Reinforcement Learning for High-Frequency
Market Making

Ye-Sheen Lim and Denise Gorse

University College London - Computer Science
Gower Street, London, WC1E 6BT - UK

Abstract. In this paper we present the first practical application of re-
inforcement learning to optimal market making in high-frequency trading.
States, actions, and reward formulations unique to high-frequency mar-
ket making are proposed, including a novel use of the CARA utility as a
terminal reward for improving learning. We show that the optimal policy
trained using Q-learning outperforms state-of-the-art market making al-
gorithms. Finally, we analyse the optimal reinforcement learning policies,
and the influence of the CARA utility from a trading perspective.

1 Introduction

The mathematical modelling of market dynamics is extremely challenging. Even
in their full complexity, mathematical modelling of financial markets is insuffi-
cient in capturing the reality of financial systems. These issues are even more
salient in high-frequency trading (HFT), which is a relatively new field of great
interest to both financial institutions and market regulators.

HFT involves the use of high-speed communication technologies and accurate
real-time market data to make trades in timescales of seconds down to microsec-
onds. HF traders generally function as market makers. Market making refers to
the act of liguidity provision by simultaneously quoting a bid (buy) price and
an ask (sell) price on an asset. Liquidity is loosely defined as the quantity of
asset available for trade. Profit is earned by the market maker in the form of
the spread between the quoted price placed on the buy and sell prices.

Relatively little work has been done to model HF market making. The
work done in [1, 2] assumes a market maker operating in a low-frequency and
quote-driven environment reminiscent of pre-modern financial markets. The
work closest in content to that presented here is that of [3]. The authors applied
stochastic approximation to fit the Avellaneda-Stoikov model [4], which is well-
known as an industrial standard.

In this paper we present a formulation of a discrete Q-learning algorithm for
market making, test it against the model used in [3], and analyse the result-
ing optimal policy. We make a novel use of the CARA utility [5] to improve
learning based on the measure of an agent’s risk aversion. We demonstrate RL
outperforms analytical models such as the one used in [3].



2 Background and Related Work

2.1 Limit Order Book

Modern financial markets are order-driven and decentralised, where any trader
can submit bid or ask limit orders (LO) for a quantity of asset at a specific
limit price. If the limit price of an order cannot be satisfied on arrival to an
exchange, the LO is added to a limit order book (LOB) to await execution
against subsequent orders arriving at the exchange. LOs in the LOB can also
be cancelled. Traders can also submit a market order (MO), which has no limit
price and is always immediately executed at the best price in the LOB.

Hence, a LOB is a continuous double auction where traders compete in buy-
ing and selling an asset by submitting bid and ask orders. Transactions can
occur anytime an existing LO in the book is matched to an incoming order by
a matching engine. Typically the matching engine of a LOB implements the
price-time priority rules for matching an incoming order to LOs in the book.
For priority of execution, the LOs in the book are ranked first by their price,
and second by the time the order arrived at the exchange. Readers are directed
to [6] for a comprehensive introduction to LOBs.

In this paper we are interested in simulating an environment which repro-
duces the stochastic dynamics of LOBs at HF for learning market making poli-
cies. The dynamics of LOBs are governed by the random arrivals of so-called
order book events [7]: LO submission, LO cancellation and LO executions. To
this end we use the Poisson model of order book event arrivals of [8] to simulate
the limit order book. The model has been shown to reproduce important statis-
tical properties of empirical order books, and more importantly is derived in a
form that is suitable for use as a reinforcement learning environment.

2.2 High-Frequency Market Making

HF market makers provide liquidity by posting simultaneous bid and ask quotes,
and making profit off the spread, while cancelling and resubmitting orders at high
speed to react to minute changes in the market. The main objective of a market
maker is to minimise inventory risk, i.e. to avoid being in possession of large
amounts of inventory which might unexpectedly lose its value.

Market making control policies determine the offsets from the best bid and
best ask in the LOB at which to post the bid and ask quotes. In the earlier years
of HFT, market making strategies set zero tick (a tick is the lowest price change
allowed by the exchange) offsets but this nowadays an unprofitable strategy. [9]
proposed to determine the offset based on market conditions such as market
volatility and the arrival rates of MOs. [10] used a so-called reservation spread
determine whether or not to post LOs. [4] described a complex optimal control
approach that became an industrial standard.

The cited papers above proposed strategies derived from mathematical mod-
els making strong assumptions about market behaviour. Also, the models rely
heavily on parameters that have to be fitted, possible unreliably from recent



market data. In practice these parameters are subjected to regime changes. Fi-
nally, the inherently continuous and non-linear action space of the models proved
to be very unstable; very small perturbations can lead to extreme control values.
In order to develop more effective strategies, it is necessary to move beyond a
reliance on such models into a framework that learns effective strategies from
experience; this will be the subject of the work to be described below.

3 RL Formulation

3.1 States

In what follows, we will assume Markovian state transitions, and treat the par-
tially observable environment as if it were fully observable. The ultimate test of
these assumption will lie in the later empirical evaluation of the algorithm.

The two states of primary concern here are: the inventory i, and the time
remaining 7. To reduce the computational complexity, the inventory states are
binned to six states representing small, medium and large inventory imbalance
for either direction, with an additional state representing zero inventory. The
trading period T is discretised into k timesteps; hence we have the remaining
time as 7 € {+7, 2T,...,T}.

3.2 Actions

Since all exchanges in practice impose a minimum in the price change, called the
tick, the action space is naturally discrete. We define the action of simultaneously
quoting bid/ask limit orders at a given timestep as a tuple a = (dp, d,), where
dy € 7Z is the number of ticks lower than the best bid to quote a bid limit order,
and d, € Z is the number of ticks higher than the best ask to quote an ask limit
order. At every timestep, we cancel any unexecuted orders previously placed
and submit new limit orders according to the action a selected from the optimal
policy given the current states. All orders placed are for a unit size of 100 shares.

3.3 Rewards

Existing approaches to the market making problem generally seek to maximise
the expected utility of some economic measure of the agent. These utilities are
meant to evaluate the performance of the agent at the end of a trading period
and do not accurately represent immediate rewards at each timestep t. We
propose a more suitable utility through the reward function R; described below

Ry = a(Vy = Vio1) + " sgn(lie] = lie-a) (1)

where a and b are constants, V; is the wvalue of the agent at time %, i; is the

inventory of the agent at time ¢, and 74 is the remaining trading time at ¢.
After the end of a trading period, we introduce a terminal reward based on

the constant absolute risk aversion (CARA) utility [5] to represent the attitude



of the agent to the gains or losses caused by having inventory i7 at the end of
the trading period. The CARA utility is an exponential in the form of

Rr = a —exp(—r(Cr —irSTt)) , (2)

where « is a constant, r is the risk aversion parameter, C is the profit or loss
made during the trading period, and St is the average price (including costs) at
which we can immediately liquidate i7 shares.

4 Experiments

The discrete Q-learning algorithm [11] is used to find the optimal action-selection
policy. Function approximation is not required, as the states and actions are nat-
urally discrete. Since we do not have a good starting policy for an environment as
complex as a high-frequency market, we use an off-policy algorithm in preference
to an on-policy algorithm for better exploration.t

During learning, the optimal actions are chosen e-greedily. Both e and the
learning rate are set to diminish as more episodes are run. Each trading period
is set to 120 seconds, with & = 12 timesteps and hence 12 time states. For the
inventory state i, we define small inventory as 0 < ¢ < 200, medium inventory
as 200 < ¢ < 400, and large inventory as ¢ > 400. With this, there are in total
66 combinations of possible time and inventory states.

The Poisson model described previously is used to simulate a dynamic limit
order book. The agent is trained for 10000 episodes. In every episode, the
simulation is first run for 300 seconds to initialise the order book. Selecting the
optimal offsets from @), the agent submits simultaneous bid and ask limit orders
every 10 seconds until the end of the trading period. Any previously submitted
orders that have not been executed are cancelled. @ is then updated using the
reward function R; as described above. At the end of the trading period, the
terminal reward Rp is used to update the value of the last encountered state,
regardless of the action taken. By doing this the CARA utility is propagated
through all previous states, letting the agent take into account its risk aversion
in accumulating inventory throughout the trading period.

The performance of RL will be compared to other market making algorithms.
In RL, the market maker can choose to quote an offset from the set {0, 1,2}
ticks for each bid and ask side respectively, giving a total of 9 different tuples
as actions. The Zero Tick Offset method is the simplest form of market making
where the bid and ask prices of the limit orders are set to the best bid and best
ask. We also include the Avellaneda-Stoikov [4] model, which is still regarded
as state-of-the-art. Finally, we have Random Actions where the actions are
randomly choosen from the action set available to RL.

4.1 Results

We simulate trading for 2000 trading periods. At the end of each period, the
total inventory accumulated is immediately liquidated with a MO and the final



total profit obtained by the agent is then computed. Since the Zero Tick Offset
algorithm is the simplest approach, for comparison we plot the difference between
the cumulative profit of each market making algorithm and that of the Zero Tick
Offset throughout the 2000 trading periods. This can be seen in Figure la, with
Figure 1b the cumulative inventory relative to Zero Tick Offset.

2000

~J- RL v
4000000 Avellaneda-Stoikov
-l 0 Tick Offset V
3000000 { - Random Actions v

1000

2000000

-1000

. et ogon i
-2000 e N
- RL Y,
-3000 +- Avellaneda-Stoikov W”"»"“’V\w;',

1000000

Relative Cumulative Profit ($)

0
B 0 Tick Offset

_4000{ ~¥- Random Actions o

~1000000

Relative Cumulative Inventory (Shares)

0 250 500 750 1000 1250 1500 1750 2000 0 250 500 750 1000 1250 1500 1750 2000
Trading Periods (120 seconds) Trading Periods (120 seconds)

(a) Cumulative profit (b) Cumulative inventory

Fig. 1: Cumulative profit and cumulative inventory, relative to the Zero Tick
Offset method, after 2000 trading periods for different market making algorithms

From Figure 1a we can see that RL clearly outperforms in terms of profit all
the other methods, including the mathematical model of Avellaneda-Stoikov. In
addition, Figure 1b demonstrates that RL remains the most inventory neutral.

4.2 Influence of the CARA Utility

The use of the CARA utility as the terminal reward enables the agent to learn
an optimal policy that suits its attitude to the risk of inventory imbalance.
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Fig. 2: Final cash and cumulative inventory after 2000 periods for agents with
increasing risk aversion, including a fitted line, with shaded standard deviation

Figure 2a shows the total profit earned after trading for 2000 periods for
agents with increasing risk aversion. At the end of each trading period, the
inventory is liquidated with a MO and the total profit is added to a cumulative
sum. Figure 2b shows the cumulative sum of the inventory that has to be
liquidated at the end of every trading period, as function of risk aversion. As



this is increased, the accumulated inventory decreases almost linearly, reducing
the exposure of the agent to liquidation costs and costs due to natural price
movements.

One can observe in Figure 2a that although a linearly increasing trend can
be fitted to the total profit, multiple runs with the same risk aversion can have
slightly varying total profit due to the stochastic nature of price movements. The
liquidation cost of a unit of the asset may never be the same at two different
points in time. The risk aversion parameter in the CARA utility represents the
willingness of the agent to risk these natural price movements.

5 Discussion

The reinforcement learning formulation presented above has been shown to out-
perform the market making framework proposed by [4], which is still consid-
ered state-of-the-art in the literature. However, our use of the CARA utility
has demonstrated that there is a lot of potential in the intersection between
mathematical models and machine learning methods. An alternative to the
methodology of this paper, to be considered in future work, would be the use
of reinforcement learning to instead learn to tune the actions of the algorithm
derived from [4], depending on the limit order book states; this would be a fur-
ther example of the combination of reinforcement learning and mathematical
modelling.
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