studies (e.g., [58, 117, 21]).
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ing stock), while �ows represent time-varying additions to or subtractions from stock totals (e.g., annual addi-1

tions/alterations/subtractions to the residential stock from construction/retro�ts/demolition).2

There are several examples of system dynamics approaches in the building stock energy modeling literature. The3

Energy Policy Simulator [33] is a system dynamics model that represents the economy and energy system across4

the buildings sector as well as the transportation, electricity supply, industry, and land use/forestry sectors. The5

Simulator assesses the e�ects of national energy and environmental policies on emissions, cash �ows, consumers,6

and the composition of electricity generation, among other metrics, and it has been adapted for use across multiple7

countries. Onat et al. [107] develop a system dynamics model of greenhouse gas emissions from the U.S. residen-8

tial building stock to explore the e�cacy of di�erent policies in stabilizing an increasing emissions trend. Model9

variables include the carbon footprint and energy intensity of residential buildings, the number of new and existing10

green buildings, retro�t rate, employee travel characteristics, gross domestic product, and total population. Motawa11

and Oladokun [95] use system dynamics to characterize relationship between the building stock, occupants, and the12

environment (policy, climate, and economy) and simulate UK energy use and CO2 emissions. Eker et al. [32] build a13

system dynamics framework to explore interactions between various aspects of the UK’s housing stock. Causal loop14

diagrams are developed to assess as–built performance, retro�t rate dynamics, and the well–being of residents. Sim-15

ilarly, Zhou et al. [166] use a system dynamics approach to explore the turnover dynamics of the Chinese residential16

building stock. Finally, at the urban scale, Feng et al. [39] develop a system dynamics model of energy use and CO217

emissions trends for Beijing between 2005–2030. Six sub-models comprise socioeconomic, agricultural, industrial,18

service, residential, and transport parameters, and �ows within and between the sub-models are described using19

regression equations.20

2.1.3. Q3: Bottom-up/Black-box21

Bottom-up/black-box models utilize historic information and regression analysis to attribute building energy use22

to particular end-uses, assuming the conditions underlying the model prediction space mirror those of the model23

training space. From these relationships, building-level end use estimates can be extended to the scale of the entire24

building stock.25

26

Classical statistical27

Classical bottom-up statistical techniques have traditionally been used to predict either whole building or end use28

energy consumption, developing correlations between these outputs and key input parameters. In the new classi�-29

cation, this category encompasses both the regression-based and conditional demand analysis techniques identi�ed30

in previous classi�cation frameworks [140]. When covering economic inputs, bottom-up statistical models di�er31

from the macro-econometric models of Q1 in that they enable micro-economic studies with a higher level of detail32

and often cover the interactions between households and individuals (e.g. building owners) and organizations, en-33

abling further insights into energy consumption [86] (e.g., in studies of the UK and Germany [14], China [79], and34

Denmark [73]).35

Bottom-up statistical models are found across national, regional, and urban scale studies of building stock en-36

ergy use. At the national scale, Santin et al. [129] utilize bottom-up statistical techniques to identify the relative37

importance of building characteristics and occupant behavior to stock-level residential energy consumption in the38

Netherlands. Liu et al. [79] study the e�ect of a new type of urbanization on energy consumption in China through a39

spatial econometric analysis. At the urban scale, Howard et al. [60] develop a regression model for end-use building40

energy consumption in New York City, linking consumption to speci�c locations throughout the city. Mastrucci41

et al. [84] statistically downscale city energy use to the building level for Rotterdam using linear regression. Some42

studies also use bottom-up statistical techniques to support energy utilities, developing forecasts of day-ahead en-43

ergy demand that inform utility-scale management, control and veri�cation strategies. For example, Akpinar and44

Yumuşak [4] predict household natural gas consumption in the Turkish Sakarya Province by using a sliding win-45

dow technique with multiple linear equations (MLRs) to select the most suitable data set sizes, based on data from46

409 days containing meteorological data, customer numbers, and holidays. Tian et al. [144] investigate the locally47

varying energy use intensity for electricity and gas in London using geographically weighted regression, a mixed48

model, and a Bayesian hierarchical model.49

50
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Machine learning1

Machine learning techniques aim primarily at predictive accuracy, utilizing a wide range of algorithms to �nd pat-2

terns in rich but large and unwieldy datasets. The primary di�erence between machine learning models and classical3

bottom-up statistical techniques is the former’s nearly-exclusive focus on predictive accuracy, while statistical mod-4

els are often also used to identify relationships between variables and test their signi�cance (i.e., these models are5

commonly used for inference). The new classi�cation generalizes related models identi�ed in existing classi�cations6

(e.g., neural networks in [140]) to a broader set of machine learning techniques.7

Machine learning models of building stock energy use have seen a large increase in the literature over the last8

decade, though they are rarely used at the regional and national scales due to their heavy data and computational9

requirements (see reviews in [7] and [121]). At the urban scale, Tso and Yau [146] compare classical statistical regres-10

sion techniques to decision trees and neural networks to evaluate the accuracy in predicting energy consumption11

in Hong Kong. The results indicate that all three models are valid for this type of prediction, with the decision tree12

and neural network performing slightly better in the summer and winter, respectively. Robinson et al. [120] use13

multiple machine learning methods (linear regression, gradient boosting regression, and random forest regression)14

to estimate the energy use of the commercial building stock in di�erent U.S. metropolitan areas based on �oor area,15

principal building activity, number of �oors, and heating/cooling degree days. Zhang et al. [163] use a similarly16

wide range of machine learning techniques to model electricity and natural gas consumption in U.S. homes, com-17

plementing a separate analysis of transportation-related energy use. Papadopoulos et al. [109] use an unsupervised18

learning algorithm to cluster buildings in New York City based on their energy use. Kontokosta and Tull [68] de-19

velop a predictive model of electricity and natural gas use at the building, district, and city scales using training20

data from energy disclosure policies and predictors from widely-available property and zoning information. Three21

di�erent machine learning algorithms (least squares regression, support vector machines, and random forest) are22

�t to the city’s energy benchmarking data and used to predict energy use for every property in New York City.23

Nutkiewicz et al. [102] propose a network-based ML model to learn the hidden energy connections and interde-24

pendencies between buildings at multiple scales (e.g., individual building scale, community scale, and urban scale),25

tested for US commercial buildings. Papadopoulos and Kontokosta [110] use a gradient tree boosting method to26

develop a building energy performance grading method; this method has shown improved performance over linear27

models in predicting hourly and annual building energy use at the urban scale. Finally, Al Tarhuni et al. [5] use ran-28

dom forest regression and deep learning neural network approaches to predict the monthly natural gas consumption29

of hundreds of university-owned student residences in the U.S. Midwest from readily accessible building geometry,30

energy system characteristics, and energy consumption data.31

2.1.4. Q4: Bottom-up/White-box32

Various forms of bottom-up/white-box models have been expanded over the last decade. This class of models33

simulates the physical relationship of processes at the building or end-use level. In the new classi�cation, we note34

the new advances in this area a�orded by high-performance and cloud computing along with simulation-based tech-35

niques.36

37

End-use distribution38

This approach models the distribution of energy demand per end-use or appliance type to calculate total end-use39

or appliance energy consumption at scale – generally without accounting for interactions between end-uses. Stan-40

dalone end-use distribution models are uncommon in the existing literature, as these models are often combined41

with other modeling techniques to form hybrid approaches. The U.S. RECS and CBECS surveys rely on end-use dis-42

tribution models to apportion whole building residential and commercial building energy use collected from billing43

data across contributing energy end uses [152, 151]. Engineering estimates are made of the expected consumption44

of each end use, and these estimates are entered as inputs to regressions with measured total building energy use45

as the dependent variable, to calibrate the end use attributions. Reyna and Chester [119] utilize appliance distri-46

bution modeling combined with detailed physics-simulation of the thermal envelope to project residential building47

demand under di�erent climate change scenarios in southern California. Broin et al. [18] pair exogenously derived48

assumptions about annual changes in energy carrier mixes, improvements in appliance e�ciency, and construction49

rates with an end use-disaggregated model of energy demand in EU residential and service buildings, estimating50
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total useful energy demand in new and existing vintages of these building types across a multi-year time horizon.1

2

Agent-based models3

Agent-based models (ABMs) represent causality at the individual building or district level, constructing stock-level4

building energy use outcomes in a bottom-up manner. ABMs use software representations of individual buildings5

and/or decision-maker agents that have heterogeneous attributes as well as rules for interacting with other agents6

and their physical or economic environments. Aggregate stock and energy outcomes emerge from individual-level7

behaviors – that is, macro-level outcomes are determined by the micro-motives of agents with endogenous behavior8

rules. In many ways, agent-based models are the bottom-up analogue to top-down system dynamics models; like9

system dynamics, agent–based techniques are not highlighted in previous classi�cations.10

ABMs have gained in popularity across many applications, and there are several notable examples for the build-11

ings sector. Zhao et al. [164] developed the Commercial Buildings Sector Agent-based Model (CoBAM). CoBAM12

considers U.S. commercial buildings of di�erent types and in di�erent climate zones as adaptive agents that are13

evolving internally and interacting with energy e�ciency regulations, which in turn dictates the evolution of build-14

ing energy use over time. In another study focused on the residential sector, Moglia et al. [93] use an ABM to model15

the uptake of low carbon and energy e�cient technologies and practices by households, considering both the in-16

�uence of social networks and the decision rules of several di�erent agent types that extend beyond homeowners.17

This study adapts the decision-making algorithms of an earlier ABM published by Sopha et al. [135], which was18

used to model uptake of energy e�cient heating in Norway. Similarly, Nägeli et al. [98] developed an ABM of the19

building stock that uses a decision model to simulate building renovation and heating system substitution decisions20

of building owners coupled with a physics-based model to simulate the resulting energy demand over time. Azar21

et al. [10] use an ABM framework to calculate the thermal comfort and energy use of multiple buildings on a campus22

in Abu Dhabi. Their model consists of three sub-models: people movement, thermal comfort and energy consump-23

tion. Abdallah et al. [1] evaluate the impact of a non-intrusive energy messaging intervention on energy use in24

the Belgian residential sector using an ABM that represents daily energy-related occupant behaviors, peer pressure25

e�ects on energy use, and the e�ects of messaging interventions.26

27

Physics-simulation28

Physics-simulation models are a new category in this classi�cation that encompasses both the archetype modeling29

technique of previous classi�cations and emerging geo-spatial models, recognizing the common reliance of both on30

physics-based simulations of whole building energy use. Archetype modeling is a well-established physics-based31

approach that simulates the energy performance of a single building or collection of buildings that represents a32

larger segment of the building stock; results can be scaled up to represent total sector energy use in a de�ned geo-33

graphic area. Pure archetype approaches are plentiful, including ResStock [100] and the Tabula project [11], along34

with similar models compiled for the UK in [65], for Germany in [136] and worldwide in [87]. Recent advances in35

computing and data have allowed improvement of the traditional, single-building archetype approach to include36

modeling of hundreds or thousands of representative buildings (e.g., ResStock), sometimes even modeling every in-37

dividual building in a given geographic area (e.g., ECCABS [86]).4 As such, the methodologies used to generate the38

building archetypes may be diverse, including arti�cial reference buildings [91, 88], statistically sampled reference39

buildings [87], synthetic buildings [98, 97] or data-driven approaches [6, 167].40

Geospatial modeling, which uses building energy simulation in combination with spatial representation and41

modeling in geographic information systems (GIS), is a rapidly developing physics-modeling approach that holds42

promise for generating information required for energy and emissions-related policy making and planning by ac-43

tors such as municipalities and utilities already using GIS-based decision support. In this approach, geodatabases44

are developed that link building attributes and simulated energy use to common geographical references such as45

parcels or building footprints. Commonly, archetype-based energy simulation is performed using software such as46

EnergyPlus for representative buildings (e.g., CityBES [59]). Results are applied to actual buildings corresponding to47

4This advanced kind of archetype model is sometimes labeled urban-scale building energy modeling (UBEM) in previous literature [116],
although the approach can be applied to other land use types besides urban land uses.
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the archetype in the stock – in some cases using actual building geometries (e.g., [149]). Less commonly, buildings1

are simulated individually (e.g., AutoBEM [101]).2

Multi-module models that integrate several of the bottom-up/white-box approaches above are common and typ-3

ically focus on electricity use, distributed renewable energy and other demand/supply interactions. For instance,4

Sandels et al. [127] forecasts electricity load pro�les hourly for a population of Swedish households living in de-5

tached houses with a model constructed of three separate modules: appliance usage, domestic hot water, and space6

heating. The latter module represents the thermodynamic aspects of the buildings, weather dynamics, and the heat7

loss output from the aforementioned modules. Subsequently, a use case for a neighborhood of detached houses in8

Sweden is simulated using a Monte Carlo approach. Similar approaches are used by Nyholm et al. [103], where9

heating demand estimates from the ECCABS model are supplemented with hourly pro�les for electrical uses, using10

a statistically sampled description of Swedish households with electrical heating. This approach is further developed11

into the EBUC model in [122], which adds a district heating (DH) module, and in the MOSAIC method [67], which12

uses a bottom-up simulation approach to determine current and future consumption and production load curves for13

an area, calibrating estimates by comparing simulated load curves with observations.14

15

2.1.5. Multiple Quadrants: Hybrid Models16

In practice, many models use mixed approaches that cross the quadrants of Figure 2 and thus fall into the hybrid17

region shown in between the quadrants.18

Examples of building stock energy models with hybrid elements are prevalent in recent years. For example,19

NEMS, an integrated multi-sector energy modeling framework developed by the U.S. EIA, uses a technological-20

econometric approach (Q1) to develop a long-term forecast of growth in the building and technology stock, which21

is combined with bottom-up modeling appliance distribution models (Q4) to estimate the energy use intensity of22

new and existing building stock vintages [148, 160]. Scout, [71] a buildings sector-speci�c U.S model that draws23

its baseline energy use scenario from NEMS, adopts the same Q1/Q4 modeling approach. In the Canadian CHREM24

model, machine learning (Q3) is used to predict occupant–driven domestic hot water and lighting energy use, while25

an archetype model (Q4) is used to predict space heating and cooling energy use [141]. gTech [90], another Canadian26

model, merges the capabilities of the previously developed CIMS hybrid energy-economy model (Q1/Q4) [63] with27

other top-down modeling approaches. Sandberg et al. [126] use a hybrid model to simulate the long-term housing28

stock energy use in Norway, using technological (Q1) and system dynamics (Q2) techniques to simulate the devel-29

opment of the stock and an archetype approach (Q4) to estimate demand. Colloricchio [26] add an econometric30

component (Q1) to Sandberg et al.’s housing stock model (Q2), applying the hybrid model to a case study of the31

residential sector in Italy.32

Prominent multi-sector energy system models such as MARKAL and TIMES similarly combine bottom-up func-33

tions for disaggregated energy demand (Q3) with top-down representations of macro-economic e�ects on the energy34

system (Q1) [80, 81]. TIMES has been adapted for use across several countries in recent years, sometimes to inves-35

tigate energy use in the buildings sector. For example, using the Global TIMES model, Wang et al. [158] simulated36

the transformation pathways of the global energy system under 2-degree and 1.5-degree climate targets, analyz-37

ing the features and challenges of building sector transition pathways in 14 high, middle, and low income regions.38

Seljom et al. [132] use a stochastic TIMES model with an explicit representation of uncertainty in the electricity39

supply and building heating demand to demonstrate that the Scandinavian energy system is capable of integrating40

a large amount of zero-energy buildings with intermittent PV production. Cayla and Maïzi [23] develop a TIMES-41

Households model that represents household daily energy consumption and equipment purchasing behavior with42

a focus on the French residential building and transport sectors. Shi et al. [133] use China TIMES to model the43

future energy consumption and carbon emissions in building sector and �nd that, including renewable energy used44

in buildings, China’s building sector can reach a relatively low-carbon future with more low- and non-carbon fuels45

consumed. In general, demand sectors in TIMES models – including energy use in buildings – have often been46

handled with a limited degree of detail [132]. This can be problematic since a too coarse description of energy de-47

mand may lead to unrealistic results, with small price changes leading either to no impact or sudden technological48

changes [23]. Furthermore, the bene�ts of energy savings on the wider economy [72] and behavioral preferences49

or “rebound” e�ects [128] are typically disregarded.50
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Many of the above hybrid models rely more heavily on one of the classi�cation quadrants from Figure 2 than1

others – TIMES, for example, is a primarily bottom-up framework that "reaches up" to capture certain e�ects of2

the larger economy on the energy system [80]. Making the classi�cation quadrants and the conceptual di�erences3

across them explicit in the proposed scheme mitigates the loss of information that would result from simply adding4

a hybrid branch to the hierarchical organizations of existing classi�cations.5

2.2. Additional Model Dimensions6

Given the increasing sophistication of building stock energy models, the high-level classi�cation quadrants and7

layers of Figure 2 may be insu�cient to communicate important contextual details about the chosen modeling ap-8

proach. Accordingly, we propose that a model’s treatment of at least four additional dimensions should be described9

in parallel with its mapping to the high-level classi�cation quadrants of Figure 2; these additional dimensions are10

enumerated below.11

2.2.1. System boundaries12

In building stock energy modeling, the collection of buildings studied can be conceptualized as a system that13

is bounded in time and space in a manner consistent with principle modeling questions and applications. System14

boundaries are identi�ed at the interface between the entire modeled system and the external environment, as well as15

at the interface(s) between modeled sub-systems. (Figure 3). Choosing and communicating appropriate boundaries16

for the modeled system and sub-systems represented by a building stock energy model is critical to ensuring the17

interpretability of model outputs. Here we present further considerations regarding the de�nition of a building stock18

energy model’s spatio-temporal scope, as well as other aspects concerning a model’s overall extent and sub-system19

boundaries.20

Figure 3: Relationship between the modeled system and its environment; the overall system boundary is represented as a conceptual line
between the two (left). Interrelationship between two subsystems within a larger system, with a boundary de�ned at the interface between the
two subsystems (right) [124].

The spatial scope of a model is de�ned by the geographical area covered in the study. The spatial scope could be21

a given neighborhood (e.g. Cuerda et al., Sartori et al. [28, 131]), city (e.g. Ouyang et al. [108]), region (e.g. Galante22

et al., Reyna and Chester [48, 119], country (e.g. Mata et al., Sandberg et al., Nägeli et al. [89, 126, 97]) or countries23

(e.g. Urge-Vorsatz et al., Building Performance Institute Europe (BPIE), Vásquez et al., Mata et al. [150, 20, 156, 89].24

Combinations are not unusual – e.g., Hargreaves et al. [56] integrate regional and urban [55] modeling with the25

DECM model at the building scale to forecast how spatial planning policies would a�ect the suitability of retro�tting26

and decentralised supply and how this would vary between area types.27

The temporal scope of a model is de�ned by the year(s) or time period under study. Static models commonly de-28

scribe the energy use in a speci�c year (e.g. Cuerda et al. [28]), whereas long-term dynamic models may describe the29

development over long time periods up to 50 or even 100 years (e.g. Sandberg et al., Berardi [125, 13]). Other models30

serve as an archival repository of historical consumption data and are continually updated [111]. The temporal31

scope may therefore cover both historical and future development of the modeled building energy system.32
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The system boundaries of a building stock energy model may be de�ned by more than spatio-temporal consid-1

erations. Building stock energy models are often used as part of a larger, multi-sectorial modeling frameworks such2

as the partial-equilibrium NEMS [148] and MARKAL/TIMES models [81, 80] and general equilibrium Integrated3

Assessment Models [69, 35, 74, 155, 49]. Within the buildings sector focus, model application may also be limited4

to a subset of the building stock – e.g., residential (Csoknyai et al. [27]) or non-residential building stock (Lindberg5

et al. [78]), or the public housing stock (Gagliano et al. [47]). Depending on the desired outcome, speci�c energy end6

uses might be targeted in the analysis. Some studies focus on operational energy use only (e.g., heating, cooling,7

domestic hot water), while others adopt a life cycle perspective and therefore include other phases of energy use8

and emissions such as manufacturing, transportation, construction and demolition in the analysis.9

In addition to addressing these considerations about a model’s overall system boundary, modelers should de-10

scribe any subsystems within the model and the boundaries that determine their spheres of in�uence. Typical11

subsystems represented in building energy stock models include energy demand, occupants, physical building char-12

acteristics and systems, and environmental context, as suggested by the modeling sub-layers shown in Figure 2.13

Outdoor conditions such as weather are usually treated as inputs to the model, although some parts such as detailed14

solar radiation and local wind pressure modeling are included as separate subsystems. Extended models may in-15

clude representations of the electric grid, transportation systems, and macro- and micro-economic processes, among16

others.17

2.2.2. Spatio-temporal resolution18

The spatio-temporal resolution of a building stock energy model is the level of disaggregation with which key19

model information and results are represented. Each model has a fundamental unit of observation at which calcula-20

tions are done, across both space (e.g., ‘a house’, ‘room-based’, ‘meter-based,’ etc.) and time (e.g. hourly, 15-minute,21

sub-section, annual). While a system boundary represents the highest geographical or temporal aggregation of a22

model and therefore serves as an upper limit on a model’s spatio-temporal resolution, the model’s unit of observation23

is the lower limit of its spatio-temporal resolution.24

Many building stock energy models study the energy demand within a given spatial boundary without any25

details about the location or distribution of the buildings within the geographical area. The spatial resolution is26

therefore equal to that entire area, even though the unit of observation might be a single dwelling. Other models27

have a high spatial resolution and tie building energy use to speci�c locations – e.g., through the use of geographical28

information systems (GIS). The geocoded model results are then commonly presented in maps which adds important29

additional information about the distribution of the energy use (e.g. Mastrucci et al., Stephan and Athanassiadis,30

Möller et al. [84, 138, 94]). Where multiple data layers are incorporated, each layer may have a di�erent spatial31

resolution (e.g., census tract, zip code) and therefore the analytical methods used to map these layers to a common32

spatial unit is an important model attribute.33

The temporal resolution of building stock energy models concerns the time step that is used to generate results.34

In the studies previously mentioned with longer temporal scopes, energy simulations are typically carried out per35

year (e.g., Giraudet et al. [51]). However, studies also demonstrate higher time resolutions (e.g., per minute or36

hour as in Sartori et al., Reyna and Chester, Mata et al. [131, 119, 87]). A model’s temporal resolution determines the37

type of questions that it can answer – for example, an hourly resolution is needed to investigate demand-side energy38

�exibility strategies, as clear diurnal variations occur in building loads; a monthly resolution is relevant for the study39

of total heating and cooling demand; and an annual resolution is appropriate for studying building renovations.40

2.2.3. Dynamics41

Treatment of dynamics in building stock energy models can be described along the lines of the three supporting42

variable layers of Figure 2: 1) building usage/occupant behavior, 2) building stock, and 3) context/environment. In43

practice, these variables may be tightly connected in the model implementation (e.g., building stock dynamics are44

a�ected by changes in the model context).45

46

Occupant/building use dynamics include the number of occupants (e.g., evolution of family composition, number of47

visitors on the premises, aging, typical occupant interactions), occupants’ energy-related behaviors over time (e.g.,48

adjustment of thermostat set points and other controls, movement to and from di�erent spaces), and changes in49

appliance ownership trends (e.g., type of HVAC equipment, number of TVs, etc.). For multi-family or commercial50
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buildings with centralized control systems, operator decision-making would also fall into this category of dynamics.1

2

Building stock dynamics refer to changes in the stock such as building demolition, renovation, and new construction,3

as well as the e�ect this has on the building stock composition, installed equipment, and resulting energy and4

environmental impacts. Changes to the building stock may be represented using both static and dynamic approaches5

(Figure 4) [85]. Static models assess building stocks at a de�ned moment in time (e.g., for a single year). Such point-in-6

time snapshots may be assessed in a status quo assessment or a comparative assessment, where the latter compares the7

current state with a hypothetical future state (e.g., after the implementation of certain energy e�ciency measures).8

In contrast, dynamic models capture the evolution of building stocks and their energy use over time by modeling9

processes such as new construction, demolition, retro�ts and replacement of technologies. Such analyses can be10

focused on historic development (ex-post), on forecasting future development (ex-ante) or a combination of both.11

Building
stock models

Static Dynamic

Status quo
assessment

Comparative
assessment

Ex-ante
assessment

Ex-post
assessment

Figure 4: Approaches for representing changes to the building stock may be static (assessing stocks at a speci�c moment in time) or dynamic
(capturing the evolution of building stocks over time); each approach is suitable for di�erent types of modeling assessments.

Context/environment dynamics concern changes in the energy system that result in (for example) altered greenhouse12

gas emission factors (e.g. changing electric generation mix), changes in energy prices, population growth, structural13

changes in the economy (e.g. growth of certain economic sectors) or the impact of climate change on building energy14

demand – e.g., via rising temperatures and day-to-day weather conditions.15

Transparent descriptions of how each of these types of dynamics is handled in building stock energy models16

are crucial for assessing the quality of model outputs. For example, as described in Sartori et al. [130], it is often17

the case that policy roadmaps and other studies use time-resolved inputs on energy and emission intensities, but18

represent changes in the building stock using �xed rates for construction, demolition and renovation, which may be19

overly simplistic. Alternatively, renovation rates may be assumed to increase rapidly in order to reach stock-level20

energy e�ciency goals. Sandberg et al. [125] demonstrate how unrealistic assumptions about renovation dynamics21

can result in model outputs that overstate future energy savings potential.22

2.2.4. Quality assurance23

It is essential to understand the limitations of a building stock energy model’s predictive power. No model can24

be a perfect representation of the system it aims to emulate and all models inevitably contain uncertainty [114],25

which should be quanti�ed as part of the model quality assurance process. Uncertainty can be de�ned as “any26

deviation from the unachievable ideal of completely deterministic knowledge of the relevant system”[157]. It is to27

be expected that as the systems being modeled increase in scale and complexity, the uncertainty in the model will28

also increase. Consequently, it is inevitable that building stock energy models will contain a considerable number29
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of uncertainties. While some applications of building stock energy models, such as in early design, actively seek a1

range of possible options, it is common to see building stock energy model outputs expressed as a single value [24].2

Such point values may yield misleading impressions about the certainty of model insights when used to support3

energy policy decisions.4

In the literature, several di�erent classi�cation schemes focused speci�cally on model uncertainty have been5

introduced [15, 106], but a general consensus in terms of uncertainty classi�cation and related terminology does not6

appear to exist [115]. Although there is a lack of agreement on the detailed categorization of sources of uncertainty,7

a review of 20 existing uncertainty classi�cation schemes highlighted a broad pattern with sources of uncertainty8

being grouped according to whether they related to model inputs, the model itself or model outputs (Figure 5).9

INPUTS MODEL OUTPUT

Aleatory Epistemic Model Structural Model Technical Model Outcome

Linguistic

- Inherent
randomness
- Natural variation

- Context
- Linguistic
- Heterogenity
- Modeler

- Modeller
- Missing physics

- Software error
- Hardware error
- Numerical error

Figure 5: Sources of model uncertainty identi�ed in existing uncertainty classi�cation schemes. Sources of uncertainty may be grouped by
whether they relate to model inputs, the model itself, or model outputs.).

A review of the treatment of uncertainty in the literature relating to large scale building energy models under-10

taken by Fennell et al. [40] concluded that Uncertainty Analysis (UA) and Sensitivity Analysis (SA) are not common11

practice in building-stock energy modeling and that if UA and SA are performed, only a few parameters are assessed12

and methodologies are not standardized. In addition, although the literature suggests that model uncertainties are13

likely to be a signi�cant source of overall uncertainty, the review did not identify any studies which addressed this14

source of uncertainty.15

Parallel Annex 70 work is underway to address the lack of evidence in the published literature on the treatment16

of uncertainty in building stock energy models. A wide range of research teams are participating in this work17

with a diverse range of modeling approaches. The initial phase of the work is focused on input uncertainty. Each18

model will be evaluated stochastically based on shared sets of uncertain inputs. A range of di�erent sensitivity19

analysis techniques will be applied to each model to explore how model attributes such as geographic scale and20

degree of aggregation a�ect the performance of di�erent techniques. Publications on this work and best practice21

for uncertainty quanti�cation are forthcoming.22

Finally, we note that model validation is an additional aspect of quality assurance, in which model outputs are23

compared to measured values. The review undertaken by Reinhart and Davila [116] suggests that when aggregated24

city-scale building energy use data are used for validation, individual building model errors tend to average out25

and overall errors are in the range 7% - 21% for heating loads and 1 - 19% for total energy use intensity. However,26

simulation errors may be much higher for individual buildings in the stock, which is not re�ected in the aggregate27

validation statistics. In addition, Reddy et al. [113] highlight the high dimensionality of many classes building stock28

energy models, underscoring that small validation error only indicates that a local minimum has been achieved,29

and that model accuracy is not guaranteed through aggregate validation alone. Validating against multiple external30

data sources can potentially improve con�dence in model accuracy, but this is not always possible. Moreover, for31

building stock energy models that project out into future years, validation data will not be available at all to compare32

model outputs against. Complementary model uncertainty assessments can help address these shortcomings.33

17
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3. Discussion1

The model classi�cation approach presented in this paper provides a formal framework for comprehensively2

surveying, assessing, and demonstrating use cases for the wide range of building stock energy modeling approaches3

that have been published in recent years, as well as those that will be published in the years to come. At a conceptual4

level, the classi�cation quadrants introduced in Figure 2 encourage quick comparisons across building stock energy5

models, including those that apply to di�erent regions and building stocks of interest. Such comparisons support6

stronger international collaborations around building stock energy modeling, which are needed to �nd pathways7

for long-term reductions in building energy use and emissions that can contribute substantially to global climate8

change mitigation e�orts. At the same time, this paper’s classi�cation scheme provides avenues for communicating9

richer technical information about a model, by including supporting modeling layers in the high-level classi�cation10

structure (buildings, people, environment) and by encouraging modelers to describe their handling of additional11

modeling dimensions that are not captured by the high-level structure.12

Within Annex 70, the new classi�cation scheme is being used to generate metadata for organizing models in an13

online repository. Models in the Annex 70 repository will be summarized in terms of the following attributes:14

– general purpose and application,15

– model classi�cation quadrant (top-down/bottom-up, white-box/black-box per Figure 2),16

– modeling technique (system dynamics, statistical, machine learning, archetype, etc. per Figure 2),17

– inclusion of additional layers (buildings, people, environment)18

– treatment of additional dimensions (system boundaries, spatio-temporal resolution, dynamics, and uncer-19

tainty), and20

– accessibility of the model and supporting data sources.21

Table 2 shows examples of how key models from each of the Annex’s participating member countries are being22

described in terms of high-level attributes.23

Table 2: Sample mapping of building stock energy models from IEA-EBC Annex 70 member countries to this paper’s proposed model classi�cation
scheme.

Country Model Name Model Use Model Classi�cation Quadrant Additional Details

Belgium Delghust Model Assessment of the e�ect of
energy saving measures in
terms of reducing energy
consumption in relation
to costs in the residential sector

Q4 physics-simulation Model
documentation [29, 30],
and application [16]

Canada E3MC A macroeconomic model used
to develop projections for
Canada’s National Communication
and Biennial Reports to the
UNFCCC and Canada’s
Emissions Trends reports

Hybrid: Q1 econometric
to simulate macro-economic
trends and Q2 system
dynamics to simulate energy
demand.

Model documentation [34] [142]
and application [53]

CityInSight
Assessment of energy,
greenhouse gas emissions
and �nancial impacts of
changes in land use, building
type, building code, fuel mix,
equipment, renewables, district
energy, and behavior to
support municipal energy and
emissions planning

Hybrid: Q2 system-dynamics
to simulate building stock
evolution and Q4 physics-
simulation to simulate energy
demand per unit stock

Model summary [139]
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Table 2 continued from previous page

Country Model Name Model Use Model Classi�cation Quadrant Additional Details

Netherlands Vesta MAIS Assessment of the e�ect of
energy saving measures in
terms of reducing CO2
emissions, energy consumption,
investment costs and energy
costs

Assessment of the e�ect of
changes in heat supply and
policy instruments including
taxes, and subsidies

Q4 physics-simulation Model documentation [42],
GitHub repository [154],
and application [153]

Norway RE-BUILDS Assessment of the long-term
development of the Norwegian
residential building stock,
including its stock dynamics
and renewal in terms of new
construction, renovation and
demolition.

Assessment of long-term
development in energy
demand in the stock due
to di�erent development
paths in various scenarios.

Hybrid: Q1 technological
to estimate the total dwelling
stock size, Q2 system dynamics
to simulate stock dynamics and
Q4 physics-simulation
to estimate the energy demand
per building archetype across
the simulated stock.

Model
documentation [130, 126],
and application [125, 126]

Sweden ECCABS Assessment of potentials and
costs for energy savings
and CO2 emissions reductions
of the long-term transformation
of a building stock

Q4 physics simulation
building-speci�c calculation of
energy savings and agent-based
market share of technologies and
constrained investment
and retro�t rates.

Model
documentation [87],
and application [89, 86]

Switzerland ABBSM Assessment of the dynamics
of national building stocks
and its energy- and climate
-impact over time. In particular
how building owners decisions
to retro�t the building envelope
and replace heating systems
under di�erent policy
interventions a�ects this
development.

Q4 physics-simulation
to simulate energy demand, and
agent-based to model
building stock dynamics

Model documentation
and application [98, 105, 104]

United Kingdom SimStock Assessment of the e�ects of
di�erent policy choices on
city-level energy consumption
including peak demands.
Heat exposure can also
be evaluated.

Q4 physics-simulation Underlying philosophy [25]

United States Scout Assessment of national energy,
cost, and CO2 emissions impacts of
U.S. building energy e�ciency and
�exibility to assist in R&D program
design

Hybrid: Q1 technological-
econometric to model building
and technology stock size
and dynamics and Q4
end-use distribution to
model energy use per unit
stock

Model documentation [147],
GitHub repository [57],
and application [71]

ResStock Assessment of the impact of
energy e�ciency measures in
the residential sector, providing
detailed information on energy
time-series, cost-e�ectiveness,
technology, building type,
and location.

Q4 physics-simulation Model documentation [100],
GitHub repository [99],
and application [161]
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3.1. Challenges for building stock energy model classi�cation and complementary e�orts1

The large number of new building stock energy models that have been published over the last decade collectively2

represent a variety of modeling methods and outcomes. While the proposed classi�cation framework establishes3

a common language by which researchers may e�ectively communicate such models, we acknowledge that no4

classi�cation scheme can list or fully characterize all possible techniques for modeling building stock energy use.5

Indeed, this was not the aim of our e�ort; rather, we provide a general, multidimensional, and extensible framework6

onto which particular techniques or combinations of techniques may be mapped, even if these techniques are not7

explicitly called out by the classi�cation diagram in Figure 2. As the research landscape around building stock energy8

modeling continues to change, we anticipate the need to revise our classi�cation diagram accordingly, much as we9

have adapted elements of existing classi�cations published over the last decade.10

Moreover, while the classi�cation scheme presented herein is intended to facilitate quick model comparison11

and assessment, it is not designed to yield deeper insights into a model’s design and execution that are needed12

to accurately reproduce its use across the research community. Mapping between research question and modeling13

approach is complex and informed as much by practical considerations of data availability, expertise of the modeling14

team and access to computing resources as by methodological drivers. Additional details will be needed on overall15

model objectives (e.g., simulation vs. optimization vs. accounting), model licensing and usage rights, model analysis16

components and sub-components, guidance on running the model, and a model’s input and output data structures,17

among other items. To address this limitation on the classi�cation scheme’s application, IEA EBC Annex 70 is18

developing a complementary reporting protocol for building energy stock modeling. This reporting protocol is19

distinct from the classi�cation scheme in its stronger emphasis on capturing the technical details needed to fully20

understand how a model works, but draws upon the classi�cation framework to establish model metadata - much as21

the Annex model repository is doing. Other �elds have successfully deployed reporting protocols – notably health22

care [12] – and the intention is to have modelers use the protocol to frame any publication that presents a building23

stock energy model, enabling its e�ective use outside of the context for which it was developed.524

4. Conclusion25

This paper introduced a new framework for classifying models of building stock energy use at the urban, re-26

gional, and national scales. The classi�cation scheme, which was developed as part of IEA-EBC Annex 70, builds27

upon previous approaches for classifying building stock energy models while addressing the need to update these28

approaches, given the availability of richer datasets on the building stock, expanded computational power, and29

the advent of modeling techniques that take advantage of these resources. Accordingly, the updated classi�cation30

scheme accounts for newer modeling techniques, establishes a more �exible high-level classi�cation structure, and31

accounts for additional model dimensions that are not captured by this high-level model classi�cation exercise.32

Speci�cally, the scheme uses a multi-layer quadrant structure to classify modeling techniques based on their design33

(top-down or bottom-up) and degree of transparency (black-box or white-box), also accommodating hybrid model-34

ing techniques. We provided guidance on the description of four additional model dimensions – system boundaries,35

geographic and spatial resolution, dynamics, and uncertainty – alongside the high-level quadrant structure and36

modeling layers. A selection of existing literature studies were summarized that exemplify the relevance of the37

high-level classi�cation elements and additional model dimensions to the building stock energy modeling �eld. We38

concluded by discussing the practical utility of the classi�cation scheme in promoting more e�ective sharing and39

assessment of models across the international research community, including the use of the scheme to develop an40

online model registry and reporting protocol for Annex 70.41
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