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Abstract—Brain-machine Interfaces (BMI) hold great potential 

for treating neurological disorders such as epilepsy. Technological 

progress is allowing for a shift from open-loop, pacemaker-class, 

intervention towards fully closed-loop neural control systems. Low 

power programmable processing systems are therefore required 

which can operate within the thermal window of 2O C for medical 

implants and maintain long battery life. In this work, we have 

developed a low power neural engine with an optimized set of 

algorithms which can operate under a power cycling domain. We 

have integrated our system with a custom-designed brain implant 

chip and demonstrated the operational applicability to the closed-

loop modulating neural activities in in-vitro and in-vivo brain 

tissues: the local field potentials can be modulated at required 

central frequency ranges. Also, both a freely-moving non-human 

primate (24-hour) and a rodent (1-hour) in-vivo experiments were 

performed to show system reliable recording performance. The 

overall system consumes only 2.93mA during operation with a 

biological recording frequency 50Hz sampling rate (the lifespan is 

approximately 56 hours). A library of algorithms has been 

implemented in terms of detection, suppression and optical 

intervention to allow for exploratory applications in different 

neurological disorders. Thermal experiments demonstrated that 

operation creates minimal heating as well as battery performance 

exceeding 24 hours on a freely moving rodent. Therefore, this 

technology shows great capabilities for both neuroscience in-

vitro/in-vivo applications and medical implantable processing 

units. 

Index Terms—Optogenetic, Brain Machine Interface, 

embedded-ASIC system, freely moving, neuroprosthetics, rodents, 

low power processing. 

I. INTRODUCTION 

HE very first implantable pacemaker was introduced by 

Senning and Elmqvist in 1958 [1] for use in cardiac 

synchronization. Later in 1963 Bekthereva [2] demonstrated the 

first chronic implant in the human brain, though the field of 

Deep Brain Stimulation (DBS) is largely attributed to the work 

of both the Benabid and Blond, and Sigfried groups in 1991 [1]. 

The architecture of early systems were largely analogue with 

simple open-loop oscillatory functions. Since then, modern 

commercial medical systems have developed digital control 

units with data logging and wireless communication 

capabilities. Nevertheless, such systems still largely implement 

open-loop oscillatory stimuli. 

    More recently, the development of the Reactive Neural 

Stimulator [3] demonstrates a direction of travel towards 

closed-loop systems which can provide targeted intervention 

based on specific neural activity. With the advent of human 

trials of optogenetics, initially in the retina [4][5], we could 

soon see the development of interference-free bimodal control 

with electrical recording and optical stimuli.   

    To achieve this, there needs to be a platform which can 

implement closed-loop stimuli within both the constraints of 

battery operation and thermal output. For the latter, the surface 
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Fig. 1.  A conceptual description of the developed neural co-processor. It is 

aimed for a closed-loop processing with electrical recording and optical 

stimulation. The processing has four stages: recording interrupt, closed-loop 

algorithm, optical converter and data storage. 
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of the implant should not exceed 2O C to stay within the 

regulatory limits [6]. For the former, the largest rechargeable 

medical-grade batteries at the time of writing are between 300-

350 mAhr (e.g. EaglePitcher Contego 325). As such, the target 

current draw needs to be an average of 7 mA or better (less) 

with a recharge cycle of 2 days or better. Furthermore, a similar 

figure can be attained if we assume batteries need to last at least 

five years over a recommended 1000 recharge cycles. 

In order to reach human trials, proposed clinical architectures 

need to be verified in in-vitro/in-vivo neuroscience 

experiments. In particular, testing is required in freely moving 

non-human primates (NHP) and/or rodent models. Such 

experiments require a system with remarkably similar attributes 

to a clinical device. The physical size of a neural co-

processor(embedded control system) needs to be 2 cm x 2 cm 

or better to mount in a head cradle (NHP) or backpack (rodent). 

The space available for the developed neural co-processor 

(embedded control system), in a medical control unit (chest 

unit) after the battery is similar. The battery pack is also perhaps 

surprisingly similar. The maximum capacity of clinical grade 

rechargeable batteries is similar to that of two CR2025 class 

watch batteries, which have a feasible weight (5.2 g) for both 

NHP and rat models. To achieve 48-hour recording at this 

capacity (minimum clinical target), a current consumption of 

around 7-8 mA or better is required.  

Other academic groups and industry have also been 

developing implantable control systems to meet these 

specifications. The technologies to achieve this can be 

classified into three groups: (i) Custom Application-specific 

Integrated Circuits (ASICs) with inbuilt digital processing (ii) 

Reconfigurable logic modules such as Field-programmable 

gate arrays (FPGAs) or Complex Programmable Logic Units. 

(iii) General purpose microcontroller (MCU) systems. 

These technologies are complementary rather than mutually 

exclusive [7]. Dedicated ASIC implementations can be low 

power provided because they are implemented on a sufficiently 

advanced technology node. For example, Liu et al. [8], 

presented a bidirectional Brain-Machine Interface (BMI) ASIC 

for closed-loop neuroscience research which could perform 

neural feature extraction. They demonstrated operation with a 

total power requirement of 8 mW (2.16 mA). Similarly, Kassiri 

et al. [9] introduced an inductively-powered seizure-predicting 

ASIC based microsystem for monitoring and treatment of 

intractable epilepsy which operated at a total power of 2.78 mW 

(1.52 mA). However, these DSP functions cannot be 

reconfigured which means they are primarily useful when an 

intervention algorithm has been identified, and only operational 

variables need to be changed. For neuroscience research or 

immature clinical interventions, such a lack of flexibility is 

undesirable.  

An alternative to having fixed algorithms in silicon is to 

configure multiple independent filters which can be called in 

sequence or utilize reconfigurable digital logic. Gagnon-

Turcotte et al. [10] utilized option (ii), and developed a wireless 

headset for high resolution 32-channel electrical recording in 

tandem with optical stimulations. Their system utilized a low-

power FPGA based DSP for a digital spike detector and a 

wavelet data compression module. Such systems can be 

efficient for high power parallel processing but need special 

tuning for use in low power systems due to high leakage power. 

At a spike rate of 45 s-1 conditions, the whole system consumes 

119mW (32mA) when all channels are active. To provide like 

for like comparison, processing-only aspect of the FPGA 

consumed 47.2 mW (12.75 mA).  

The third option is to utilize a general purpose 

microcontroller unit. These are very flexible with significant 

peripheral functionalities (e.g. SPI, ADC/DAC, timer). Such 

units form computation functions in software, thus taking 

multiple clock cycles. This allows for more complex 

computation such as recursive functionality and multitasking 

with peripherals, but at the cost of computational efficiency. 

However, typically such microcontrollers are available in 

advanced deep sub-micron technologies and have significant 

power cycling architectures. S. Zanos et al. [11] previously 

designed an MCU based system: The Neurochip-2 for  freely-

moving NHP experiments which could perform closed-loop 

electrical stimulation and recording. Their system utilized 

commercial PSoC (Prototyping System-on-Chip) development 

boards and therefore required a minimum power of 284 mW 

(78.8mA).  

Another example is the Cortex M4 which we adopted  in this 

work. This platform consumes a nominal 14 mA current at 

clock frequency 40 MHz under full CPU load. However, with 

advanced power management, it is possible to define power 

modes at each stage in the computational cycle so that full 

power is only utilized in short bursts. Other operations can be 

performed operating in various levels from deep sleep to fully 

awake. 

In this work, we have created a low-power flexible neural 

engine specifically for computing optogenetic closed-loop 

interfaces as shown in Fig. 1: It has one custom designed 

embedded Hardware/Software(H/W) processing system, and 

integrates with an ASIC based circuits for electrical recording 

and optical stimulations. Also, we have also incorporated 

communication protocols to make it compatible with both 

commercial data acquisition systems such as Intan as well as 

our previously published ASIC [12]. The remainder of this 

paper is structured as follows: Section II describes the hardware 

configuration;  Section III and Section IV introduce the 

software architecture and  BMI processing toolbox. The system 

processing has four stages: recording interrupt, closed-loop 

Fig. 2.  The developed system hardware architecture: (on  left ) embedded 

control system ;  (on  right ) ASIC-based neural interface head-stage board. 

The  control system contains an ARM Cortex M4 device , a SD card and 

power management system. The red line indicates power system 
transmission and the black line represents data and commands transmission. 

Authorized licensed use limited to: Imperial College London. Downloaded on February 23,2020 at 09:37:04 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.2973934, IEEE
Transactions on Biomedical Engineering

algorithm, optical converter and data storage. Sections V VI 

present the neuroscience in-vitro/in-vivo experimental 

configurations and results as well as power 

consumptions/thermal analysis. For power consumption 

comparisons with past systems, it can operate at an average of 

2.93 mA under an optimised power cycling scheme. Finally,  

discussions and conclusions are included in Sections VII and 

VIII: the system has an architecture which could also progress 

towards clinical use, and great potentials towards animal 

behavioural control. 

 

II. HARDWARE OVERVIEW 

   The hardware architecture is shown in Fig. 2. This  consists 

of two parts: one is an embedded microcontroller based neural 

co-processor, and the previously designed ASIC-based neural 

interface [12] integrated within a headstage board. 

   The embedded processor is an ARM Cortex-M4 

microcontroller (MCU) with DSP function block. Specifically, 

we used an MK22FN512VLH12 MCU - 120 MHz with 512 KB 

flash memory, 128 KB RAM in a 64 pin LQFP package. This 

is employed to implement the closed-loop algorithms as well as 

communication with a head-stage chip which specifically 

performed the signal acquisition and driving. The MCU was 

implemented on a 25 x 22 mm printed circuit board (PCB) as 

shown in Fig. 3(a). The PCB board also contains a 

(TLV70233DBVR) low dropout (LDO) regulator to provide a 

consistent 3.3.V supply up to 330 mA from a 3.7 V lithium-ion 

portable battery. It also contains a (LTC3525ESC6-

5#TRMPBF) synchronous boost converter which can provide a 

consistent 5 V supply boosted from the regulator. This latter 

supply is required for providing power sources to the optical 

stimulation circuits in the ASIC based headstage as defined in 

our prior work[13][14]. In addition, there is an indicator LED 

(CLV1A-FKB-CJ1M1F1BB7R4S3 full-colour LED) and a  

micro-SD card slot for long term data recording (the micro-SD 

can address up to 64 Gb). For external testing and MCU   

programming, a Multilink FX programmer with a JTAG 

connector was used. Additionally, there is a UART port for 

connecting with a computer for real-time debug. Finally, a 10-

pin flexible PCB cable (FPC) connector has been used to 

provide a connecting link between the embedded controller and 

the head stage. This is adaptable to commercial systems, but in 

this case for use with our previously described neural interface 

chip[12]. 

 The rodent head-stage board is shown in Fig. 3(b).  The head 

stage has dimensions of 10 x 10 mm, with 8 pins for stimulation 

and recording. It should be noted that we originally tried a 

backback configuration. But if the weight is sufficiently low, a 

head mount is superior as the rodent cannot scratch it off. 

Fig. 3 (c) shows the NHP head mount configuration. In this 

case, the system is mounted within a crown unit which is 

attached to the NHP head. The crown protects the electronics 

from the various vigorous activities of the NHP.  

III. SOFTWARE ARCHITECTURE 

  The state machine operation of the software is shown in Fig.  

4. The basic computing mechanism is as follows: after the chip 

Fig. 3.  The developed system hardware architecture: (a) shows system neural co-processing; (b) depicts an ASIC based head-stage configuration; (c) illustrates 

side views of the system, and (d) illustrates system mechanical configurations on a human head model. 

Fig. 4.  The developed system software architecture. A green cycle 
represents a controller at sleep mode and a white cycle represents a 

controller at normal run model. The bottom shows timing diagram of 

system power cycling performances based on frames. 
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initialization, a system is configured into a sleep mode, and a 

recording interrupt is reset. This indicates that most of the 

system peripherals are disabled except for a low power mode 

timer (LPT). The system is constantly at sleep mode until the 

LPT counter equals the biological recording periods. Then a 

recording interrupt is triggered to wake up the system into a 

normal run mode. The system will generate a recording request 

to an ASIC based head-stage via a serial peripheral interface 

(SPI). After a short recording delay (e.g. 45 𝜇𝑠), a 16-bit data 

will be received, that contains LFPs. Therefore, a recording is 

requested every time the microcontroller is interrupted. The 

interrupt occurs periodically, and this period equals the neural 

recording sampling frequency (e.g. 500 Hz). So effectively the 

neural recording is continuous with discrete time steps. A 

detection algorithm is employed to decide whether recorded 

LFPs belong to abnormal activities or not. A suppressor will be 

performed when abnormal activities are detected. The outputs 

of a suppressor will be translated into stimulation commands by 

using an optical converter. Then the head-stage will control 

light intensity based on received stimulation commands. In 

addition, the received data will be directly stored into an SD 

card or to a PC via UART (for debugging purposes). After that, 

the system is configured into sleep mode again to wait for the 

next interrupt. The SPI communication details are described in 

previous work [12]. Particularly, we designed a BMI based 

toolbox for three-stage processing: detection, suppression and 

optical simulation results are displayed in the Supplement 

S1conversion. The details will be described in section IV. And 

the timing diagram of the power cycling technique is shown at 

the bottom of Fig. 4: a red dash line indicates a recording 

interrupt, sleep modes are in green areas, and normal run modes 

are in grey areas. The duration of a normal run mode depends 

on the computational loads, while the sleep mode is based on 

biological recording periods. The details of the power cycling 

approach can be seen at the Supplement S2.  

 

IV.  BMI PROCESSING TOOLBOX 

  The BMI processing toolbox has three stages: detection, 

suppressor and optical converter. Each stage has different 

algorithms as illustrated in Fig. 5. Also, the brief descriptions 

of each entity are presented in Table I, and the detailed results 

of each algorithm are described in Supplement S1. 

  The detection stage is a pre-processing stage to determine 

whether to intervene or not. We include three techniques: 

simple thresholding [15], line length [16] and bandpass with 

integral function. These specifically address on entities of 

signal amplitudes, signal change rates and frequency domains. 

A testing chirp signal is generated which contains blocks of  𝑉𝑝𝑝 

TABLE I 

BMI TOOLBOX ALGORITHMS 

Detection 

(a) Simple threshold Use time domain signal amplitudes as a 

detection criteria.  

(b) Line length Calculate the changing rates of data points to 

detect abrupt signals.  

(c) Bandpass with 

integral  

Filtering signals with a bandpass filter and 

integral functions. 

Suppressor 

(d) Phase shift  Phase shift signals in a certain degree at a 

frequency bandwidth.  
(e) PID Use PID controller to process signals. 

Optical converter 

(f) Threshold-max Delivery the maximum light intensities when 

signals are above thresholds. 

(g) Pulse amplitude 
modulation 

Convert algorithm outputs into LED DAC 
values using pulse amplitude modulations.  

(h) Pulse width 

modulation 

Convert algorithm outputs into LED DAC 

values using pulse width modulations. 

   

 

Fig. 5.  A BMI processing toolbox. It has three calculation stages: detection, suppressor and optical conversion.  A detection stage has a simple thresholding, 
line length and bandpass with integral three functions (a-c). A suppressor has a phase shift algorithm and a PID linear controller (d-e). And optical conversions 

has a max light intensity, a Pulse Amplitude Modulation (PAM) and a Pulse Width Modulation (PWM) three functions (f-h). The detailed simulation results are 

shown at texts and Supplement S1. 
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= 20 mV, 𝑉𝑝𝑝 = 100mV and 𝑉𝑝𝑝 = 180mV. Each block is a chirp 

signal with frequency range in1 -5 Hz (Fig. S1 a(1)). This 

indicates that signals encode information changes both in time 

and frequency domain.  For each stage, test signals were pre-

stored into a waveform generator (Keysight 33500B). 

   A thresholding technique enjoys minimum computing 

resources and ultra-short latency and has been widely used in 

neuroscience [17][18] and neurotechnology applications [19]. 

This technique is an ideal candidate for a pre-processing stage 

or open-loop stimulus. One typical application is to compare 

recorded signals with the biological experimental noise level to 

enhance biological information processing [20]. The other 

model-based criteria such as visual threshold circular signals 

[21] and position [22] can also be considered as threshold 

factors. The example in Fig. 5(a) shows a comparison between 

the absolute threshold (red dash line) and neural signals, in 

which signals above the threshold values are considered as 

abnormal activities. The detailed example is illustrated in Fig. 

S1-1 (b).    

The line length technique [16] is shown in Fig. 5(b). It is 

sensitive to the change rates of amplitudes in the time domain, 

and has already been widely applied on epilepsy detections 

[23][24]. It follows the relation in equation 1: 

 

  𝐿𝐿(𝑛) =  
1

𝐾
∑ 𝑎𝑏𝑠[𝑥(𝑘 − 1) − 𝑥(𝑘)] =

𝐿(𝑛)

𝐾

𝑛

𝑘=𝑛−𝑁

             (1) 

 

where 𝐿𝐿(𝑛) is the normalized line length value at discrete time 

index 𝑛 , 𝐿(𝑛)  is the mining sum of distances between 

successive points within the sliding window of size 𝑁, 𝑥(𝑘) is  

the data sequence value at the 𝑘 sample, 𝐾 is the normalization 

constant, 𝑁 is the sliding window length, and 𝑎𝑏𝑠 stands for 

absolute value. Window length and value 𝐾 depends on signal 

behaviours and experimental protocols. The LL simulation 

results in Fig. S1-1 (c) demonstrate that algorithm output not 

only depends on the abrupt changes in amplitudes but also 

frequency variations. 

  Fig. 5(c) shows a bandpass filter with integral function. This 

calculates the power spectrum within a defined frequency 

range. The bandpass filter kernel is designed by convolving a 

windowed-sinc filter and its spectral reversal function. The 

equations are displayed at equation array (2-4): 

 

𝑢 = ∫ ℎ(𝜏)𝑔(𝜏 − 𝑡)𝑑𝜏                                                            (2) 

 

ℎ[𝑖] = 𝐾
𝑠𝑖𝑛(2𝜋𝑓𝑐(𝑖−

𝑀
2

))

𝑖−𝑀/2
[0.42 − 0.5𝑐𝑜𝑠 (

2𝜋𝑖

𝑀
) + 0.08(

4𝜋𝑖

𝑀
)]     (3)        

𝑔[𝑖] = ℎ[𝑖] × (−1)𝑖                                                                (4) 

 

where ℎ[𝑖]  is a windowed-sinc filter and 𝑔[𝑖]  is a spectral 

reversal function; 𝑓𝑐 is cut-off frequency and M is kernel length. 

Particularly, parameter M mainly decides the computing 

latency and filter transition bandwidth. Also, the Blackman 

window is introduced to improve signal continuity in the 

frequency response. After the bandpass filtering process, a 

standard integral function is implemented for threshold 

detection purposes. The simulation results in Fig. S1-1 (d) show 

Fig. 6.  System experimental setup. (a) In-vitro closed-loop processing platform. The recoding optrode is NeuroNexus 16-channel array probes and stimulation 

site is an optical fiber. (b) A rodent carries developed system in a freely moving environment (The holder is tailor designed by using a 3D printer). Fig. 6 (b4) 

shows system in-vivo experiment mechanical setup, a custom designed optrode(3mm) with electrodes can fully implanted in a rodent brain, the optrode has 8 
pins which can integrates with the Neural Engine head-stage pinouts, the LED will be on the shaft. (c) A primate control system on the head for freely moving 

recording experiment. There are three components of the system as labelled: 1) the brain prototype; 2) a system holder with the neural engine; 3) a battery. 

The experimental overall picture is shown at (c) top right.  

 

 

Fig.7: In-vivo closed processing experimental setup. Two oprodes are 

employed in this experiment: one is for electrical recordings and the other 

one is for optical stimulations. The Neural Engine selects UART data 
communications for real-time display. The implemented algorithm is a  

previously described phase shift algorithm. All components are well 

labelled in the figure. 
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the developed technology has reasonable frequency 

classification behaviour.   

   The second stage is the suppression functions. This includes 

a phase shift algorithm and a PID controller. The phase shift 

algorithm is described in Fig. 5(d). This algorithm determines 

the intensity of the signal at a given frequency and then returns 

a corresponding signal with a phase shift. The relation is given 

in equation (5) below: 

 

𝑦 =  𝑒−𝑘𝑡 . 𝑐𝑜𝑠 (2𝜋𝑓𝑡 + 𝜑)                                                        (5) 
 
Where  𝑘 is a decay constant, 𝑓 is a central frequency and 𝜑 is 

the signal shift (in degrees). A case study of phase shift 

algorithm with central frequency 5Hz and 180-degree shift is 

given at Fig. S1-2(b). 

  The other suppressor technique, based on our previous work 

[25][7] and designed neural mass [26], is a PID control system. 

This is described in Fig5. (e) and described in equation (6) 

below: 

 

  𝑢(𝑡) = 𝑘𝑝 × 𝑒 + 𝑘𝑖 × ∫ 𝑒(𝑡)𝑑𝑡 + 𝑘𝑑
𝑡

0
× (𝑒 − 𝑒̂)/𝑑𝑡          (6) 

 

Where  𝑘𝑝 , 𝑘𝑖  and 𝑘𝑑  are proportional, integral and 

derivative gain;  𝑒  is an error signal calculated by reference 

signals and current outputs. 𝑒̂ is a previous error signal, and 𝑡 is 

an integration step. Also, the developed control system can be 

further evolved into adaptive control schemes [27] for advanced 

operations. A system with the parameter setting 𝑘𝑝 = 1, 𝑘𝑖 =

10 and 𝑘𝑑 = 0, results are shown at Fig. S1-2(c). 
    The last stage is an optical conversion. This is to convert 

algorithm outputs to implantable LED control commands. The 

main purpose of this stage is to convert numerical outcomes 

from the suppressor into real-world optical intensities and 

waveforms. These need to take into account, light penetration 

[6] and Channelrhodopsin (ChR2) encoded cell performance 

[28]. Also, the efficiency of the LED drive circuit [12], LEDs 

and optrode electro-thermal-optical characteristics need to be 

taken into account[6]. 

  Three essential converting methods are therefore implemented 

in the toolbox: 1) a maximum light intensity method with a 

threshold; 2) a Pulse Amplitude Modulation (PAM) and 3) a 

Pulse Width Modulation (PWM) technique. The maximum 

light intensity approach is described in Figure 5 (f). It simply 

provides a pulse of maximum intensity when the intervention is  

beyond a certain threshold.  

  The other two techniques show modulation variants in 

Fig. 8. (A): In-vitro closed-loop processing experiments: (a) is the LFPs recording results; (b) and (c) are optical stimulation commands and phase conditiona 

lines; (d) is wavelet transform power analysis performances; and (e)-(g) are three different cases in details. (B): a rodent freely moving recording results. The 
top figure displays LFP recording activities in time domain; and the bottom one shows LFP data with PSD analysis. (C): the primate 24-hour freely moving 

LFP recording experiments, the top figure displays 24-hour LFP recording data in the time domain, and the bottom shows 24-hour data with PSD analysis. 

The primate LFP different oscillations are also labeled in the bottom figure. 
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intensity and time domains which are presented in Figure 5 (g-

h). A PAM is used to translate LFP values into LED DAC value 

linearly, and a PWM technique to translate LFP values into 

corresponding LED pulse width. Figure S1-3 (a-c) display the 

optical converter results based on the developed system. 

V.   EXPERIMENTAL SETUP 

   Optogenetics is a relatively new tool that through genetic 

engineering, expresses light sensitive ion channels (e.g. 

channelrhodopsin) and/or pumps (e.g. halorhodopsin) on the 

cell membrane. It is therefore possible to use optical stimuli to 

activate or inhibit a neuron cell activity.  

   The recent Allergan-Retrosense trial (US Clinical Trial 

identifier: NCT02556736) demonstrates that 

channelrhodopsin-2 can be reverse engineered to human retina 

using Adeno Associated Viral (AAV) vectors. Ingusci[29] 

provides a review of alternative approaches with Lenti Virii. In 

this case, we used channelrhodopsin-2 delivered into animals 

via AAV. 

A. In-vitro experimental setup 

Rodent brain slices were cut using a 5100mz vibratome 

(Camden Instruments). The slices were later transferred 

incubated at room temperature in a brain tissue interface and 

holding chamber until later electrophysiological recordings. 

During recordings, the slices were perfused with oxygenated 

ACSF (in mm: 126 NaCl, 24 NaHCO3, 1.2 MgSO4, 1.2 CaCl2, 

10 glucose, 3 KCl, 1.25 and NaH2PO4) which also contained 

the compound 4-aminopyridine (4-AP; 200 µM) to induce 

epileptiform activity in rodent brain slices held at 32.5°C. As 

Fig. 6(a) depicts, all in-vivo electrophysiological recordings 

were performed using an interface recording chamber. Also, we 

utilized a commercial 16-channel linear multi-electrode array 

probe (NeuroNexus Technologies: A16x1-2mm-100-177 

probes – shanks are 100 μm apart; recording site area on each 

shank). The simulation output of the developed ASIC based 

headstage was a 0-5 V voltage signal drove a blue LED light 

source (473 nm, M470F1; Thorlabs) coupled to a 200 μm 

diameter optical fibre (M89L01–200; Thorlabs). In the freely 

moving setup we recorded onto a SD card. The data 

transmitting latency is 20𝜇𝑠  per cycle (Table II), which is 

significantly less than the real-time time constraint 2ms. 

Meanwhile, for this in-vitro case we transmitted the data 

directly to a PC via UART communication to allow for real time 

display and analysis. 

Fig. 9.  In-vivo closed processing results. (a) is the overlay of stimulation onto filtered data. Different colour represents optical stimulation commands at 

different phases (from 0 deg to 315 deg), The algorithm processing time is ON for 5 seconds and OFF for 5 seconds. (b) are the effects of the stimulus in in-

vivo closed loop processing. The LFPs are displayed by using violin plot at each stimulus condition.  The mean value is labelled in black line and the medium 

value in labelled in red line.  
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B. Freely-moving rodent setup 

  Two male, 3 to 6 month old, Sprague Dawley rats were used 

in the electrophysiological recording experiments. The data 

presented in this study were acquired while the animals were 

placed in an enclosed home cage during a 2-3 h sleep session. 

The animals were given no tasks and naturally fell asleep on 

their own. The behavioural procedure and the 

electrophysiological recordings were performed under UK 

Home Office licenses and were approved by the Newcastle 

University Animal Welfare and Ethics Review Board. A 

custom designed system holder was mechanically fixed on a 

rodent head (as per Fig. 6(b). The developed system was 

connected to the implantable electrodes with 130k ohm [30], 

and is enclosed in this holder. Data was recorded using an SD 

card on the control board. Fig 6 (b4) shows an exemplar custom 

designed optrode with electrodes which can be fully implanted 

in a rodent brain. The optrode has a shaft length of 3mm and 2 

electrodes, which can integrate with the Neural Engine head-

stage pinouts. 

    Briefly, the fabrication of the custom probes was as follows: 

a silicon wafer was coated with 1 um of silicon dioxide via 

chemical vapour deposition (CVD). Ti/Au/Ti (20/200/20 nm) 

metallisation was deposited by evaporation and then patterned 

by photolithography followed by a three-stage wet etch: 

NH4OH and H2O2 for the Ti and K3Fe(CN)6, Na2S2O3 and 

CS(NH2)2 for the Au. The metal patterns were then covered by 

a matching top layer of silicon dioxide insulation. Contact 

windows in the top oxide were opened by a Deep Reactive Ion 

Etch (DRIE) using a mixture of Ar and SF6. The individual 

optrodes were then separated from the wafer using a deep 

reactive ion etch step to cut through the silicon. A gold wire was 

bonded into each recording site before the shank was coated in 

medical grade silicone encapsulation (MED6015), after which 

the gold wire was cut to open a conductive path through the 

passivation layer. 

C. Freely moving NHP setup 

  Experiments were approved by the local ethics committee and 

performed under appropriate UK 112 Home Office licenses in 

accordance with the Animals (Scientific Procedures) Act 

1986.  Recordings were made from a female macaque with 

implanted micro-electrodes in the primary motor cortex.  The 

animal was implanted with 116 custom arrays comprising 12 

moveable 50 μm diameter tungsten micro-wires (of 

impedance117 ~200 kΩ at 1 kHz) using the same technique as 

previously described[31]. There were six components of the 

system: (1) an ASIC recording head-stage; (2) a system holder; 

(3) a processing unit; (4) a recording pinout; (5) a reference pin-

out and (6) a battery connector. The developed system was 

integrated with a custom designed holder which was placed on 

the female macaque head as shown at Fig. 6(c). The data was 

recorded using the SD card.   

 

D.  In-vivo closed-loop processing 

    As it is shown in Figure 7, Mice weighing 40 g were 

anaesthetized via inhalation of isoflurane (confirmed by the 

absence of the pedal withdrawal reflex). After a sufficient depth 

of anaesthesia was achieved, the animal was fixed in a 

stereotaxic frame (Kopf, Tujunga, CA, USA). A heating pad 

with feedback temperature control via a rectal probe (Harvard 

Apparatus, Holliston, MA, USA) maintained the core 

temperature of the mouse at 32°C. A skin incision was made in 

Fig. 10.  (A): A system current dynamic performances at recording frequency 50Hz. The system at normal run and in sleep conditions are both labelled with 

red arrows and texts. At normal run mode, system consumes 12mA, while at sleep mode, system consumes 0.3mA. The data was captured by a DC power 

analyzer (Agilent Technologies N6705B). (B):  The system power consumptions between recording frequency 1Hz and 2000Hz. Two benchmarks with the 

best and the worst computation load are implemented at case studies.  (C): A thermal comparison between system at a normal run and at a power cycling 
mode. At normal run condition, the device gradually raised up to 27.2̊C after 10 minutes, and then maintain this value. While at power cycling mode system 

always at room temperature 25.1̊C. (D): The energy consumptions of each algorithm (a-i). 
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the scalp before the periosteum was retracted to expose the 

bregma. A craniotomy was drilled above the parietal cortex of 

the left hemisphere. Optrodes were implanted into the left 

hemisphere. Two custom designed optrodes (previously 

described) one for electrical recording and one for optical 

stimulation were placed in corresponding places. The data was 

transmitted via UART communication in real-time. 

 

VI. RESULTS 

A. Modulation local field potential activities in a closed-loop 

  A testing algorithm of phase shift-pulse amplitude modulation 

(PAM) was implemented as a case study. Specifically,  we 

employed algorithms with different shifted phases from 0 to 

315 degrees relative to a target frequency. The experiment was 

performed in-vitro as previously mentioned. Recorded signals 

were first filtered at a central frequency 𝑓 = 6 Hz (experimental 

LFP central frequency), and shifted by pre-defined degrees. 

Then the outputs were generated by comparing with a threshold 

value 𝑉𝑡ℎ = 0 𝑉. At the final stage they wee translated into LED 

driving voltages to control light sources via the PAM algorithm.  

  The optical simulation command was updated every 2 ms in 

our experiments. The amplitude depended on the implemented 

closed-loop algorithm. The algorithm processing time of each 

degree on/off period  was 10 seconds. The results are shown in 

Fig. 8(A): (a) shows the LFPs recording results; (b) and (c) 

show the optical stimulation commands and phase condition 

lines respectively. (d) shows a wavelet transform power 

analysis performances. Based on the result, it can clearly seen 

that depending on the different phase shift, the LFP signal 

oscillates at specific frequency ranges between the 10-15Hz 

(indicated by the red dash arrows) range of interest. 
Particularly, three cases are displayed in detail in (e)-(g):(e) 

displays the LPF oscillations under shifted degree 45 condition; 

(f) shows the LPF oscillations under shifted degree 180 

condition; and (g) gives a result of LPF oscillations under 

shifted degree 270 condition. These clearly illustrate that the 

developed system has a capacity to modulate LFP activities at 

certain frequency bandwidth in a closed-loop processing 

manner. 

B.  Freely-moving rodent recording experiment 

Recorded data captured during a freely moving rodent 

experiment is displayed at Fig 8(B): (top) LFP data in the time 

domain, and (bottom) frequency domain with Power Spectral 

Density (PSD) analysis. In general, there are three different 

types of signals: at the very beginning there have 50 Hz noises 

which are at experimental setting up stage: the recording pin 

was floating in the air. In between there are the other two types 

of signals: one is spindle oscillations (light sleep) between 10-

12 Hz; the other one is Delta oscillation (deep sleep) between 

0-5 Hz. These LFP oscillations are matched with the rodent 

sleep-awake behaviours in the experiment. 

C. Freely-moving NHP recording experiment 

A 24-hour non human primate freely moving recording is 

shown in Fig 8(C): the top figure displays 24-hour LFP 

recording data in the time domain, and the bottom figure shows 

data with PSD analysis. The data clearly shows the differences 

between the primate in asleep and in wake-up conditions. At the 

beginning of time period 11:00-13:00: there are lots of 

movement introduced large amplitude signals (over 1mV), 

which is due to the electrodes movements as well as connection 

wire issues. At time period 13:00-17:00, the data displays LFP 

oscillations with beta oscillations with broadband artefacts that 
indicates the primate was at the awake condition. At time period 

17:00-05:00, The LFPs had regular delta oscillations (0-5Hz) 

and spindle oscillations (10-12Hz), which indicates that the 

primate was in light and deep sleep status. After  05:00, the LFP 

sleep patterns smoothly disappeared and came back to the beta 

oscillations (20Hz) in the awake condition. In addition, the 

movement introduced signal can be filtered out since it has clear 

difference characteristics (e.g. frequency range, amplitudes) 

with normal LFP oscillations.  

 

D. In-vivo closed-loop processing 

  The LFPs and the closed-loop optical stimulation commands 

of the in-vivo experiment are presented in figure 9 (a). It shows 

the stimulation pattern defined by the closed-loop algorithm  

which overlay of stimulation onto filtered data. The central 

frequency of the algorithm was set to 10 Hz (with bandpass 

filter 5-15Hz). The bandpass range was chosen in such a way 

that the correlation between the input recorded data and the 

output stimulations. The algorithm processing time is ON for 5 

seconds and OFF for 5 seconds. Each colour correlates to a 

different phase in the kernel of the algorithm (from 0 degree to 

315 degree). This leads to eight discrete phases, which repeat in 

a cyclic manner. Figure 9(b) shows the effect of the stimulus in 

closed-loop processing. The LFPs data are displayed by using 

violin plots at each stimulus phase condition. By comparing 

with an Alg-off violin shape, there are clear modifications on 

neural patterns in all shifted degree domains since violin shapes 

TABLE II 
SYSTEM SPECIFICATIONS 

                                    Overview 

 Control unit(size) 25mm×22mm 

 Head-stage(size) 10mm×10mm 

 Control unit(weight) 4.1g 

 Head-stage(weight) 1g 

 Recording channel 4 
 Stimulus channel 8 

                                    Speed 

 Recording 45𝜇𝑠 

 Stimulation 150𝜇𝑠   

 Algorithm processing 3-270𝜇𝑠 

 Data logger 19.5𝜇𝑠 

 UART transmission 22𝜇𝑠 

                                   Power 

 Control unit 0.63mA 

 Head-stage 1mA 

 SD card 1mA 

 PMU 0.3mA 

 Overall 2.93mA 

The system recording frequency is setup at 50Hz, and clock 

frequency is at 40MHz.  
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are varied at each condition. This indicates that these shifts have 

considerable modifications in the closed-loop control manner.  

 

 

E. System specifications  

The system specification is shown in Table II. The head-stage 

is 10 mm × 10 mm and 1g, and a control unit is 25 mm × 22 

mm and 4.1g. System recording and stimulation latency is 45 

𝜇𝑠 and 150 𝜇𝑠(per one request) respectively. Depending on the 

implemented algorithms, the latency of closed-loop processing 

varies from 3-270 𝜇𝑠, the latency of data logger (SD card) and 

the universal asynchronous receiver-transmitter (UART) is 

19.5𝜇𝑠 and 22𝜇𝑠, respectively.  

  The average power consumption of the control unit is 0.63 mA 

at the condition in which the recording frequency is 50 Hz, and 

the MCU clock frequency is set to 40 MHz. The head-stage 

approximately consumes 1 mA [12], the SD card and power 

management system consume 1 mA and 0.3 mA respectively. 
The maximum power that could be consumed by a single LED 

can be up to 5mA (at voltage supply 5V), though we typically 

consume much less to ensure no adverse thermal effect. 

However, the average power is very much dependent on the 

frequency of adverse activity in the tissue and the threshold for 

intervention. As such, the power budget for this would need to 

be calculated separately for each application. 
  The system power cycling performance is shown in Fig. 

10(A): an embedded controller consumes 12 mA (peak currents 

at 14 mA) normal run mode and approximately only 0.3mA in 

sleep mode. The normal run period is 475 𝜇𝑠 at this case, and 

the rest periods are all in sleep mode. The specific details of the 

power cycling approach are described in Supplement S2. 

F. System thermal experiment 

  Previously discussed implantable electronics have been 

constrained by battery capacities and thermal issues [6]. This 

places significant limits on the processing and stimulus. 

Interesting, the constraints of implantable electronics are very 

similar to our work, such as 24-hour battery replacement. A 

thermal experiment was therefore carried out to investigate the 

thermal performance of the developed embedded system (at 

room temperature 25.1̊C). For comparison purposes, systems 

with a normal run mode and with a power cycling mode were 

processed for an hour. The results are shown in Fig. 10(B):  at 

the normal run condition, the device gradually raised up to 

27.2̊C after 10 minutes, and then maintained this value. While 

at power cycling mode system was at standstill at a room 

temperature of 25.1̊C. This indicates that the developed 

technology holds a promising solution for addressing thermal 

issues of implantable electronics. 

 

VII.     DISCUSSION 

A. Power cycling technology 

 We investigated the neural engine power cycling performance 

at a biological recording frequency range between 1 Hz and 

2000 Hz. In our developed BMI processing toolbox, two sets of 

algorithms are implemented to represent computationally light 

and computationally heavy loads (9 𝜇𝑠, 333 𝑠). The light case 

is a simple threshold of the maximum intensity, and the heavy 

case is a bandpass-phase shift- PAM. The results are displayed 

in Fig. 10(C).  

In general, as the biological recording frequencies increase, 

the current consumption increases up linearly. Specifically, the 

developed neural co-processor consumes less than 1 mA when 

recording frequency is below 100 Hz. This demonstrates that at 

low-frequency recording applications such as brain field signals 

(e.g. less than 50 Hz) [32], the developed technique has 

significant power reduction performance, which approximately 

equals the ASIC circuits level (e.g. less than 5 mW) [8]. 

However, when recording frequency is required over 100 Hz 

for fast signals such as action potentials, the developed 

technology shows similar power performances to the standard 

embedded hardware. Meanwhile, the system with different 

computational load displays significant power consumption 

variations (at recording frequency 1000 Hz, the best case 

consume 0.42 mA while the worst case is 2.6 mA). Also, Fig. 

10(D) displays the energy consumptions of each algorithm. 

This can be further optimized by reducing window size and 

kernel taps, change the data-type from the floating-point to the 

integer, and use software in-line functions. 

B. The comparison to the other works 

   We show several similar works developed recently in Table 

III. Liu et al. [8] and Kassiri et al. [9] develops an ultra-low 

power BMI system with elegant ASIC designs with 8 mW and 

2.8 mW power consumptions, respectively. They both showed 

valid in-vivo data with AP detection along with phase 

synchronization performances. Regarding energy and physical 

dimension issues, these systems are very well developed. 

TABLE III  

THE COMPARISON BETWEEN THE OTHER WORKS 
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However, fixed CMOS circuits cannot be reprogrammable 

which may not ideal for medical practical applications. Zanos 

et al. [11] designed an MCU based system for primate freely-

moving experiments. By taking advantages of a commercial 

development board PSoC, the algorithm could be updated. 

However, the overall consumption was significantly large at 

284mW. Similarly, Gagnon-Turcotte et al. demonstrated a 

strong computing scalability system with 32 

recording/stimulation channels with a comprehensive wavelet 

data compression technique [10]. The power consumption is 

still relatively high at 119mW. Therefore, translating these 

devices into clinical applications would require further power 

optimization efforts to avoid battery life and thermal issues. 

Meanwhile, [10] and our own effort employ optogenetic based 

stimulations [33], while the others use traditional electrical 

stimulation, which cannot be genetically targetted [34]. 

Regarding freely moving experiments, our system also shows 

both primates/rodents reliable LFP recordings. And for in-vitro 

experiments, the developed system demonstrates considerable 

closed-loop neuromodulation outcomes, which includes both 

stimulation and recording. Therefore, the technology presented 

in this paper is the only one with both ultra-low power and 

computing flexibility performances as well as valid freely-

moving LFP recording data. And this embedded-ASIC 

hardware may inspire us for the next generation BMIs 

[35][36][37][38].   

   Also it should be noted that we have utilized an SD card as as 

our biological teams found this more convenient in this 

instance.  

   Last but not least, there have been some the other techniques 

show various capabilities in optogenetic fields. Tae-il Kim[39] 

developed a multifunctional optrode with injected light sources, 

detectors, sensors and other components which can place into a 

precise location of the deep brain. This technique provides 

optical, thermal, and electrophysiological studies in a freely 

moving environment. Yu [40] provided a wirelessly controlled, 

implantable, micro-LEDs based optical neural face for 

behaving animals, which is interesting for animal behavior 

research in neuroscience. 

C. The applications  

  The BMI processing toolbox is developed for neuroscience 

various applications. Regarding the three-stage algorithm 

configuration: for a detection stage, a simple threshold 

algorithm shows a low detection accuracy but short latency, 

which is suitable for noise detections or explicit time domain 

processing; a bandpass filter allows only interested signals pass 

into the next stage process with a considerable process delays 

(149 𝜇𝑠 at 101 taps at sampling frequency 250Hz). Therefore, 

it suitable for frequency domain applications. A line length 

method can be applied either in time or frequency domain since 

it’s sensitive to signal abrupt variations. The phase shift 

algorithm could help us investigate several fundamental 

neuroscience mechanisms such as neural coherence [41][42] 

and synchronization [43][44]. A standard PID controller has 

been implemented for control/modification of abnormal 

activities – in particular, for epilepsy [45][46]. The final optical 

converter stage is determined by the required 

suppression/activation level as well as opsin expression, opto-

electronics design and LED performance.  

    It should be noted that the  parameter selection in each 

algorithm is experimentally determined. So there will need to 

be a long-term experimental follow up to explore these 

parameter ranges for different applications.  

Two case studies have been employed to demonstrate system 

various applications. The power consumptions of benchmark 

1(best case) and benchmark 2 (worst case) is 1.38mW and 

8.5mW at recording frequency 500Hz (without extra averaging 

function), respectively. Therefore, the neural engine can be 

reconfigurable depends on experimental requirements such as 

closed-loop algorithms/parameters. 

D. Future work of in-vivo closed loop processing 

   The current in-vitro and in-vivo is sufficient to demonstrate 

the platform is capable of electrical recording, closed loop 

processing and optical stimulation in a form factor that can be 

deployed in-vivo. For the near future in-vivo freely moving 

closed loop experiments, optrode LED bonding technique and 

encapsulation should be tailor designed for alleviating artefacts 

and leakage current issues. More importantly, system level 

approach is defined to evaluate animal behaviors corresponding 

with closed loop processing. Based on these, the developed 

platform BMI toolbox should be correspondingly modulated to 

maximum the system performances as well as mechanical 

setups (e.g. grounding, optrode locations). 

VIII. CONCLUSION 

    In this work, we have developed a neural engine for closed-
loop optogenetic processing. First, an in-vitro experiment is 

performed to demonstrate system closed-loop processing for 

modulating LFPs at specific frequencies. Both non-human 

primate and rodent in-vivo experiments have been shown with 

reliable system recordings. Also, a thermal experiment and a 

system current dynamic analysis has been carried out to 

illustrate system ultra-low-power computing performances for 

long lifetime.  

Therefore, the major contributions are as below: 1) A novel 

embedded-ASIC hardware architecture has been developed for 

optogenetics closed-loop applications, which shows both ultra-

low power performance and strong computing flexibility, we 

also demonstrate optical closed-loop neuromodulation 

performances; 2) An in-vitro and in-vivo closed-loop 

processing platform has been developed to meet various 

neuroscience/neurotechnology applications requirements. 

Particularly, tailor designed BMI toolbox is implemented which 

allows the system to has wider application scopes; 3) An in-

vivo recording platform has been developed for both 

primates/rodents freely moving environments We have 

demonstrated the ability to record activity through electrical 

recording, modulate activity through optogenetic stimulation, 

and perform closed loop processing have all been demonstrated 

together in in-vitro preparation. We have also tested this same 

hardware in-vivo to show the form factor is appropriate. In the 

near future we will include in-vivo freely moving experiment 

and focus on the animal behaviors control research by taking 

advantages of developed closed-loop system. 
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Supplementary S1 A BMI toolbox processing  

 
Developed BMI toolbox processing has three stages: a detection, a suppressor and an optical converter. Each stage contains a 

variety of algorithms. This supplementary provides the details simulation results of each algorithm both in time and frequency 

domain. 

 

1. Stage1-Detection 

The detection stage has three different algorithms: thresholding, line length and bandpass filter. Fig. S1-1 displays three algorithm 

results both in the time domain and frequency domain (wavelet transformation). 

 

A testing chirp signal is generated which contains blocks of  𝑉𝑝𝑝 = 20mV, 𝑉𝑝𝑝 = 100mV and 𝑉𝑝𝑝 = 180mV. Each block is a chirp 

signal with frequency: 1Hz -5Hz -1Hz (Fig. S1 a(1)). This indicates that signals encode information changes both in time and 

frequency domain.  The magnitude scalogram results are also shown at Fig. S1 a(2). For each algorithm, signals were pre-stored 

into a waveform generator (Keysight 33500B) for testing purposes. 

 

Fig. S1-1 b(1) displays the results of the simple threshold algorithm. A threshold value is set as 0V. Signal amplitudes which are 

above 0V are considered as abnormal activities. Also, the result of wavelet transformation is shown in Fig. S1-1  b(2). Interestingly, 

by applying the simple threshold technique, there are two major changes regarding outcomes. Firstly, the absolute amplitudes are 

reduced to a certain value based on the thresholds. Secondly, there are some second and third harmonic waves in the frequency 

domain. Fig. S1-1  c(1-2) shows Line Length (LL) results, the LL entropy and threshold lines are labelled as well. Only signals LL 

entropy outputs are above the threshold values are considered as abnormal activities. Also, black lines indicate the LL outputs, and 

corresponding frequency domain results are illustrated in Fig. S1-1  c(2). Particularly, some wavelet transformation results are not 

displayed due to out of the effect areas (the effect areas are indicated by the white dash line). Fig. S1-1  d(1-2) depicts the bandpass 

(3-7Hz) filter results. Only signal frequencies in the range of 3-7Hz can be passed for the next stage processing; the rests are 

strongly attenuated in time domain. The filter tap is 100 at recording frequency 50Hz condition.  

 

2. Stages2-Suppressor 

The suppressor stage has two algorithms: bandpass filter with certain bandwidths and PID control system. Fig. S1-2 displays two 

algorithm results both in the time, phase (FFT analysis) and frequency domain (wavelet transformation). 

 

A chirp signal (sweeps from 1Hz to 10Hz) is generated and were pre-stored into a waveform generator (Keysight 33500B) for 

testing purposes. Fig. S1-2 a(1-3) shows generated signals in time, frequency and phase domains. The phase shift algorithm(central 

frequency is set as 5Hz and shift degree is set as180 degree) outputs are displayed in Fig. S1-2 (b): only signals with 5Hz are 

passed out, and the degree is shifted 180 degrees as shown at Fig. S1-2 (b3). Signal frequencies are not at 3-7Hz are strongly 

attenuated as Fig. S1-2 (b2) shows. Also, Fig. S1-2 c(1-3) displays a custom implemented PID controller result. With the parameter 

setting 𝑘𝑝 = 1, 𝑘𝑖 = 10 and 𝑘𝑑 = 0 The signal phases are strongly disturbed due to system integrating behaviours shown at Fig. 

S1-2 (c3). 
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Fig. S1-1: The detection algorithm results. The input signals are shown at a(1-2) both in time and frequency domains. b (1-2) shows 

the simple threshold results in time and frequency domain, and the absolute threshold value is 0V. c(1-2) depicts the line length 

results in time and frequency domains. The LL entropy outputs and threshold are labelled in the red line. The window size N = 

100, K= 30 and LL outputs threshold is 60. d(1-2) illustrates the bandpass filter results in time and frequency domains. The filter 

tap is 100 at recording frequency 50Hz condition. 
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Fig. S1-2: a(1-3) displays testing chirp signals (1-10Hz); b(1-3) shows the phase shift algorithm results. The central frequency is 

5Hz,𝑘 is 12.5 and 𝜑 is 180 degree. The filter tap is optimized at 50; c(1-4) illustrates a PID controller results. The parameter is 

𝑘𝑝 = 1, 𝑘𝑖 = 10 and 𝑘𝑑 = 0. The reference signal is set as 0 which indicates neural network is at standstill condition.  

 

3. Stages3-Optical Converter 

The optical converter stage has three different algorithms: maximum threshold, Pulse Amplitude Modulation (PAM) and Pulse 

Width Modulation (PWM). Fig. S1-3 shows each algorithm simulation results.  

 

Fig. S1-3(a) provides a pulse of maximum intensity (60 /𝑚𝑚2 ) when the intervention is beyond a certain threshold 140; Fig. S1-

3(b) and Fig. S1-3(c) displays PAM and PWM results: where each output is linearly transformed into a pulse amplitude (100-500) 

and pulse width (0-20ms) respectively. 

 

Fig. S1-3: (a) Maximum intensity results, where the threshold is 140, and the maximum intensity is 60 60 𝑚𝑊/𝑚𝑚2; (b) the pulse 

amplitude modulation results. The outputs are linearly transformed into LED DAC values between 100- 200; (c) the pulse width 

modulation results. The outputs are linearly transformed into pulses values between 0-20ms. 
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Supplementary S2 Low power cycling technology [1] [2] 
One of the most important factors to take into account when developing an implantable device is power consumption. It is vital 

that the amount of operational hours of the device are significantly higher compared to the amount of time it takes for the device 

to recharge. Hence, not restricting the patient from any daily needs and activities. This can be achieved by developing efficient 

hardware with low power consumption, powering up parts of the hardware only when needed and by implementing energy 

harvesting techniques. In this document, the emphasis is on describing the implementation of power cycling on the microcontroller 

core utilised. In other words, keeping the microcontroller powered when performing specific tasks and placing it into a low power 

mode when not. 

 

1. Specifications 

Table S2-1: System specifications for system power modes 

   

 

 

 

 

 

 

 

The data was measure by using the developed embedded ASIC system. The presented data has been obtained by using a DC power 

analyzer (Agilent Technologies N6705B). 

 

2. Power mode transition diagram 

Figure S2-1 illustrates all the possible modes and transitions between them. The modes and transitions followed in this case have 

been highlighted in blue and red accordingly.  

 

3. Low power technique overview 

In order to achieve high performance within a constrained energy budget, a power cycling technique was used. More specifically, 

the Microcontroller Unit (MCU) cycles between the normal RUN mode and the Very Low Power Stop (VLPS) mode, achieving a 

significant reduction of static and dynamic power consumption. This is mainly achieved by disabling some of the peripherals and 

clocks on the MCU. Figure S2-2 illustrates the active (blue) and disabled (orange) peripherals when the MCU is placed in VLPS 

mode. 

 

4. VLPS Methodology 

 

4.1. Before Entering VLPS mode 

Prior to entering the VLPS mode the corresponding registers and appropriate clocks have to be set and selected. In this work the 

LPTMR timer module was chosen as a wake-up unit. An interrupt occurring every 5 ms would wake up the MCU placing it back 

to normal RUN mode. The clock used to time the LPTMR module was LPO. Figure S2-3 illustrates an example diagram of all the 

available clocks in the MCU. In order for the LPO to be selected as the  

 

Mode Normal VLPS 

Current consumption 11.96 mA 0.2 mA 

Transition period enter 

(from normal) 

- 20 us 

Transition period exit (to 

normal) 

- 20 us 

Authorized licensed use limited to: Imperial College London. Downloaded on February 23,2020 at 09:37:04 UTC from IEEE Xplore.  Restrictions apply. 



0018-9294 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2020.2973934, IEEE
Transactions on Biomedical Engineering

LPTMR clock source, the PCS bits in the LPTMR_PSR register had to be set to 0b01. This has to be done while the LPTMR 

module is disabled. 

 

There are three other clocks that can be chosen as an input to the LPTMR module. MCG (grey) is the Multipurpose Clock Generator 

and is the main clock module. The MCG clock is disabled when the MCU is in VLPS mode (except for when it is in debug mode), 

so the MCGIRCLK could not be used. As for the system oscillator, it provides the OSCERCLK_UNDIV clock, which comes from 

external crystal circuit or directly from EXTAL. In this work no external circuitry or input to the EXTAL pin was used, hence this 

clock could not be used. Finally, the RTC clock could have been made available through the ERCLK32K and selected, but again 

no external crystal circuit was used in this work. The System Integration Module (SIM) is responsible for controlling the clock 

selection and distribution of each clock in the VLPS mode. 

  

Figure S2-1: Diagram of all power modes and transitions. The modes and transitions that have been utilised in this work are 

highlighted in blue and red respectively. When the system is powered up it enters RUN mode through a normal BOOT. Then 

the system cycles through the RUN and VLPS mode as described in section 4. 
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Figure S2-2: The figure illustrates all the available peripherals in the MCU. When the system is in RUN mode all the peripherals 

(both orange and blue) are active. After entering VLPS mode only the blue peripherals remain active and all the peripherals with 

an orange background are disabled. 

 

 

Figure S2-3: Example clock diagram of the MCU. The LPO timer in chosen as an interrupt source. The lines highlighted in red 

illustrate what part of the hardware is required in order for the LPO to be selected. 

 

The next step is to allow the MCU to enter the VLPS mode. This is achieved by setting the SMC_PROT register. 
SMC_PMPROT = SMC_PMPROT_AVLP_MASK; 

Then, the VLPS mode is selected by setting the STOPM bits in the SMC_PMCTRL register to 0b010. 
SMC_PMCTRL &= ~SMC_PMCTRL_STOPM_MASK; 

SMC_PMCTRL |= SMC_PMCTRL_STOPM(2); 

Following the stop mode selection and completing the initialisation phase is setting the SLEEPDEEP bit to 1. 
SCB_SCR |= SCB_SCR_SLEEPDEEP_MASK; 

 

4.2. Entering VLPS mode 

After following the correct initialisation the Wait For Interrupt (WFI) instruction is executed, which causes immediate entry to the 

VLPS mode. 
#ifdef CMSIS 

 __wfi(); 

#else 

 /* WFI instruction will start entry into STOP mode */ 
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 __asm("WFI"); 

#endif 

 

4.3. Exiting VLPS mode 

While in VLPS mode the MCU can be woken up by an interrupt caused by the LPTMR module, provided that the correct 

initialisation and the appropriate clock source have been chosen, as described in 4.1. 
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