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Abstract: Integrated information has been recently suggested as a possible measure to identify
a necessary condition for a system to display conscious features. Recently, we have shown that
astrocytes contribute to the generation of integrated information through the complex behavior of
neuron–astrocyte networks. Still, it remained unclear which underlying mechanisms governing
the complex behavior of a neuron–astrocyte network are essential to generating positive integrated
information. This study presents an analytic consideration of this question based on exact and
asymptotic expressions for integrated information in terms of exactly known probability distributions
for a reduced mathematical model (discrete-time, discrete-state stochastic model) reflecting the
main features of the “spiking–bursting” dynamics of a neuron–astrocyte network. The analysis
was performed in terms of the empirical “whole minus sum” version of integrated information
in comparison to the “decoder based” version. The “whole minus sum” information may change
sign, and an interpretation of this transition in terms of “net synergy” is available in the literature.
This motivated our particular interest in the sign of the “whole minus sum” information in our
analytical considerations. The behaviors of the “whole minus sum” and “decoder based” information
measures are found to bear a lot of similarity—they have mutual asymptotic convergence as
time-uncorrelated activity increases, and the sign transition of the “whole minus sum” information
is associated with a rapid growth in the “decoder based” information. The study aims at creating a
theoretical framework for using the spiking–bursting model as an analytically tractable reference
point for applying integrated information concepts to systems exhibiting similar bursting behavior.
The model can also be of interest as a new discrete-state test bench for different formulations of
integrated information.

Keywords: integrated information; discrete-state stochastic model; computational biology;
neuron-astrocyte networks

1. Introduction

Integrated information (II) [1–4] is a measure of internal information exchange in complex
systems and it has recently attracted a lot of interest, because initially it was proposed to quantify
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consciousness [5]. Despite the fact that this initial aim is still a matter of research and debate [6–9], the II
concept itself is by now a widely acknowledged tool in the field of complex dynamics analysis [10–12].
The general concept gave rise to specific “empirical” formalizations of II [13–16] aimed at computability
from empirical probability distributions based on real data. For a systematic taxonomy of II measures,
see [17], and a comparative study of empirical II measures in application to Gaussian autoregressive
network models has been recently done in [18].

Our recent study [19] addressed the role of astrocytic regulation of neurotransmission [20–22]
in generating positive II via small networks of brain cells—neurons and astrocytes. Empirical
“whole minus sum” II, as defined in [13], was calculated in [19] from the time series produced by a
biologically realistic model of neuro-astrocytic networks. A simplified, analytically tractable stochastic
“spiking–bursting” model (in complement to the realistic one) was designed to describe a specific
type of activity in neuro-astrocytic networks which manifests itself as a sequence of intermittent
system-wide excitations of rapid pulse trains (“bursts”) on the background of random “spiking”
activity in the network [23,24]. The spiking–bursting model is a discrete-time, discrete-state stochastic
process which mimics the main features of this behavior. The model was successfully used in [19]
to produce semi-analytical estimates of II in good agreement with direct computation of II from
time series of the biologically realistic network model. We have suggested a possible explanation
that a generation of positive II was the reason why mammal brain evolved to develop an astrocyte
network to overlap with a network of neurons, but, still, it remained unclear what are the underlying
mechanisms driving a complex neural behavior to generate positive II. In this paper we address this
challenging question.

The present study aims at creating a theoretical formalism for using the spiking–bursting model
of [19] as an analytically tractable reference point for applying integrated information concepts to
systems exhibiting similar bursting behavior (in particular, to other neuron–astrocyte networks).
The analytical treatment is based on exact and asymptotic expressions for integrated information
in terms of exactly known probability distributions for the spiking–bursting model. The model is
constructed as the simplest possible (although essentially non-Gaussian) to reflect the features of
neuron–astrocyte network dynamics which lead to generating positive II. We also aim at extending the
knowledge of comparative features of different empirical II measures, which are currently available
mainly in application to Gaussian autoregressive models [17,18], by applying two such measures [13,16]
to our discrete-state model.

In Sections 2 and 3 we specify the definitions of the II measures used and the model. Specific
properties of the model which lead to redundancy in its parameter set are addressed in Section 4.
In Section 5 we provide an analytical treatment for the empirical “whole minus sum” [13] version of
II in application to our model. This choice among other empirical II measures is inherited from the
preceding study [19] and is in part due to its easy analytical tractability, and also due to its ability
to change sign, which naturally identifies a transition point in the parameter space. This property
may be considered a violation of the natural non-negativeness requirement for II [16]; on the other
hand, the sign of the “whole minus sum” information has been given interpretation in terms of
“net synergy” [25] as a degree of redundancy in the evolution of a system [18]. In this sense this
transition may be viewed as a useful marker in its own right in the tool-set of measures for complex
dynamics. This motivates our particular focus on identifying the sign transition of the “whole minus
sum” information in the parameter space of the model. We also identify a scaling of II with a small
parameter which determines time correlations in the bursting (astrocytic) subsystem.

In Section 6 we compare the outcome of the “whole minus sum” II measure [13] to that of the
“decoder based” measure Φ∗, which was specifically designed in [16] to satisfy the non-negativeness
property. We compute Φ∗ directly by definition from known probability distributions of the model.
Despite their inherent difference consisting in changing or not changing sign, the two compared
measures are shown to bear similarities in their dependence upon model parameters, including the
same scaling with the time correlation parameter.



Entropy 2020, 22, 1334 3 of 22

2. Definition of II Measures in Use

The empirical “whole minus sum” version of II is formulated according to [13] as follows.
Consider a stationary stochastic process ξ(t) (binary vector process), whose instantaneous state
is described by N binary digits (bits), each identified with a node of the network (neuron). The full set
of N nodes (“system”) can be split into two non-overlapping non-empty subsets (“subsystems”) A
and B; such a splitting is referred to as bipartition AB. Denote by x = ξ(t) and y = ξ(t + τ) two states
of the process separated by a specified time interval τ 6= 0. The states of the subsystems are denoted as
xA, xB, yA, yB.

Mutual information between x and y is defined as

Ixy = Hx + Hy − Hxy, (1)

where
Hx = −∑

x
p(x) log2 p(x) (2)

is entropy (base 2 logarithm gives result in bits); summation is hereinafter assumed to be taken over
the whole range of the index variable (here x), Hy = Hx, due to assumed stationarity.

Next, a bipartition AB is considered, and “effective information” Φeff as a function of the particular
bipartition is defined as

Φeff(AB) = Ixy − IxA ,yA − IxB ,yB . (3)

Finally, “whole minus sum” II denoted as Φ is defined as effective information calculated
for a specific bipartition ABMIB (“minimum information bipartition”) which minimizes specifically
normalized effective information:

Φ = Φeff(ABMIB), (4a)

ABMIB = argminAB

[
Φeff(AB)

min{H(xA), H(xB)}

]
. (4b)

Note that this definition prohibits positive II, whenever Φeff turns out to be zero or negative for at least
one bipartition AB.

We compare the result of the “whole minus sum” effective information (3) to the “decoder
based” information measure Φ∗, which is modified from its original formulation of [16] by setting the
logarithms base to 2 for consistency:

Φ∗(AB) = Ixy − I∗xy(AB), (5a)

where

I∗xy(AB) = max
β

[
−∑

y
p(y) log2 ∑

x
p(x)qAB(y|x)β + ∑

xy
p(xy) log2 qAB(y|x)β

]
, (5b)

qAB(y|x) = p(yA|xA)p(yB|xB) =
p(xAyA)p(xByB)

p(xA)p(xB)
. (5c)

3. Spiking–Bursting Stochastic Model

Physiologically, spikes are short (about 1 millisecond in duration) pulses of voltage
(action potential) across the neuronal membrane. Bursts are rapid sequences of spikes. The main
feature of the neuron–astrocyte network model in [19] is the presence of network-wide coordinated
bursts, when all neurons are rapidly spiking in the same time window. Such bursts are coordinated by
the astrocytic network and occur on the background of weakly correlated spiking activity of individual
neurons. The spiking–bursting model was suggested in [19] as the simplest mathematical description
of this behavior. In this model, time is discretized into small bins, and neurons are represented by
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binary digits taking on values 0 or 1, denoting the absence or the presence of at least one spike within
the specific time bin. Respectively, a network-wide burst is represented by a time interval during
which all neurons are locked at value 1 (which corresponds to a train of rapid spiking in the underlying
biological system). The idea behind the model is illustrated by the graphical representation of its
typical time evolution, as shown in Figure 1. The graphs of the model dynamics can be seen as
envelopes of respective time recordings of membrane voltage in actual neurons: each short rectangular
pulse of the model is assumed to correspond to at least one narrow spike of voltage, and a prolonged
pulse (several discrete time bins in duration) represents a spike train (burst).

Figure 1. Typical time traces of the spiking–bursting model containing N = 4 nodes (“neurons”) in
discrete time. Plots for different neurons are shown with different constant shifts along the ordinate
axis. Two bursts (marked) and background uncorrelated spiking dynamics are visible.

Mathematically, this “spiking–bursting” model is a stochastic model, which produces a binary
vector valued, discrete-time stochastic process. In keeping with [19], the model is defined as a
combination M = {V, S} of a time-correlated dichotomous component V which turns on and off
system-wide bursting (that mimics global bursting of a neuronal network, when each neuron produces
a train of pulses at a high rate [19]), and a time-uncorrelated component S describing spontaneous
(spiking) activity (corresponding to a background random activity in a neural network characterized
by relatively sparse random appearance of neuronal pulses—spikes [19]) occurring in the absence of
a burst. The model mimics the spiking–bursting type of activity which occurs in a neuro-astrocytic
network, where the neural subsystem normally exhibits time-uncorrelated patterns of spiking activity,
and all neurons are under the common influence of the astrocytic subsystem, which is modeled
by the dichotomous component V and sporadically induces simultaneous bursting in all neurons.
A similar network architecture with a “master node” spreading its influence on subordinated nodes
was considered, for example, in [1] (Figure 4b therein).

The model is defined as follows. At each instance of (discrete) time the state of the dichotomous
component can be either “bursting” with probability pb, or “spontaneous” (or “spiking”) with
probability ps = 1− pb. While in the bursting mode, the instantaneous state of the resulting process
x = ξ(t) is given by all ones: x = 11..1 (further abbreviated as x = 1). In cases of spiking, the state x
is a (time-uncorrelated) random variate, which is described by a discrete probability distribution sx
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(where an occurrence of “1” in any bit is referred to as a “spike”), so that the resulting one-time state
probabilities read

p(x 6= 1) = pssx, (6a)

p(x = 1) = p1, p1 = pss1 + pb, (6b)

where s1 is the probability of spontaneous occurrence of x = 1 (hereafter referred to as a system-wide
simultaneous spike) in the absence of a burst. (In a real network, “simultaneous” implies occurring
within the same time discretization bin [19]).

To describe two-time joint probabilities for x = ξ(t) and y = ξ(t + τ), consider a joint state xy
which is a concatenation of bits in x and y. The spontaneous activity is assumed to be uncorrelated in
time, which leads to the factorization

sxy = sxsy. (7)

The time correlations of the dichotomous component are described by a 2× 2 matrix

pq∈{s,b},r∈{s,b} =

(
pss psb
pbs pbb

)
(8)

whose components are joint probabilities to observe the respective spiking (index “s”) and/or bursting
(index “b”) states in x and y. (In a neural network these correlations are conditioned by burst
duration [19]; e.g., if this (in general, random) duration mostly exceeds τ, then the correlation is
positive.) The probabilities obey psb = pbs (due to stationarity), pb = pbb + psb, ps = pss + psb, thereby
allowing one to express all one- and two-time probabilities describing the dichotomous component in
terms of two independent quantities, which for example, can be a pair {ps, pss}; then

psb = pbs = ps − pss, (9a)

pbb = 1− (pss + 2psb), (9b)

or {pb, ρ} as in [19], where ρ is the Pearson correlation coefficient defined by

psb = ps pb(1− ρ). (10)

In Section 4 we justify the use of another effective parameter ε (13) instead of ρ to determine time
correlations in the dichotomous component.

The two-time joint probabilities for the resulting process are then expressed as

p(x 6= 1, y 6= 1) = psssxsy, (11a)

p(x 6= 1, y = 1) = πsx, p(x = 1, y 6= 1) = πsy, (11b)

p(x = 1, y = 1) = p11, (11c)

π = psss1 + psb, p11 = psss2
1 + 2psbs1 + pbb. (11d)

Note that the above notation can be applied to any subsystem instead of the whole system
(with the same dichotomous component, as it is system-wide anyway).

The mentioned probabilities can be interpreted in terms of the underlying biological system
as follows (see details in [19]): pb is the probability of observing the astrocytic subsystem in the
excited (high calcium concentration) state, which induces global bursting activity in all neurons,
within a specific time discretization bin; pbb is the probability of observing the mentioned state in
two time bins separated by the time lag τ, and ρ is the respective time-delayed Pearson correlation
coefficient of the astrocytic activity; sx is the probability of observing a specific spatial pattern of
spiking x within one time bin in spontaneous neuronal activity (in the absence of an astrocyte-induced
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burst), and in particular s1 is the probability that all neurons fire a spike within one time bin in
spontaneous activity. In this sense s1 measures the overall strength of spontaneous activity of the
neuronal subsystem. When spiking activity is independent across neurons, the set of parameters
{s1, pb, ρ} fully determines the “whole minus sum” II in the spiking–bursting model. In [19] these
parameters were fitted to match (in the least-squares sense) the two-time probability distribution
(11) to the respective “empirical” (numerically obtained) probabilities for the biologically realistic
model of the neuron–astrocyte network. This fitting produced the dependence of the spiking–bursting
parameters {s1, pb, ρ} upon the biological parameters; see Figure 7 in [19].

4. Model Parameter Scaling

The spiking–bursting stochastic model, as described in Section 3, is redundant in the following
sense. In terms of the model definition, there are two distinct states of the model which equally
lead to observing the same one-time state of the resultant process with 1s in all bits: firstly—a burst,
and secondly—a system-wide simultaneous spike in the absence of a burst, which are indistinguishable
by one-time observations. Two-time observations reveal a difference between system-wide spikes on
one hand and bursts on the other, because the latter are assumed to be correlated in time, unlike the
former. That said, the “labeling” of bursts versus system-wide spikes exists in the model (by the
state of the dichotomous component), but not in the realizations. Proceeding from the realizations,
it must be possible to relabel a certain fraction of system-wide spikes into bursts (more precisely,
into a time-uncorrelated portion thereof). Such relabeling would change both components of the
model {V, S} (dichotomous and spiking processes), in particular, diluting the time correlations of
bursts, without changing the actual realizations of the resultant process. This implies the existence
of a transformation of model parameters which keeps realizations (i.e., the stochastic process as
such) invariant. The derivation of this transformation is presented in Appendix A and leads to the
following scaling.

sx 6=1 = αs′x 6=1, (12a)

1− s1 = α(1− s′1), (12b)

ps′ = αps, (12c)

ps′s′ = α2 pss, (12d)

where α is a positive scaling parameter, and all other probabilities are updated according
to Equation (9).

The mentioned invariance in particular implies that any characteristic of the process must be
invariant to the scaling (12a–d). This suggests a natural choice of a scaling-invariant effective parameter
ε defined by

pss = p2
s (1 + ε) (13)

to determine time correlations in the dichotomous component. In conjunction with a second
independent parameter of the dichotomous process, for which a straightforward choice is ps, and with
full one-time probability table for spontaneous activity sx, these constitute a natural full set of model
parameters {sx, ps, ε}.

The two-time probability table (8) can be expressed in terms of ps and ε by substituting
Equation (13) into Equation (9):

pq∈{s,b},r∈{s,b} =

(
p2

s + εp2
s ps pb − εp2

s
ps pb − εp2

s p2
b + εp2

s

)
. (14)
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The requirement of non-negativeness of probabilities imposes simultaneous constraints

ε ≥ −1 (15a)

and

ps ≤ ps max =

 1
1+ε

(
1−

√
|ε|
)

if − 1 ≤ ε < 0,
1

1+ε if ε ≥ 0,
(15b)

or equivalently,

− ε2
max ≤ ε ≤ εmax =

pb
ps

. (16)

Comparing the off-diagonal term psb in (14) to the definition of the Pearson’s correlation coefficient
ρ in (10), we get

ε = ρ
pb
ps

= ρ εmax; (17)

thus, the sign of ε has the same meaning as that of ρ. Hereinafter we limit ourselves to non-negative
correlations ε ≥ 0.

5. Analysis of the Empirical “Whole Minus Sum” Measure for the Spiking–Bursting Process

In this Section we analyze the behavior of the “whole minus sum” empirical II [13] defined
by Equations (3) and (4) for the spiking–bursting model in dependence of the model parameters,
particularly focusing on its transition from negative to positive values.

5.1. Expressing the “Whole Minus Sum” Information

Mutual information Ixy for two time instances x and y of the spiking–bursting process is expressed
by inserting all one- and two-time probabilities of the process according to (6), (11) into the definition
(1), (2). The full derivation is given in Appendix B and leads to an expression which was used in [19]

Ixy = 2(1− s1){ps}+ 2{p1} − (1− s1)
2{pss} − 2(1− s1){π} − {p11}, (18)

where we denote for compactness
{q} = −q log2 q. (19)

We exclude from further consideration the following degenerate cases which automatically give
Ixy = 0 by definition (1):

s1 = 1, or ps = 0, or ps = 1, or ρ = ε = 0, (20)

where the former two correspond to a deterministic “always 1” state for which all entropies in (1) are
zero, and the latter two produce no predictability, which implies Hxy = Hx + Hy.

The particular case s1 = 0 in (18) reduces to

Ixy|s1=0 = 2
(
{ps}+ {pb}

)
−
(
{pss}+ 2{psb}+ {pbb}

)
, (21a)

which coincides with mutual information for the dichotomous component taken alone and can be
seen as a function of just two independent parameters of the dichotomous component, for which we
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chose ps and ε as suggested in Section 4. Using the expressions for the two-time probabilities (14), we
rewrite (21a) in the form

Ixy|s1=0 = 2
(
{ps}+ {pb}

)
−
(
{p2

s + εp2
s}+ 2{ps pb − εp2

s}+ {p2
b + εp2

s}
)
, where pb = 1− ps,

= I0(ps, ε).
(21b)

Expression (21b) explicitly defines a function I0(ps, ε), which turns out to be a universal function
allowing one to express mutual information (18) and effective information (3) in terms of the model
parameters, as we show below. Typical plots of I0(ps, ε) versus ps at several fixed values of ε are
shown with blue solid lines in Figure 2.

Figure 2. Blue solid lines—plots of I0(ps, ε) versus ps varied from 0 to ps max as per (15), at ε = 0.01, 0.1,
0.2, 0.5, 1 (from right to left). Function I0(ps, ε) is a universal single function of two arguments, which is
explicitly expressed in elementary functions in (21b), and allows one to express mutual information
(18) and effective information (3) in terms of the model parameters. Red dashed lines—approximation
(35). Red dots—upper bounds of approximation applicability range (36c).

The formula (18) can be recovered back from (21a,b) by virtue of the scaling (12a–d), by assuming
s′1 = 0 in (12b) and substituting the corresponding scaled value ps′ = (1− s1)ps as per (12c) in place of
the first argument of function I0(ps′ , ε) defined in (21b), while parameter ε remains invariant to the
scaling. This produces a simplified expression

Ixy = I0
(
(1− s1)ps, ε

)
, (22)

which is exactly equivalent to (18) for any s1. We emphasize that hereinafter expressions containing
I0(·, ·)—(22), (23), (30b), etc.—imply that ps in (21b) must be substituted with the actual first argument
of I0(·, ·), e.g., by (1− s1)ps in (22). The same applies when the approximate expression for I0(·) (35)
is used.

Given a bipartition AB (see Section 2), this result is applicable as well to any subsystem A (B),
with s1 replaced by sA (sB) which denote the probability of a subsystem-wide simultaneous spike
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xA = 1 (xB = 1) in the absence of a burst, and with same parameters of the dichotomous component
(here ps, ε). Then effective information (3) is expressed as

Φeff = I0
(
(1− s1)ps, ε

)
− I0

(
(1− sA)ps, ε

)
− I0

(
(1− sB)ps, ε

)
. (23)

Hereafter in this section we assume the independence of spontaneous activity across the network
nodes (neurons), which implies

sAsB = s1, (24)

then (23) turns into
Φeff = f (sA), (25a)

where
f (s) = I0

(
(1− s1)ps, ε

)
− I0

(
(1− s)ps, ε

)
− I0

(
(1− s1/s)ps, ε

)
. (25b)

Essentially, according to (25a,b), the function f (s) shows the dependence of effective information Φeff
upon the choice of the bipartition, which is characterized by the value of sA = s (if A is any non-empty
subsystem, then sA is defined as the probability of spontaneous occurrence of 1s in all bits in A in
the same instance of the discrete time), while the function parameter s1 determines the intensity of
spontaneous spiking activity. Note that the function I0(·, ·) in (21b) is defined only when the first
argument is in the range (0, 1); thus, the definition domain of f (s) in (25b) is

s1 < s < 1. (26)

5.2. Determining the Sign of the “Whole Minus Sum” Information

According to (4), the necessary and sufficient condition for the “whole minus sum” empirical
II to be positive is the requirement that Φeff be positive for any bipartition AB. Due to (25a,b), this
requirement can be written in the form

min
s∈{sA}

f (s) > 0, (27)

where {sA} is the set of sA values for all possible bipartitions AB.
Expanding the set of s in (27) to the whole definition domain of f (s) (26) leads to a sufficient

(generally, stronger) condition for positive II

f (s) > 0 for all s ∈ (s1, 1). (28)

Note that f (s) by definition (25b) satisfies f (s = s1) = f (s = 1) = 0, f ′(s = s1) > 0 and (due to
the invariance to mutual renaming of subsystems A and B) f (s1/s) = f (s). (All mentioned properties
and subsequent reasoning can be observed in Figure 3, which shows a few sample plots of f (s)).
The latter symmetry implies that the quantity of extrema of f (s) on s ∈ (s1, 1) must be odd, one of
them always being at s =

√
s1. If the latter is the only extremum, then it is a positive maximum,

and (28) is thus fulfilled automatically. In case of three extrema, f (
√

s1) is a minimum, which can
change sign. In both these cases the condition (28) is equivalent to the requirement

f (
√

s1) > 0, (29)

which can be rewritten as
g(s1) > 0, (30a)

where
g(s1) = f (

√
s1) = I0

(
(1− s1)ps, ε

)
− 2I0

(
(1−

√
s1)ps, ε

)
. (30b)
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The reasoning above essentially reduces the problem of determining the sign of II to determining the
sign of the extremum f (

√
s1).

The equivalence of (29) to (28) could be broken if f (s) had five or more extrema. As suggested
by the numerical calculation on a grid of ps ∈ [0.01, 0.99] and ρ ∈ [0.01, 1], both with step 0.01,
this exception never holds, although we did not prove this rigorously. Based on the reasoning above,
in the following we assume the equivalence of (29) (and (30)) to (28).

A typical scenario of transformations of f (s) with the change of s1 is shown in Figure 3. Here the
extremum f (

√
s1) (shown with a dot) transforms with the decrease of s1 from a positive maximum

into a minimum, which in turn decreases from positive through zero into negative values.
Note that by construction, the function g(s1) defined in (30b) expresses effective information Φeff

from (3) for the hypothetic bipartition characterized by sA = sB =
√

s1, which may or may not exist in
the actual particular system. If such “symmetric” bipartition exists, then the value sA =

√
s1 belongs to

the set {sA} in (27), which implies that (29) (same as (30)) is equivalent not only to (28), but also to the
necessary and sufficient condition (27). Otherwise, (28) (equivalently, (29) or (30)), formally being only
sufficient, still may produce a good estimate of the necessary and sufficient condition in cases when {sA}
contains values which are close to

√
s1 (corresponding to nearly symmetric partitions, if such exist).

−

−

−

Figure 3. Plots of f (s) on s1 < s < 1 for several values of s1 (as indicated) at ps = 0.7, ε = 0.1.
According to (25a,b), f (s) shows the dependence of effective information Φeff upon the choice of
the bipartition AB, which is characterized by the value of sA = s, while the function parameter
s1 determines the intensity of spontaneous spiking activity. For each value of s1, the extremum
(
√

s1, f (
√

s1)) is indicated with a dot.

Except for the degenerate cases (20), g(s1) is negative at s1 = 0

g(s1 = 0) = −I0(ps, ε) < 0 (31)

and has a limit g(s1 → 1− 0)→ +0 ( −0 and +0 denote the left and right one-sided limits), because

lim
s1→1−0

I0
(
(1− s1)ps, ε

)
2I0
(
(1−√s1)ps, ε

) = 2; (32)
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hence, g(s1) changes sign at least once on s1 ∈ (0, 1). According to numerical evidence, we assume that
g(s1) changes sign exactly once on (0, 1) without providing a rigorous proof for the latter statement (it
was confirmed up to machine precision for each combination of ps ∈ [0.01, 0.99] and ρ ∈ [0.01, 1], both
with step 0.01; also note that for the asymptotic case (38) this statement is rigorous). In line with the
above, the solution to (30a) has the form

smin
1 (ps, ε) < s1 < 1, (33)

where smin
1 (ps, ε) is the unique root of g(s1) on (0, 1). Several plots of smin

1 (ps, ε) versus ps at ε fixed
and versus ε at ps fixed, which are obtained by numerically solving for the zero of g(s1), are shown in
Figure 4 with blue solid lines.

This result identifies a region in the parameter space of the model, where the “whole minus sum”
information is positive. From the viewpoint of the underlying biological system, the quantity smin

1
determines the minimal sufficient intensity of spontaneous neuronal spiking activity for positive II.
According to the result in Figure 4, within the assumption of independent spiking across the network
(24), values s1 & 0.17 lead to positive II regardless of other parameter values, and this threshold
decreases further when ps is increased, which implies decreasing the frequency of occurrence of
astrocyte-activated global bursting pb = 1− ps.

(a) (b)

Figure 4. Graphs of threshold smin
1 determining the minimal sufficient intensity of spontaneous

neuronal spiking activity for positive II. (a) Blue solid lines—plots of smin
1 (ps, ε) versus ps varied from

0 to ps max as per (15), at ε = 0.1, 0.5, 1 (from right to left). Red dashed line—plot of the asymptotic
formula (38). (b) Blue solid lines—plots of smin

1 (ps, ε) versus ε varied from 0 to εmax as per (16), at
ps = 0.5, 0.6, 0.7 (from top to bottom). Vertical position of red dashed lines is the result of (38),
horizontal span denotes the estimated applicability range (36b).

5.3. Asymptotics for Weak Correlations in Time

Further insight into the dependence of mutual information Ixy (and, consequently, of Φeff and
II) upon parameters can be obtained by expanding the definition of I0(ps, ε) in (21b) in powers of ε

(limit of weak correlations in time), which yields

I0(ps, ε) =
1

2 log 2

(
ps

1− ps

)2
· ε2 + O(ε3). (34)

Estimating the residual term (see details in Appendix C) indicates that the approximation by the
leading term

I0(ps, ε) ≈ ε2

2 log 2

(
ps

1− ps

)2
(35)
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is valid when

|ε| � 1, (36a)

|ε| �
(

pb
ps

)2
= ε2

max . (36b)

Solving (36b) for ps rewrites it in the form of an upper bound for ps

ps <
1

1 +
√
|ε|

(36c)

(the use of “�” sign is not appropriate in (36c), because this inequality does not imply a small ratio
between its left-hand and right-hand parts). Note that the inequalities (36b), (36c) are not weaker than
the formal upper bounds εmax in (16) and ps max in (15) which arise from the definition of ε (13) due to
the requirement of positive probabilities.

Approximation (35) is plotted in Figure 2 with red dashed lines along with corresponding upper
bounds of approximation applicability range (36c) denoted by red dots (note that large ε violates (36a)
anyway, thus in this case (36c) has no effect). Mutual information (35) scales with ε within range (36)
as ε2 and vanishes with ε→ 0. The same holds for effective information (23). Since the normalizing
denominator in (4b) contains one-time entropies which do not depend on ε at all, this scaling of
Φeff does not change the minimum information bipartition, finally implying that II also scales as
ε2. That said, as factor ε2 does not affect the sign of Φeff, the lower bound smin

1 in (33) exists and is
determined only by ps in this limit.

Substituting the approximation (35) for I0(·, ·) into the definition of g(s1) in (30b) after
simplifications reduces the equation g(s1) = 0 to the following (see the comment below Equation (22)):

ps(
√

2− 1) s1 −
√

s1 + (1− ps)(
√

2− 1) = 0 , (37)

whose solution in terms of s1 on 0 < s1 < 1 equals smin
1 , according to the reasoning behind Equation (33).

Solving (37) as a quadratic equation in terms of
√

s1 produces a unique root on (0, 1), which yields

smin
1 (ps)|ε→0 =

1−
√

1− 4ps(1− ps)(
√

2− 1)2

2ps(
√

2− 1)

2

. (38)

Result of (38) is plotted in Figure 4 with red dashed lines: in panel (a) as a function of ps, and in
panel (b) as horizontal lines whose vertical position is the result of (38), and horizontal span denotes
the estimated applicability range (36b) (note that condition (36a) also applies, and becomes stronger
than (36b) when ps < 1/2).

6. Comparison of Integrated Information Measures

In this Section we compare the outcome of two versions of empirical integrated information
measures available in the literature, one being the “all-minus-sum” effective information Φeff (3)
from [13] which is used elsewhere in this study, and the other “decoder based” information Φ∗ as
introduced in [16] and expressed by Equations (5a–c). We calculate both measures by their respective
definitions using the one- and two-time probabilities from Equations (6a,b) and (11a–d) for the
spiking–bursting model with N = 6 bits, assuming no spatial correlations among bits in spiking
activity, with same spike probability P in each bit. In this case

sx = Pm(x)(1− P)N−m(x), P = s
1
N
1 , (39)

where m(x) is the number of ones in the binary word x.
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We consider only a symmetric bipartition with subsystems A and B consisting of N/2 = 3 bits
each. Due to the assumed equal spike probabilities in all bits and in the absence of spatial correlations
of spiking, this implies complete equivalence between the subsystems. In particular, in the notations
of Section 5 we get

s1 = sAsB, sA = sB =
√

s1. (40)

This choice of the bipartition is firstly due to the fact that the sign of effective information for this
bipartition determines the sign of the resultant “whole minus sum” II (although the actual value of II is
determined by the minimal information bipartition, which may be different). This has been established
in Section 5 (see reasoning behind Equations (27)–(30) and further on); moreover, the function g(s1)

introduced in Equation (30b) expresses effective information for this particular bipartition

Φeff(AB) = g(s1), (41)

thus the analysis of effective information sign in Section 5 applies to this symmetric bipartition.
Moreover, the choice of the symmetric bipartition is consistent with available comparative studies

of II measures [18], where it was substantiated by the conceptual requirement that highly asymmetric
partitions should be excluded [2], and by the lack of a generally accepted specification of minimum
information bipartition; for further discussion, see [18].

We have studied the dependence of the mentioned effective information measures Φeff and Φ∗

upon spiking activity, which is controlled by s1, at different fixed values of the parameters ps and ε

characterizing the bursting component. Typical dependence of Φeff and Φ∗ upon s1, taken at ps = 0.6
with several values of ε, is shown in Figure 5, panel (a).

The behavior of the “whole minus sum” effective information Φeff (41) (blue lines in Figure 5) is
found to agree with the analytical findings of Section 5:

• Φeff transitions from negative to positive values at a certain threshold value of s1 = smin
1 , which is

well approximated by the formula (38) when ε is small, as required by (36a,b); the result of
Equation (38) is indicated in each panel of Figure 5 by an additional vertical grid line labeled smin

1
on the abscissae axis—cf. Figure 4;

• Φeff reaches a maximum on the interval smin
1 < s1 < 1 and tends to zero (from above) at s1 → 1;

• Φeff scales with ε as ε2, when (36a,b) hold.

To verify the scaling observation, we plot the scaled values of both information measures Φeff/ε2,
Φ∗/ε2 in the panels (b)–(d) of Figure 5 for several fixed values of ps and ε. Expectedly, the scaling fails
at ps = 0.7, ε = 0.4 in panel (d), as (36b) is not fulfilled in this case.

Furthermore, the “decoder based” information Φ∗ (plotted with red lines in Figure 5) behaves
mostly the same way, apart from being always non-negative (which was one of key motivations for
introducing this measure in [16]). At the same time, the sign transition point smin

1 of the “whole minus
sum” information associates with a rapid growth of the “decoder based” information. When s1 is
increased towards 1, the two measures converge. Remarkably, the scaling as ε2 is found to be shared
by both effective information measures.
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(a) (b)

(c) (d)

Figure 5. Comparison of two versions of empirical effective information for the symmetric
bipartition—“whole-minus-sum” measure Φeff (3) from [13] (blue lines) and “decoder based”
information Φ∗ (5) from [16] (red lines) versus spiking activity parameter s1 at various fixed values of
the bursting component parameters ps (indicated on top of the panels) and ε (indicated in the legends).
Panel (a)—unnormalized values, panels (b–d)—normalized by ε2. Threshold smin

1 calculated according
to (38) is shown in each panel with an additional vertical grid line.

7. Discussion

In general, the spiking–bursting model is completely specified by the combination of a full
single-time probability table sx (consisting of 2N probabilities of all possible outcomes, where N
is the number of bits) for the time-uncorrelated spontaneous activity, along with two independent
parameters (e.g., ps and ε) for the dichotomous component. This combination is, however, redundant
in that it admits a one-parameter scaling (12) which leaves the resultant stochastic process invariant.

Condition (30) was derived assuming that spiking activity in individual bits (i.e., nodes,
or neurons) constituting the system is independent among the bits, which implies that the probability
table sx is fully determined by N spike probabilities for individual nodes. The condition is formulated
in terms of ps, ε and a single parameter s1 (system-wide spike probability) for the spontaneous activity,
agnostic of the “internal structure” of the system, i.e., the spike probabilities for individual nodes.
This condition provides that the “whole minus sum” effective information is positive for any bipartition,
regardless of the mentioned internal structure. Moreover, in the limit (36) of weak correlations in time,
the inequality (30a) can be explicitly solved in terms of s1, producing the solution (33), (38).

In this way, the inequality (33) together with the asymptotic estimate (38) supplemented by
its applicability range (36) specifies the region in the parameter space of the system, where the
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“whole minus sum” II is positive regardless of the internal system structure (sufficient condition).
The internal structure (though still without spike correlations across the system) is taken into account
by the necessary and sufficient condition (27) for positive II.

The mentioned conditions were derived under the assumption of absent correlation between
spontaneous activity in individual bits (24). If correlation exists and is positive, then s1 > sAsB, or
sB < s1/sA. Then comparing the expressions for Φeff (23) (general case) to (25) (space-uncorrelated
case), and taking into account that I0(ps) is an increasing function, we find Φeff < f (sA), cf. (25a).
This implies that any necessary condition for positive II remains as such. Likewise, in the case of
negative correlations we get Φeff > f (sA), implying that a sufficient condition remains as such.

8. Conclusions

The present study substantiates, refines and quantifies qualitative observations in regard to II
in the spiking–bursting model which were initially made in [19]. The existence of lower bounds in
spiking activity (characterized by s1) required for positive “whole minus sum” II which was noticed
in [19] is now expressed in the form of an explicit inequality (33) with the estimate (38) for the bound
smin

1 . The observation of [19] that typically smin
1 is mostly determined by burst probability and weakly

depends upon time correlations of bursts also becomes supported by the quantitative result (33), (38).
In particular, there is a range of spiking activity intensity s1 & 0.17, where the “whole minus sum”
information is positive regardless of other system parameters, provided the spiking activity is spatially
uncorrelated or negatively correlated across the system. When the burst probability is decreased
(which implies less frequent activation of the astrocyte subsystem), the threshold value for spiking
activity smin

1 also decreases.
We found that II scales as ε2, where ε is proportional (as per Equation (17)) to the Pearson’s time

delayed correlation coefficient of the bursting component (which essentially characterizes the duration
of bursts), for ε small (namely, within (36)), when other parameters (i.e., ps and spiking probability
table sx) are fixed. For the “whole minus sum” information, this is an analytical result. Note that the
reasoning behind this result does not rely upon the assumption of spatial non-correlation of spiking
activity (between bits), and thus applies generally to arbitrary spiking–bursting systems. According to
a numerical calculation, this scaling approximately holds for the “decoder based” information as well.

Remarkably, II can not exceed the time delayed mutual information for the system as a whole,
which in case of the spiking–bursting model in its present formulation is no greater than 1 bit.

The model provides a basis for possible modifications in order to apply integrated information
concepts to systems exhibiting similar, but more complicated behavior (in particular, to neuronal [26–29]
and neuron–astrocyte [24,30] networks). Such modifications might incorporate non-trivial spatial patterns
in bursting, and causal interactions within and between the spiking and bursting subsystems.

The model can also be of interest as a new discrete-state test bench for different formalizations of
integrated information, while available comparative studies of II measures mainly focus on Gaussian
autoregressive models [17,18].
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Appendix A. Derivation of Parameters Scaling of the Spiking–Bursting Model

In order to formalize the reasoning in Section 4, we introduce an auxiliary 3-state process W
with set of one-time states {s′, d, b}, where s′ and b are always interpreted as spiking and bursting
states in terms of Section 3, and d is another state, which is assumed to produce all bits equal 1 like
in a burst, but in a time-uncorrelated manner (which is formalized by Equation (A4) below) like in a
system-wide spike. When W is properly defined (by specifying all necessary probabilities, see below)
and supplemented with a time-uncorrelated process S as a source of spontaneous activity for the state
s′, these together constitute a completely defined stochastic model {W, S}.

This 3-state based model may be mapped on equivalent (in terms of resultant realizations) 2-state
based models as in Section 3 in an ambiguous way, because the state d may be equally interpreted either
as a system-wide spike, or as a time-uncorrelated burst, thus producing two different dichotomous
processes (which we denote as V and V′) for the equivalent spiking–bursting models. The relationship
between the states of W, V and V′ is illustrated by the following diagram.

V = s b︷︸︸︷
W = s′ d b︸︷︷︸
V′ = s′ b′

(A1)

As soon as d-states of W are interpreted in V as (spiking) s-states, the spontaneous activity
process S accompanying V has to be supplemented with system-wide spikes whenever W = d, in
addition to the spontaneous activity process S′ for V′. In order to maintain the absence of time
correlations in spontaneous activity (which is essential for the analysis in Section 5), we assume
time-uncorrelated choice between W = s′ and W = d when V = s (which manifests below in
Equation (A4)). Then the difference between the spontaneous components S and S′ comes down to a
difference in the corresponding one-time probability tables sx and s′x.

In the following, we proceed from the dichotomous process V defined as in Section 3, then define
a consistent 3-state process W, and further obtain another dichotomous process V′ for an equivalent
model. Finally, we establish the relation between the corresponding probability tables of spontaneous
activity sx and s′x.

The first dichotomous process V has states denoted by {s, b} and is related to W according to the
rule V = s when W = s′ or W = d, and V = b whenever W = b (see diagram (A1)). Assume fixed
conditional probabilities

p(W = s′ | V = s) = α, (A2a)

p(W = d | V = s) = β = 1− α, (A2b)

which implies one-time probabilities for W as

ps′ = αps, pd = βps. (A3)

The mentioned requirement of time-uncorrelated choice between W = s′ and W = d when V = s
is expressed by factorized two-time conditional probabilities

p(W = s′s′ | V = ss) = α2, (A4a)

p(W = s′d | V = ss) = αβ = p(W = ds′ | V = ss), (A4b)

p(W = dd | V = ss) = β2. (A4c)
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Given the two-time probability table for V (8) along with the conditional probabilities (A2) and (A4),
we arrive at a two-time probability table for W

pq∈{s′ ,d,b},r∈{s′ ,d,b} =

s′ d b s′ α2 pss αβpss αpsb
d αβpss β2 pss βpsb

b αpbs βpbs pbb

. (A5)

Note that (A5) is consistent both with (A3), which is obtained by summation along the rows of (A5),
and with (8), which is obtained by summation within the line-separated cell groups in (A5):

pss ≡ ps′s′ + ps′d + pds′ + pdd (A6a)

psb ≡ ps′b + pdb (A6b)

pbs ≡ pbs′ + pbd (A6c)

pbb ≡ pbb. (A6d)

Consider the other dichotomous process V′ with states {s′, b′} obtained from W according to the
rule V′ = b′ when W = d or W = b, and V′ = s′ whenever W = s′ (see diagram (A1)). The two-time
probability table for V′ is obtained by another partitioning of the table (A5)

pqr =

s′ d b s′ α2 pss αβpss αpsb

d αβpss β2 pss βpsb
b αpbs βpbs pbb

(A7)

with subsequent summation of cells within groups, which yields

ps′s′ = α2 pss, (A8a)

ps′b′ = α(βpss + psb) = pb′s′ , (A8b)

pb′b′ = β2 pss + 2βpsb + pbb. (A8c)

The corresponding one-time probabilities for V′ read

ps′ = αps, (A9a)

pb′ = βps + pb. (A9b)

In order to establish the relation between the one-time probability tables of spontaneous activity
sx and s′x, we equate the resultant one-time probabilities of observing a given state x as per (6) for the
two equivalent models {V, S} and {V′, S′}

p(x 6= 1) = pssx = ps′ s
′
x, (A10a)

p(x = 1) = pss1 + pb = ps′ s
′
1 + pb′ . (A10b)

Taking into account (A9), we finally get

sx 6=1 = αs′x 6=1, (A11a)

1− s1 = α(1− s′1). (A11b)
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Equations (A8), (A9) and (A11) fully describe the transformation of the spiking–bursting model
which keeps the resultant stochastic process invariant by the construction of the transform. Taking into
account that the dichotomous process is fully described by just two independent quantities, e.g., ps and
pss, all other probabilities being expressed in terms of these due to normalization and stationarity,
the full invariant transformation is uniquely identified by a combination of (A11a,b), (A8a) and (A9a),
which together constitute the scaling (12).

Note that parameter α within its initial meaning (A2) may take on values in the range 0 < α ≤ 1
(case α = 1 producing the identical transform). That said, in terms of the scaling (12a-d), all values
α > 0 are equally possible, so that mutually inverse values α = α1 and α = α2 = 1/α1 produce
mutually inverse transforms.

Appendix B. Expressing Mutual Information for the Spiking–Bursting Process

One-time entropy Hx for the spiking–bursting process is expressed by (2) with probabilities p(x)
taken from (6):

Hx = ∑
x
{p(x)} = ∑

x
{pssx}+ {p1} − {pss1}, (A12)

where the additional terms besides the sum over x account for the specific expression (6b) for p(x = 1).
Using the relation

{ab} ≡ a{b}+ {a}b, (A13)

which is derived directly from (19), and collecting similar terms, we arrive at

Hx = ps Hs − ps{s1}+ (1− s1){ps}+ {p1}, (A14)

where Hs is the entropy of the spiking component taken alone

Hs = ∑
x
{sx}. (A15)

Two-time entropy is expressed similarly, by substituting probabilities p(xy) from (11) into the
definition of entropy and taking into account the special cases with x = 1 and/or y = 1:

Hxy = ∑
xy
{p(xy)} = ∑

xy
{psssxsy} −∑

x
{psssxs1}+ ∑

x
{πsx}

−∑
y
{psss1sy}+ ∑

y
{πsy}+ {psss2

1} − 2{πs1}+ {p11}.
(A16)

Further, applying (A13) and using the notation (A15), we find

∑
xy
{psssxsy} = pss ∑

xy
{sxsy}+ {pss}∑

xy
sxsy

= pss · 2Hs + {pss},
(A17a)

where we used the reasoning that ∑xy{sxsy} is the two-time entropy of the spiking component taken
alone, which is (due to the postulated absence of time correlations in it) twice the one-time entropy Hs

(this of course can equally be found by direct calculation). Similarly, we get

∑
x
{psssxs1} = psss1 ∑

x
{sx}+ {psss1}∑

x
sx

= psss1Hs + {psss1}
(A17b)
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and exactly the same expression for ∑y{psss1sy}, and also

∑
y
{πsy} = ∑

x
{πsx} = π ∑

x
{sx}+ {π}∑

x
sx

= πHs + {π}.
(A17c)

Substituting (A17a–c) into (A16), using (A13) where applicable, and collecting similar terms with
the relation

pss + π − psss1 ≡ ps (A18)

taken into account, we arrive at

Hxy = 2ps Hs + (1− s1)
2{pss} − 2ps{s1}+ 2(1− s1){π}+ {p11}. (A19)

Finally, the expression (18) for mutual information is obtained by inserting (A14) and (A19) into
the definition (1), with stationarity Hy = Hx taken into account.

Appendix C. Expanding I0 in Powers of ε

Taylor series expansion for a function f (x) up to the quadratic term reads

f (x0 + ξ) = f (x0) + f ′(x0)ξ + f ′′(x0)
ξ2

2
+ R(ξ). (A20)

The remainder term R(ξ) can be represented in the Lagrange’s form as

R(ξ) = f ′′′(c)
ξ3

6
, (A21)

where c is an unknown real quantity between x0 and x0 + ξ.
The function f (x) can be approximated by omitting R(ξ) in (A20) if R(ξ) is negligible compared

to the quadratic term, for which it is sufficient that∣∣∣∣ f ′′′(c) ξ3

6

∣∣∣∣� ∣∣∣∣ f ′′(x0)
ξ2

2

∣∣∣∣ (A22a)

for any c between x0 and x0 + ξ, namely, for

c ∈
{
(x0, x0 + ξ), if ξ > 0,

(x0 − |ξ|, x0), if ξ < 0.
(A22b)

Consider the specific case
f (x) = −x log x, x > 0, (A23)

for which we get

f ′(x) = − log x− 1, f ′′(x) = − 1
x

, f ′′′(x) =
1
x2 . (A24)
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As long as f ′′′(x) is a falling function for any x > 0, fulfilling (A22a) at the left boundary of (A22b)
(at c = x0 if ξ > 0, and at c = x0 − |ξ| if ξ < 0) makes sure (A22a) is fulfilled in the whole interval
(A22b). Precisely, the requirement is ∣∣∣∣∣ 1

x2
0

ξ3

6

∣∣∣∣∣�
∣∣∣∣ 1
x0

ξ2

2

∣∣∣∣ , if ξ > 0, (A25a)∣∣∣∣ 1
(x0 − |ξ|)2

ξ3

6

∣∣∣∣� ∣∣∣∣ 1
x0

ξ2

2

∣∣∣∣ , if ξ < 0, (A25b)

which in the case ξ > 0 reduces to
ξ

3x0
� 1, (A26)

and in the case ξ < 0 to
1
3

Φ
(
|ξ|
x0

)
� 1, (A27a)

where
Φ(ζ) =

ζ

(1− ζ)2 . (A27b)

Replacing Φ(·) in (A27a) by its linearization Φ(ζ) ≈ ζ for small ζ, we reduce both (A26) and (A27a) to
a single condition

|ξ| � 3x0. (A28)

We use these considerations to expand in powers of ε the function I0(ps, ε) defined in (21) with
pss, psb, pbb substituted by their expressions in terms of ε according to (14). We note that the braces
notation {·} defined in (19) is expressed via the function f (x) from (A23) as

{q} = f (q)
log 2

. (A29)

Expanding this way the subexpressions of (21)

{pss} = {p2
s + εp2

s}, (A30a)

{psb} = {ps pb − εp2
s}, (A30b)

{pbb} = {p2
b + εp2

s}, (A30c)

we find by immediate calculation that the zero-order and linear in ε terms vanish, and the quadratic
term yields (35). The condition (A28) has to be applied to all three subexpressions (A30a–c). Omitting
the insignificant factor 3 in (A28), we obtain the applicability conditions

|εp2
s | � p2

s , (A31a)

|εp2
s | � ps pb, (A31b)

|εp2
s | � p2

b, (A31c)

which is equivalent to

|ε| � 1, (A32a)

|ε| � pb
ps

= εmax, (A32b)

|ε| � ε2
max, (A32c)
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where the notation εmax from (16) is used. We note that when εmax < 1, the condition (A32c) is the
strongest among (A32a–c); when εmax > 1, the condition (A32a) is the strongest. Therefore, in both
cases (A32b) can be dropped, thus producing (36).
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