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Abstract. An introductory account of using molecular simulations to 
deduce solution structure of macromolecules using small angle neutron 
scattering data is presented for biologists. The presence of a liquid solution 
provides mobility to the molecules, making it difficult to pin down their 
structure. Here a simple introduction to molecular dynamics and Monte 
Carlo techniques is followed by a recipe to use the output of the simulations 
along with the scattering data in order to infer the structure of 
macromolecules when they are placed in a liquid solution. Some practical 
issues to be watched for are also highlighted. 

1 Introduction 
Biological macromolecules tend to have a high degree of flexibility and under physiological 
conditions, they are usually found within a liquid solution. In such an environment, the 
macromolecules undergo various types of motion continuously. Excellent progress has been 
made in crystallography to capture the atomistically detailed structures of molecules in the 
solid state. However, crystallographic structures may not accurately resemble those that are 
found in solution, nor do they provide information about the dynamics of the molecule under 
realistic physiological conditions. Since the molecules are moving in solution, it is difficult 
to obtain an atomistically detailed ‘snapshot’ experimentally. Instead, one can obtain 
orientationally averaged scattering data of the macromolecules in solution and then use 
computationally generated, physically plausible models of the macromolecule in order to 
deduce the structure and dynamics of the actual molecules. 

Many different techniques are available for simulating the dynamics involving soft 
materials and the particular choice depends on the level of detail required and the amount of 
computational power at the user’s disposal. For instance, quantum mechanical methods, such 
as density functional theory, consider details down to the level of electron clouds within the 
individual atoms making up a molecule. This makes quantum mechanical techniques 
computationally demanding and very slow for large molecules. In macromolecules, where 
such precision is rarely required, techniques based on classical laws of physics are better 
suited in order to ensure that a sufficiently large range of molecular configurations are 
explored within a manageable computational time. This introduces the concept of coarse 
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graining in simulations. As the smallest unit of the material being simulated gets larger, the 
system is referred to as coarse-grained. 

This chapter aims to provide a simplified introduction for biologists to two widely used 
techniques for computationally simulating the structure and dynamics of biological 
macromolecules under realistic interactions and constraints. In Sections 2 and 3 we go 
through the theoretical background behind the techniques of molecular dynamics (MD) and 
Monte Carlo (MC) simulations. After enlisting some of the issues and pitfalls that may arise 
in the simulations and possible ways to avoid them in Section 4, a typical workflow involved 
in using small angle neutron scattering (SANS) data to deduce solution structure of biological 
macromolecules is discussed in Section 5. 

2 Molecular dynamics basics 

When two atoms are placed close to each other, such as is the case in a molecule, they would, 
in general, exert mutual forces on each other. This is essentially due to the fact that atoms are 
not solid spheres with hard boundaries, but are enveloped by rather fuzzy probability clouds 
of negatively charged electrons that fade away gradually as one moves away from the centre 
of an atom. If the value of this mutual force, F, is known, one can solve the two simultaneous 
equations, one for each atom, resulting from Newton’s second law of motion: 

	𝐅𝐅 = 𝑚𝑚!𝐚𝐚!
−𝐅𝐅 = 𝑚𝑚"𝐚𝐚"	,

(1) 

where 𝑚𝑚! and 𝑚𝑚" are the masses of the two atoms and 𝐚𝐚! and 𝐚𝐚" are the accelerations of the 
two atoms that result from this equal and opposite force acting on each other. Since an exact 
mathematical solution for 𝐚𝐚! and 𝐚𝐚" can be obtained in this way, the system is known as 
analytically solvable and we can recreate and predict the positions of the two atoms in three-
dimensional space as a function of time. If, however, one adds just one more atom to the 
system, it turns out that the resultant three simultaneous equations of motion cannot be solved 
analytically. Indeed, for a molecule with a large number of atoms, this becomes an N-body 
problem, which has no analytical solution and must be solved numerically with the help of a 
computer.  

In a classical molecular dynamics simulation, trajectories of atoms and molecules are 
obtained in real time and space by numerically solving the appropriate (and usually large) set 
of time-dependent equations of motion. It is known as a deterministic technique, since the 
state of the system at a given time step can be predicted using the knowledge of the state of 
the system at the previous time step, provided that the time step is adequately small and that 
information about the manner in which the atoms (or ions) interact with each other is 
available. MD is widely used to understand the structure, dynamics, phase transformation 
and surface phenomena in soft matter and hard matter systems. MD simulations that 
incorporate the principles of quantum mechanics, instead of Newtonian mechanics, also 
exist; however, for macromolecules these are prohibitively expensive in terms of their 
execution time with the current generation of computers. Hence, we focus our discussion on 
classical MD. 

2.1 Trajectory calculation 

Assuming that the total force 𝐅𝐅% acting on each of the atoms 𝑗𝑗 = {1,… ,𝑁𝑁}, where 𝑁𝑁 is the 
number of atoms in the system, is known, a common numerical scheme to obtain the positions 
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of all the atoms at successive time steps is the Verlet algorithm [1]. It is derived by Taylor 
expanding the position 𝐫𝐫&(𝑡𝑡) up to third order in both forward and reverse time and then 
adding the resulting two expressions. The end result is 

𝐫𝐫&(𝑡𝑡 + Δ𝑡𝑡) = 2𝐫𝐫&(𝑡𝑡) − 𝐫𝐫&(𝑡𝑡 − Δ𝑡𝑡) +
𝐅𝐅&(𝑡𝑡)
𝑚𝑚&

(Δ𝑡𝑡)"
(2) 

which allows for the atomic positions to be calculated at time 𝑡𝑡 + Δ𝑡𝑡 given the positions at 
times 𝑡𝑡 and 𝑡𝑡 − Δ𝑡𝑡. In other words, it allows one to numerically propagate the trajectory 
forward in time using an existing set of atomic coordinates and forces. Other more 
sophisticated methods, such as the leapfrog algorithm, also exist [2].

The utility of Eq. (2) is conditional upon the time step Δ𝑡𝑡 being adequately small. As a 
rule of thumb, it should be smaller than the timescale of the fastest mode of movement present 
in the given system, e.g. the thermal vibrations of the atoms making up a molecule, in order 
to be able to capture the dynamics. Under room temperature and pressure conditions, atoms 
in a molecule typically vibrate at frequencies of 10!' −	10!( Hz, which means a time step 
of a few femtoseconds (10)!* s) would work without the simulation crashing. A time step 
smaller that this would slow down the simulation unnecessarily without much gain in the 
accuracy of the results. 

2.2 Force fields 

The force 𝐅𝐅 appearing in Eq. (1) is derived from the interatomic interactions that are acting 
among the atoms (and ions) in the molecule. Naturally, defining these interactions accurately 
is the most crucial part of an MD simulation, as the level of accuracy in these dictates the 
trustworthiness of the evolution and the emergent structure of the molecule. Let us therefore 
take a qualitative overview of what constitutes a typical set of interatomic interactions, also 
known as the force field, that go into an MD simulation.  

An interaction between two atoms labelled 𝑖𝑖 and 𝑗𝑗 is defined in terms of the interatomic 
potential energy, 𝑈𝑈(𝑟𝑟&%), that exists between these two atoms solely. The force experienced 
by atom 𝑗𝑗, 𝐅𝐅%, as a result of atom 𝑖𝑖 is related to the pair-potential energy 𝑈𝑈(𝑟𝑟&%) through the 
relation 

𝐅𝐅% = −
1
𝑟𝑟&%

9
∂𝑈𝑈;𝑟𝑟&%<
∂𝑟𝑟&%

= 𝐫𝐫&% ,
(3) 

where 𝐫𝐫& and 𝐫𝐫% are the Cartesian coordinates of the two atoms with respect to an arbitrarily 
defined origin in the simulation cell, while  

𝐫𝐫&% =	𝐫𝐫% 	−	𝐫𝐫& (4) 

is the vector from the 𝑗𝑗th atom to the 𝑖𝑖th atom and 𝑟𝑟&% = >𝐫𝐫&%> is the scalar magnitude of this 
vector. The function 𝑈𝑈(𝑟𝑟&%) is, somewhat confusingly, often referred to as simply potential 
in the MD community. For the purpose of tractability, it is usually split into different parts 
that describe the various components of the overall interaction. 

As a first split, the total potential energy, 𝑈𝑈Total, is expressed as a sum of the potential 
energy due to chemical bonds, 𝑈𝑈Bonded, and the potential energy between chemically non-
bonded atoms, 𝑈𝑈Non-bonded: 

𝑈𝑈Total = 𝑈𝑈Bonded +	𝑈𝑈Non-bonded. (5)
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The term 𝑈𝑈Bonded can be further split as 

𝑈𝑈Bonded = 𝑈𝑈Stretching +	𝑈𝑈Bending +	𝑈𝑈Torsion +	𝑈𝑈Improper, (6) 

where 𝑈𝑈Stretching represents the stretching motion between two chemically bonded atoms, 
𝑈𝑈Bending describes the bending of the bonds among three atoms, 𝑈𝑈Torsion is the dihedral angle 
potential to allow for the twisting movement among atoms and 𝑈𝑈Improper represents dihedral 
potentials that are often used to restrict the geometry of molecules (e.g., to maintain the planar 
geometry of a molecule). Each of these four terms are harmonic in nature (i.e. an oscillating 
pattern around a mean central position). However, one could impose a rigid bond if required 
by replacing a given term with a constraint. 

Non-bonded interactions are expressed as a sum of the electrostatic and van der Waals 
interactions:  

𝑈𝑈Non-bonded = 𝑈𝑈Electrostatic +	𝑈𝑈van-der-Waals. (7) 

Here, 𝑈𝑈Electrostatic is the energy due to the Coulombic interaction between two electrical 
charges, while 𝑈𝑈van-der-Waals takes into account dipole formation and the overlap of the electron 
clouds of two (or more) atoms. The van der Waals component of the interaction is very 
important, since it ensures that two ions with opposite charges placed close to each other do 
not end up sitting on top of each other, as would happen if only the electrostatic interaction 
were to be present. A considerable amount of effort usually goes into determining the exact 
form of this part of the interaction as it also dictates the equilibrium distance between two 
atoms (or ions). 

One popular form that is chosen to represent the van der Waals interaction is the Lennard-
Jones (L-J) potential, also sometimes referred to as 6-12 or 12-6 potential. Its functional form 
is: 

𝑈𝑈L-J;𝑟𝑟&%< = 4𝜖𝜖 BC
𝜎𝜎
𝑟𝑟&%
E
!"

− C
𝜎𝜎
𝑟𝑟&%
E
F

F 
(8) 

To understand this potential, it is useful to sketch the magnitude of 𝑈𝑈L-J as a function of the 
interatomic distance, 𝑟𝑟&%, as shown in Figure 1. The parameter 𝜖𝜖 is the ‘depth’ of the L-J 
potential energy and is equal to the minimum energy required to break the van der Waals 
bond between atoms 𝑖𝑖 and 𝑗𝑗, while 𝜎𝜎 is the interatomic finite distance at which the L-J 
potential energy is zero. Since the interatomic force is defined in terms of the slope of the 
potential energy, the minimum of the curve in Figure 1, marked by a red dot, represents the 
equilibrium point where the slope, and hence the interatomic force, is zero. The part of the 
curve to the left of this point represents repulsive force between the atoms, which in the real 
world occurs due to the overlap of the electron clouds of the atoms, while the part to the right 
characterises attractive force. Hence, this form of the potential is a convenient way of 
mimicking the spring-like character of the forces that exist between neutral atoms in the real 
world: when two atoms are pulled apart away from the equilibrium distance, they will tend 
to attract each other; however, if the two atoms come closer to each other than the equilibrium 
distance, they would experience a rapidly increasing repulsive force that will ensure that the 
two atoms do not quite merge into each other and will move away quickly. It also follows 
that at a non-zero finite temperature, two atoms placed close to each other will thus tend to 
perform oscillatory motion about the equilibrium point. 
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To obtain the value of the equilibrium distance 𝑟𝑟GH, one can evaluate the first derivative 
of Eq. (8) with respect to 𝑟𝑟&% and equate it to zero. This leads to 

𝑟𝑟GH =	2!/F𝜎𝜎 (9) 

Equation (8) can therefore be rewritten as 

𝑈𝑈L-J;𝑟𝑟&%< = 𝜖𝜖 BC
𝑟𝑟GH
𝑟𝑟&%
E
!"

− 2C
𝑟𝑟GH
𝑟𝑟&%
E
F

F. 
(10) 

In literature, both these forms of 𝑈𝑈L-J;𝑟𝑟&%< can be found since both of them are equivalent. In 
a typical MD software, only the numerical values of 𝜖𝜖, in addition to 𝜎𝜎 or 𝑟𝑟GH, depending on 
whether Eq. (8) or (10) is implemented in the software, need to be provided while defining 
the L-J potential. 

Another parameter that requires to be specified in an MD simulation is the cut-off 
distance, 𝑟𝑟JKL. This is the distance from a given atom when both the potential energy and the 
interatomic force are assumed to have fallen to negligible values. In Figure 1 it can be seen 
that at 𝑟𝑟&% = 	𝑟𝑟JKL not only 𝑈𝑈L-J;𝑟𝑟&%< is very close to zero, the slope of the curve is also very 
small, making the force negligible according to Eq. (3). Hence, considering interactions 
beyond this radius of influence would be a waste of computational effort. It is therefore 
necessary to choose this distance wisely. A large value of 𝑟𝑟JKL may slow down the simulation 
unnecessarily without perceptible gain in the accuracy of the results, while choosing too small 
a value would risk sacrificing the accuracy. For biomolecular simulations, 𝑟𝑟JKL ≈ 15	Å is 
usually adequate, although values as small as 10 Å are not uncommon in literature. 

Fig. 1: Lennard-Jones interaction curve between two non-bonded atoms. The red dot marks the point 
of equilibrium between the two atoms. 

All the rest of the terms on the right-hand side of equations (5), (6) and (7) may also have 
a mathematical expression of their own – often quite complex – or some of these can be 
expressed through a lookup table of numerical values as a function of distance, for example. 
A full discussion of these is beyond the scope of this chapter; however, for biomolecules well 
established parameter files built up by experts through many years of research, often using 
quantum mechanical considerations, are usually available for download. Some of the well-
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known biomolecular potentials include AMBER [3], BMS [4], CHARMM [5], ECEPP [6], 
GROMOS [7-9], MM3 [10], OPLS [11] and PFF [12], although this list is by no means 
exhaustive.  

Some of the popular, freely available MD packages include DL_POLY [13], NAMD [14], 
GROMACS [15], CHARMM [16] and LAMMPS [17]. Each of these packages have their 
own appeal and individuals’ choice is often based on the exact nature of the system to be 
simulated. 

3 Monte Carlo approach 

While MD is a deterministic technique, whereby the positions of the atoms evolve in a 
sequential manner from one time step to another following the laws of mechanics, Monte 
Carlo is known as a stochastic or non-deterministic technique. In MC, the state of the system 
from one step to another evolves in a random manner, albeit within physical constraints 
imposed by factors such as chemical bonds, force fields, temperature, pressure and so forth. 
Not all of these constraints need to be imposed in a particular simulation and this is something 
to be decided by the software designers and the users. 

In order to understand how a molecular system can be probed through random means, 
one needs to first consider the concept of potential energy surface in physics, which, contrary 
to the common meaning of the word ‘surface’, could in general be a 𝑛𝑛-dimensional entity, 
where 𝑛𝑛 is the number of degrees of freedom present in the system. Figure 1 is an example 
of an energy curve with only one degree of freedom, namely the distance between two atoms. 
In Figure 2, an energy surface with two degrees of freedom, denoted as 𝑅𝑅! and 𝑅𝑅", is shown 
(it would be impossible to graphically depict an energy surface with three or more degrees 
of freedom). It consists of hills, valleys and saddle points. Each minimum within a given 
valley is known as a local minimum, while the absolute lowest point within the entire surface 
is known as the global minimum. This kind of shape of the energy surface is generally caused 
as a result of the competing forces that an atom experiences from different directions. Since 
the atoms are constantly trying to minimise their own energy, one would expect the atoms to 
spend most of the time in regions around the local minima. Excursion onto higher energy 
points occurs as a result of temperature, which drives thermal fluctuations, which 
occasionally also leads to an atom climbing all the way up a hill and dropping into a 
neighbouring local minimum. Clearly then, the higher the energy, the lower the probability 
of finding atoms in that energy state and vice versa.
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It is this key observation that is utilised cleverly in a Monte Carlo simulation involving 
molecular structure. If 𝐪𝐪 and 𝐩𝐩 are two large vectors specifying the instantaneous positions 
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−𝐸𝐸(𝐪𝐪, 𝐩𝐩)
𝑘𝑘Q𝑇𝑇

=,
(13) 

where 𝑘𝑘Q is Boltzmann’s constant and 𝑇𝑇 is the system temperature. The parameter 𝑍𝑍 is the 
system partition function given by 

𝑍𝑍 =Zexp 9
−𝐸𝐸(𝐪𝐪, 𝐩𝐩)
𝑘𝑘Q𝑇𝑇

=d𝐪𝐪d𝐩𝐩,
(14) 

which acts to normalise 𝑃𝑃(𝐪𝐪, 𝐩𝐩). Equation (13) provides a link between the probability, which 
is a central ingredient of the Monte Carlo philosophy, and the energy, which can be calculated 
using the position and momenta of a molecular system. This allows one to generate random 
configurations of the molecular system within the confines of the laws of physics, thus 
leading to physically realistic configurations. 

To achieve this, Metropolis et al. proposed an algorithm [18], which was subsequently 
expanded by Hastings [19]. Figure 3 shows a flowchart of the Metropolis sampling algorithm 
for molecular structural studies. After setting up the initial coordinates of the atoms, an atom 
is picked randomly and attempt is made to move it to a new random position. If the energy 
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of the new position is lower than that of the starting position, the new position is accepted 
because molecules always prefer lowering their energy; hence this is a perfectly plausible 
move. On the other hand, if the new trial position is at a higher energy, one does not reject 
the position outrightly and gives it a chance to succeed: the probability ratio, 

𝑝𝑝 =
𝑃𝑃	at	new	position
𝑃𝑃	at	old	position = 	

exp(−𝐸𝐸RGS/𝑘𝑘Q𝑇𝑇)
exp(−𝐸𝐸TUV/𝑘𝑘Q𝑇𝑇)

= expe−
Δ𝐸𝐸
𝑘𝑘Q𝑇𝑇

f, 
(15) 

where Δ𝐸𝐸 = 𝐸𝐸RGS − 𝐸𝐸TUV, is calculated and is compared to a random number between 0 and 
1. If the random number is between 0 and 𝑝𝑝, the move is accepted; if the random number is
greater than 𝑝𝑝, the move is rejected [20]. This strategy ensures that a Boltzmann distribution
of molecular configurations is produced in accordance with Eq. (13). Far more configurations
are produced around the valleys of the energy surface and only a few are produced around
the peaks, which means a considerable amount of computational effort is saved that would
otherwise be wasted in probing the higher energy configurations that are physically less
plausible.
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Once the physically plausible configurations are produced, the average of a property 𝐵𝐵 
that is dependent on the atomic positions can be calculated using the simple relation 

⟨𝐵𝐵⟩ =
1
𝑀𝑀k	

W

&X!

𝐵𝐵(𝐪𝐪&),
(16) 

where 𝑀𝑀 is the number of accepted configurations. 
Since there are no equations of motion to be solved in Monte Carlo, it is much faster than 

molecular dynamics in terms of probing points in the phase space that are truly useful. Also 
note that, unlike an MD simulation, there is no time coordinate in the MC recipe described 
above; the system jumps from one state to another random state so as to ensure that the best 
statistical ensemble of energetically plausible states is collected. If required, there is another 
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class of MC simulations, known as kinetic Monte Carlo (kMC), which does allow an explicit 
time coordinate. This is made possible by introducing rates of various events, which are 
inversely proportional to time. An event is essentially seen as a transition between one state 
to another and the rate of this is connected to the energy barrier that exists between the two 
states. We shall not discuss kMC in detail here since time dependence is not required in the 
structural studies of macromolecules. 

4 Practical considerations 

In this section we enlist a few practical points to be considered during a typical workflow of 
molecular simulation. 

4.1 Connectivity in molecules 

Specifying only the atomic coordinates, for instance through a PDB file, is not sufficient to 
carry out a molecular simulation. One also needs to provide information about the 
connectivity of atoms within a molecule. Many simulation packages have their own ways of 
defining the different types of chemical bonds that exist between the atoms. For 
biomolecules, one ‘standard’ way of doing this is through a PSF file (Protein Structure File). 
Despite what the name may suggest, PSF files are used to define connectivity within non-
protein biomolecules as well. Automated ways of creating a PSF file from a given PDB file 
include the online tool CHARMM-GUI [21] and the AutoPSF plugin included in the VMD 
package [22]. CHARMM-GUI also has a tool to check for problems in a given PDB file and 
to some degree fix the file such that it is compatible with the CHARMM force field. It also 
has a tool to detect glycans and perform any necessary modifications in the PDB file arising 
from this. In case one of the automatic methods fails for some reason, a semi-automatic tool 
to create the PSF file is the psfgen tool that comes with VMD. It is semi-automatic in that a 
set of topology files and an input file specifying the type of bonds that are present among the 
various atomic species need to be provided by the user. While this may require careful 
treatment, it does give the user more precise control. The AutoPSF plugin in VMD, in fact, 
implements psfgen under the hood. VMD is also a powerful tool to visualise and manipulate 
PDB files and trajectory files that are output by many simulation packages. 

4.2 Speed-up through coarse graining 

Biomolecules can be very large for a molecular simulation. A typical protein may contain 
tens of thousands of atoms, while a DNA molecule may contain several billions of atoms. 
Obtaining explicit variation among all these atoms is not only computationally expensive, 
but also unnecessary in a large number of cases. To speed up the simulation, one may perform 
selective coarse graining by defining large regions of the molecule as ‘rigid’ and only small 
parts of the molecule as ‘flexible’. The rules of structural variation, according to either MD 
or MC, are then applied explicitly to all the atoms in the flexible regions and only to a 
representative point in each rigid region, which is usually the mid-point. The rigid regions 
can be identified by looking at the initial structure of the molecule. For instance, in a protein 
molecule one would find 𝛽𝛽-sheets that are made of several 𝛽𝛽-strands connected together and 
where motion beyond thermal vibrations does not occur. Assuming that the 𝛽𝛽-sheets are 
stable under normal physiological conditions, one could define these as rigid. Visibly thin 
regions of the molecule, such as linkers between domains, can be defined as flexible in order 
to drive structural variation. However, care must be taken so as to ensure that important bonds 
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such as disulphide bridges do not appear within a flexible region in a Monte Carlo simulation, 
as sudden variation from one state to another may break these bonds.

5 Inference of solution structure from scattering data 

Once an ensemble of structures has been created by a simulation, calculating small angle 
neutron scattering (SANS) profiles is conceptually straightforward, although it may require 
some processing effort. Computationally one performs essentially the same procedure as in 
a real neutron scattering experiment, but this time in a virtual world, with a large set of PDB 
files of the molecular structures created by a simulation replacing the molecules that exist in 
a real experiment. A typical workflow of the whole process is shown in Figure 4. 

Fig. 4: A typical workflow to infer atomistic structures of molecules in solution using SANS data. 

5.1 Theoretical scattering profiles 

The step marked with a red box is already described in Sections 2 and 3. The next step is to 
calculate theoretical SANS profile for each of the conformations produced by the 
simulations. One way of doing this is through the Debye formula for spherically averaged 
one-dimensional scattering intensity [23], 
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𝐼𝐼(𝑄𝑄) = 	kk𝑓𝑓&(𝑄𝑄)𝑓𝑓%(𝑄𝑄)
sin	(𝑄𝑄 ∙ 𝑟𝑟&%)

𝑄𝑄 ∙ 𝑟𝑟&%
,

W

%X!

W

&X!

 
(17) 

where 𝑄𝑄 is the scattering vector, 𝐼𝐼(𝑄𝑄) is the scattered intensity of the neutrons, 𝑟𝑟&% is the 
distance between atoms labelled 𝑖𝑖 and 𝑗𝑗 within the given theoretical conformation, 𝑓𝑓&(𝑄𝑄) is 
the form factor (or scattering factor) for atom 𝑖𝑖, which describes the scattering contribution 
of the stand-alone atom, and 𝑀𝑀 is the number of atoms in the molecule. Provided that the 
form factor is known for all the atomic species found in a biomolecule, only the interatomic 
distances, which are available from the generated PDB files, are required to calculate the 
scattering profiles from Eq. (17). 

Implementation of Eq. (17) requires calculating 𝑀𝑀" terms for each conformation, which 
can be computationally demanding when the molecule is large (large 𝑀𝑀) and there are a large 
number of conformations to go through. Approximation techniques have been reported that 
aim to reduce the burden of these calculations. These include the multipole expansion (ME) 
technique of Svergun et al. [24] and the golden vector method of Watson and Curtis [25] that 
scales linearly with the number of atoms in the molecule.  

One thing that must be taken care of while calculating the theoretical scattering profiles 
is that the 𝑄𝑄-values must match those that are present in the experimentally obtained 
scattering curves. This is so that 𝐼𝐼(𝑄𝑄) for both the theoretical and experimental curves can be 
compared at exactly the same set of 𝑄𝑄-values. If this is not possible to achieve, one can 
interpolate the experimental data points at the desired set of 𝑄𝑄-values using, for instance, a 
spline method. If there is a mismatch in the 𝑄𝑄-values, there are likely to be significant errors 
in the subsequent analysis of the results; hence, this is an important step. 

5.2 Identification of best-fit structures 

The quality of a computationally generated atomistic conformation of the molecule can be 
tested by performing a statistical hypothesis test, such as an 𝑅𝑅-factor test (or sometime a 𝜒𝜒" 
test). The 𝑅𝑅-factor is defined as 

𝑅𝑅-factor	as	percentage = 	
∑ x>𝐼𝐼YZ[L(𝑄𝑄&)> − 𝜂𝜂|𝐼𝐼\]GT^(𝑄𝑄&)|x&

∑ >𝐼𝐼YZ[L(𝑄𝑄&)>&
× 100,

(18) 

where 𝐼𝐼YZ[L(𝑄𝑄&) and 𝐼𝐼\]GT^(𝑄𝑄&) denote the experimentally obtained and theoretically 
calculated scattering intensities, 𝜂𝜂 is a scaling factor used to match the theoretical curve to 
the experimental 𝐼𝐼(0) value and 𝑖𝑖 runs over the range of all the 𝑄𝑄-values over which the 
comparison of the curves is to be made. This method compares the scattering profile of each 
of the theoretical conformations and produces a numerical value of 𝑅𝑅-factor that indicates 
how closely the curve matches with the target experimental curve (Figure 5). The lower the 
𝑅𝑅-factor, the better the fit. 
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Fig. 5: Comparison of the theoretically produced scattering profiles (non-black colours) with a single 
experimental profile (black). 

If one calculates the 𝑅𝑅-factor for all the computationally generated molecular 
conformations as a function of the radius of gyration, 𝑅𝑅_, of each conformation, a plot similar 
to the one shown in Figure 6 should come out, provided that a sufficiently large number of 
physically plausible molecular conformations have been used to produce such a plot. The 
plot should have a U-shape with a distinct minimum surrounded by rising values of  𝑅𝑅-factor 
on either side of the minimum. This allows one to assert with confidence that the 
conformations with the lowest 𝑅𝑅-factors are indeed the best-fit structures among the 
computationally generated ensemble. In any case, one should aim for 𝑅𝑅-factors of below 5% 
as a sign of a reasonably good fit. Hence, if the plot never dips below 5%, then either 
insufficient number of conformations were generated, or their quality was questionable, or 
perhaps the quality of the experimental scattering curve itself needs to be investigated.  
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Fig. 6: Identification of the best-fit structures using the 𝑅𝑅-factor filter. Each data point (circles) in this 
plot corresponds to a unique atomistic conformation produced by the molecular simulation. Yellow 
circles represent all the conformations that were created, while the best-fit 100 conformations with the 
lowest 𝑅𝑅-factors are shown in green. 

A certain number of best-fit molecular structures identified in this way (e.g. the green 
points in Figure 6) can be subjected to further statistical or numerical analysis in order to 
reveal a common pattern within them. It must be stressed that a single structure is not sought 
to be identified here. Rather, a tightly-defined ensemble of structures is being obtained to 
match the solution structure of the biomolecules that are giving rise to the spherically 
averaged scattering curve in SANS experiments. 

5.3 Web-based workflow 

All the above steps outlined in this Chapter can be fairly demanding task for a non-expert. 
Preparing an input PDB file for simulation and then preparing the (complex) additional input 
files for performing the molecular simulations are not trivial tasks even for experts in the 
field. Not to mention the code to be written for the subsequent analysis of the results. An 
online free-to-use portal, SASSIE-web, simplifies this task considerably by presenting highly 
abridged web-based input forms for each of the tasks in the workflow [26]. It has modules to 
prepare structures, carry out simulations, calculate theoretical SAXS and SANS data and 
compare the outcome to experimental data. While the key outputs are shown on the web page 
after the calculations, one can download the more detailed files for further analysis. 

6 Conclusions 

Deducing the solution structure of biological macromolecules in solution is a complex task 
that requires expertise of several fields to be applied together. While SANS experiments are 
an effective way of capturing spherically averaged scattering profiles of the macromolecules, 
a computational counterpart of this process is required to exploit and decode the information 
provided by the experimental data. To this end, structural variation in a macromolecule can 
be performed using molecular simulations. Theoretical scattering profiles calculated from the 
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6 Conclusions 

Deducing the solution structure of biological macromolecules in solution is a complex task 
that requires expertise of several fields to be applied together. While SANS experiments are 
an effective way of capturing spherically averaged scattering profiles of the macromolecules, 
a computational counterpart of this process is required to exploit and decode the information 
provided by the experimental data. To this end, structural variation in a macromolecule can 
be performed using molecular simulations. Theoretical scattering profiles calculated from the 

computationally generated structures can be compared with the experimental SANS curve to 
obtain a set of conformations that best reflect the structure of the macromolecule in solution. 
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