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Abstract

We present in this dissertation several theorems on the subject of moments of auto-

morphic L-functions.

In chapter 1 we give an overview of this area of research and summarize our results.

In chapter 2 we give asymptotic main term estimates for several different moments

of central values of L-functions of a fixed GL2 holomorphic cusp form f twisted by

quadratic characters. When the sign of the functional equation of the twist L(s, f⊗χd)

is −1, the central value vanishes and one instead studies the derivative L′(1/2, f⊗χd).

We prove two theorems in the root number −1 case which are completely out of reach

when the root number is +1.

In chapter 3 we turn to an average of GL2 objects. We study the family of cusp

forms of level q2 which are given by f ⊗ χ, where f is a modular form of prime

level q and χ is the quadratic character modulo q. We prove a precise asymptotic

estimate uniform in shifts for the second moment with the purpose of understanding

the off-diagonal main terms which arise in this family.

In chapter 4 we prove an precise asymptotic estimate for averages of shifted con-

volution sums of Fourier coefficients of full-level GL2 cusp forms over shifts. We find

that there is a transition region which occurs when the square of the average over

shifts is proportional to the length of the shifted sum. The asymptotic in this range

depends very delicately on the constant of proportionality: its second derivative seems

to be a continuous but nowhere differentiable function. We relate this phenomenon

v



to periods of automorphic forms, multiple Dirichlet series, automorphic distributions,

and moments of Rankin-Selberg L-functions.
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Chapter 1

Introduction

1.1 L-functions in families

This dissertation is about L-functions in families. L-functions play a central and uni-

fying role in modern number theory. Among the deepest problems in number theory

are the generalized Riemann hypothesis, the Birch and Swinnerton-Dyer conjecture,

and the Langlands program all of which concern L-functions.

A recurring philosophy in modern mathematics is that “to understand a difficult

object, one should deform it into a family of objects and study that family”. Con-

sideration of individual L-functions as members of a family of L-functions has had a

long and productive history, going all the way back to their first application: Dirich-

let’s theorem on primes in arithmetic progressions. For a complex number s with

Re(s) > 1 and a Dirichlet character χ(n), Dirichlet defined the L-functions

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s
.

To show that each arithmetic progression a (mod q) with (a, q) = 1 contains infinitely

many primes, Dirichlet expands the indicator function of the residue class a (mod q)

1



2 CHAPTER 1. INTRODUCTION

into a basis of Dirichlet characters and shows that the trivial character χ0 modulo

q has lims→1+ L(s, χ0) = ∞, whereas every other character χ modulo q satisfies

L(1, χ) 6= 0.

Since Dirichlet’s time there have been many other spectacular applications of

studying families of L-functions in number theory. In the case of function fields, we

need look no further than the solution of the Weil conjectures by Deligne [Del74].

In particular, Deligne proved the Riemann hypothesis for zeta functions of varieties

over finite fields, which has as a consequence the Ramanujan-Petersson conjecture

for holomorphic modular forms. In this case, the notion of a family of zeta functions

derives from that of a family of varieties over a base scheme in algebraic geometry.

We give one more example which is much closer to the subject of this dissertation,

in which the spectral theory of GL2 automorphic forms is applied to the classical

case of Dirichlet (i.e. GL1) L-functions. It was established in the 1960s by Burgess

[Bur62, Bur63] that on the critical line the Dirichlet L-functions of conductor q satisfy

the bound L(s, χ)�ε |s|Aq3/16+ε for some fixed A > 0. No improvement on the bound

was made for 40 years until Conrey and Iwaniec in 2000 [CI00] established, in the

special case when χ is primitive quadratic, the bound

L(s, χ)�ε |s|A
′
q1/6+ε (1.1)

for some constant A′. They accomplished this by considering the Dirichlet L-function

as a GL2 object

|L(1/2 + it, χ)|2 = L(1/2, E ⊗ χ)

where E is a unitary Eisenstein series of trivial central character and spectral pa-

rameter 1/2 + it. Embedding L(1/2, E ⊗ χ) into a family of GL2 L-functions for

the congruence subgroup Γ0(q2), they succeeded in establishing a Lindelöf-on-average
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upper bound for the third power average of this family of L-functions, thereby prov-

ing the bound (1.1). We will revisit this family of L-functions in chapter 3 of this

dissertation.

1.1.1 Examples of families of L-functions

We shall assume that the reader is familiar with the most common examples of L-

functions, and defer to section 1.1.3 the definition. As for families of L-functions,

there is currently no precise definition generally accepted, although the question has

received some attention in the past few years. Several perspectives on this issue can

be found in the papers of Conrey, Farmer, Keating, Rubinstein and Snaith [CFK+05],

Diaconu, Goldfeld and Hoffstein [DGH03], Iwaniec and Sarnak [IS00b], and Sarnak’s

note [Sar08].

In [Sar08] Sarnak writes “In practice a ‘family’ is investigated as it arises”, and

we will keep with that tradition in this dissertation. Following the philosophy of

[CFK+05], we often have in mind a set of L-functions whose underlying arithmetic

data is tied together by some spectral completeness or trace formula. Several typical

examples are:

1. Primitive Dirichlet L-functions of fixed conductor. The spectral completeness

rule is orthogonality of characters.

2. Quadratic Dirichlet L-functions. The trace formula is Poisson summation. The

family of quadratic Dirichlet characters does not have a strong spectral com-

pleteness, however these L-functions are tied together because they appear as

the Fourier coefficients of a weight 1/2 Eisenstein series, whose modularity re-

lation follows from Poisson summation.

3. The L-functions of GL2 automorphic forms of specified weight and level with
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root number +1. The spectral completeness rule is the Petersson/Kuznetsov

trace formula.

4. The L-functions of GL2 automorphic forms of specified weight and level with

root number −1. The spectral completeness rule is the Petersson/Kuznetsov

trace formula.

5. Riemann zeta function in t aspect, or rather, any L-function at all in t aspect.

We may view L(1/2+ it, f) as a twist of L(1/2, f) by the characters n−it, where

t ∈ R. This gives the only known continuous family of L-functions. The spectral

completeness rule is integration.

1.1.2 Moments of L-functions

A classical method used to study the analytic properties of a family of L-functions

is to compute its kth power mean value, which in our subject is often called the kth

moment of the family. Hardy and Littlewood were the first to compute moments of

the Riemann zeta function. In 1916 [HL16] they proved an asymptotic formula for

the 2nd moment of the Reimann zeta function:

1

T

∫ T

0

|ζ(1/2 + it)|2 dt ∼ log T,

as T → ∞. In 1926 Ingham [Ing26] derived an asymptotic main term for the 4th

moment
1

T

∫ T

0

|ζ(1/2 + it)|4 dt ∼ 1

2π2
(log T )4.

For an overview of these results, see Titchmarsh [THB86] chapter 7. To this day, no

asymptotic formula for any higher moment of the Riemann zeta function has been

proven, even assuming the Riemann hypothesis. On the other hand, as of the early

2000s, there exist widely believed conjectures for the asymptotic expansions of all
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moments of the zeta function, see subsection 1.2.5 below.

Some progress has been made in the error term in the 4th moment. In 1979

Heath-Brown [Hea79] proved

1

T

∫ T

0

|ζ(1/2 + it)|4 dt =
4∑
i=0

ai(log T )i +O(T−1/8+ε)

for some explicit constants ai. Heath-Brown’s result required a careful analysis of

“off-diagonal” terms which contribute to the asymptotic main terms above. The best

current result is due to Ivić and Motohashi [IM95] who obtain an error of�ε T
−1/3+ε.

One expects an error term of size�ε T
−1/2+ε. We revisit such “off-diagonal” analysis

later in the introduction, see section 1.3.

In addition to the Riemann zeta function, one also considers moments of the

various families of L-functions e.g. those described in subsection 1.1.1 above. We

give the currently best-known examples in several indicative cases below.

Young [You11] proved the asymptotic formula for the 4th moment of primitive

Dirichlet L-functions of conductor q: let q → ∞ through odd primes, then for some

explicit constants ci

∑
χ (mod q)
χ primitive

|L(1/2, χ)|4 = q

4∑
i=0

ci(log q)i +Oε(q
1−5/512+ε).

Let gcd(d,�) = 1 denote the condition that d is square-free. A second recent

result also due to Young [You12] gives an estimate for the third moment

∑
gcd(d,2�)=1

L(1/2, χ8d)
3F (8d/X) = X

6∑
i=0

bi(logX)i +Oε(X
3/4+ε)

for some explicit constants bi and F ∈ C∞c (R>0) a smooth function with support
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contained in the interval [1/2, 3]. It should be possible to establish an asymptotic

main term for the 4th moment of this family by the technique used in chapter 2

of this thesis, originally developed by Soundararajan and Young in [SY10]. The

asymptotic size of the 4th moment will be a degree 10 polynomial in logX. Just as in

the work of Heath-Brown mentioned above, an intricate analysis of the off-diagonal

and off-off-diagonal main terms is required, and will be carried out in a future paper.

Perhaps the most interesting family of central values of L-functions to study are

GL2 automorphic forms, due to their arithmetic interpretation via the Birch and

Swinnerton-Dyer conjecture and its generalizations. In this case, it was established

by Kowalski, Michel and VanderKam [KMV00] for f in a basis H2(q) of primitive

weight 2 Hecke eigenforms for Γ0(q) that

∑
f∈H2(q)

L(1/2, f)4 = q
6∑
i=0

di(log q)i +Oε(q
11/12+ε),

for explicit constants di.

1.1.3 Definitions

For the purpose of giving an intelligible discussion of the various applications of

moments of L-functions in the following section 1.2.1, we now give the definition of

an L-function, the definition of the analytic conductor, and two standard examples.

We follow here Iwaniec and Kowalski section 5.1 [IK04] and sections 1 and 2 of Iwaniec

and Sarnak [IS00b].

Definition 1 (L-function) Consider a meromorphic function L(s, f) in the variable

s with the following data:

1. Dirichlet series and Euler product of degree d > 0. When Re(s) > 1 the function
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L(s, f) admits the expressions

L(s, f) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1− α1(p)

ps

)−1

· · ·
(

1− αd(p)

ps

)−1

,

with λf (n), α1(p), . . . , αd(p) complex numbers associated to f and λf (1) = 1.

We also assume that the Dirichlet series and Euler product converge absolutely

when Re(s) > 1, and that the local parameters αi(p) satisfy

|αi(p)| < p.

2. Gamma factors. Associated with L(s, f) there exists complex numbers κj, which

are either real or come in conjugate pairs and have Re(κj) > −1. These are the

archimedian analogues of the αi(p) from part 1. These κj are used to form the

gamma factors

γ(s, f) = π−ds/2
d∏
j=1

Γ

(
s+ κj

2

)
.

3. Conductor. There exists a positive integer q(f) called the conductor of L(s, f)

for which αi(p) 6= 0 when p - q(f), i.e. L(s, f) is unramified at the primes

dividing the conductor.

The meromorphic function L(s, f) is called an L-function if it has the data from

(1),(2) and (3), and the “completed L-function” defined

Λ(s, f) = q(f)s/2γ(s, f)L(s, f)

can be analytically continued to a meromorphic function on C of order 1 with at most



8 CHAPTER 1. INTRODUCTION

poles at s = 0 and s = 1 satisfying a functional equation

Λ(s, f) = w(f)Λ(1− s, f),

where the object f is the dual of f in the sense that we have that λf (n) = λf (n),

γ(s, f) = γ(s, f) and q(f) = q(f). The complex number w(f) has |w(f)| = 1 and is

called the “root number” or “sign of the functional equation”.

The “Langlands philosophy” predicts that all L-functions come from automorphic

forms. The L-functions of degree d < 2 have been completely classified by the com-

bined work of Conrey and Ghosh [CG93], Richert [Ric57], Kaczorowski and Perelli

[KP99], Soundararajan [Sou05] and Kaczorowski and Perelli [KP11]. Extending this

classification to d = 2 is considered a difficult open problem.

We now define an important real-number invariant of L(s, f): the analytic con-

ductor. We can define the analytic conductor intrinsically: the density of zeros of

L(s, f) at height |s| in the critical strip is proportional to log q(f, s), and this quantity

q(f, s) we call the analytic conductor. In practice however, the analytic conductor

q(f, s) is read off from the functional equation of L(s, f).

Definition 2 (Analytic Conductor) Let L(s, f) be an L-function as above. The

analytic conductor of L(s, f) is the positive real number

q(s, f) = q(f)
d∏
j=1

(|s+ κj|+ 3) ,

where q(f), d, κj are as in Definition 1.

We give two examples which were mentioned previously in this introduction and

will be used later.
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Example 1 (Dirichlet L-function) Let χ : Z → C be a primitive Dirichlet char-

acter of conductor q. For Re(s) > 1 let

L(s, χ) =
∞∑
n=1

χ(n)

ns
=
∏
p

1

1− χ(p)p−s
.

1. We have for this L-function that the local parameters are given by λχ(p) =

α(p) = χ(p), and that |α(p)| = |χ(p)| = 1 < p for all p.

2. We have the local factor at ∞ is κ = a with a defined by

a =

0 if χ(−1) = 1

1 if χ(−1) = −1.

The gamma factor is then given by

γ(s) = π−s/2Γ

(
s+ a

2

)
.

3. The conductor of L(s, χ) is given by q(χ) = q.

The root number is given by

w(χ) = i−a
τ(χ)
√
q
.

Note that |τ(χ)| = √q, so that |w(χ)| = 1. Thus we have

Λ(s, χ) =
( q
π

)s/2
Γ

(
s+ a

2

)
L(s, χ)

and

Λ(s, χ) = i−a
τ(χ)
√
q

Λ(1− s, χ).
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Finally, the analytic conductor of L(s, χ) is

q(s, χ) = q(|s+ a|+ 3).

If s is high in the critical strip, we often use the approximation

q(s, χ) ≈ q|s|.

Example 2 (Modular L-function) Let f be a classical holomorphic primitive cus-

pidal eigenform of even weight κ for the congruence subgroup Γ0(q) with trivial central

character. For Re(s) > 1 let

L(s, f) =
∞∑
n=1

λf (n)

ns
=
∏
p

(
1

1− α(p)p−s

)(
1

1− β(p)p−s

)
,

where

1. The algebraic numbers n(κ−1)/2λf (n) are the Fourier coefficients of f(z) as a

function on the upper half plane, or alternatively, p(κ−1)/2λf (p) is the eigenvalue

of the p-th Hecke operator Tp acting on f . We have by Deligne’s proof of the

Weil conjectures [Del74] that

|α(p)| = |β(p)| = 1.

2. The local factors at infinity are κ1 = (κ− 1)/2 and κ2 = (κ + 1)/2. Hence the

gamma factors are

γ(s, f) = π−sΓ

(
s+ κ−1

2

2

)
Γ

(
s+ κ+1

2

2

)
.

3. The conductor of L(s, f) is the level q.
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The root number of f is given by

w(f) = iκη,

where η = ±1 is the eigenvalue of the Fricke involution. When q is square-free we

have that

η = µ(q)λf (q)
√
q,

see Proposition 14.16 of [IK04]. Thus we have

Λ(s, f) =

(√
q

π

)s
Γ

(
s+ κ−1

2

2

)
Γ

(
s+ κ+1

2

2

)
L(s, f)

and

Λ(s, f) = iκηΛ(1− s, f).

Note: in the case that f has trivial central character λf (n) ∈ R and f is self-dual.

The analytic conductor is

q(s, f) = q

(∣∣∣∣s+
κ− 1

2

∣∣∣∣+ 3

)(∣∣∣∣s+
κ+ 1

2

∣∣∣∣+ 3

)
.

When s is high in the critical strip, we may approximate

q(s, f) ≈ q(|s|2 + κ2).

The analytic conductor q(s, f) of an L-function is a measure of the complexity

of L(s, f). More precisely, the approximate functional equation expresses the value

L(s0, f) as a sum of length q(s0, f)1/2. For the general form of the approximate

functional equation, see Theorem 5.3 from section 5.2 of [IK04]. In practice, it is best

to work out the approximate functional equation on a case-by-case basis as it is very
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flexible and may be constructed tailor-fit to each particular application, see Lemma

1 of chapter 2. The analytic conductor therefore gives an important benchmark for

various calculations.

We see from the many results in the litterature, some of which are given in in

subsection 1.1.2, that the range of moments for which we have rigorous estimates

of the right order of magnitude is extremely limited. There is apparently a barrier

obstructing progress to higher moments, which has persisted despite a good deal of

effort. Precisely, let F be a family of L-functions of size µ(F). As we saw in section

1.1.2, current technology for estimating the kth moment

∫
f∈F
|L(s, f)|k dµ

typically breaks down around

k = 4
log µ(F)

log q(s, f)

for f a “typical” element of F , as q(s, f)→∞. This gives a benchmark for whether

a moment estimation problem should be approachable or not.

1.2 Motivation for Moments of L-functions

1.2.1 Applications of Moments

In this section we briefly describe several applications of estimating moments of L-

functions: the subconvexity problem, zero-density results and non-vanishing theo-

rems.

By estimating moments of L-functions, we seek to understand the average size of

central values of a family of L-functions. But on-average estimates are also related

to the deep question of the size of a single L-function. Essentially the best point-wise
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estimates are obtained from the generalized Riemann hypothesis. Assuming GRH we

have for any L-function with Re(s) = 1/2 and ε > 0 that

L(s, f)�ε q(s, f)ε,

where the implied constants only depend on ε. This estimate is known as the Lindelöf

hypothesis, and has deep arithmetic consequences. For the deduction of the Lindelöf

hypothesis from the Riemann hypothesis, see [IK04] section 5.7.

Unconditionally, one derives from the functional equation and the Phragmen-

Lindelöf convexity principle when Re(s) = 1/2 and ε > 0 that

L(s, f)�ε q(s, f)1/4+ε.

This estimate is known as the “convexity bound”. Typically, it just barely fails to

give non-trivial results in applications. One thinks of the convexity bound as the “no

arithmetic in, no arithmetic out” situation.

The subconvexity problem is to establish for some fixed δ > 0 a bound of the form

L(s, f)� q(s, f)1/4−δ

on the critical line, where the implied constants depend only on the degree of f .

In contrast to the convexity bound, subconvex bounds have many applications to

equidistribution-type problems. These include: representation of integers by quadratic

forms over number fields [IS00b], quantum unique ergodicity [HS10], and thus equidis-

tribution of zeros of eigenforms [Rud05], first Fourier coefficient at which two distinct

modular forms must differ [Mic07], smallest quadratic nonresidue [Mic07, MV10],

bounds on Fourier coefficients of eigenfunctions on negatively curved spaces when

restricted to closed geodesics [MV10], and the equidistribution of Heegner points
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[Mic07].

Now let us return to moments of L-functions and discuss how they may be applied

to solve instances of the subconvexity problem. As an example, consider the work

of Conrey and Iwaniec [CI00] which was introduced in section 1.1. Let Hκ(q) be a

basis of Hecke eigenforms of weight κ for the congruence subgroup Γ0(q), and χ the

quadratic character modulo q. Conrey and Iwaniec prove for the cubic moment

∑
f∈Hκ(q)

L(1/2, f ⊗ χ)3 �ε q
1+ε, (1.2)

which is the Lindelöf-on-average upper bound. Each of the modular forms f ⊗χ is of

the congruence subgroup Γ0(q2), so each of these L-functions has conductor q2, and

analytic conductor q(1/2, f ⊗χ) ∼ q2k2. Throwing away all but one term of the sum

and taking cube roots, one obtains

L(1/2, f ⊗ χ)�κ,ε q
1/3+ε,

which is an impressive Weyl-type subconvexity bound. The convexity bound here is

�κ,ε q
1/2+ε. This technique is crude but nonetheless yields the best known subconvex

bound for this family. Note that to attain a subconvex estimate in this manner, only

an upper bound for the moment (1.2) is necessary. In contrast, the non-vanishing

results we discuss below require precise main term estimates.

A more sophisticated version of the above argument is the amplification technique.

The amplification technique was originally introduced by Iwaniec [Iwa92], and devel-

oped by (amongst many others) Duke, Friedlander and Iwaniec in [DFI94, DFI02]

and by Kowalski, Michel and VanderKam in [KMV00, KMV02]. It consists basically

of introducing an extra factor M(f) to the summand of a moment for which M(f0)

is large for one particular term f0. As the subconvexity problem is not the subject of



1.2. MOTIVATION FOR MOMENTS OF L-FUNCTIONS 15

this dissertation, we avoid giving further details and refer the reader to the literature.

Today, the subconvexity problem has been completely resolved for GL1 and GL2

L-functions by the impressive work of Michel and Venkatesh [MV10]. Michel and

Venkatesh employ the amplification method applied to period integrals of automor-

phic forms instead of moments. For GLn, n ≥ 3 these period relations are not

available, and the subconvexity problem is still mostly open. A few results we have

for GL3 do make use of the method of moments however, see [Li11, Blo12].

A second basic problem in the theory of L-functions is to determine how often

L-functions may vanish at certain special points. These special points may be up

the critical line or at the center point of symmetry, but in both cases, moments of

L-functions and the mollifier technique are key tools.

Mollifiers in the t-aspect were originally introduced to study the zeros of the

Riemann zeta function by Bohr and Landau [BL14] and further used by Selberg

[Sel89] to show that a positive proportion of the zeros of the Riemann zeta function

are on the critical line. The state of the art today is that more than 41.28% of the

zeros of the classical ζ(s) are on the Re(s) = 1/2 line, a result due to Feng [Fen12],

which builds on the ideas of Conrey [Con89].

Often we are most interested in the center point of symmetry of the functional

equation, and it is in this case that we now go into somewhat greater detail.

To give an example of the flavor of results which we are interested in, consider

the family of quadratic Dirichlet L-functions L(s, χd) associated with the quadratic

character of fundamental discriminant d. It was shown by Jutila [Jut81] that there are

� X/ logX of the fundamental discriminants |d| ≤ X for which L(1/2, χd) 6= 0. To

show this, Jutila established asymptotic formulae for the first and second moments of

quadratic Dirichlet L-functions. Let D denote the set of fundamental discriminants,
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i.e. those discriminants coming from quadratic fields. Jutila showed

∑
|d|≤X
d∈D

L(1/2, χd) ∼ c1X logX (1.3)

and ∑
|d|≤X
d∈D

|L(1/2, χd)|2 ∼ c2X(logX)3 (1.4)

for specific constants c1 and c2. Applying the Cauchy-Schwarz inequality one obtains

the lower bound stated above on the number of fundamental discriminants for which

L(1/2, χd) does not vanish.

Soundararajan [Sou00] introduced mollifiers to this line of reasoning, and thereby

showed that 7/8-ths of fundamental discriminants have L(1/2, χd) 6= 0. The idea is

to introduce a sum

M(d) =
∑
`≤M

a`χd(`)

to the moments (1.3) and (1.4) where the a` are arbitrary coefficients. Theses coeffi-

cients a` are then chosen so that

∑
|d|≤X
d∈D

L(1/2, χd)M(d) �
∑
|d|≤X
d∈D

|L(1/2, χd)M(d)|2 � X.

Here the symbol f � g means that limx→∞ f(x)/g(x) = c for some constant c. The

idea is to choose the a` to make M(d) small whenever L(1/2, χd) is large. Applying

Cauchy-Schwarz now gives a 7/8-ths proportion of non-vanishing values L(1/2, χd).

Mollifiers have been used in many other cases to prove non-vanishing theorems in

the case of automorphic L-functions, for example in the work of Iwaniec and Sarnak

[IS00a] and Kowalski, Michel and VanderKam [KMV00]. For example, Iwaniec and

Sarnak prove that the percentage of primitive holomorphic eigenforms of even weight
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κ, square-free level N and root number w(f) = +1 for which

L(1/2, f) ≥ (logN)−2

is at least 50 as N → ∞ with φ(N) ∼ N. Iwaniec and Sarnak also show that if this

proportion could be increased to strictly more than half of the forms, it would imply

that there are no Laudau-Siegel zeros for the quadratic Dirichlet L-functions L(s, χ),

thus giving a rapid solution to the class number problem! Non-vanishing results and

estimates for moments of L-functions are therefore closely tied to some of the deepest

questions in number theory.

All of these applications would be reason enough to study moments of L-functions,

but perhaps the best motivation is that estimating moments of L-functions gives us

a glimpse into the structure of a family of L-functions and its interaction with a

trace formula or spectral completeness relation stringing the family together. Despite

the restricted range of rigorous results on moments (see the end of subsection 1.1.3),

there now exist widely believed conjectures predicting the full main term estimates of

moments of L-functions in all families, based on the conjectural underlying structure

of families of L-functions and random matrix theory.

1.2.2 Symmetries of Families

Studying moments sheds light on the structure of a family of L-functions given by

their conjectured “spectral interpretation”, about which almost nothing is known.

Hilbert and Pólya suggested in the 1910s as an approach to RH that the nontrivial

zeros of ζ(s) should corresponded to the eigenvalues of some naturally occurring

unbounded self-adjoint operator. In their time this was pure speculation, but today

we have some evidence to expect the existence of such an operator. If such an operator

for L-functions does exist, one would expect the zeros of the L-functions L(s, f) to
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behave like random eigenvalues as f varies through some family. The inspiration for

this section of the dissertation comes from the survey article of Iwaniec and Sarnak

[IS00b] sections 3 and 8, and the Bulletin article by Katz and Sarnak [KS99b].

We first consider the case of zeta functions for varieties over finite fields in sub-

section 1.2.3 to make an analogy with the number field L-functions in section 1.2.4

which are the subject of this thesis. The sought-after spectral interpretation and Rie-

mann hypothesis are known for zeta functions of varieties over finite fields [Del74].

The purpose of section 1.2.3 is to show for curves over finite fields how the nature of

the spectral interpretation manifests itself in the zero distribution laws of these zeta

functions, due to work of Katz and Sarnak [KS99a]. In the next section on number

fields 1.2.4 we describe how the same study of zeros statistics has been carried out for

many families (see table 1.1) without any knowledge of a spectral interpretation. The

striking similarity of the results in the function field and number field cases suggests

that a spectral interpretation exists in the number field case as well.

In subsection 1.2.5 we connect these ideas back to moments of L-functions. One

knows cf. Jensen’s formula, that the growth of holomorphic functions is intimately

connected with the location of their zeros. Therefore asymptotic estimates for the

moments of L-functions are also controlled by the conjectured spectral interpretation.

This has allowed the formulation of precise conjectures and this is made precise via

random matrix theory, see the work of Conrey, Farmer, Keating, Rubinstein and

Snaith [CF00, KS00a, KS00b, CFK+05].

1.2.3 Finite Fields

Let C be a nonsingular projective curve over the finite field with q elements Fq, and

let Nn be the number of Fqn-points of C for n ≥ 1. The zeta function of C/Fq is
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defined by

ζ(T,C/Fq) = exp

(∑
n≥1

NnT
n

n

)
.

The Riemann hypothesis is the statement that all zero ζ(ρ, C/Fq) = 0 have |ρ| = q1/2,

and was proved by Weil [Wei41]. In this case an operator whose eigenvalues corre-

spond with the zeros of ζ(T,C/Fq) does exist, and it is the Frobenius endomorphism

acting on cohomology with `-adic coefficients.

The Riemann hypothesis in the more difficult case of varieties over finite fields

V/Fq was proved by Deligne [Del74]. In the case of varieties families now enter the

picture, but in a much more precise sense that anything we know how to define in

the number field case. One fibers V over P1 as a Lefshetz pencil

V −→ P1

with very mild singularities in the fibers Vt. The zeta function ζ(T, V/Fq) is then

related to the collection of ζ(T, Vt/Fq) via the monodromy action, exploiting the

structure of the total space V → P1. The proof then proceeds by induction on

dimension. We refrain from going into any detail, but the point is that the family and

its symmetry are crucial in the known proof of the Riemann hypothesis for varieties

over finite fields.

The distribution of the zeros of these zeta functions was studied extensively by

Katz and Sarnak in [KS99a, KS99b] using the known spectral interpretation. Let

Mg(Fq) denote the finite set of isomorphism classes curves of genus g over the finite

field Fq. After re-scaling, the 2g zeros of ζ(T,C/Fq) all lie on the unit circle in

S1 ⊂ C. Katz and Sarnak found that the distribution of zeros of curves C ∈Mg(Fq)

as g, q →∞ coincides with the distribution of eigenvalues of random unitary matrices,

and moreover they identify the source of this behavior in the monodromy of the family.
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Next we give an example result of Katz and Sarnak, and therefore need some

definitions. Let A ∈ U(N) be an N ×N unitary matrix. Its eigenvalues eiθ1 , . . . , eiθj

all lie on the unit circle, and we order their angles

0 ≤ θ1(A), . . . , θN(A) < 2π. (1.5)

Define for A fixed the (discrete) consecutive spacing measure of an interval [a, b]

µ1(A)[a, b] =
#{1 ≤ j ≤ N | N

2π
(θj+1 − θj) ∈ [a, b]}
N

.

Then we may define the measure on R

µ1(GUE) = lim
N→∞

∫
U(N)

µ1(A) dA.

In fact, Katz and Sarnak show that U(N) here could be replaced by any of the

groups USp(2N), SO(2N) or SO(2N + 1) and in any of these cases one obtains the

GUE measure µ1(GUE) regardless of the choice of algebraic group. In this sense the

measure µ1(GUE) is universal. Finally we need the Kolmogorov-Smirnov distance

between two measures ν1 and ν2:

D(ν1, ν2) = sup
I⊂R
{|ν1(I)− ν2(I)| : I an interval ⊂ R}.

One of the main results of Katz and Sarnak [KS99a] is

lim
g→∞

lim
q→∞

1

#Mg(Fq)
∑

C∈Mg(Fq)

D(µ1(C/Fq), µ1(GUE)) = 0, (1.6)

That is to say the distributions of consecutive spacings of zeros of ζ(T,C/Fq) and

consecutive spacings of eigenvalues of large unitary matrices coincide. Thus zero
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spacing statistics are not sensitive to the symmetry type of the family.

On the other hand, the symmetry type of a subfamily of Mg(Fq) is detectable

by studying low-lying zero statistics, that is, the nearest zeros to 1 ∈ S1. There are

only four possibilities for the low-lying zero distribution law, which correspond to

the classical compact groups: unitary, symplectic, even orthogonal and odd orthog-

onal. Again, Katz and Sarnak identify the source of this behavior in terms of the

monodromy of the family.

We give an example of a subfamily ofMg(Fq) with symplectic symmetry, and make

precise what we mean by the distribution of zeros near 1 ∈ S1. Let Hn(Fq) denote

the set of monic square-free polynomials of degree n over Fq. For ∆(X) ∈ Hn(Fq)

consider the family of hyperelliptic curves given by

C∆ : Y 2 = ∆(X)

where ∆ runs over Hn(Fq). The zeta functions ζ(T,C∆) can be thought of as zeta

functions of the quadratic extensions Fq(t)(
√

∆) of the field Fq(t). The family

{ζ(T,C∆)|∆(x) ∈ Hn(Fq)}

is the finite field analogue of the family of quadratic Dirichlet L-functions. The genus

g(n) of one of the C∆ is given by

n = 2g + 1 if n odd

n = 2g + 2 if n even.

Each ζ(T,C∆) has 2g zeros, which we re-normalize to lie on the unit circle. Let the
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angles corresponding to these zeros be

0 ≤ θ1(∆) ≤ · · · ≤ θ2g(∆) < 2π.

We study the distribution of the lowest lying zero θ1(∆) as we vary ∆ ∈ Hn(Fq), which

is the finite field analogue of studying the lowest-lying zero statistics of quadratic

Dirichlet L-functions. The monodromy of this family of hyperelliptic curves is Sp(2g),

and thus Katz and Sarnak prove in [KS99a] for any test function f ∈ C∞c (R≥0) that

lim
n→∞

lim
q→∞

1

#Hn(Fq)
∑

∆∈Hn(Fq)

f

(
θ1(∆)2g(n)

2π

)
=

∫ ∞
0

f(x)dν1(Sp)(x). (1.7)

Here ν1(Sp) is the measure

ν1(Sp) = lim
N→∞

ν1(Sp(2N))

where

ν1(Sp(2N))([a, b]) = Haar{A ∈ USp(2N)|θ1(A)2N

2π
∈ [a, b]}

and θ1(A) is the smallest angle of an eigenvalue of the unitary symplectic matrix A

(see (1.5)).

1.2.4 Number Fields

We would like to know if the structures such as symmetry and the monodromy repre-

sentation, which are crucial to the proof of the Riemann hypothesis of varieties over

finite fields, exist for number field L-functions! It is remarkable that the symmetry

of the underlying family is detectable in the number field case despite the fact that

we have no idea what the spectral interpretation might be.

We begin by describing the analogue of the nearest neighbor spacings (1.6) for the
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Riemann zeta function, that is, Montgomery’s pair correlation conjecture [Mon73].

We are presenting these results historically out-of-order as the pair correlation con-

jecture was the original inspiration for the present subject. For the remainder of this

subsection we assume the Riemann hypothesis for any L-functions under considera-

tion.

Let γj be the imaginary parts of the zeros of the Riemann zeta function

· · · γ−1 ≤ 0 ≤ γ1 ≤ γ2 · · ·

with γj = −γ−j. For example, γ1 = 14.13 . . .. By the argument principle we know

the mean spacing of zeros:

#{j|0 ≤ γj ≤ T} ∼ T log T

2π
,

as T → ∞. Thus we re-normalize the imaginary parts of the zeros γj to have mean

spacing 1. The re-normalized imaginary parts are

γ̂j =
γj log γj

2π
,

for j ≥ 1. Montgomery in 1973 [Mon73] showed for a very restricted class of test

functions that the pair correlation of zeros is equal to the pair correlation of random

unitary matrices. For any Fourier transform pair of Schwartz class functions {φ, φ̂}

with the support of φ̂ contained in (−1, 1) Montgomery shows that

lim
N→∞

1

N

∑
1≤j 6=k≤N

φ(γ̂j − γ̂k) =

∫ ∞
−∞

φ(x)r2(GUE)(x) dx (1.8)

where

r2(GUE) = 1−
(

sin πx

πx

)2
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is the pair correlation measure for eigenvalues of random unitary matrices. The pair

correlation conjecture is that (1.8) is true without any restrictions on the support

of φ̂. The pair correlation conjecture should be see as a number field analogue of

Katz and Sarnak’s function field result (1.6). Odlyzko [Odl01] collected a great deal

of numerical data on the zeta function from the 1980s through 2001, and this data

strongly supports the truth of the pair correlation conjecture. Rudnick and Sarnak

[RS96] studied in general n-correlation for zeros of arbitrary GLm automorphic forms

high in the critical strip and found the same phenomena. The n-correlation conjecture

for GL2 forms was numerically investigated by Rubinstein [Rub98].

On the other hand, the distribution of low-lying zeros is sensitive to the symmetry

type of the family in question. As above in the finite field case, we consider the family

of L-functions given by the quadratic field extensions of Q. Recall that D denotes the

set of fundamental discriminants, i.e. those discriminants that come from quadratic

fields. Consider the family of Dirichlet L-functions

F = {L(s, χd)|d ∈ D}.

The analytic conductor at the central point of these is

q(1/2, χd) = d(a + 7/2) � d.

Let us assume GRH for this family, order the imaginary parts of the zeros

· · · γd,−1 ≤ 0 ≤ γd,1 ≤ γd,2 ≤ · · · ,

and study their re-normalizations

γ̂d,j =
γd,j log d

2π
.
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For φ ∈ S(R) a Schwartz class test function whose Fourier transform φ̂ is supported

in (−2, 2) it was proved by Özlük and Snyder [ÖzlükS93] that

lim
X→∞

1

#{|d| ≤ X|d ∈ D}
∑
|d|≤X
d∈D

∑
j 6=0

φ (γ̂d,j) =

∫ ∞
−∞

φ(x)w(Sp)(x) dx (1.9)

where

w(Sp)(x) = 1− sin 2πx

2πx

is known as the 1-level scaling density for eigenvalues of unitary symplectic matrices

near 1. The result (1.9) should be seen as the number field analogue of the result

of Katz and Sarnak (1.7) although for a very restricted class of test functions and

for slightly different measures ν1(Sp) versus w(Sp). It is conjectured that (1.9) holds

without restriction on the support of the test function. Extensive numerical evidence

for this and many other such conjectures was given by Rubinstein [Rub98].

We define the measure w(Sp)(x) dx in terms of eigenvalues for the sake of com-

pleteness of exposition. For A ∈ USp(2N) and [a, b] ⊂ R let

V (A)[a, b] = #{θ(A)|eiθ(A) is an eigenvalue of A, and
θ(A)2N

2π
∈ [a, b]}.

Then we take

W (Sp(2N))[a, b] =

∫
USp(2N)

V (A)[a, b] dA,

and finally

lim
N→∞

W (Sp(2N))[a, b] =

∫ b

a

w(Sp)(x) dx.

We may also make the same definition with Sp(2N) replaced by U(N), SO(2N) or

SO(2N + 1), see [KS99b].

The example of quadratic Dirichlet L-functions above is one of many families
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where the zero distribution law for a restricted class of test functions has been in-

vestigated. Exactly as in the finite field case of subsection 1.2.3, the symmetry type

detected falls into one of four types corresponding to the classical compact groups.

We summarize the literature in table 1.1 below. All of the results in this table assume

the Riemann hypothesis for the relevant L-functions, and are only valid for a very

restricted class of test functions. By contrast, in the function field case the Riemann

hypothesis is known, and the results of Katz and Sarnak have no restrictions on the

test functions.

Table 1.1:
Family Symmetry Type Zeros studied by

t-aspect for ζ(s) U(n) [Mon73]

Quadratic Dirichlet L-functions Sp(2n) [ÖzlükS93]
t-aspect for GLm automorphic forms U(n) [RS96]

Modular forms f with w(f) = +1 SO(2n) [ILS00]
Modular forms f with w(f) = −1 SO(2n+ 1) [ILS00]

Symmetric square lift of f Sp(2n) [ILS00]
Quad twists of f with w(f ⊗ χd) = +1 SO(2n) [Hea04]
Quad twists of f with w(f ⊗ χd) = −1 SO(2n+ 1) [Hea04]

Primitive Dirichlet L-functions U(n) [CLLR12]
A specific family of Hecke Grössencharacters SO(2n) [CS12]

Remarks:

1. The example of primitive Dirichlet L-functions demonstrates that there are

discrete families of L-functions with unitary symmetry.

2. The families of quadratic twists of a modular form show that the harmonic

detection device does not determine the symmetry type of the family. Note

that the family of quadratic Dirichlet L-functions has symplectic symmetry

whereas the families of twists of a modular form are orthogonal. See also the

discussion in subsection 1.3.1
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3. The last example has been included to show how robust the tetrachotomy is.

Even when we pick an unusual and thin subsequence, we nonetheless get one of

the four classical compact groups as a symmetry type.

1.2.5 Moments and Random Matrix Theory

Asymptotic estimates for moments of L-functions also reveal the symmetry type of

the family. From the theory of complex analytic functions one knows that the size of

a holomorphic function is intimately connected to the spacing of its zeros. Thus it is

not surprising that in addition to zero statistics random matrix theory also predicts

the asymptotic expansions for all moments of L-functions based on their symmetry

types. This point of view was explored, and conjectures were worked out in detail

for the asymptotic size of all moments of L-functions by Conrey and Farmer [CF00],

Keating and Snaith [KS00a, KS00b], and further refined by Conrey, Farmer, Keating,

Rubinstein and Snaith [CFK+05] and Gonek, Hughes and Keating [GHK07].

A strange feature of our subject is that despite having a very limited rigorous

knowledge of the asymptotic estimates for moments (see section 1.1.2, and the com-

ments at the end of subsection 1.1.3) we essentially “know all the answers” due to

the predictions of random matrix theory.

The main principle behind the random matrix conjectures is that a primitive

L-function L(s, f) of analytic conductor q(s, f) of symmetry type G can be mod-

eled by the characteristic polynomial ΛA(s) of a N × N matrix A ∈ G(N), where

N ∼ 1
2π

log q(s, f). Indeed, if we assume A is unitary, and define the characteristic

polynomial

ΛA(s) = det(I − A∗s) =
N∏
n=1

(1− se−iθn),

where A∗ is the conjugate transpose of A, so that A∗A = I, then ΛA(s) has the

following familiar properties.
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1. Dirichlet Series. We may expand ΛA(s) as a polynomial

ΛA(s) =
N∑
n=0

ans
n.

2. Analytic Continuation. The characteristic polynomial ΛA(s) is a polynomial,

hence entire.

3. Functional Equation. Because A is unitary we have

ΛA(s) = (−1)N detA∗sNΛA∗(1/s).

4. Riemann Hypothesis. Because A is unitary, all its eigenvalues lie on the unit

circle. The unit circle is the analogue of the critical line.

5. Zero Distribution. As we have seen in subsections 1.2.3 and 1.2.4, the zeros of

ΛA(s) have the same statistics as L-functions.

6. Central Value. The point s = 1 is the fixed point of the functional equation and

therefore should be seen as the analogue of s = 1/2 in the case of L-functions.

Note one important feature of L-functions which is lacking in characteristic poly-

nomials is an Euler product. This will correspond below to the “arithmetic factor”

ak in the moment conjectures which is not predicted by random matrix theory, but is

given by an Euler product. More recent work by Gonek, Hughes and Keating [GHK07]

on “hybrid Euler-Hadamard products” puts the arithmetic factor more naturally in

the context of random matrix theory.

We next give 3 sample conjectures produced by random matrix theory. In the

below we only state the leading order constants for sake of brevity. These conjectures

can be found in the papers of Conrey and Farmer [CF00], and Keating and Snaith
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[KS00b, KS00a]. We emphasize, however, that our perspective is substantially influ-

enced by the five author paper [CFK+05], in which the full main term polynomials

are predicted, and the connection with random matrix polynomial averages is made

more deeply.

Conjecture 1 (Unitary Example) The Riemann zeta function ζ(1/2 + it) in t-

aspect is a unitary family of L-functions. For k a positive integer

∫ T

0

|ζ(1/2 + it)|2k dt = TPk(log T ) +O(T 1/2+ε), (1.10)

for some polynomial Pk of degree k2 with leading coefficient gkak/k
2!, where

ak =
∏
p

(
1− 1

p

)k2 ∞∑
m=0

(
Γ(m+ k)

m!Γ(k)

)2

p−m

and

gk = k2!
k−1∏
j=0

j!

(k + j)!
.

The degree of the polynomial k2 and the constant gk are universal for any family

with unitary symmetry, whereas ak depends delicately on the specific family. In the

case of the Riemann zeta function, the arithmetic constant was studied in detail

by Conrey and Ghosh [CG92], Conrey and Gonek [CG01] and Gonek, Hughes and

Keating [GHK07]. It can be written down in a similar fashion for any other family on

a case-by-case basis. Up to these arithmetic factors, the moment conjecture for any

unitary family of L-functions is identical to the average of |ΛA(1)|2k over the unitary

group U(N).

Conjecture 2 (Symplectic Example) Let D denote the set of fundamental dis-

criminants. The quadratic Dirichlet L-functions L(s, χd), with d ∈ D are an example
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of a symplectic family of L-functions. For k a positive integer

∑
|d|≤X
d∈D

L(1/2, χd)
k =

6

π2
XQk(logX) + o(X), (1.11)

where Qk is a polynomial of degree 1
2
k(k+1) with leading coefficient gkak/(

1
2
k(k+1))!,

ak =
∏
p

(1− 1/p)k(k+1)/2

1 + 1/p

(
(1− 1/

√
p)−k + (1 + 1/

√
p)−k

2
+

1

p

)

and

gk = (
1

2
k(k + 1))!

k∏
j=1

j!

(2j)!
.

There is some disagreement over the size of the error term for these moments, so

we have left a completely inexplicit error term of o(X) above. In particular, the

work of Diaconu, Goldfeld and Hoffstein [DGH03] predicts for k = 3 that there is a

lower-order term of the form bX3/4, whereas the paper [CFK+05] predicts square-root

cancellation in the error term. A numerical study has been carried out by Alderson

and Rubinstein [AR12], which shows some support for the bX3/4 conjecture, but their

study is by no means conclusive.

As with moments of the zeta function above, the degree of the polynomial Qk
and the geometric constant gk are universal for families with symplectic symmetry,

whereas ak depends on the specific family but is accessible on a case-by-case basis.

Up to these arithmetic factors, the moment conjecture for any symplectic family of

L-functions is identical to the average of ΛA(1)k over the unitary symplectic group

USp(2N).

Conjecture 3 (Even Orthogonal Example) Let H2(q) be a basis of Hecke new-

forms of weight 2 and level q. The family of L-functions L(s, f), for f ∈ H2(q) is an



1.2. MOTIVATION FOR MOMENTS OF L-FUNCTIONS 31

example of an orthogonal family of L-functions. For k a positive integer

∑
f∈H2(q)

L(1/2, f)k =
1

3
qRk(log q) +O(q1/2+ε), (1.12)

where Rk is a polynomial of degree 1
2
k(k−1) with leading coefficient gkak/(

1
2
k(k−1))!,

ak =
∏
p-q

(
1− 1

p

)k(k−1)/2
2

π

∫ π

0

(
eiθ(1− eiθ/√p)−1 − e−iθ(1− e−iθ/√p)−1

eiθ − e−iθ

)k
sin2 θ dθ

and

gk = 2k(
1

2
k(k − 1))!

k−1∏
j=1

j!

(2j)!
.

Again, the degree of the polynomial Rk and the geometric constant gk are universal

for families with even orthogonal symmetry, whereas ak depends on the specific family

but is accessible on a case-by-case basis. Up to these arithmetic factors, the moment

conjecture for any orthogonal family of L-functions is identical to the average of

ΛA(1)k over the special orthogonal group SO(2N).

Thus by computing the first few moments of a given family of L-functions, one

determines the symmetry type of the family. The problem of computing moments is

in many ways similar to the problem of computing the zero distribution law, discussed

extensively in subsection 1.2.4. In fact, our inability to compute the kth moment past

the barrier

k = 4
log µ(F)

log q(s, f)

mentioned at the end of subsection 1.1.3 is exactly the same barrier we face in the

restriction of support on the test functions in the results (1.8), (1.9) and more gener-

ally in each of the results on table 1.1. As an additional similarity between moments

and 1-level density computations, one may also obtain many of the same applica-

tions listed in subsection 1.2.1 via either technique. We have specifically in mind
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non-vanishing results at the central point. The disadvantage of using 1-level density

results is that usually one must assume the Riemann hypothesis to get the technique

off the ground.

1.3 Outline of Dissertation

The results of this thesis are divided into three chapters, which we summarize in

the next three subsections. Chapter 2 is to appear in International Mathematics

Research Notices [Pet12]. Chapter 3 will eventually become part of a larger paper

by the author on the family of L-functions studied by Conrey and Iwaniec [CI00].

Chapter 4 is published in the Journal of Number Theory [Pet13].

Initially, each of these chapters was a separate project embarked upon for its own

reasons, and the three have only become a dissertation after the fact. Nonetheless,

all three chapters are related because they concern themselves with moments of auto-

morophic L-functions. In addition and perhaps less obviously, there is one additional

highly speculative, but significant thread that runs through all 3 chapters: the prop-

erties of off-diagonal main terms. These off-diagonal main terms were mentioned

earlier in subsection 1.1.2 and in the last paragraph of subsection 1.2.5. Consider the

following quote from the paper of Conrey, Farmer, Keating, Rubinstein and Snaith

[CFK+05]:

“In the theorems in the literature it is often the case that the simple part of the

harmonic detector is sufficiently good to determine the first or second moment of the

family. The terms involved here are usually called the ‘diagonal’ terms. But invariably

the more complicated version is needed to determine the asymptotics of the third and

fourth moments; in these situations one has gone ‘beyond the diagonal’....We believe

that as one steps up the moments of a family then at every one or two steps a new type

of off-diagonal contribution will emerge. The whole process is poorly understood; we
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have only glimpses of a mechanism but no clear idea how or why it works.”

Our goal here is to gain some understanding of how this mysterious mechanism

works.

1.3.1 Moments of L′(1/2, f ⊗ χd) over Quadratic Twists

In chapter 2 we estimate moments of L-functions with odd orthogonal symmetry, as-

suming the generalized Riemann hypothesis (GRH). Consider the quadratic character

twists χd =
( ·
d

)
of a fixed holomorphic cusp form f with trivial central character for

the congruence subgroup Γ0(q). In this case, the root numbers of the quadratic twists

are restricted to be w(f ⊗ χd) = ±1.

Soundararajan and Young [SY10] study the case of root numbers w(f⊗χd) = +1.

Recall that the notation gcd(d,�) = 1 means d is square-free. They prove for f of

full level and assuming GRH that

∑
gcd(d,2�)=1
w(f⊗χ8d)=1

L(1/2, f ⊗ χ8d)
2F (8d/X) = C(f)X logX +Of,ε

(
X(logX)3/4+ε

)
(1.13)

for an explicit constant C(f). Our work her improves the exponent in the error term

from 3/4 to 1/2.

In chapter 2 we study the case of root number w(f ⊗ χd) = −1, which has

features which are distinct from the +1 case. In the −1 case the central values

L(1/2, f ⊗ χ8d) vanish automatically, and instead the natural object to study is the

derivative L′(1/2, f⊗χ8d). Let F ∈ C∞c (R>0) be any any fixed smooth cut-off function

with mass 1 and compact support. Following Soundararajan and Young’s technique,

and again assuming GRH we establish for any even weight κ and odd level q the
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estimate

∑
gcd(d,2q�)=1
w(f⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)
2F (8d/X) = C1(f)X(logX)3 + C2(f)X(logX)2

+Of,ε

(
X(logX)1+ε

) (1.14)

where C1(f) and C2(f) are constants which are given explicitly in chapter 2. Note

that we are able to uncover not one but two main terms in the odd root number case.

Moreover, we find that several additional theorems are possible in the case of root

number −1. For two distinct forms f and g we establish the estimate

∑
gcd(d,2q1q2�)=1
w(f⊗χ8d)=−1
w(g⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X) = C(f, g)X(logX)2

+Of,g,ε

(
X(logX)1+ε

) (1.15)

where C(f, g) is an explicitly given constant depending only on f and g. Next,

applying these techniques to the first moment we obtain for any real A > 0 and f be

an eigenform of even weight κ and odd level q the estimate

∑
gcd(d,2q�)=1
w(f⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)F (8d/X) = C3(f)X log
Xκ
√
q

2π

+OA,ε

(
X(logXκq)1/4+ε +

X13/17(κq)4/17

(logXκq)A

) (1.16)

where C3(f) is an explicit and easily controlled constant depending only on f . The

estimates analogous to (1.15) and (1.16) in the root number w(f ⊗ χd) = +1 case

are completely out of reach of current techniques. The estimate (1.16) above has

non-vanishing applications owing to the explicit nature of the error term.

Note that these results are at the very edge of what is possible for the family of
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quadratic twists according to the benchmark k = 4 log µ(F)/ log q(1/2, f ⊗ χd) (see

1.2.1). To estimate any of these moments, one applies Poisson summation to execute

the sum over quadratic characters χd. One thus obtains a main term plus a “dual

moment” which needs to be estimated. In the above three theorems this dual moment

is the 2nd or 1st moment of L(1/2 + it, f ⊗ χd), without the derivatives, and with

shifts in t-aspect introduced. The introduction of shifts in t-aspect and the lack of

derivative is exploited to obtain the error terms in the above theorems.

The result (1.13) of Soundararajan and Young [SY10] represents the first success

at the edge case moment for a family involving an average of quadratic twists. In

their result (1.13) no off-diagonal analysis is required as the main term is just barely

larger than the error term and comes only from the diagonal. In the same fashion, no

off-diagonal analysis is necessary in our results (1.14), (1.15), and (1.16). However,

if the error term in (1.13) could be improved to o(X), one sees from the proof given

by Sound and Young that an off-diagonal main term of size cX would arise from the

first unnumbered displayed equation on page 1109 of their paper. We copy that term

here and speculatively replace U by X for the reader’s convenience:

−XF̃ (1)

2π2

1

2πi

∫
(1/10)

Γ(κ/2 + u)Γ(κ/2− u)

u2Γ(κ/2)2
L(1 + 2u, sym2f)L(1, sym2f)

×L(1− 2u, sym2f)Z2(u,−u) du.

(1.17)

Here F̃ is the Mellin transform of the cut-off function F , and Z2(u, v) is an absolutely

convergent Euler product symmetric in u and v. This term is not predicted by the

random matrix conjectures, and it is expected to cancel out against an identical term

elsewhere in the calculation in the final analysis. Note the striking similarity of the

off-diagonal main term (1.17) to the off diagonal main terms (1.19) and (1.22) arising

in subsections 1.3.2 and 1.3.3 below. A “hidden functional equation” in the spirit of
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[DGH03] or the discussion on page 5 of [You11] should be required to evaluate these

off-diagonal main terms.

It would be very interesting to see how these ideas carry over to the problem

of estimating the fourth moment of quadratic Dirichlet L-functions, a very similar

problem to the one studied in chapter 2, but having symplectic symmetry. This

represents future work of the author.

1.3.2 The Second Moment of Automorphic L-Functions

Let Hκ(q) be a basis of Hecke eigenforms of weight κ and level q, and χ the quadratic

Dirichlet character of conductor q. Consider the family of forms f ⊗ χ of weight κ

and level q2 where f varies over the forms f ∈ Hκ(q). In this section, we study the

family of L-functions

F = {L(s, f ⊗ χ)|f ∈ Hκ(q)}.

This family is of special interest because it was studied by Conrey and Iwaniec,

who (as we remarked in subsection 1.2.1) established a Lindelöf-on-average for the

cubic moment of central values of these L-functions. This represents the only known

technique to go beyond the typical barrier κ = 4 log µ(F)/ log q(1/2, f ⊗ χd). The

cubic moment in this family represents replacing 4 here by a 6.

In chapter 3 we investigate the easier problem of the second moment of this family,

and obtain square root cancellation in the error term. Let q → ∞ through primes

and f have even weight κ ≥ 6. Let Λ(s, f ⊗ χ) be the completed L-function, and ωf

be the harmonic weights which make the Petersson trace formula work out nicely. In
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chapter 3 we prove uniformly for Re(α),Re(β) < 1/2 that

∑
f∈Hκ(q)

ωfΛ(1/2 + α, f ⊗ χ)Λ(1/2 + β, f ⊗ χ) =

∑
±α,±β

( q

2π

)1±α±β
ζq(1± α± β)Γ(±α + κ/2)Γ(±β + κ/2) +Oκ(q

1/2),

(1.18)

where the sum on the right is over the 4 choices of signs. Note that the archimedian

factors of these L-functions depend on κ and q but not the individual f , so they may

be easily removed from both sides of the formula. However, it seems more elegant to

retain the functional equation symmetries.

The purpose of this chapter is to showcase the off-diagonal analysis which is ex-

ecuted in section 3.3 of chapter 3. One might expect the collection of off-diagonal

terms to be a messy bookkeeping problem, but for this family we actually found

the cancellation to be quite elegant. The off diagonal main terms are given by the

integrals (3.4):
1

2πi

∫
(2)

Γ(κ/2− s)Γ(κ/2 + s)

(s− α)(s− β)
ds. (1.19)

The reader should compare this with the integral (1.17) in the above subsection 1.3.1

and the integral (1.22) in the below subsection 1.3.3. It would be quite interesting to

extend the off-diagonal analysis of chapter 3 to the cubic moment. This represents

future work of the author.

1.3.3 Transition Mean Values of Shifted Convolution Sums

The results of chapter 4 are related to moments via the work of Sarnak [Sar01]. Let

g be a fixed Hecke eigenform of full level, and K and M are large with K151/165 ≤
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M ≤ K1−ε. Sarnak proves that

K+M∑
κ=K−M

∑
f∈Hκ(1)

|L(1/2 + it, f ⊗ g)|2 �ε,g,t (KM)1+ε. (1.20)

This is a Lindelöf-on-average upper bound which is within ε of the “truth”. To

establish (1.20) Sarnak must bound certain off-diagonal contributions to the moment,

which are basically of the form

∑
h+Y

∑
n+X

λg(n)λg(n+ h), (1.21)

where λg(p) are the Hecke eigenvalues of the form g, and by the symbol + X we

mean a sum of length X with a smoothing that is not specified here. See Lemma 4.2

and equation (90) in the paper [Sar01]. The interior sum of (1.21) is called a “shifted

convolution sum”.

While Sarnak only needs an upper bound on (1.21), we examine this sum in chap-

ter 4 much more closely and find some surprising structure. When Y �
√
X logX,

say, we find that the average of shifted convolution sums (1.21) has an asymptotic

main term estimate as X and Y →∞. Meanwhile, when X � Y 2 log Y we obtain an

upper bound on (1.21) improving on the estimates in [Sar01] where the sum over h is

evaluated trivially. The most interesting case is when X and Y →∞ and Y 2/X = α,

a fixed constant. In this case we obtain an asymptotic main term for (1.21) which

depends very delicately on the constant α. Let us choose a decaying exponential cut-

off function. Then the leading order constant in this asymptotic estimate for (1.21)

is

π3/2

2
α

1

2πi

∫
(2)

Λ(s, g × g)

ξ(2s)

Γ(s− 1/2)

Γ(2− s)

(π
4
α
)−s

ds− 12 Res
s=1

Λ(s, g × g), (1.22)
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where Λ(s, g × g) is the completed Rankin-Selberg L-function of g with itself, see

[Iwa97] section 13.8. Note the similarity with the off-diagonal terms (1.17) and (1.19)

from the previous two subsections.

A second interesting feature is that the leading constant at the transition range

(1.22) has very weird differential properties. We expect that if the cut-off functions

in (1.21) could be taken to be sharp, then the leading term constant at the transition

range analogous to (1.22) would be twice continuously differentiable in α, but have a

second derivative which is almost-nowhere differentiable!

The inspiration for this non-differentiability conjecture is the paper of Conrey,

Farmer and Soundararajan [CFS00]. For n and m positive odd integers, let
(
m
n

)
de-

note the quadratic residue symbol or Jacobi symbol. Conrey, Farmer and Soundarara-

jan find a uniform asymptotic formula for the double sum

∑
m≤X
m odd

∑
n≤Y
n odd

(m
n

)
. (1.23)

Similar sums to (1.23) arise as off-diagonal main terms in moments of quadratic

Dirichlet L-functions in the work of Soundararajan [Sou00]. When X and Y →∞ and

Y/X = α a fixed constant, the asymptotic main term they find depends delicately on

α. In fact, they show that the leading constant in the asymptotic is once continuously

differentiable, but its first derivative is almost-nowhere differentiable.

In chapter 4 we discuss both of these results, and a heuristic for why this strange

non-differentiable behavior occurs in terms of Eisenstein series and automorphic dis-

tributions. This suggests that such non-differentiable off-diagonal main terms are not

simply an accident but part of a more general story not yet understood. It would

be very interesting to investigate other examples, and to try to make these heuristics

rigorous. This represents future work of the author.
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1.3.4 Conclusion

The point we are trying to make is that off-diagonal main terms are not only “garbage”

introduced by imperfect harmonic detection devices, but instead have some structure.

This structure should come from period integrals of automorphic forms, represent

some interplay between the symmetry type and the orthogonality relation or trace

formula used to average the family. Consider the the similarities noted by Young

(see page 5 of [You11]) between the off-diagonal main terms of the 4th moment of

ζ(1/2 + it) and off-diagonal main terms of the 4th moment of primitive Dirichlet

L-functions, despite the very different orthogonality relations for these two families.

Other authors have also encountered off-diagonal main terms given by integrals

similar to the above emphasized (1.17), (1.19) and (1.22). See again the comments

on page 5 of Young’s paper [You11], the discussion following (5.16) in Soundararajan

[Sou00] and the comments at the end of the appendix in Kowalski’s Ph.D. thesis

[Kow98]. In each of these situations there are extra symmetries of the integrand

which allow the explicit evaluation and cancellation of the off-diagonal contributions.

These are the so-called “extra functional equations” in the work of Diaconu, Goldfeld

and Hoffstein [DGH03].

Perhaps chapter 4 in this thesis is the best suggestion that there should be some

structure coming from automorphic objects behind off-diagonal main terms. But all

of these ideas are highly speculative inspirations for further work, and this is probably

a good place to stop and let the mathematics speak for itself, below.



Chapter 2

Moments of L′(1/2, f ⊗ χd) in the

Family of Quadratic Twists

In this chapter we study the central values of derivatives of L-functions of holomorphic

GL2 modular forms varying over the family of quadratic twists. The mean value of this

family has been studied successfully in the past by several authors, notably Bump,

Friedberg and Hoffstein [BFH90], Murty and Murty [MM91], Iwaniec [Iwa90] and

Munshi [Mun11a], [Mun11b].

When f ⊗ χd has even functional equation an asymptotic formula for the second

moment of L(1/2, f⊗χd) was computed assuming the generalized Riemann hypothesis

(GRH) by Soundararajan and Young [SY10]. Here, we apply their techniques to

several moment problems of comparable difficulty when the sign of the functional

equation is −1 and the derivative L′(1/2, f ⊗ χd) is the correct object of study. The

family of quadratic twists with root number +1 as considered by Soundararajan and

Young has even orthogonal symmetry in the sense of random matrix theory, while the

family we consider has root number −1 and odd orthogonal symmetry. Surprisingly,

we find that stronger results are possible in the odd case: the analogues of theorems

2 and 3 of are out of reach when the root number of f ⊗ χd is 1 and one studies

41
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the L-functions themselves. As in Soundararajan and Young, our work is conditional

on GRH, but we only use this hypothesis to obtain a useful upper bound to the

corresponding un-differentiated 1st and 2nd moment problems, see Conjectures 4 and

5. The deduction of the necessary upper bounds from GRH is due to Soundararajan

[Sou09]. We restrict our attention to holomorphic forms in this chapter, but our

results should carry over to Maass forms with only minor modifications to the proofs.

Before stating our results, let us fix some notation and recall some standard facts

which can be found in chapter 14 of [IK04]. We consider the space of cuspidal holo-

morphic modular forms of even weight κ on the congruence subgroup Γ0(q) with

trivial central character. Such forms have a Fourier expansion of the form

f(z) =
∑
n≥1

λf (n)n(κ−1)/2 exp(2πiz).

We fix a basis of newforms which are eigenfunctions of the Hecke operators and have

λf (1) = 1. From now on, we assume all forms f which we work with are elements

of this basis. The Hecke eigenvalues of f are all real (by the adjointness formula and

multiplicity one principle), and hence f is self-dual. We study the family of twists of

f by quadratic characters. Let d be a fundamental discriminant relatively prime to q,

and let χd(·) =
(
d
·

)
denote the primitive quadratic character of conductor |d|. Then

f ⊗ χd is a newform on Γ0(q|d|2) and the twisted L-function is defined for Re(s) > 1

by

L(s, f ⊗ χd) :=
∑
n≥1

λf (n)

ns
χd(n)

=
∏
p-qd

(
1− λf (p)χd(p)

ps
+

1

p2s

)−1∏
p|q

(
1− λf (p)χd(p)

ps

)−1

.
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The completed L-function is defined by

Λ(s, f ⊗ χd) :=

(
|d|√q

2π

)s
Γ

(
s+

κ− 1

2

)
L(s, f ⊗ χd).

It has the functional equation

Λ(s, f ⊗ χd) = iκηχd(−q)Λ(1− s, f ⊗ χd),

where η is given by the eigenvalue of the Fricke involution, which is independent of

d and always ±1. We denote the root number by w(f ⊗ χd) := iκηχd(−q). Note

that if d is a fundamental discriminant, then χd(−1) = ±1 depending as whether

d is positive or negative. In this chapter we work with positive discriminants so

that χd(−q) = χd(q), but we could just as easily formulate our results with negative

discriminants.

We are interested here in the derivative of the L-function, which also has a Dirich-

let series convergent in a right half-plane:

L′(s, f ⊗ χd) = −
∞∑
n=1

λf (n)χd(n) log n

ns
.

It also has a functional equation

Λ′(s, f ⊗ χd) = −iκηχd(−q)Λ′(1− s, f ⊗ χd)

with sign opposite to that of L(s, f ⊗ χd). When w(f ⊗ χd) = −1, one has that

L(1/2, f ⊗ χd) = 0 and L′(1/2, f ⊗ χd) is the more appropriate object for study.
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2.1 Statement of Main Results

In the results of this section we assume the generalized Riemann hypothesis (GRH)

for the zeta function, the family of quadratic twists of f and g and the symmetric

square of f and g. See also the comments immediately before and after Conjectures

4 and 5, below. Recall the notations (d,�) = 1 and D denote the sets of square-free

integers and fundamental discriminants, respectively. Let F ∈ C∞c (R>0) be a fixed

smooth function with compact support closely resembling the indicator function of

the interval [0, 1], and let F̃ (s) =
∫∞

0
F (x)xs−1 dx denote its Mellin transform. We

formulate our results for the residue class of D of integers which are 4 times a 2 mod 4

square-free integer, but could have just as well picked out the other congruence classes

which together constitute D.

Theorem 1 Assume GRH, and let F ∈ C∞c (R>0) be a smooth approximation to the

indicator function of [0, 1] with compact support. For any normalized cuspidal Hecke

newform f with trivial central character, odd level q and even weight κ we have

∑
(d,2q�)=1

w(f⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)
2F (8d/X) =

X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

×
(

1

3
log3X + C2(f) log2X

)
+Oκ,q,ε

(
X(logX)1+ε

)
.

In the above

C2(f) =
Γ′(κ/2)

Γ(κ/2)
+ log

√
q

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)
+

d
du
Z∗(u, 0)|u=0

Z∗(0, 0)
+
F̃ ′(1)

F̃ (1)
,

γ is Euler’s constant, and Z∗(u, v) is a holomorphic function defined by (2.2) and

(2.3) for Re(u),Re(v) > −1/4 + ε given by a sum of two absolutely convergent Euler

products and is uniformly bounded in u, v where it converges. Moreover, Z∗(0, 0) = 0

if and only if the root number w(f) = 1 and q is square, in which case the moment
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vanishes identically.

By the celebrated theorem of Gross and Zagier [GZ86], Theorem 1 also gives the

variance of canonical heights of Heegner points on an elliptic curve associated with

f . Note that the analogue of Theorem 1 without the derivative is the main result

of Soundararajan and Young [SY10]. In this chapter, we compute the main terms

in a slightly different manner than do Soundararajan and Young, and applying our

technique to the second moment without derivatives improves the error term there

to �κ,ε X(logX)1/2+ε. Nonetheless, shifted moments are still crucial to the theorem

of Soundararajan and Young, whereas they are not necessary here.

The next theorem is a moment for two distinct modular forms f and g. Theorem 2

is particularly interesting because the asymptotic formula for the analogous moment

without derivatives is completely out of reach by current techniques.

Theorem 2 Assume GRH, and let F ∈ C∞c (R>0) be a smooth approximation to the

indicator function of [0, 1] with compact support. For any two distinct normalized

cuspidal Hecke newforms f and g with trivial central characters, odd levels q1 and q2,

and even weights κ1 and κ2 we have

∑
(d,2q1q2�)=1
w(f⊗χ8d)=−1
w(g⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X)

= C(f, g)X log2X +Of,g,ε

(
X(logX)1+ε

)
.

In the above

C(f, g) =
1

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1),

where Z∗(u, v) is a holomorphic function defined by (2.8) and (2.9) in Re(u),Re(v) ≥

−1/4 + ε, depending on f and g, given by a sum of four absolutely convergent Euler
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products and uniformly bounded in u, v where it converges. Moreover, Z∗(0, 0) = 0 if

and only if either the root number w(f) = 1 and q1 is square or the root number w(g) =

1 and q2 is square. In either of these two cases the moment vanishes identically.

Lastly, Theorem 3 below is a first moment in the twist aspect with controlled de-

pendence on both the weight κ and level q. Again, the analogue of Theorem 3 without

the derivative is completely out of reach, but would have interesting corollaries, see

[LY11].

Theorem 3 Assume GRH, and let F ∈ C∞c (R>0) be a smooth approximation to the

indicator function of [0, 1] with compact support. For any A > 0 and any normalized

cuspidal Hecke newform f with trivial central character, odd level q and even weight

κ we have

∑
(d,2q�)=1

w(f⊗χ8d)=−1

L′(1/2, f ⊗ χ8d)F (8d/X) = C3(f)X

(
log

Xκ
√
q

2π
+ 2

L′(1, sym2f)

L(1, sym2f)

+
Z∗
′
(0)

Z∗(0)

)
+OA,ε

(
X(logXκq)1/4+ε +

X13/17(κq)4/17

(logXκq)A

)
,

In the above

C3(f) =
F̃ (1)

2π2
L(1, sym2f)Z∗(0)

and Z∗(u) is a holomorphic function defined by (2.13) and (2.17) as a sum of two

absolutely convergent Euler products for Re(u) > −1/4 + ε. Moreover, Z∗(0) = 0

if and only if the root number w(f) = 1 and q is a square. If so, then the moment

vanishes identically, and if not

Z∗(0)� log log q

(log q)1/2
,

uniformly in κ.
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Thus our methods break convexity in the dependence on κ and q in the error

term by an arbitrary power of log. Using GRH once again, we obtain non-vanishing

results. By applying the technique from [IK04] Theorem 5.17 we have that

L′(1, sym2f)

L(1, sym2f)
+
Z∗
′
(0)

Z∗(0)
� log log κq.

These terms therefore may be subsumed into the error term in Theorem 3. In the

same vein, by Theorem 5.19 of [IK04] one has the bound

L(1, sym2f)� (log log κq)−1.

From these estimates and Theorem 3 the following Corollary is obtained.

Corollary 1 Assume GRH. If the root number of f is 1 then assume also that the

level of f is not an integer square. For any A > 0 there exists an odd square-free d

relatively prime to q with d�A κq/(log κq)A for which

w(f ⊗ χ8d) = −1 and L′(1/2, f ⊗ χ8d) > 0.

If E/Q is an elliptic curve given by the Weierstauss equation y2 = f(x), we may

define the twisted elliptic curve Ed/Q by the equation dy2 = f(x). By the work

of Gross and Zagier [GZ86] and the modularity Theorem [BCDT01] we have the

following Corollary.

Corollary 2 Assume GRH. Let E/Q be an elliptic curve of odd conductor q. If

the root number of E is 1, then assume also that the conductor q is not an integer

square. For every A > 0 there exist odd square-free d relatively prime to q with

d �A q/(log q)A for which the curve E8d/Q has root number −1 and Mordell-Weil

rank exactly 1.
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The convexity bound here to be a non-vanishing twist of size d �ε (κq)1+ε, see

e.g. Hoffstein and Kontorovich [HK10]. Our non-vanishing corollaries on GRH are,

in fact, quite weak. As previously remarked by many authors, the method of mo-

ments is an inefficient way to produce non-vanishing theorems. If one is willing to

assume GRH, the methods of Iwaniec, Luo and Sarnak [ILS00], Özlük and Snyder

[ÖzlükS93, ÖzlükS99, ÖzlükS06] or Heath-Brown [Hea04] adapted to small nonvan-

ishing twists should yield better results. We postpone carrying out this line of research

to a future paper, and moreover, we believe that the theorems 1, 2 and 3 have interest

independent of the corollaries.

We do not use the full strength of GRH in theorems 1, 2 or 3. In fact, in the case

of the first two all we need is the following Conjecture.

Conjecture 4 Let ε > 0, and t be a real number with |t| ≤ X and 1/2 ≤ σ ≤

1/2 + 1/ logX. Then

∑
d∈D

(d,q)=1
|d|≤X

|L(σ + it, f ⊗ χd)|2 �κ,q,ε X(logX)1+ε.

Theorem 3 on the other hand is true if we assume than q is odd square-free and

Conjecture 5 in place of GRH.

Conjecture 5 Let ε > 0, and t be a real number with |t| ≤ X and 1/2 ≤ σ ≤

1/2 + 1/ logX. Then

∑
d∈D

(d,q)=1
|d|≤X

|L(σ + it, f ⊗ χd)| �ε X(logXκq)1/4+ε.

The work of Soundararajan [Sou09] shows that Conjecture 4 follows from the GRH

for the Riemann zeta function, the family of quadratic twists of f and the symmetric
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square of f . By keeping track of the dependence on κ and q in Soundararajan’s proof,

one finds that the GRH for quadratic twists of f , the Riemann zeta function, and

the symmetric square of f implies Conjecture 5. Unconditionally, all that is known

towards Conjectures 4 and 5 is a bound of the form �f,ε (X(1 + |t|))1+ε due to

Heath-Brown’s quadratic large sieve [Hea95]. It seems that obtaining the results of

this chapter unconditionally should not be completely out of reach, but nonetheless,

doing so requires additional ideas.

Let us briefly describe the main difficulties in proving the above theorems, some

previous attacks on these difficulties, and the new input in our work which allows us

to overcome them.

Take for example Theorem 1. After applying the approximate functional equation

and pulling the sum over d inside one encounters a sum of the form

∑
d

χd(n1n2)F

(
d

U

)

for some cut-off function F , where χd is the quadratic character modulo d. One

wants to apply Poisson summation to this sum, but the length of the sum U ≈ X

is comparable to the square root of the conductor
√
n1n2, so the dual sum that one

obtains is of the same shape as the original. This is the familiar “deadlock” situation

described, for example, in the paper of Munshi [Mun11a], or by multiple Dirichlet

series, for example in [DGH03]. This deadlock has been broken in some ways be-

fore. Soundararajan and Young find that the second moment of L(1/2, f ⊗ χd) is

transformed by Poisson summation to the dual problem of finding an estimate of the

integral over shifts it1 and it2 of the same moment. They exploit this transformation

using GRH to obtain upper bounds on shifted moments to prove their theorem. Mun-

shi observes in the paper [Mun11a] that taking derivatives amplifies the main term of
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moments but does not affect the error term. He uses this fact to unconditionally ob-

tain an asymptotic formula for the first moment of higher derivatives Λ(`)(1/2, f⊗χd)

with ` ≥ 8 weighted by the number of representations of d as a sum of two squares

(a situation with conductor of similar length to ours). Munshi also solves a similar

problem in [Mun11b] obtaining an asymptotic for the first derivative in the special

case that f corresponds to a CM elliptic curve.

In this chapter, we observe that taking a derivative concentrates the mass of

L′(1/2, f ⊗ χd) in the terms of the approximate functional equation with small n.

When we truncate U ≤ X/(logX)100 we gain something from Poisson summation,

and treat the tail separately. The idea behind bounding the tail is that

L′(1/2, f ⊗ χd) ≈
∑
n≤|d|

λf (n)χd(n) log |d|
n

n1/2
,

so that when |d|/(log |d|)100 ≤ n ≤ |d| we have that the 0 ≤ log |d|/n � log log |d|

are quite small. These terms look essentially like the series for L(1/2, f ⊗ χd), the

moments of which are smaller than moments of the derivative. We are then able to

use Soundararajan’s upper bounds assuming GRH [Sou09] to bound the tail. The

idea is that the dual sum of a moment of L′(1/2, f ⊗ χd) looks like a moment of the

un-differentiated L(1/2, f ⊗ χd), which we exploit to obtain our results.

2.2 Approximate Functional Equation

We begin with a lemma which will be used in all three theorems.

Lemma 1 (Approximate functional equation) Let f be a λf (1) = 1 normalized

cuspidal newform on Γ0(q) with trivial central character and root number w(f) = iκη.
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Let Z > 0 be an arbitrary real number parameter. Define the cut-off function

WZ(x) :=
1

2πi

∫
(3)

Γ(u+ κ/2)

Γ(κ/2)

(
2πx

Z
√
q

)−u
1− u logZ

u2
du.

Then

∑
n≥1

λf (n)χd(n)

n1/2
WZ

(
n

|d|

)
− iκηχd(−q)

∑
n≥1

λf (n)χd(n)

n1/2
WZ−1

(
n

|d|

)

=

L
′(1/2, f ⊗ χd) if w(f ⊗ χd) = −1

0 if w(f ⊗ χd) = 1.

Proof. We follow Iwaniec and Kowalski [IK04] Section 5.2. Take

I(Z, f, s) :=
1

2πi

∫
(3)

Λ(s+ u, f ⊗ χd)Zu1− u logZ

u2
du

= Λ′(s, f ⊗ χd) +
1

2πi

∫
(−3)

Λ(s+ u, f ⊗ χd)Zu1− u logZ

u2
du,

so that by a change of variables and an application of the functional equation we have

I(Z, f, s) = Λ′(s, f ⊗ χd) + iκηχd(−q)I(Z−1, f, 1− s).

If the root number w(f ⊗ χd) = −1, we take s = 1/2 to find

L′(1/2, f ⊗ χd) =
∑
n≥1

λf (n)χd(n)

n1/2
WZ

(
n

|d|

)
+ χd(−q)

∑
n≥1

λf (n)χd(n)

n1/2
WZ−1

(
n

|d|

)
,

as in the statement of the Lemma. On the other hand, if the root number of f ⊗ χd
is 1, then Λ′(1/2, f ⊗ χd) = 0, hence

I(Z, f, 1/2)− iκηχd(−q)I(Z−1, f, 1/2) = 0.
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Thus the Lemma holds for both cases of root number of f ⊗ χd. �

In the proof of Theorems 1 and 2 we will use Z = 1 so that the approximate

functional equation takes a particularly simple form. Let q be the level of f . In the

proof of Theorem 3 we take Z = q1/2 to compensate for the asymmetry in estimates

in level aspect introduced from averaging over root numbers. Note that the only

difference in the approximate functional equation for L′(1/2, f ⊗ χd) as opposed to

that of L(1/2, f ⊗ χd) is the sign of the root number, and the denominator of the

integrand ofW (x), which becomes u2 instead of u. Therefore, many of the calculations

necessary for our results are identical to those in the paper of Soundararajan and

Young [SY10].

2.3 Proof of Theorem 1

We prove Theorem 1 by splitting the sums in the approximate functional equation

(Lemma 1), and using Proposition 1 below to compute the main terms.

Proof of Theorem 1. Let F be a smooth, nonnegative, compactly supported func-

tion on R>0, and recall the definition of W (x) = W1(x) from the approximate func-

tional equation (Lemma 1). For a parameter U ≤ X/(logX)100 define the truncated

sum

AU(1/2, f ⊗ χ8d) := (1− iκηχd(−q))
∞∑
n=1

λf (n)χ8d(n)√
n

W
( n
U

)
,

and define the tail BU(1/2, f ⊗ χ8d) by setting L′(1/2, f ⊗ χ8d) = AU(1/2, f ⊗ χ8d) +
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BU(1/2, f ⊗ χ8d). Define the sums

IU(f) :=
∑

(d,2q�)=1

L′(1/2, f ⊗ χ8d)AU(1/2, f ⊗ χ8d)F (8d/X)

IIU(f) :=
∑

(d,2q�)=1

AU(1/2, f ⊗ χ8d)
2F (8d/X)

IIIU(f) :=
∑

(d,2q�)=1

BU(1/2, f ⊗ χ8d)
2F (8d/X).

so that we have the decomposition

∑
(d,2q�)=1

L′(1/2, f ⊗ χ8d)
2F (8d/X) = 2IU(f)− IIU(f) + IIIU(f).

Using the below Proposition 1 we will be able to give asymptotic formulae for IU(f)

and IIU(f), and using Conjecture 4 we will obtain an upper bound on IIIU(f) smaller

than the main terms. Applying this decomposition in Soundararajan and Young’s

work improves the error term there to O
(
X(logX)1/2+ε

)
.

For q′ = 1 or q, and h(x, y, z) some smooth cut-off function let

S(q′, h) :=
∑

(d,2q�)=1

∞∑
n1=1

∞∑
n2=1

λf (n1)λf (n2)
√
n1n2

χ8d(q
′n1n2)h(d, n1, n2).

Proposition 1 Assume GRH or Conjecture 4. Let X,U1, U2 large, U1U2 ≤ X2, and

q odd. Let h(x, y, z) be a smooth function on R3
>0, with compact support in x, having

all partial derivatives extending continuously to the boundary, satisfying

xiyjzkh(i,j,k)(x, y, z)�i,j,k

(
1 +

x

X

)−100
(

log
U1

y

)(
1 +

y

U1

)−100

×
(

log
U2

z

)(
1 +

z

U2

)−100

.
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Set h1(y, z) =
∫∞

0
h(xX, y, z) dx. Then

S(q′, h) =
4X

π2

∑
(n1n2,2)=1
q′n1n2=�

λf (n1)λf (n2)
√
n1n2

∏
p|qn1n2

p

p+ 1
h1(n1, n2)

+Oκ,q

(
(U1U2)1/4X1/2(logX)11

)
.

This Proposition and its proof are nearly identical to the main Proposition from the

paper of Soundararajan and Young [SY10] (see Proposition 3.1 and the remarks in

§5 of that paper) except for minor details of generalizing from full level to arbitrary

level q, so we omit the proof. The main idea is to use Poisson summation (see Lemma

3) to evaluate the sum over discriminants d, and Conjecture 4 to bound the dual sum

thereby obtained.

We now proceed to the computation of IU(f) and IIU(f). Let

h(x, y, z) = F (8x/X)W (y/U)W (z/8x).

In the notation of Proposition 1 we have by the approximate functional equation that

IU(f) = 2S(1, h)− 2iκηS(q, h).

For notational ease, set G(u) := Γ(κ/2 + u)Γ(κ/2)−1(
√
q/2π)u which, recall, appears

in the function W (x). Let F̃ (v) =
∫∞

0
F (x)xv−1 dx denote the Mellin transform and

set

Zq′(u, v) =
∑

(n1n2,2)=1
q′n1n2=�

λf (n1)λf (n2)

n
1/2+u
1 n

1/2+v
2

∏
p|qn1n2

p

p+ 1
.
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Applying Proposition 1 and Mellin inversion, we find that

IU(f) =
X

π2

1

(2πi)2

∫
(1)

∫
(1)

G(u)G(v)

u2v2
UuXvF̃ (1 + v) (Zq(u, v)− iκηZ1(u, v)) du dv

+Oκ,q(X).

(2.1)

We compute for either q′ = 1 or q that Zq′(u, v) has the Euler product

Zq′(u, v) =
∏
p-2q

(
1 +

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+

1

p1+2u

)−1(
1− λf (p)

p1/2+v
+

1

p1+2v

)−1

+
1

2

(
1 +

λf (p)

p1/2+u
+

1

p1+2u

)−1(
1 +

λf (p)

p1/2+v
+

1

p1+2v

)−1

− 1

])

×
∏
p|q

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u

)−1(
1− λf (p)

p1/2+v

)−1

+ (−1)ordp(q′) 1

2

(
1 +

λf (p)

p1/2+u

)−1(
1 +

λf (p)

p1/2+v

)−1
]
.

(2.2)

Hence we have that

Zq′(u, v) = ζ(1 +u+ v)L(1 + 2u, sym2f)L(1 +u+ v, sym2f)L(1 + 2v, sym2f)Z∗q′(u, v),

where Z∗q (u, v) and Z∗1(u, v) are given by some absolutely convergent Euler products

and are uniformly bounded in the region Re(u),Re(v) ≥ −1/4 + ε in u, v, κ and q.

Set Z(u, v) := Zq(u, v)− iκηZ1(u, v) and

Z∗(u, v) := Z∗q (u, v)− iκηZ∗1(u, v). (2.3)

A careful inspection of (2.3) and (2.2), using positivity of (1 ± λf (p)p−1/2)−1 shows
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that Z∗(0, 0) = 0 if and only if ε(f) = 1 and q is a square.

We now compute by shifting contours of (2.1). Start the lines of integration at

Re(u) = Re(v) = 1/10, and begin the computation with shifting the v integration to

the Re(v) = −1/5 line. We encounter poles at v = 0 and v = −u. The remaining

double integral on the lines Re(v) = −1/5 and Re(u) = 1/10 is �κ,q,ε X
−1/10+ε, and

the contribution from the simple pole at v = −u is �κ,q 1. The main term comes

from double pole at v = 0, giving

IU =
X

π2
F̃ (1)

1

2πi

∫
(1/10)

G(u)

u2
UuZ(u, 0)

(
logX +G′(0) +

F̃ ′(1)

F̃ (1)
+

d
dv
Z(u, v)|v=0

Z(u, 0)

)
du

+Oκ,q(X).

Now Z(u, 0) has a single pole and d
dv
Z(u, v)|v=0 has a double pole. Combine these

with u2 in the denominator, and we encounter a triple and quadruple pole. The

residue of the triple pole of
G(u)

u2
UuZ(u, 0)

at u = 0 is given by

L(1, sym2f)3Z∗(0, 0)

(
1

2
log2 U +

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
q

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)

+
d
du
Z∗(u, 0)|u=0

Z∗(0, 0)

]
logU +Oκ,q(1)

)
.

The residue of the quadruple pole of

G(u)

u2
Uu d

dv
Z(u, v)|v=0
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at u = 0 is given by

−L(1, sym2f)Z∗(0, 0)

(
1

6
log3 U +

1

2

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
q

2π

]
log2 U +Oκ,q(logU)

)
.

By shifting the line of integration to Re(u) = −1/5, we find that the the remaining

integral is �κ,q,ε X
−1/5+ε, hence collecting the above terms coming from residues, we

find that

IU(f) =
X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

2
logX(logU)2 − 1

6
log3 U +

[
Γ′(κ/2)

Γ(κ/2)

+ log

√
q

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)
+

d
du
Z∗(u, 0)|u=0

Z∗(0, 0)

]
logX logU

+
1

2

F̃ ′(1)

F̃ (1)
(logU)2 +Oκ,q(logX)

)
.

The sum IIU(f) is computed similarly, but with a different choice of h(x, y, z). As

above, the main term comes from the intersection of the two polar divisors u = 0 and

v = 0. One finds

IIU(f) =
X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

3
log3 U +

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
q

2π
+ γ

+3
L′(1, sym2f)

L(1, sym2f)
+

d
du
Z∗(u, 0)|u=0

Z∗(0, 0)

]
log2 U +Oκ,q(logU)

)
.

We now give an upper bound for the sum IIIU(f) which, recall, involves BU . We

have

BU(1/2, 8d) = (1− iκηχ8d(q))
1

2πi

∫
(2)

G(s)

s
L(1/2 + s, f ⊗ χ8d)

(
(8d)s − U s

s

)
ds.

Recall that L(1/2+s, f⊗χ8d) has root number −1 and vanishes at s = 0, therefore the

integrand is actually entire and we move the line of integration to the Re(s) = 1/ logX
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line. On this line ∣∣∣∣(8d)s − U s

s

∣∣∣∣� log (8d/U) ,

uniformly in s, thus

BU(1/2, 8d)� | log 8d/U |
∫ ∞
−∞

∣∣∣G( 1
logX

+ it
)∣∣∣∣∣∣ 1

logX
+ it

∣∣∣
∣∣∣∣L(1

2
+

1

logX
+ it, f ⊗ χ8d

)∣∣∣∣ dt.
Inserting this in IIIU(f) we have that

IIIU(f)� (logX/U)2

∫ ∞
−∞

∫ ∞
−∞

∣∣∣G( 1
logX

+ it1

)
G
(

1
logX

+ it2

)∣∣∣∣∣∣( 1
logX

+ it1

)(
1

logX
+ it2

)∣∣∣
×

∑
(d,2q�)=1
0<8d≤X

∣∣∣∣L(1

2
+

1

logX
+ it1, f ⊗ χ8d

)
L

(
1

2
+

1

logX
+ it2, f ⊗ χ8d

)∣∣∣∣ dt1 dt2.
(2.4)

Use Cauchy-Schwarz to split the sum over d above in two, so that it suffices to bound

∫ ∞
−∞

∣∣∣G( 1
logX

+ it
)∣∣∣∣∣∣ 1

logX
+ it

∣∣∣
 ∑

(d,2q�)=1
0<8d≤X

∣∣∣∣L(1

2
+

1

logX
+ it, f ⊗ χ8d

)∣∣∣∣2


1/2

dt.

We have that ∫ ∞
−∞

∣∣∣G( 1
logX

+ it
)∣∣∣ 12∣∣∣ 1

logX
+ it

∣∣∣ dt� log logX,

and ∣∣∣∣G( 1

logX
+ it

)∣∣∣∣ ∑
(d,2q�)=1
0<8d≤X

∣∣∣∣L(1

2
+

1

logX
+ it, f ⊗ χ8d

)∣∣∣∣2 �f,ε X (logX)1+ε
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uniformly in t by Conjecture 4 and the sharp cut-off in |G(1/ logX + it)| for large t.

Bringing these estimates together we find that

IIIU(f)�κ,q,ε X(logX)1+ε(logX/U)2.

Note that in contrast to the work of Soundararajan and Young, shifted moments are

not necessary to prove our theorem.

Finally, set U = X/(logX)100. Note that

(
logX − 2

3
logU

)
log2 U =

1

3
log3X +Oε((logX)1+ε),

so that pulling together our evaluations of IU(f), IIU(f) and IIIU(f) we find

∑
(d,2q�)=1

L′(1/2, f ⊗ χ8d)
2F (8d/X) =

X

π2
L(1, sym2f)3Z∗(0, 0)F̃ (1)

(
1

3
log3X

+

[
Γ′(κ/2)

Γ(κ/2)
+ log

√
q

2π
+ γ + 3

L′(1, sym2f)

L(1, sym2f)
+

d
du
Z∗(u, 0)|u=0

Z∗(0, 0)
+
F̃ ′(1)

F̃ (1)

]
log2X

+Oκ,q,ε(X(logX)1+ε)
)
.

�

2.4 Proof of Theorem 2

We turn to the moment for two different forms f and g of levels q1 and q2 respectively.

Set q = q1q2. The proof of Theorem 2 is a slight variation on the proof of Theorem 1.

Proof of Theorem 2. Assume GRH or Conjecture 4, and that U ≤ X/(logX)100.

We split the sum L′(1/2, f ⊗ χ8d) = AU(1/2, f ⊗ χ8d) + BU(1/2, f ⊗ χ8d), where

AU(1/2, f ⊗ χ8d) and BU(1/2, f ⊗ χ8d) are defined at the outset of Section 2.3. Take
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the decomposition

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d) = L′(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χ8d)

+AU(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)

−AU(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χ8d)

+BU(1/2, f ⊗ χ8d)BU(1/2, g ⊗ χ8d).

(2.5)

Summing over (d, 2q�) = 1, we have the 4 sums which we denote by

IU(f, g) :=
∑

(d,2q�)=1

L′(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χ8d)F (8d/X),

IU(g, f) :=
∑

(d,2q�)=1

AU(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X),

IIU(f, g) :=
∑

(d,2q�)=1

AU(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χ8d)F (8d/X),

and

IIIU(f, g) :=
∑

(d,2q�)=1

BU(1/2, f ⊗ χ8d)BU(1/2, g ⊗ χ8d)F (8d/X),

so that

∑
(d,2q�)=1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X) = IU(f, g) + IU(g, f)

−IIU(f, g) + IIIU(f, g).

We can compute precise asymptotic estimates for IU(f, g), IU(g, f) and IIU(f, g),

meanwhile IIIU(f, g) can be reduced by Cauchy-Schwarz to the sum IIIU(f) from the

proof of Theorem 1. Hence

IIIU(f, g)�κ,q,ε X(logX)1+ε.
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We next state the Proposition which allows us to compute the sums IU(f, g),

IU(g, f) and IIU(f, g). Let q′ be one of the four choices q′ = 1, q1, q2, or q. Define

Sf,g(q
′, h) :=

∑
(d,2q�)=1

∞∑
n1=1

∞∑
n2=1

λf (n1)λg(n2)
√
n1n2

χ8d(q
′n1n2)h(d, n1, n2).

Proposition 2 Assume GRH or Conjecture 4. Let X,U1, U2 large, U1U2 ≤ X2, and

q = q1q2 odd. Let h(x, y, z) be a smooth function on R3
>0, with compact support in x,

having all partial derivatives extending continuously to the boundary, satisfying

xiyjzkh(i,j,k)(x, y, z)�i,j,k

(
1 +

x

X

)−100
(

log
U1

y

)(
1 +

y

U1

)−100

×
(

log
U2

z

)(
1 +

z

U2

)−100

.

Set h1(y, z) =
∫∞

0
h(xX, y, z) dx. Then

Sf,g(q
′, h) =

4X

π2

∑
(n1n2,2)=1
q′n1n2=�

λf (n1)λg(n2)
√
n1n2

∏
p|qn1n2

p

p+ 1
h1(n1, n2)

+Of,g

(
(U1U2)1/4X1/2(logX)11

)
.

Proposition 2 is a slight variation on Proposition 1, so we omit the proof. The

reader should take note of the remarks following Proposition 1, as they apply just as

well to Proposition 2.

Now we proceed to use this Proposition to evaluate IU(f, g), IU(g, f) and IIU(f, g).

Take for example the case IU(f, g), for which we set

h(d, n1, n2) = F (8d/X)W (n1/U)W (n2/8d).
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By the approximate functional equation (Lemma 1) with Z = 1 we have that

∑
(d,2q�)=1

L′(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χd)F (8d/X)

= Sf,g(1, h)− iκ1ηfSf,g(q1, h)− iκ2ηgSf,g(q2, h) + iκ1+κ2ηfηgSf,g(q, h).

(2.6)

Likewise, IU(g, f) and IIU(f, g) are evaluated the same way with

h(d, n1, n2) = F (8d/X)W (n1/8d)W (n2/U)

and

h(d, n1, n2) = F (8d/X)W (n1/U)W (n2/U),

respectively.

Next, we evaluate the main terms of the various Sf,g in (2.6) by contour integra-

tion. We set Gf (u) := Γ(κ1/2 + u)Γ(κ1/2)−1(
√
q1/2π)u to be the Mellin transform of

W1(x), and similarly for Gg. For q′ = 1, q1, q2 or q define the Dirichlet series Zq′(u, v)

by

Zq′(u, v) :=
∑

(n1n2,2)=1
q′n1n2=�

λf (n1)λf (n2)

n
1/2+u
1 n

1/2+v
2

∏
p|qn1n2

p

p+ 1
.

One has therefore that

Sf,g(q
′, h) =

X

2π2

1

(2πi)2

∫
(1)

∫
(1)

Gg(u)Gf (v)

u2v2
UuXvF̃ (1 + v)Zq′(u, v) du dv +Oκ,q(X).

(2.7)

Let χ0,qi be the trivial Dirichlet character mod qi for i = 1, 2, that is to say,

χ0,qi(p) =

1 if p - qi

0 if p | qi.



2.4. PROOF OF THEOREM 2 63

Then the Euler product for Zq′(u, v) is given by

Zq′(u, v) =
∏
p-2q

(
1 +

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+

1

p1+2u

)−1(
1− λg(p)

p1/2+v
+

1

p1+2v

)−1

+
1

2

(
1 +

λf (p)

p1/2+u
+

1

p1+2u

)−1(
1 +

λg(p)

p1/2+v
+

1

p1+2v

)−1

− 1

])

×
∏
p|q

p

p+ 1

[
1

2

(
1− λf (p)

p1/2+u
+
χ0,q1(p)

p1+2u

)−1(
1− λg(p)

p1/2+v
+
χ0,q2(p)

p1+2v

)−1

+(−1)ordp(q′) 1

2

(
1 +

λf (p)

p1/2+u
+
χ0,q1(p)

p1+2u

)−1(
1 +

λg(p)

p1/2+v
+
χ0,q2(p)

p1+2v

)−1
]
.

(2.8)

If αf (p) and βf (p) are the local roots of f with αf (p) + βf (p) = λf (p), then we

define for Re(s) > 1

L(s, f ⊗ g) =
∏
p

(
1− αf (p)αg(p)

ps

)−1(
1− αf (p)βg(p)

ps

)−1

×
(

1− βf (p)αg(p)

ps

)−1(
1− βf (p)βg(p)

ps

)−1

,

and for Re(s) ≤ 1 by analytic continuation. Then in any of the four cases q′ = 1, q1, q2,

or q, we have that

Zq′(u, v) = L(1 + u+ v, f ⊗ g)L(1 + 2u, sym2f)L(1 + 2v, sym2g)Z∗q′(u, v),

where Z∗q′(u, v) is given by some absolutely convergent Euler product which is uni-

formly bounded in the region Re(u),Re(v) ≥ −1/4 + ε. Set Z(u, v) = Z1(u, v) −

iκ1ηfZq1(u, v)− iκ2ηgZq2(u, v) + Zq(u, v), and

Z∗(u, v) = Z∗1(u, v)− iκ1ηfZ∗q1(u, v)− iκ2ηgZ∗q2(u, v) + iκ1+κ2ηfηgZ
∗
q (u, v). (2.9)
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A careful inspection of (2.9) and (2.8) using positivity of (1±λf (p)p−1/2)−1 shows that

Z∗(0, 0) = 0 if and only if either root number w(f) or w(g) = 1, and the corresponding

q1 or q2 is a square.

With this information about Zq′(u, v), one shifts contours of (2.7) as in the proof

of Theorem 1 to compute the various Sf,g. We find that

IU(f, g) =
∑

(d,2q�)=1

L′(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χ8d)F (8d/X)

=

X

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1) logX logU

+Of,g(X logX),

and similarly for IU(g, f). We also compute

IIU(f, g) =
∑

(d,2q�)=1

AU(1/2, f ⊗ χ8d)AU(1/2, g ⊗ χ8d)

=

X

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1) log2 U

+Of,g(X logU).

Finally, setting U = X/(logX)100 we obtain

∑
(d,2q�)=1

L′(1/2, f ⊗ χ8d)L
′(1/2, g ⊗ χ8d)F (8d/X)

=

X

2π2
L(1, sym2f)L(1, sym2g)L(1, f ⊗ g)Z∗(0, 0)F̃ (1) log2X

+Of,g,ε

(
X(logX)1+ε

)
.

�
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2.5 Proof of Theorem 3

In this section, we apply the techniques of the previous two sections to the first

moment of L′(1/2, f ⊗ χ8d) over twists, keeping careful track of the dependence on

both the weight κ and the level q.

Proof of Theorem 3. We prove the Theorem by splitting the sum into a main

part and tail, and use the asymmetric approximate functional equation (Lemma 1)

with Z = q1/2. Assume GRH or Conjecture 5, and that both κq ≤ X and U ≤

X/(logXκq)
17
4

(A+6) for A > 0 fixed. Define the main part

AU(1/2, f⊗χ8d) =
∑
n≥1

λf (n)χ8d(n)

n1/2
WZ

( n
U

)
− iκηχ8d(q)

∑
n≥1

λf (n)χ8d(n)

n1/2
WZ−1

( n
U

)
,

and the tail BU(1/2, f ⊗χ8d) = L′(1/2, f ⊗χ8d)−AU(1/2, f ⊗χ8d) as in Section 2.3.

Following Soundararajan and Young again, we give the analogue of Propositions 1

and 2 for the first moment. Let q′ = 1 or q, and for h(x, y) a smooth function on R2
>0

set

T (q′, h) :=
∑

(d,2q�)=1

∞∑
n=1

λf (n)√
n
χ8d(q

′n)h(d, n).

We will use the following Proposition with z equal to either Z = q1/2 when q′ = 1, or

Z−1 = q−1/2 when q′ = q.

Proposition 3 Assume GRH or Conjecture 2. Let z > 0 be a parameter (cf. the

asymmetric approximate functional equation), and let X and U be large. Suppose

that q is odd, and that Uκ
√
qz ≤ X2. Let h(x, y) be a smooth function on R2

>0 which

is compactly supported in x, having all partial derivatives extending continuously to

the boundary, and satisfying the partial derivative bounds

xiyjh(i,j)(x, y)�i,j

(
1 +

x

X

)−100
(

log
Uκq

y

)(
1 +

y

Uκ
√
qz

)−100

.
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Then, setting h1(y) :=
∫∞

0
h(xX, y) dx, we have

T (1, h) =
4X

π2

∑
(n,2)=1
n=�

λf (n)√
n

∏
p|qn

p

p+ 1
h1(n) +O

(
X9/17(Uκ

√
qz)4/17(logXκq)6

)
,

T (q, h) =
4X

π2

∑
(n,2)=1
qn=�

λf (n)√
n

∏
p|qn

p

p+ 1
h1(n) +O

(
X1/2(Uκq3/2z)1/4(logXκq)6

)
.

Proposition 3 is sufficiently different from Proposition 3.1 of Soundararajan and

Young that we give a detailed proof in Section 2.6.

Let hL(x, y) := F (8x/X)Wq1/2(y/U) and hS(x, y) := F (8x/X)Wq−1/2(y/U) for

“long” and “short”, respectively. Recall for fundamental discriminants d > 0 that

χd(−q) = χd(q), so that we have in the notation of Proposition 3 that the main part

of the moment is

∑
(d,2q�)=1

AU(1/2, f ⊗ χ8d)F (8d/X) = T (1, hL)− iκηT (q, hS).

Recalling that Uκ
√
qz ≤ X2 and taking z = q1/2 or q−1/2 in Proposition 3 we have

that

∑
(d,2q�)=1

AU(1/2, f ⊗ χ8d)F (8d/X) =
X

2π2
F̃ (1)

∑
(n,2)=1
n=�

λf (n)

n1/2

∏
p|qn

p

p+ 1
Wq1/2

( n
U

)

+
X

2π2
F̃ (1)

∑
(n,2)=1
qn=�

λf (n)

n1/2

∏
p|qn

p

p+ 1
Wq−1/2

( n
U

)
+OA

(
X13/17(κq)4/17

(logXκq)A

)
.

(2.10)
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For q′ = 1 or q define the Dirichlet series

Zq′(u) :=
∑

(n,2)=1
q′n=�

λf (n)

n1/2+u

∏
p|qn

p

p+ 1
.

We compute from the definition of WZ(x) that

X

2π
F̃ (1)

∑
(n,2)=1
n=�

λf (n)√
n

∏
p|qn

p

p+ 1
Wq1/2

( n
U

)
=

X

2π2
F̃ (1)

1

2πi

∫
(3)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

Uq

)−u

×Z1(u)
1− 1

2
u log q

u2
du,

(2.11)

and in the same way that

X

2π
F̃ (1)

∑
(n,2)=1
qn=�

λf (n)√
n

∏
p|qn

p

p+ 1
Wq−1/2

( n
U

)
=

X

2π2
F̃ (1)

1

2πi

∫
(3)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

U

)−u

×Zq(u)
1 + 1

2
u log q

u2
du.

(2.12)

The Dirichlet series Zq′(u) also has an Euler product

Zq′(u) =
∏
p-2q

1 +
p

p+ 1

[
1

2

(
1−

λf (p)

p1/2+u
+

1

p1+2u

)−1

+
1

2

(
1 +

λf (p)

p1/2+u
+

1

p1+2u

)−1

− 1

]

×
∏
p|q

p

p+ 1

[
1

2

(
1−

λf (p)

p1/2+u

)−1

+ (−1)ordp(q′) 1

2

(
1 +

λf (p)

p1/2+u

)−1
]
.

(2.13)

We have then that

Zq′(u) = L(1 + 2u, sym2f)Z∗q′(u),
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where Z∗q′(u) is given by some absolutely convergent Euler product in the region

Re(u) > −1/4. Moreover, inspecting the above Euler product, we see that

1

log log q
� Z∗1(0)� log log q

and

q−(1/2+ε) �ε Z
∗
q (0)� log log q,

uniformly in κ.

With this information about Zq′(u), we shift the contours in (2.11) and (2.12) to

Re(u) = −4/17, and pick up the residue from the double pole at u = 0. The double

pole in (2.11) or (2.12) contributes

X

2π2
F̃ (1)L(1, sym2f)Z∗q′(0)

(
log

Uκ
√
q

2π
+
Z ′q′(0)

Zq′(0)
+O(κ−1)

)
.

We must also bound the integrals

X

2π2
F̃ (1)

1

2πi

∫
(−4/17)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

Uq

)−u
L(1 + 2u, sym2f)Z∗1(u)

1− 1
2
u log q

u2
du

(2.14)

and

X

2π2
F̃ (1)

1

2πi

∫
(−4/17)

Γ(u+ κ/2)

Γ(κ/2)

(
2π

U

)−u
L(1 + 2u, sym2f)Z∗q (u)

1 + 1
2
u log q

u2
du.

(2.15)

These two are treated a little differently. Let us begin with the simpler case of (2.14).

We have the convexity bound

L(9/17 + it, sym2f)� (κ2q2(1 + |t|)4)4/17(log κq)2. (2.16)
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by estimating with the approximate functional equation of the symmetric square L-

function, and the Deligne bound [Del74] for its coefficients (see for example, equation

(5.22) of [IK04]). Hence, the integral (2.14) is

�A X
13/17(κq)4/17/(logXκq)A.

The integral (2.15) is a little more delicate, and we need to use the decay of Z∗q (u)

with respect to q. When Re(u) > −1/4, we have that

Z∗q (u) =
∏
p-q

(
1 +O(p−(2+4u))

) ∏
p|q

ordp(q) odd

λf (p)

p1/2+u

(
1 +O(p−(1+2u))

)

×
∏
p|q

ordp(q) even

(
1 +O(p−(1+2u))

)
,

so that

Z∗q (u)�

 ∏
ordp(q) odd

p

−1/2−Re(u)

(log q)2.

Assuming e.g. that q is square-free, this shows that for fixed Re(u) Zq(u) decays as a

function of q. If one is willing to assume Lindelöf, it is unnecessary to use the decay

of Z∗q (u) with respect to q, and hence the restriction to square-free q may be omitted.

Using this along with the convexity bound (2.16) for L(1 + 2u, sym2f), we find that

(2.15) is

�A X
13/17κ4/17q7/34/(logXκq)A �A X

13/17(κq)4/17/(logXκq)A,

so that these integrals are subsumed into the error term in the Theorem.

Now set

Z∗(u) = Z∗1(u)− iκηZ∗q (u) (2.17)
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so that we have from (2.10) that

∑
(d,2q�)=1

AU(1/2, f ⊗ χ8d)F (8d/X) =
X

2π2
F̃ (1)L(1, sym2f)Z∗(0)

(
log

Uκ
√
q

2π

+2
L′(1, sym2f)

L(1, sym2f)
+
Z∗′(0)

Z∗(0)

)
+OA

(
X13/17(κq)4/17

(logXκq)A

)
.

By carefully inspecting (2.13) and using that

∏
p|q

(
1 +

2
√
p

)
� (log q)1/2

log log q

we find that Z∗(0) = 0 if and only if iκη := w(f) = 1 and q is a square and that if

Z∗(0) 6= 0, it is � log log q/(log q)1/2, uniformly in κ.

Now consider the tail

∑
(d,2q�)=1

BU(1/2, f ⊗ χ8d)F (8d/X).

Recall the notation G(u) = Γ(κ/2 + u)Γ(κ/2)−1(
√
q/2π)u from the definition of

WZ(x), and that we have set Z = q1/2. We have in similar fashion to the two

preceding theorems that

BU(1/2, 8d) =
1

2πi

∫
(2)

G(s)

s
L(1/2 + s, f ⊗ χ8d)

(8d)s − U s

s

×
(
Zs(1− s logZ)− iκηχ8d(q)Z

−s(1 + s logZ)
)
ds.

The integrand is entire, and we may shift the contour to the line Re(s) = 1/ logXκq.

On this line we have

(8d)s − U s

s

(
Zs(1− s logZ)− iκηχ8d(q)Z

−s(1 + s logZ)
)
� logX/U
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so that

∑
(d,2q�)=1

BU(1/2, 8d)F (8d/X)� |logX/U |
∫ ∞
−∞

∣∣∣G( 1
logXκq

+ it
)∣∣∣∣∣∣ 1

logXκq
+ it

∣∣∣
×

∑
(d,2q�)=1
0<8d≤X

∣∣∣∣L(1

2
+

1

logXκq
+ it, f ⊗ χ8d

)∣∣∣∣ dt.

Set U = X/(logXκq)
17
4

(A+6). Using Conjecture 5 when t is small and the cut-off in

|G(1/ logXκq) + it|1/2 when t is large we have

|G(1/ logXκq) + it|1/2
∑

(d,2q�)=1
0<8d≤X

∣∣∣∣L(1

2
+

1

logXκq
+ it, f ⊗ χ8d

)∣∣∣∣ dt
�ε X (logXκq)1/4+ε .

We also have the estimate

∫ ∞
−∞

∣∣∣G( 1
logXκq

+ it
)∣∣∣ 12∣∣∣ 1

logXκq
+ it

∣∣∣ dt� log logXκq,

so that pulling these estimates together we obtain

∑
(d,2q�)=1

BU(1/2, f ⊗ χ8d)F (8d/X)�ε,A X (logXκq)1/4+ε

hence the Theorem. �

2.6 Proof of Proposition 3

We treat the two cases q′ = 1 and q′ = q somewhat differently. In the case q′ = 1,

the dependence on q in T (1, h) appears only in the relatively prime condition, which
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we may we treat solely by Möbuis inversion. In the case of T (q, h), the dependence

on q is carried through the average over quadratic characters, but there is one less

inversion to preform, making the calculation a bit simpler.

Proof. The condition (d, 2q�) = 1 has been introduced to the sum over twists to

restrict 8d to lie in a large subsequence of fundamental discriminants. However, this

condition is awkward to work with and our first task will be to remove it.

2.6.1 Preliminary simplifications, q′ = 1 case

We start with the q′ = 1 case. We use Möbius inversion to remove both the square-free

and relatively prime to q conditions from the sum over d,

T (1, h) =
∑

(a1,2q)=1

µ(a1)
∑
a2|q

µ(a2)
∑

(d,2)=1

∑
(n,a)=1

λf (n)

n1/2
χ8da2(n)h(da2

1a2, n).

Split the sums over a1 and a2 at Y1 and Y2 in to tail and main term. This splitting

results in 4 truncated sums:

T (1, h) = T1(1, h) + T21(1, h) + T22(1, h) + T23(1, h)

where we have defined

T1(1, h) :=
∑

(a1,2q)=1
a1≤Y1

µ(a1)
∑
a2|q
a2≤Y2

µ(a2)
∑

(d,2)=1

∑
(n,a1)=1

λf (n)

n1/2
χ8da2(n)h(da2

1a2, n),

T21(1, h) :=
∑

(a1,2q)=1
a1≤Y1

µ(a1)
∑
a2|q
a2>Y2

µ(a2)
∑

(d,2)=1

∑
(n,a1)=1

λf (n)

n1/2
χ8da2(n)h(da2

1a2, n),

T22(1, h) :=
∑

(a1,2q)=1
a1>Y1

µ(a1)
∑
a2|q
a2≤Y2

µ(a2)
∑

(d,2)=1

∑
(n,a1)=1

λf (n)

n1/2
χ8da2(n)h(da2

1a2, n),
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T23(1, h) :=
∑

(a1,2q)=1
a1>Y1

µ(a1)
∑
a2|q
a2>Y2

µ(a2)
∑

(d,2)=1

∑
(n,a1)=1

λf (n)

n1/2
χ8da2(n)h(da2

1a2, n).

The main term will come from the most difficult sum T1(1, h). First, however, we

estimate the other cases T21(1, h), T22(1, h) and T23(1, h).

Lemma 2 Assume GRH or Conjecture 5. We have the bounds

T21(1, h)� X

Y2

(logXκq)5,

T22(1, h)� X

Y1

(logXκq)5,

T23(1, h)� X

Y1Y2

(logXκq)5.

Proof. Consider the case T21(1, h) and write d = b2
1b2` with (`, 2q�) = 1, (b1, q) = 1

and b2 | q. Group the variables as c1 = a1b1 and c2 = a2b2 to obtain

T21(1, h) =
∑

(c1,2q)=1

∑
c2|q

∑
a1|c1
a1≤Y1

µ(a1)
∑
a2|c2
a2>Y2

µ(a2)
∑

(`,2q�)=1

∑
(n,c1)=1

λf (n)

n1/2
χ8`c2(n)h(`c2

1c2, n).

Let fc2 denote the newform given by the quadratic twist f⊗χc2 , which is of some level

dividing q2. Set ȟ(x, u) :=
∫∞

0
h(x, y)yu−1 dy, which by repeated partial integration

can be estimated by

ȟ(x, u)�
(

1 +
x

X

)−100 (Uκ
√
qz)Re(u)

|u|2(1 + |u|)10
.

We then have by Mellin inversion that T21(1, h) is

=
∑

(c1,2q)=1

∑
c2|q

∑
a1|c1
a1≤Y1

µ(a1)
∑
a2|c2
a2>Y2

µ(a2)
1

2πi

∫
(1/2+ε)

∑
(`,2q�)=1

ȟ(`c2
1c2, u)Lc1(1/2+u, fc2⊗χ8`) du,
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where Lc1(1/2 + u, fc2 ⊗ χ8`) is the function formed from the same Euler product as

L(1/2 + u, fc2 ⊗ χ8`), but with those factors at primes dividing c1 omitted. We have

that

|Lc1(1/2 + u, fc2 ⊗ χ8`)| ≤ d(c1)|L(1/2 + u, fc2 ⊗ χ8`)|,

so that shifting the contour to the line Re(u) = 1/ logXκq, we have that T21(1, h) is

� (logXκq)2
∑

(c1,2q)=1

d(c1)
∑
c2|q

∑
a1|c1
a1≤Y1

∑
a2|c2
a2>Y2

∫ ∞
−∞

∑
(`,2q�)=1

(
1 +

`c2
1c2

X

)−100

×|L(1/2 + 1/ logXκq + it, fc2 ⊗ χ8`)|
(1 + |t|)10

dt.

Using Conjecture 5 (i.e. GRH) we find that

T21(1, h) � X(logXκq)3
∑

(c1,2q)=1

d(c1)

c2
1

∑
c2|q

1

c2

∑
a1|c1
a1≤Y1

∑
a2|c2
a2>Y2

� X(logXκq)5.

The cases T22(1, h) and T23(1, h) are treated similarly. �

2.6.2 Averaging quadratic characters

We now turn to T1(1, h). We quote two very useful Lemmas from [Sou00]. The first

is Lemma 2.6 of [Sou00], which is the trace formula for quadratic characters.

Lemma 3 (Poisson Summation) Let F be a smooth function with compact sup-

port on the positive real numbers, and suppose that n is an odd integer. Then

∑
(d,2)=1

(
d

n

)
F

(
d

Z

)
=

Z

2n

(
2

n

)∑
k∈Z

(−1)kGk(n)F̂

(
kZ

2n

)
,



2.6. PROOF OF PROPOSITION 3 75

where

Gk(n) =

(
1− i

2
+

(
−1

n

)
1 + i

2

) ∑
a (mod n)

(a
n

)
e

(
ak

n

)
,

and

F̂ (y) =

∫ ∞
−∞

(cos(2πxy) + sin(2πxy))F (x) dx

is a Fourier-type transform of F .

The Gauss-type sum Gk(n) has the following explicit evaluation from Lemma 2.3 of

[Sou00]:

Lemma 4 If m and n are relatively prime odd integers, then Gk(mn) = Gk(m)Gk(n),

and if pα is the largest power of p dividing k (setting α =∞ if k = 0), then

Gk(p
β) =



0 if β ≤ α is odd

φ(pβ) if β ≤ α is even

−pα if β = α + 1 is even(
kp−α

p

)
pα
√
p if β = α + 1 is odd

0 if β ≥ α + 2.

Applying these Lemmas to T1(1, h) we find that

T1(1, h) =
X

2

∑
(a1,2q)=1
a1≤Y1

µ(a1)

a2
1

∑
a2|q
a2≤Y2

µ(a2)

a2

∑
k∈Z

(−1)k
∑

(n,2a1)=1

λf (n)

n1/2
χa2(n)

Gk(n)

n

×
∫ ∞

0

(sin + cos)

(
2πkxX

2na2
1a2

)
h(xX, n) dx.

(2.18)

2.6.3 The main term

The main term of T1(1, h) is from the k = 0 term of (2.18), which we extract and

analyze. Call the k = 0 term T10(1, h), and observe from Lemma 4 that G0(n) 6= 0 if
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and only if n is a square, in which case G0(n) = φ(n). Setting h1(n) =
∫∞

0
h(xX, n) dx,

we find

T10(1, h) =
X

2

∑
(a1,2q)=1
a1≤Y1

µ(a1)

a2
1

∑
a2|q
a2≤Y2

µ(a2)

a2

∑
(n,2a1a2)=1

n=�

λf (n)

n1/2

∏
p|n

(
1− 1

p

)
h1(n)

=
2X

3ζ(2)

∑
(n,2)=1
n=�

λf (n)

n1/2

∏
p|nq

p

p+ 1
h1(n) +O

X ( 1

Y1
+

1

Y2

) ∑
(n,2)=1
n=�

d(n)

n1/2
|h1(n)|

 ,

so that using the bounds on h in the statement of the Proposition we have

T10(1, h) =
4X

π2

∑
(n,2)=1
n=�

λf (n)

n1/2

∏
p|nq

p

p+ 1
h1(n)+O

(
X

(
1

Y1

+
1

Y2

)
(logXκq)4

)
. (2.19)

2.6.4 Bounding the dual sum

We now proceed to the k 6= 0 terms of T1(1, h), which we call T3(1, h). Our first task

is to express the integral in (2.18) in terms of Mellin inverses.

Lemma 5 Let k 6= 0, X > 1 and let h(x, y) be as in the statement of the Theorem.

Define the transform

h̃(s, u) :=

∫ ∞
0

∫ ∞
0

h(x, y)xsyu
ds

s

du

u
.

Then we have∫ ∞
0

(sin + cos)

(
2πkxX

2na2
1a2

)
h(xX, n) dx =

1

X

1

(2πi)2

∫
(ε)

∫
(ε)

h̃(1− s, u)
1

nu

(
na2

1a2

π|k|

)s
×Γ(s) (cos + sgn(k) sin)

(πs
2

)
ds du.

(2.20)
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Moreover one has the bounds

h̃(s, u)�
(Uκ
√
q)Re(u)XRe(s)

|u|2(1 + |u|)98(1 + |s|)98
.

Proof. Use the formulae for the Mellin transforms of sin and cos and Mellin in-

version. See Soundararajan and Young [SY10], Section 3.3. �

Inspecting Lemma 4, we find that for odd n, Gk(n) = G4k(n), so that inserting

the formula of Lemma 5 in (2.18), one finds that

T3(1, h) =
1

2

∑
(a1,2q)=1
a1≤Y1

µ(a1)

a2
1

∑
a2|q
a2≤Y2

µ(a2)

a2

∑
k∈Z

(−1)k
∑

(n,2a1)=1

λf (n)

n1/2
χa2(n)

G4k(n)

n

× 1

(2πi)2

∫
(ε)

∫
(ε)

h̃(1− s, u)
1

nu

(
na2

1a2

π|k|

)s
Γ(s) (cos + sgn(k) sin)

(πs
2

)
ds du.

Recall that we denote the set of fundamental discriminants by D. Now set 4k =

k1k
2
2k3, where k1k3 ∈ D, and (k1, q) = 1 but k3 | q. Define the function

Z1(α, γ, b1, b2, k1k3) :=
∞∑
k2=1

∑
(n,2b1)=1

λf (n)χb2(n)

nα|k2|2γ
Gk1k22k3

(n)

n
, (2.21)

and set

H(s) := Γ(s) (cos + sgn(k) sin)
(πs

2

) (
1− 21−2s

)−1 � |s|Re(s)−1/2. (2.22)

Splitting up 4k in this manner and after a change of variables one finds that

T3(1, h) =
1

2

∑
(a1,2q)=1
a1≤Y1

µ(a1)

a2
1

∑
a2|q
a2≤Y2

µ(a2)

a2

∑
k3∈D
k3|q

∑
k1∈D

(k1,q)=1

(−1)k1k3
1

(2πi)2

∫
(1/2+ε)

∫
(ε)

h̃(1− s, u+ s)

(
a2

1a2

π|k1k3|

)s
H(s)Z1(1/2 + u, s, a1, a2, k1k3) du ds.

(2.23)
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To estimate T3(1, h) by contour shifting, we must analyze the Dirichlet series Z1.

Lemma 6 Let k1k3 be a fundamental discriminant, where k3 | q but (k1, q) = 1, and

b1, b2 positive integers where b2 | q and (b1, 2q) = 1. Denote by fk3b2 the newform

defined by the quadratic twist f ⊗ χk3b2, which is of some level dividing q3. For the

Dirichlet series defined by (2.21) one has

Z1(α, γ, b1, b2, k1k3) =
Lb1b2(1/2 + α, fk3b2 ⊗ χk1)
Lb1b2(1 + 2α, sym2f)

Z∗1(α, γ, b1, b2, k1k3),

where subscripts denote the omission of Euler factors, and Z∗1 is given by some Euler

product absolutely convergent in Re(α) ≥ 0 and Re(γ) ≥ 1/2 + ε and uniformly

bounded in b1, b2, k1, k3, κ and q.

Proof. By Lemma 4, the terms of the Dirichlet series defining Z are joint multi-

plicative in n and k2, so that we may decompose Z as an Euler product. The generic

Euler factor is given by

∑
k2,n≥0

λf (p
n)χb2(p)

n

pnα+2γk2

Gk1k3p2k2 (pn)

pn
,

and we must check the several cases where p divides the various parameters q, b1, b2,

k1, k3, or not. First, we consider the generic case where p - 2qb1b2k1k3. By Lemma 4,

we find that the terms k2 ≥ 1 contribute� p−(1+2ε), and the k2 = 0 terms are exactly

1 +
λf (p)χk3b2(p)χk1(p)

p1/2+α
,

so that these Euler factors match those in the statement of the Lemma. Next, consider

the cases p | k1, p - 2qb1b2k3, or p | k3, p - 2b1b2k1. In either of these two cases we
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check that such an Euler factor is

1− λf (p
2)

p1+2α
+O(p−(1+2ε)),

which again matches the Euler factor in the Lemma. If p | q, but p - 2b1b2k1k3, then

this Euler factor is

1 +
λf (p)χk3b2(p)χk1(p)

p1/2+α
+O(p−(1+2ε)).

Observing that λf (p
2) = λf (p)

2 for primes dividing the level, the also matches the

Euler factor from the statement of the Lemma. Finally, if p | b1b2, then all terms

n ≥ 1 vanish, and the contribution of such an Euler factor is 1 +O(p−(1+2ε)). �

We now return to (2.23), and split the sum over k1 at Uκ
√
qzY 2

1 Y
1/2

2 /X. For

the small k1 terms, we shift the lines of integration to Re(u) = −1/2 + 1/ logXκq

and Re(s) = 3/4, and for the large k1 terms to Re(u) = −1/2 + 1/ logXκq and

Re(s) = 5/4. Recall that H(s)� |s|Re(s)−1/2, and observe

|La1a2(1/2 + α, fk3b2 ⊗ χk1)| ≤ d(a1)d(a2)|L(1/2 + α, fk3b2 ⊗ χk1)|.

Applying the result of Goldfeld, Hoffstein and Lieman [GHL94], the small k1 terms

are

� (logXκq)3(Uκ
√
qz)1/4X1/4

∑
(a1,2q)=1
a1≤Y1

d(a1)
√
a1

∑
a2|q
a2≤Y2

d(a2)

a
1/4
2

∑
k3∈D
k3|q

1

|k3|3/4

∫
(3/4)

∫
(−1/2+1/ logXκq)

×
∑

|k1|≤Uκ
√
qzY 2

1 Y
1/2
2 /X

k1∈D
(k1,q)=1

|L(1 + u, fk3a2 ⊗ χk1)|
|k1|3/4

ds du

(1 + |s|)98(1 + |u|)98
.
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Using Conjecture 5, i.e. GRH, we find that this is � (Uκ
√
qz)1/2Y1Y

1/8
2 (logXκq)6.

Now consider the large k1 terms. Similarly, their contribution is

� (logXκq)3 (Uκ
√
qz)3/4

X1/4

∑
(a1,2q)=1
a1≤Y1

d(a1)
√
a1

∑
a2|q
a2≤Y2

d(a2)a
1/4
2

∑
k3∈D
k3|q

1

|k3|5/4

×
∫

(5/4)

∫
(−1/2+1/ logXκq)

∑
|k1|>Uκ

√
qzY 2

1 Y
1/2
2 /X

k1∈D
(k1,q)=1

|L(1 + u, fk3a2 ⊗ χk1)|
|k1|5/4

ds du

(1 + |s|)98(1 + |u|)98
.

Again, by Conjecture 5, this is � (Uκ
√
qz)1/2Y1Y

1/8
2 (logXκq)6. Taking

Y1 = Y2 =
X8/17

(Uκ
√
qz)4/17

,

we find that

T3(1, h)� X9/17(Uκ
√
qz)4/17 (logXκq)6 ,

and drawing all error terms together we obtain the Proposition for q′ = 1.

2.6.5 The q′ = q case

The proof in the T (q, h) case follows the same outline as in the T (1, h) case, above.

We need only Möbius invert the square-free condition and not the relatively prime to

q condition, but we must keep careful track of the dependence on q in the analogue of

Lemma 6. We sketch the argument, omitting those details which are similar to those

of T (1, h).

We begin by using Möbius inversion to remove the square-free condition and split
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the resulting sum at Y .

T (q, h) =

 ∑
a≤Y

(a,2q)=1

+
∑
a>Y

(a,2q)=1

µ(a)
∑

(d,2q)=1

∑
(n,a)=1

λf (n)√
n
χ8d(qn)h(da2, n)

=: T1(q, h) + T2(q, h).

By a slight modification of Lemma 2, we find that

T2(q, h)� X

Y
(logXκq)5,

and so we concentrate on T1(q, h). Applying Poisson summation (Lemma 3), we have

that

T1(q, h) =
X

2

∑
a≤Y

(a,2q)=1

µ(a)

a2

∑
k∈Z

(−1)k
∑

(n,2a)=1

λf (n)√
n

Gk(qn)

qn

∫ ∞
0

(cos + sin)

(
2πkxX

2qna2

)

×h(xX, n) dx.

Now we pick out from T1(q′, h) the main term, which is when k = 0, and call it

T10(q, h). By pulling the sum over a inside and computing as in subsection 2.6.3, we

find that

T10(q, h) =
4X

π2

∑
(n,2)=1
qn=�

λf (n)√
n

∏
p|qn

p

p+ 1
h1(n) +O

(
X

Y
(logXκq)3

)
.

Now we turn to the k 6= 0 terms of T1(q, h) and call them T3(q, h). Define

Zq(α, γ, b, k1k3) :=
∞∑
k2=1

∑
(n,2b)=1

λf (n)

nα

(
q

|k2|2

)γ Gk1k22k3
(qn)

qn
. (2.24)

Recall the definition of H(s) from (2.22) and apply the inversion formula (2.20) for
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the weight function, to find the analogue of formula (2.23):

T3(q, h) =
1

2

∑
a≤Y

(a,2q)=1

µ(a)

a2

∑
k3∈D
k3|q

∑
k1∈D

(k1,q)=1

(−1)k1k3
1

(2πi)2

∫
(ε)

∫
(1/2+ε)

h̃(1− s, u+ s)

(
a2

π|k1k3|

)s

×H(s)Zq(1/2 + u, s, a, k1k3) ds du.

(2.25)

In order to use contour shifting, we analyze the Dirichlet series Zq, taking special

care with the dependence on q.

Lemma 7 Let k1k3 be a fundamental discriminant, where k3 | q but (k1, q) = 1, and

b positive integer relatively prime to 2q. Denote by fk3 the newform defined by the

quadratic twist f ⊗ χk3, which is of some level dividing q2. For the Dirichlet series

defined by (2.24) one has

Zq(α, γ, b, k1k3) =
Lbq(1/2 + α, fk3 ⊗ χk1)
Lbq(1 + 2α, sym2f)

Z∗q (α, γ, b, k1k3),

where Z∗q � d(q)qRe(γ)−1/2, uniformly in b, κ, k1, k3,Re(γ) > 1/2 + ε, Re(α) ≥ 0.

Proof. From Lemma 4 we see that the summand is within a constant of being

jointly multiplicative in n, k2, so that we may write an Euler product. We use the

notation pr||q to mean that r is the largest power of p dividing q. Then Zq is given

by

∏
p-2q

∑
k2,n≥0

λf (p
n)

pnα+2γk2

Gk1k3p2k2 (pn)

pn

∏
pr||q

∑
k2,n≥0

λf (p
n)

pnα+2γk2−rγ

Gk1k3p2k2 (pr+n)

pr+n
. (2.26)

We must check all possible cases when p does or does not divide the parameters q, b, k1

and k3. Let us begin with the generic p - q. Suppose first that p - 2bk1. We have that

all of the terms where k2 ≥ 1 contribute� p−(1+2ε), uniformly in all parameters. The
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k2 = 0 terms are exactly

1 + λf (p)χk1k3(p)p
−(1/2+α),

which matches the proposed Euler factor in the statement of the Lemma up to a

uniformly bounded factor. Now we consider the terms with p - 2b but p | k1. In this

case, the Euler factor is given by

1− λf (p
2)

p1+2α
+O

(
1

p1+2ε

)
,

which exactly matches the Euler factor in the statement of the Lemma up to a

uniformly bounded factor in q, κ, k1. If p | 2b, then the Euler factor is 1+O(p−(1+2ε)).

Now we turn to the terms where p | q. Inspecting Lemma 4 we find four cases

depending on whether p divides q to even or odd order and whether p | k3 or not.

When r is odd the second product of (2.26) is

∏
pr||q
r odd
p-k3

(
χk1k3(p)pγ−1/2 +

λf (p)

pα+γ
+O

(
1

p1+ε

)) ∏
pr||q
r odd
p|k3

(
−
λf (p)

pα
pγ−1 +

λf (p)

pα+γ
+O

(
1

p1+2ε

))
,

and when r is even this product is

∏
pr||q
r even
p-k3

(
1 +

λf (p)χk1k3(p)

pα+1/2
+O

(
1

p1+2ε

)) ∏
pr||q
r even
p|k3

(
−p2γ−1 + 1− 1

p
−
λf (p2)

p2α+1
+O

(
1

p1+2ε

))
.

If r is even then r ≥ 2, so we have that Z∗q � d(q)qRe(γ)−1/2. �

Now we return to T3(q, h), and split the sum over k1 at Uκq3/2zY 2/X. When

|k1| ≤ Uκq3/2zY 2/X, shift the lines of integration to Re(s) = 3/4 and Re(u) = −1/2+

1/ logXκq, and for the tail k1, shift to Re(s) = 5/4 and Re(u) = −1/2 + 1/ logXκq.
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We have that

Zq(1/2 + u, s, a, k1) � |Laq(1 + u, fk3 ⊗ χk1)|(logXκq)2qRe(γ)−1/2

� (logXκq)3
∏
p|a

(
1 +

10
√
p

)
|L(1 + u, fk3 ⊗ χk1)|qRe(γ)−1/2

unconditionally due to the work of Goldfeld, Hoffstein and Lieman [GHL94]. We also

have the estimate H(s)� |s|Re(s)−1/2, so that the small k1 of T3(q, h) are

� (XUκ
√
qz)1/4q1/4(logXκq)5

∑
a≤Y

1√
a

∏
p|a

(
1 +

10
√
p

) ∑
k3∈D
k3|q

1

|k3|3/4

∫
(3/4)

∫
(−1/2+1/ logXκq)

×
∑

|k1|≤Uκq3/2zY 2/X
k1∈D

(k1,q)=1

1

|k1|3/4
|L(1 + u, fk3 ⊗ χk1)| du ds

(1 + |s|)98(1 + |u|)98
.

We have that by Conjecture 5 this is � (Uκq3/2z)1/2Y (logXκq)6. Similarly the tail

k1 terms are

� (Uκ
√
qz)3/4X−1/4q3/4(logXκq)5

∑
a≤Y

√
a
∏
p|a

(
1 +

10
√
p

) ∑
k3∈D
k3|q

1

|k3|5/4

×
∫

(5/4)

∫
(−1/2+1/ logXκq)

∑
|k1|>Uκq3/2zY 2/X

k1∈D
(k1,q)=1

1

|k1|5/4
|L(1 + u, fk3 ⊗ χk1)| du ds

(1 + |s|)98(1 + |u|)98
,

which is � (Uκq3/2z)1/2Y (logXκq)6 as well by Conjecture 5. Taking

Y = X1/2/(Uκq3/2)1/4,

we find T3(q, h)� X1/2(Uκq3/2z)1/4(logXκq)6.

�



Chapter 3

The Second Moment of

Automorphic L-Functions

3.1 Introduction

In this chapter we are concerned with finding an asymptotic formula for the second

moment of automorphic L-functions with shifts. The techniques here are very similar

to those of Conrey and Iwaniec [CI00] who establish an upper bound for the third

moment of such L-functions. Our motivation for working out the second moment is (1)

to see how powerful a result one can obtain in this easier case, and more importantly

(2) to observe how off-diagonal main terms spectacularly cancel to give an asymptotic

estimate which matches that given by the “recipe” of CFKRS [CFK+05], and the

random matrix conjectures. We ignore the dependence of our error terms on the

weight κ. However, we are careful check that our Theorem is valid for even weights

κ ≥ 6. It is likely that the results extend to κ = 4, and possibly κ = 2, although no

additional effort has been invested in obtaining these cases.

Let χ =
(
·
q

)
be the primitive quadratic character (mod q), and let f be a cusp

form of even weight κ, level q and trivial central character with Fourier coefficients

85
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af (n) = af (1)λf (n), which we will choose so that ||f ||L2(Γ0(q)\H) = 1. Now consider

the form f⊗χ, which is a primitive form on Γ0(q2), see [Li75]. Thus the length of the

sum we consider is roughly the square root of the conductor. The twisted L-function

is defined

Lf (s, χ) :=
∞∑
n=1

λf (n)χ(n)

ns
=
∏
p-q

(
1− λf (p)χ(p)

ps
+

1

p2s

)−1

.

The completed L-function is defined

Λf (s, χ) :=
( q

2π

)s
Γ

(
s+

κ− 1

2

)
Lf (s, χ).

In this chapter, we assume that iκ = χ(−1) to force the sign of the functional equation

to be positive, otherwise the central values vanish identically and the moment is

identically zero. The equation iκ = χ(−1) will be used crucially in the cancellation

of main terms in section 3.3. The L-functions we are considering in this chapter have

the simple functional equation

Λf (s, χ) = Λf (1− s, χ).

Let Fκ(q) denote an orthonormal eigenbasis of cusp forms of weight κ for Γ0(q), and

let ζq(s) denote the Riemann zeta function with the Euler factors at primes dividing

q omitted. Let

ωf :=
Γ(κ− 1)

(4π)κ−1
|af (1)|2

be the harmonic weights which make the Petersson formula ((2.9) of [CI00]) work out

nicely, which can be removed easily if desired. Our result is the following:

Theorem 4 Let q → ∞ through primes and the weight be and even integer κ ≥ 6.
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Uniformly for Re(α),Re(β) < 1/2 we have

∑
f∈Fκ(q)

ωfΛf (1/2 + α, χ)Λf (1/2 + β, χ)

=
∑
±α,±β

( q

2π

)1±α±β
ζq(1± α± β)Γ(±α + κ/2)Γ(±β + κ/2) +Oκ(q

1/2),

where the sum on the right is over the 4 choices of signs. Both sides remain analytic

when α = ±β, in which case the right hand side is to be interpreted as the limit as

α → ±β of the displayed expression. The subscript ζq means that the Euler factors

at primes dividing q have been omitted.

In section 3.3 we require q to be odd squarefree to obtain cancellation of the main

terms. On the other hand, the estimation of the error terms in section 3.4 is driven by

the Riemann hypothesis for curves over finite fields, suggesting a restriction to prime

power level q. The intersection of these two sets is the primes, hence the restriction

in the Theorem.

Of course, the moment of the L-functions themselves can be derived easily from

that of the completed L-functions above, but the formula is somewhat less elegant.

3.2 Opening

We work with moments of the completed L-functions, which have a particularly

symmetric approximate functional equation:

Λf (1/2 + α, χ) =
∑
±α

( q

2π

)±α+1/2
∞∑
n=1

λf (n)χ(n)

n±α+1/2
V±α+1/2

(
n

q

)
,

with

Vα+1/2(x) :=
1

2πi

∫
(c)

Γ(s+ α + κ/2)(2πx)−s
ds

s
.
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The sum over ±α has two terms, one for each choice of sign. The proof of this

approximate functional equation is standard (see [IK04] §5.2) so we omit the proof.

Our goal is to compute

∑
f∈Fκ(q)

ωfΛf (1/2 + α, χ)Λf (1/2 + β, χ), (3.1)

so that applying the approximate functional equation for each Λf (1/2+α, χ) we have

four symmetric terms.

Applying both the Petersson formula and Poisson summation one finds that

Proposition 4

∑
f∈Fκ(q)

ωfΛf (1/2 + α, χ)Λf (1/2 + β, χ) =
∑
±α,±β

D +
∑
c≡0(q)

S(c)

c2

 ,

with

D =
( q

2π

)1+α+β
∞∑
n=1

χ(n2)

n1+α+β
Vα+1/2

(
n

q

)
Vβ+1/2

(
n

q

)
and

S(c) :=
∑
m1

∑
m2

G(m1,m2, c)W̌α,β(m1,m2, c), (3.2)

where m1 and m2 are the dual variables to the n1 and n2 coming from the approximate

functional equation. Here G(m1,m2, c) is a character sum which does not depend on

the shifts (non-Archimedian part), and W̌α,β(m1,m2, c) is defined by some Fourier

integrals (Archimedian part). Precisely,

G(m1,m2, c) =
∑

a1 (mod c)

∑
a2 (mod c)

χ(a1a2)S(a1, a2, c)ec(a1m1 + a2m2),
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and

W̌α,β(m1,m2, c) =
( q

2π

)1+α+β
∫ ∞

0

∫ ∞
0

J(2
√
x1x2)

(cx1)α(cx2)β
Vα+1/2

(
cx1

q

)
Vβ+1/2

(
cx2

q

)
×e(−m1x1 −m2x2) dx1 dx2

where S(a1, a2, c) is the standard Kloosterman sum, and up to a simple factor the

function J(x) is the J-Bessel function, see (3.3).

The off-diagonal main term will come from the case m1 = m2 = 0 and c = q, in which

case G(0, 0, q) = τ(χ)2φ(q) (Proof: formula (3.7) below). Before computing the main

terms, we give the proof of Proposition 4.

Proof of Proposition 4: Applying the approximate functional equation to (3.1),

we find four terms cooresponding to ±α,±β. The +α,+β term is

( q

2π

)1+α+β
∞∑

n1=1

∞∑
n2=1

χ(n1n2)

n
1/2+α
1 n

1/2+β
2

V1/2+α

(
n1

q

)
V1/2+β

(
n2

q

) ∑
f∈Fκ(q)

ωfλf (n1)λf (n2).

The Petersson formula is

∑
f∈Fκ(q)

ωfλf (n1)λf (n2) = δn1,n2 +
√
n1n2

∑
c≡0(q)

c−2S(n1, n2, c)J(2
√
n1n2/c),

see e.g. [CI00] (2.9), where we define

J(x) = 4πiκx−1Jκ−1(2πx), (3.3)

with Jν(z) being the standard J-Bessel function. At this point, one already sees that

the diagonal term D is as in the statement of the Proposition. Pulling out the sum

over c and the c−2 we have that

S(c) =
( q

2π

)1+α+β
∞∑

n1=1

∞∑
n2=1

χ(n1n2)

nα1n
β
2

V1/2+α

(
n1

q

)
V1/2+β

(
n2

q

)
S(n1, n2, c)J(2

√
n1n2/c).
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Our goal is to separate the arithmetic terms from the analytic terms, which allows

us to use Poisson summation in the variables n1 and n2. First, observe that the χ

and the S are periodic (mod c), so we replace n by a+ nc:

( q

2π

)1+α+β ∑
a1 (mod c)

∑
a2 (mod c)

χ(a1a2)S(a1, a2, c)
∑
n1

∑
n2

1

(a1 + n1c)α(a2 + n2c)β

×V1/2+α

(
a1 + n1c

q

)
V1/2+β

(
a2 + n2c

q

)
J(2
√

(a1 + n1c)(a2 + n2c)/c).

The expression inside the ni sums are now smooth, so we can apply Poisson summa-

tion. We compute Fourier transforms. After a change of variables, the transform of

the smooth expression inside the ni sums is

ec(a1m1 + a2m2)c−(α+β)

∫ ∞
−∞

∫ ∞
−∞

J(2
√
x1x2)

xα1x
β
2

V1/2+α

(
cx1

q

)
V1/2+β

(
cx2

q

)
×e(−m1x1 −m2x2) dx1 dx2.

Hence we have proved the above formulae for W̌α,β(m1,m2, c) and G(m1,m2, c). �

3.3 The Main Terms

The main term in our Theorem comes from the diagonal D and from the single term

m1 = m2 = 0 and c = q in (3.2). In this section we see in action how these terms

combine and cancel to leave only the main term which one expects from the “recipie”

given in chapter 4 of [CFK+05]. These cancellations are in general mysterious and

not well understood, see the comments in the introduction of [CFK+05].

Let us start by computing the diagonal terms, for which we employ standard

contour-shifting techniques. Assume throughout that Re(α),Re(β) < 1/2, and κ ≥ 6.
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We define the following quantity which will arise later:

Hκ(α, β) :=
1

2πi

∫
(2)

Γ(κ/2− s)Γ(κ/2 + s)

(s− α)(s− β)
ds. (3.4)

It is interesting to note that the following Lemma is not logically necessary to our

proof. We have included it because it may clear some confusion.

Lemma 8 Assume α 6= β are complex numbers. We have

Hκ(α, β)−Hκ(−α,−β) =
Γ(κ/2− α)Γ(κ/2 + α)− Γ(κ/2− β)Γ(κ/2 + β)

α− β
.

The left side of the above expression is analytic even if α = β, in which case we

interpret the right side as the limit α→ β.

Proof. Shift contours and change variables s↔ −s. �

Let ζq(s) denote the function defined by the Euler product for the Riemann zeta

function with the factors at primes dividing q removed. In particular,

Res
s=1

ζq(s) =
∏
p|q

(
1− p−1

)
=
φ(q)

q
.

By definition of the cut-off functions we have

D =

(
1

2πi

)2 ∫
(2)

∫
(2)

( q

2π

)1+α+β+u+v Γ(u+ α + κ/2)

u

Γ(v + β + κ/2)

v

×ζq(1 + α + β + u+ v) du dv.

There are polar divisors of this meromorphic function on C2 at u = 0, v = 0, u+ v =

α+β, and some divisors far to the left coming from the poles of the gamma functions

which we may ignore. The main terms come from the divisors u = 0 and v = 0 while
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the terms coming from the pole of the zeta function at u+v = α+β cancel out later.

We begin by moving both lines of integration to the Re(u) = Re(v) = 1/4 lines.

Then move the line of integration in v all the way to Re(v) = −2. In doing so we

encounter poles at v = −(α+β+u) and v = 0. The remaining double integral on the

lines Re(u) = 1/4 and Re(v) = −2 contributes O(q1/4+ε) ≤ O(q1/2). The contribution

to D from the pole at v = −(α + β + u) is

− q

2π

φ(q)

q
Hκ(α,−β).

The contribution to D from the pole at v = 0 is

Γ(β + κ/2)
1

2πi

∫
(1/4)

( q

2π

)1+α+β+u Γ(u+ α + κ/2)

u
ζq(1 + α + β + u) du,

which after shifting the line of integration to Re(u) = −2 is

− q

2π

φ(q)

q

Γ(β + κ/2)Γ(−β + κ/2)

α + β
+
( q

2π

)1+α+β

Γ(α + κ/2)Γ(β + κ/2)ζq(1 + α + β)

+O(q1/2),

where the first explicit term here comes from the pole of ζq at u = −(α+ β) and the

second explicit term comes from the pole at u = 0. Note that, despite appearances,

the main terms of D here are indeed symmetric in α and β by Lemma 8. Taking all

4 choices of signs together we record

∑
±α,±β

D = − q

2π

φ(q)

q
(Hκ(α, β) +Hκ(α,−β) +Hκ(−α, β) +Hκ(−α,−β))

+
∑
±α,±β

( q

2π

)1±α±β
ζq(1± α± β)Γ(±α + κ/2)Γ(±β + κ/2) +O(q1/2).

We now compute the off-diagonal main term. Observe that when κ ≥ 6 we have
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by Mellin inversion the formula

J(2
√
x1x2) = iκ

1

2πi

∫
(2)

(2π)2sΓ(κ/2− s)
Γ(κ/2 + s)

(x1x2)s−1 ds,

see [GR07] §17.43. We use this formula for J and the definition of V to compute

W̌α,β(0, 0, q). One finds

W̌α,β(0, 0, q) = iκ
q

2π

1

2πi

∫
(2)

Γ(κ/2− s)Γ(κ/2 + s)

(s− α)(s− β)
ds = iκ

q

2π
Hκ(α, β).

We will compute in section 3.4, formula (3.7), that G(0, 0, q) = τ(χ)2φ(q), where τ(χ)

is the Gauss sum of the character χ. We have that the sum over the 4 choices of signs

for this off-diagonal main term is

1

q2

∑
±α,±β

G(0, 0, q)W̌±α,±β(0, 0, q) = iκ
τ(χ)2φ(q)

q2

q

2π

× (Hκ(α, β) +Hκ(−α, β) +Hκ(α,−β) +Hκ(−α,−β)) .

Finally, we require the explicit evaluation of the Gauss sum in the case of quadratic

characters, so we must suppose now that q is odd and square-free. In this case we have

τ(χ)2 = χ(−1)q. Recall that we chose iκ = χ(−1) to fix the sign of the functional

equation. Working these two equalities in above, one observes the cancellation of the

terms involving Hκ(α, β), and we are left with a main term which matches the one

found in the Theorem.

3.4 The Error Terms

The remainder of this chapter is devoted to rigorously establishing the error term

claimed in Theorem 4. The estimate is essentially by the Riemann hypothesis for

curves over finite fields, but we have chosen to restrict to curves over the prime field
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Fp because the restriction to squarefree level was already made in section 3.3.

We bound the arithmetic sumG(m1,m2, c) and the Fourier integral W̌α,β(m1,m2, c).

Let c = qr, and begin with the arithmetic sum.

Lemma 9 In general, we have the trivial bound

|G(m1,m2, qr)| ≤ q2r2. (3.5)

Suppose that q = p is a prime, and that m1 and m2 are not simultaneously 0 mod p.

Then we have that

|G(m1,m2, qr)| � q3/2r2. (3.6)

Proof. We open the Kloosterman sum.

G(m1,m2, qr) =
∑

(d,c)=1

[∑
a1

χ(a1)e

(
a1(m1 + d)

c

)][∑
a2

χ(a2)e

(
a2(m2 + d)

c

)]
.

Each set of brackets is a Gauss sum, so we compute

∑
a1

χ(a1)e

(
a1(m1 + d)

c

)
=

rτ(χ)χ
(
d+m1

r

)
if d+m1 ≡ 0 mod r

0 if d+m1 6≡ 0 mod r

and

∑
a2

χ(a2)e

(
a2(m2 + d)

c

)
=

rτ(χ)χ
(
d+m2

r

)
if d+m2 ≡ 0 mod r

0 if d+m2 6≡ 0 mod r.
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So, we have that

G(m1,m2, qr) = r2τ(χ)2
∑

(d,c)=1
d≡−m1 (r)
1≡−m2d (r)

χ(d)χ

(
d+m1

r

)
χ

(
1 + dm2

r

)
. (3.7)

Let d = −m1 + ur and let u run over residue classes (mod q). Then

G(m1,m2, qr) = r2τ(χ)2
∑

u mod q

χ(−m1 + ur)χ(u)χ

(
1−m1m2

r
+ um2

)
, (3.8)

with the understanding that this sum vanishes if Q := (1−m1m2)/r, is not an integer.

From 3.8 the first bound in the Lemma is established.

We now assume that q is prime so that we are summing over a finite field, and our

problem reduces to counting Fp points on the (sometimes degenerate!) curve defined

by the equation

v2 = rm2u
3 + (1− 2m1m2)u2 −m1Qu.

We may thus appeal to algebraic geometry to bound the character sums. Rather than

work out each degenerate case by hand, we appeal to Theorem 11.13 and Theorem

11.23 of [IK04], which are general enough to treat all of the degenerate cases of (3.8)

except for those in the statement of Lemma 9. �

Having removed the term m1 = m2 = 0, r = 1 we now return to the off-diagonal

sum from Proposition 4:

1

q2

∑
r>1

1

r2

∑
m1,m2

(m1,m2) 6=(0,0)

G(m1,m2, qr)W̌α,β(m1,m2, qr).

Note we have recorded that the sum vanishes if m1 = m2 = 0 and r > 1 by the

conditions on the sum in (3.7). Split the sums over m1 and m2 at q and use the RH
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bound (3.6) on the terms with either |m1| or |m2| < q. On the terms for which both

|m1| and |m2| ≥ q we use the trivial bound (3.5).

Now we turn to the Fourier integral. Observe that W̌α,β(m1,m2, qr) has very

simple dependence on q:

W̌α,β(m1,m2, qr) =
q

2π
(2πr)−(α+β)

∫ ∞
0

∫ ∞
0

J(2
√
x1x2)

xα1x
β
2

V1/2+α(rx1)V1/2+β(rx2)

×e(−m1x1 −m2x2) dx1 dx2.

Let us re-define our cut off functions slightly. Let

U1/2+α(rx) = (2πrx)−αV1/2+α(rx) =
1

2πi

∫
(2)

Γ(s+ κ/2)(2πrx)−s
ds

s− α
,

so that we have

W̌α,β(m1,m2, qr) =
q

2π

∫ ∞
0

∫ ∞
0

J(2
√
x1x2)U1/2+α(rx1)U1/2+β(rx2)

×e(−m1x1 −m2x2) dx1 dx2.

By shifting the contour we have for Re(α) < 1/2 that

xiU
(i)
1/2+α(x)�i x

−Re(α) (1 + |x|)−100 .

We show

Lemma 10 Uniformly for Re(α) and Re(β) < 1/2 we have

W̌α,β(m1,m2, qr)�
q

r2(1 + |m1|)2(1 + |m2|)2
.

Proof. At this point, we assume that κ ≥ 6 so that J(x) vanishes at the origin to
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order at least 4. We have by integration by parts that

W̌α,β(m1,m2, qr) =
1

m2
1m

2
2

q

2π

∫ ∞
0

∫ ∞
0

∂4

∂x2
1∂x

2
2

(
J(2
√
x1x2)U1/2+α(rx1)U1/2+β(rx2)

)
×e(−m1x1 −m2x2) dx1 dx2.

Expanding the derivatives, and applying the bounds for U(x), we see that

W̌α,β(m1,m2, qr) �
q

m2
1m

2
2

∫ ∞
0

∫ ∞
0

(
|J(2
√
x1x2)|

x2y2
+
|J ′(2√x1x2)|
x3/2y3/2

+
|J ′′(2√x1x2)|

xy
+
|J (3)(2

√
x1x2)|

x1/2y1/2
+ |J (4)(2

√
x1x2)|

)
×(rx1)−Re(α)(rx2)−Re(β) (1 + |rx1|)−100 (1 + |rx2|)−100 dx1 dx2

� q

m2
1m

2
2

∫ 1/r

0

(rx1)−α dx1

∫ 1/r

0

(rx2)−β dx2

� q

r2m2
1m

2
2

.

Likewise, by only differentiating in x1 or x2 and not the other variable, or not at all

we also obtain

W̌α,β(m1,m2, qr)�
q

r2m2
1

or

W̌α,β(m1,m2, qr)�
q

r2m2
2

or

W̌α,β(m1,m2, qr)�
q

r2
,

thus we obtain the stated bound. �

Split the sums over m1 and m2 at q, and apply Lemmae 9 and 10. We find that

the terms where one of |m1| or |m2| is small is O(q1/2), whereas the terms where both

|m1| and |m2| are large are O(1). Hence we obtain the Theorem.



Chapter 4

Transition Mean Values of Shifted

Convolution Sums

Let f be a classical GL2 holomorphic Hecke cusp form of full level and even weight κ,

and let e(z) := exp(2πiz). The cusp form f admits a Fourier expansion of the form

f(z) =
∑
n≥1

n
κ−1
2 λf (n)e(nz),

where the λf (n) are normalized so that |λf (n)| ≤ d(n) and λf (1) = 1. In this chapter,

we study “shifted convolution sums”, i.e. sums of the form

∑
n

λf (n)λf (n+ h).

These sums have many applications in analytic number theory. They often arise in

subconvexity results, and in off-diagonal terms in moment calculations for GL1 and

GL2 L-functions, see Sarnak [Sar01], or Michel in [Mic07], lecture 4. For a thorough

study of the shifted convolution problem, see the work of Blomer and Harcos [BH08].

In this chapter we obtain asymptotic estimates for shifted convolution sums after

98
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averaging over many shifts h, i.e. we study sums of the form

∑
h+Y

∑
n+X

λf (n)λf (n+ h), (4.1)

where the notation n + X indicates a sum over n of length X with a for-now-

unspecified smoothing. A variant of the sum (4.1) twisted by Dirichlet characters

χ(h) was studied by Michel in his chapter [Mic04] on the subconvexity problem for

Rankin-Selberg L-functions.

We show that when X and Y grow large in such a manner that Y 2/X →∞, the

double sum (4.1) has an asymptotic formula with well controlled error terms, and we

obtain nontrivial asymptotic upper bounds when Y 2/X → 0.

The transition range when Y 2/X = c is a fixed constant is the most interesting

case. In this situation, we derive an asymptotic main term for (4.1) which depends

delicately on the constant c. One may interpret the sum (4.1) as varying on the open

first quadrant of the (X, Y 2)-plane, and view asymptotic estimates as X and Y 2 go

to infinity as a description of the singularity at infinity in this quarter-plane. The

asymptotic behavior of (4.1) varies continuously on a blowup of the point at infinity

in the quarter-(X, Y 2)-plane.

Our results for shifted convolution sums are very similar to the interesting results

of Conrey, Farmer and Soundararajan in [CFS00] on transition mean values of the

Jacobi symbol. They study the sum

S(X, Y ) :=
∑
m≤X
m odd

∑
n≤Y
n odd

(m
n

)
, (4.2)

and similarly find asymptotic formulae when one of either X or Y grow much faster

than the other, and a transition region when X/Y is a fixed constant. The leading

term in the asymptotic they derive depends continuously on this constant. We will
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discuss in the next section how (4.1) and (4.2) are in fact quite similar to each other.

First, however, we state the main result of this chapter precisely. Define the

function cf on the positive real numbers

cf (α) :=
π

3
2

2
α
∑
n≥1

λf (n)2Wκ

(
π2nα

)
, (4.3)

with

Wκ(x) :=
1

2πi

∫
(2)

Γ(s+ κ− 1)Γ
(
s− 1

2

)
Γ(2− s)

x−s ds.

By shifting contours and using standard facts about the L-function L(s, f ⊗ f) (see

[Iwa97] section 13.8), one finds that cf (α) is a smooth function on the positive real

numbers which

• as α→∞ decays faster than any polynomial,

• as α→ 0

cf (α) =
Γ(κ)L(1, sym2f)

2ζ(2)
+ Eκ(α),

where Eκ(α) = oκ

(
α

1
2

)
unconditionally, and Eκ(α) = Oκ,ε

(
α

3
4
−ε
)

for any

ε > 0 assuming the Riemann hypothesis for the classical Riemann zeta function.

In the below Theorem ψ is a test function on R>0 which one chooses so that the

expression

(n(n+ h))
κ−1
2

∫ ∞
0

ψ(y)e−4π(n+h)yyκ−2 dy

becomes a cut-off function for the variable n.

Theorem 5 Let ψ be any measurable function on R>0 such that the incomplete

Poincaré series

Ph(z|ψ) :=
∑

γ∈Γ∞\Γ

e(hγz)ψ(Im(γz))
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is a smooth and bounded L2 function on Γ\H. Denote the average of shifted convo-

lution sums

Sf (ψ, Y ) :=
Y∑
h=1

∑
n≥1

λf (n)λf (n+ h)(n(n+ h))
κ−1
2

∫ ∞
0

ψ(y)e−4π(n+h)yyκ−2 dy.

Then we have that

Sf (ψ, Y ) =
1

(4π)κ

∫ ∞
0

(
cf
(
4πyY 2

)
− Γ(κ)L(1, sym2f)

2ζ(2)

)
ψ(y)

y2
dy

+Oκ

(
Y

1
3

(1+θ)

∫ ∞
0

|ψ(y)|
y

3
2

dy

)
,

where cf (α) is the function defined by (4.3) (see also Lemma 11 and Lemma 12),

and θ = 0 or 7/64 depending on whether we assume the truth of the generalized

Ramanujan Conjecture or not.

It should be noted that the size of the exponent of Y in the error term here

depends on the sharp cut-off in h, and could be made smaller upon smoothing that

sum.

As an example, one obtains the following Corollary by choosing ψ to be a sequence

of approximations to a point mass at y = (4πX)−1.

Corollary 3 Uniformly for Y � X we have

Y∑
h=1

∑
n≥1

λf (n)λf (n+ h)

(
n(n+ h)

X2

)κ−1
2

e−
n+h
X =

(
cf

(
Y 2

X

)
− Γ(κ)L(1, sym2f)

2ζ(2)

)
X

+Oκ

(
X

1
2Y

1
3

(1+θ)
)

where cf (α) is defied above and θ = 0 or = 7/64 depending on whether one assumes

the generalized Ramanujan Conjecture for Maass forms of SL2(Z) or not.
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As a benchmark, the best point-wise estimates for shifted convolution sums give

∑
n�X

λf (n)λf (n+ h)�f,ε (X + h)
1
2

+θ+ε, (4.4)

where θ is as in Theorem 5 above. The bound (4.4) follows from Theorem A.1 of

Sarnak’s paper [Sar01] and Mellin inversion. See also Michel [Mic07] section 4.4.2.

In Corollary 3, observe that if Y 2 is large compared to X we have that

Y∑
h=1

∑
n≥1

λf (n)λf (n+ h)

(
n(n+ h)

X2

)κ−1
2

e−
n+h
X ∼ −Γ(κ)L(1, sym2f)

2ζ(2)
X

and if Y 2 is small compared to X then

Y∑
h=1

∑
n≥1

λf (n)λf (n+ h)

(
n(n+ h)

X2

)κ−1
2

e−
n+h
X = oκ

(
X

1
2Y
)

+Oκ

(
X

1
2Y

1
3

(1+θ)
)
,

or better if we assume the Riemann hypothesis. In the transition region when Y 2 is

a constant multiple of X, the asymptotic growth is controlled by the function cf (α).

Now we describe the work of Conrey, Farmer and Soundararajan. Their result is

Theorem 6 (Conrey, Farmer and Soundararajan) Uniformly for all large X

and Y , we have

S(X, Y ) =
2

π2
C

(
Y

X

)
X

3
2 +O

(
(XY

7
16 + Y X

7
16 ) logXY

)
,

where for α ≥ 0 we define

C(α) =
√
α +

1

2π

∞∑
k=1

1

k2

∫ α

0

√
y

(
1− cos

(
2πk2

y

)
+ sin

(
2πk2

y

))
dy.



103

An alternate expression for C(α) is

C(α) = α + α
3
2

2

π

∞∑
k=1

1

k2

∫ 1
α

0

√
y sin

(
πk2

2y

)
dy.

From the first expression, one finds that after integrating by parts that

C(α) =
√
α +

π

18
α

3
2 +O

(
α

5
2

)
as α→ 0. The second expression gives the limiting behavior

C(α) = α +O
(
α−1
)

as α→∞.

The Theorem proved by Conrey, Farmer and Soundararajan has one surprising

feature which is not yet apparent the case of shifted convolution sums. The function

C(α) appearing in their result is once continuously differentiable everywhere, but it is

twice differentiable at αQ if and only if α = 2p/q with p and q both odd, see section

6 of their paper. It is necessary that the sum S(X, Y ) has a sharp cut-off for C(α)

to have such strange differentiability properties. In our work, we do not prove an

asymptotic result for a sharp cut-off, but we do have some flexibility in our choice of

cut-off functions. However, we expect that it should be possible to refine Theorem 5

to a sharp cut-off and in that case expect that the transition function should be twice

continuously differentiable, but that the second derivative will be almost nowhere

differentiable. A heuristic for this is given in the next section.
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4.1 Heuristic Connection of the Two Theorems

There are many parallels between our work and that of Conrey, Farmer and Soundarara-

jan, and moreover both results can be interpreted as averages of Fourier coefficients

of an appropriate Eisenstein series.

We first discuss the double sum of the Jacobi symbol. We have that

S(X, Y ) =
1

(2πi)2

∫
(c)

∫
(c)

Z(s, w)
Xs

s

Y w

w
ds dw

where c > 1 and

Z(s, w) :=
∑
m,n≥1
m,n odd

(
m
n

)
nsmw

. (4.5)

This is a simple example of a multiple Dirichlet series, and information about the

analytic properties of Z(s, w) would determine the asymptotic behavior of S(X, Y ).

Goldfeld and Hoffstein in [GH85] derive the analytic properties of Z(s, w) (actually,

they work with a slightly modified series), which crucially follow from studying weight

1/2 Eisenstein series for the congruence subgroup Γ0(4). If E 1
2
(z, s) is the weight 1/2

Eisenstein series at the cusp 0 (for details, see [GH85]), it has the Fourier expansion

E 1
2
(z, s) =

∑
m≥1

am(s, y)e(mx)

where

am(s, y) =
L2(2s, χm)

ζ2(4s)

ys

4s
Km(s, y),

where the subscript 2 indicates the omission of the Euler factor at the prime 2. This

Fourier coefficient is essentially L(2s, χm) times a well-understood K-Bessel function.

The residues of the pole at s = 1/2 of this half-integer weight Eisenstein series

can be given in terms of the classical theta function. Next, we explain how the
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classical theta function gives rise to the almost-nowhere differentiable function which

was found by Conrey, Farmer and Soundararajan.

In Conrey, Farmer and Soundararajan’s work the transition function C(α) is ex-

pressed in terms of Riemann’s classical non-differentiable function

f(x) :=
∑
n 6=0

1

πn2
sin(πn2x)

by the relation
d

dα

(
α−3/2C(α)

)
= −1

2
α−3/2 − α−5/2f(α/2).

Thus the transition function C(α) in Conrey, Farmer and Soundararajan’s result

inherits the non-differentiable properties of Riemann’s function. Moreover, Riemann’s

non-differentiable function f(x) arises as the limit behavior of the classical theta

function

θ(z) =
∑
n∈Z

e(n2z/2)

pushed towards the real axis. Indeed, the natural complexification of Riemann’s

non-differentiable function f(x) is given by

φ(x) =
∞∑
n=1

1

iπn2
e(n2x/2),

where we note that −2 Re(φ(x)) = f(x). We then have the “equation”

φ′(x) =
1

2
(θ(x)− 1) (4.6)

which holds formally between the derivative of an almost-nowhere differentiable func-

tion, and a series which fails to converge when x is real. A very nice explanation

of this phenomenon, with pictures, is given by Duistermaat in his expository article
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[Dui91].

Nonetheless, the equation (4.6) does make sense in terms of the theory of automor-

phic distributions developed by Miller and Schmid, see [MS08]. Miller and Schmid

in their paper [MS04] find that almost-nowhere differentiable functions arise as an-

tiderivatives of automorphic distributions generally. The series (4.5) inherits the pole

of the weight 1/2 Eisenstein series, and thus the main terms of S(X, Y ) inherit the

non-differentiable behavior of the theta function.

In the proof of our Theorem below, the reader will find that our transition function

cf (α) arises from the pole of an Eisenstein series as well, specifically, a pole of the real

analytic Eisenstein series of weight 0 and full level. With X the length of the shifted

convolution sum as in the previous section, the reader will find in the proof below that

we work with Fourier coefficients of this Eisenstein series at a height of 1/X above

the real axis, so that as X → ∞, we are indeed working with the corresponding

automorphic distribution.

The situation in this chapter and that of Conrey, Farmer and Soundararajan are

not exactly the same. As an example, the Eisenstein series appears in the present

chapter via the Rankin-Selberg theory of f ⊗f , but there is no Rankin-Selberg in the

work of Conrey, Farmer and Soundararajan. Nonetheless, we expect that if refined to

sharp cut-offs the transition function for averages of shifted convolution sums should

also have similarly strange differentiability properties, and that our heuristics can be

made rigorous.

4.2 Preliminaries

Our main approach to the Main Theorem is to take the Petersson inner product

of yκ|f |2 against an incomplete Poincaré series Ph(·|ψ). This approach was first

introduced by Selberg [Sel65], revisited by Sarnak [Sar01], and has been successfully
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used by many other authors to study shifted convolution sums in the past (for an

overview, see [Mic07]). Throughout this chapter we set Γ = SL2(Z), and let H

denote the upper half plane with its hyperbolic metric. We work in the Hilbert space

L2(Γ\H) of square integrable measurable functions with the Petersson inner product

〈u, v〉 =

∫
Γ\H

u(z)v(z) dµz.

The symmetric operator

∆ = −y2

(
∂2

∂x2
+

∂2

∂y2

)
acts on the subspace of smooth functions and moreover has a unique self-adjoint

extension to all L2(Γ\H), see Iwaniec [Iwa02] chapter 4. Given a classical holomorphic

normalized cuspidal eigenform f of weight κ, set F (z) := y
κ
2 f(z). We have that

|F | ∈ L2(Γ\H), but on the other hand it is no longer holomorphic. Let ψ(y) be an

infinitely differentiable compactly supported function on R>0, and let Γ∞ denote the

stabilizer in Γ of the cusp at infinity. Then we define the incomplete Poincaré series

Ph(z|ψ) :=
∑

γ∈Γ∞\Γ

e(hγz)ψ (Im(γz)) ,

which is a smooth and bounded function on Γ\H. By unfolding the inner product

〈FPh(·|ψ), F 〉 =

∫
Γ\H

yκ|f(z)|2Ph(z|ψ) dµz

on the Poincaré series, we find that

〈FPh(·|ψ), F 〉 =
∞∑
n=1

λf (n)λf (n+ h)(n(n+ h))
κ−1
2

∫ ∞
0

ψ(y)e−4π(n+h)yyκ−2 dy,
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i.e. this inner product is a smoothed shifted convolution sum with cut-off function

given in terms of an integral transform (similar to the Laplace transform) of ψ. The

behavior of ψ(y) as y tends to 0 is crucial to control the length of the shifted con-

volution sum. In connection with the previous section, it should be noted that if ψ

were a delta function, then taking the inner product against Ph(z|ψ) is equivalent to

taking the h-th Fourier coefficient.

Let uj be a complete orthonormal system of cusp forms which are eigenfunctions

of the Laplace operator and all Hecke operators. Because we are only working in level

1, we need not worry about old forms or the Hecke operators whose index divides the

level. Define the real analytic Eisenstein series by

E(z, s) :=
∑

γ∈Γ∞\Γ

Im(γz)s

for Re(s) > 1, and in general by analytic continuation. For each s 6= 0, 1, the

Eisenstein series are also eigenfunctions for the Laplace operator and all the Hecke

operators. We have then that

∞∑
j=1

〈Ph(·|ψ), uj〉uj(z) +
1

4π

∫ ∞
−∞
〈Ph(·|ψ), E(·, 1/2 + it)〉E(z, 1/2 + it) dt

converges to Ph(z|ψ) in the norm topology on L2(Γ\H), see Theorems 4.7 and 7.3 in

[Iwa02]. Then we have that

〈FPh(·|ψ), F 〉

=
∞∑
j=1

〈Ph(·|ψ), uj〉〈Fuj, F 〉+
1

4π

∫ ∞
−∞
〈Ph(·|ψ), E(·, 1/2 + it)〉〈FE(·, 1/2 + it), F 〉 dt,

(4.7)

and we will see later that the convergence is absolute and uniform in h.
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If u ∈ L2 (Γ\H) and ∆u = λu with λ = s(1−s), then u(z) has a Fourier expansion

given in terms of the K-Bessel function Kν(z), which is an exponentially decaying

solution to the differential equation

z2f ′′ + zf ′ −
(
z2 + ν2

)
f = 0.

We will primarily be interested in the K-Bessel function for purely imaginary ν, and

note some useful properties of these functions: first, that Kν(z) is real for real z,

second, that as Im(ν)→∞ in a fixed vertical strip, Kν(z) is decaying exponentially,

and last, that for ν = it, with t ∈ R, Kit(z) has a branch cut, which we take to be

along the negative real axis in the z-plane. As z → 0, we have that

|Kit(z)| ∼ π

∣∣∣∣ sin(t log z/2)

Γ(1 + it) sinh(πt)

∣∣∣∣
so long as one avoids the branch cut.

4.3 Proof of Theorem

We now proceed to the proof of the Main Theorem of the chapter by summing the

right side of (4.7) over h. Pointwise, the largest term comes from the discrete spectrum

(see [Sar01]), however, on average, the continuous spectrum dominates. We start with

the continuous spectrum contribution to (4.7).

4.3.1 Eisenstein Series

The Eisenstein series E(z, s) has a Fourier expansion given by

E(z, s) = ϕ(0, s) +
∑
n6=0

ϕ(n, s)Ws(nz),
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where

Ws(z) = 2y
1
2Ks− 1

2
(2πy)e(x).

If n = 0 and s 6= 1/2 then

ϕ(0, s) = ys +
ξ(2s− 1)

ξ(2s)
y1−s,

and if n 6= 0, the n-th Fourier coefficient of E(z, s) is given by

ϕ(n, s) = ξ(2s)−1|n|−1/2
∑
ab=|n|

(a
b

)s−1/2

,

where ξ(s) = π−s/2Γ(s/2)ζ(s) denotes the completed Riemann zeta function which

has the functional equation ξ(s) = ξ(1− s). If s = 1/2 + it, we find by unfolding the

Poincaré series that the inner product

〈Ph(·|ψ), E(·, 1/2 + it)〉 =
2

ξ(2s− 1)

∑
ab=h

(a
b

)s− 1
2

∫ ∞
0

ψ(y)

y3/2
e−2πhyKs− 1

2
(2πhy) dy

where we have used that ξ(2s) = ξ(2s) = ξ(2− 2s) = ξ(2s− 1). We can also unfold

the second inner product on the Eisenstein series. Following Iwaniec [Iwa97] Chapter

13, set

L(s, f × f) := ζ(s)L(s, sym2f) = ζ(2s)L(s, f ⊗ f) = ζ(2s)
∑
n≥1

λf (n)2

ns
,

where the last equality is valid only for Re(s) > 1. This L-function admits the

functional equation

Λ(s, f × f) = Λ(1− s, f × f),

where

Λ(s, f × f) = L∞(s, f × f)L(s, f × f)



4.3. PROOF OF THEOREM 111

with

L∞(s, f × f) := (2π)−2sΓ(s)Γ(s+ κ− 1).

By unfolding when Re(s) > 1, and in general after analytic continuation,

〈FE(·, s), F 〉 =
Λ(s, f × f)

(4π)κ−1ξ(2s)
.

Going back to the spectral expansion (4.7) and pulling these two inner products

together, we have that the Eisenstein series contribution to 〈FPh(·|ψ), F 〉 is

Ef,h(ψ) :=
1

(4π)κ−1

1

2πi

∫
( 1
2

)

Λ(s, f × f)

ξ(2s)ξ(2s− 1)

∑
ab=h

(a
b

)s− 1
2

∫ ∞
0

ψ(y)

y3/2
e−2πhy

×Ks− 1
2
(2πhy) dy ds.

The completed L and zeta functions have the same number of gamma factors in the

numerator and denominator, and Bessel function decays rapidly as | Im(s)| → ∞, so

the contour integral converges rapidly. It is interesting to note that the s integral

only makes sense because ξ(s)−1 has no poles and at most polynomial growth on

the Re(s) = 1 line, i.e. due to the prime number theorem. Indeed, one sees that

the contour is constrained between the poles in the critical strips of the two ξ(s)−1

functions appearing here. Due to the mysterious nature of the residues at these poles,

shifting contours seems to be a futile approach to understanding the asymptotic size

of Ef,h(ψ).

Introducing a sum over h clears this obstruction. We have to compute

Y∑
h=1

Ef,h(ψ) =
1

(4π)κ−1

∫ ∞
0

ψ(y)

y
3
2

1

2πi

∫
( 1
2

)

Λ(s, f × f)

ξ(2s)ξ(2s− 1)

Y∑
h=1

∑
ab=h

(a
b

)s− 1
2
e−2πyh

×Ks− 1
2
(2πyh) ds dy,

(4.8)
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and can evaluate the sum over h by standard techniques. We have by adapting

Theorem 12.4 from [THB86] (due to Van Der Corput) that

∑
h≤x

∑
ab=h

(a
b

)s− 1
2

= ζ(2s)
xs+

1
2

s+ 1
2

+ ζ(2− 2s)
x−s+

3
2

−s+ 3
2

+Os,ε

(
x

27
82

+|Re(s)− 1
2
|+ε
)
,

where the implied constants depend at most polynomially on |s|. It should be noted

that the error term here is not the best currently known, however, it is sufficiently

small as to not contribute to the final result of this chapter. By partial summation,

Y∑
h=1

∑
ab=h

(a
b

)s− 1
2
e−2πyhKs− 1

2
(2πyh)

= ζ(2s)

∫ Y

0

us−
1
2 e−2πyuKs− 1

2
(2πyu) du+ ζ(2− 2s)

∫ Y

0

u
1
2
−se−2πyuKs− 1

2
(2πyu) du

+ Os,ε

(
e−2πyYKs− 1

2
(2πyY )Y

27
82

+|Re(s)− 1
2
|+ε
)
.

Note that the two integrals appearing in the displayed equation are interchanged

under the transformation s ←→ 1 − s, by symmetry of the Bessel function. The

contour integral over s in
∑
Ef,h(ψ) is also symmetric under s ←→ 1 − s so that

these two integrals are identical in the overall sum, and we need only work one of

them out. The first integral can be evaluated explicitly, and the answer will be in

terms of hypergeometric functions. The confluent hypergeometric function that will

appear below is defined by the power series

1F1(a, b, z) =
∞∑
n=0

a(n)zn

b(n)n!

where

a(n) = a(a+ 1)(a+ 2) · · · (a+ n− 1) =
Γ(a+ n)

Γ(a)
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is called either the ‘rising factorial’ or ‘Pochhammer symbol’. The theory of hyper-

geometric functions is developed in detail in [Erd53]. It is entire on C separately in

each variable except for simple poles at b = 0,−1,−2, . . . by the absolute and uniform

convergence of the defining series, hence it is meromorphic on C3. We have that the

residues at these poles are given by

Res
b=−n

1F1(a, b, z) =
Γ(a+ n+ 1)(−1)n

Γ(a)Γ(n+ 2)Γ(n+ 1)
zn+1

1F1(a+ n+ 1, n+ 2, z),

see Gradshteyn and Ryzhik [GR00], 9.214.

We have the formulae

Kν(z) =
π

2

iνJ−ν(iz)− i−νJν(iz)

sin πν
,

e−z
Γ
(
s+ 1

2

)(
iz
2

)s− 1
2

Js− 1
2
(iz) = 1F1(s, 2s,−2z),

d

dz
1F1(a, b, z) =

a

b
1F1(a+ 1, b+ 1, z),

and
d

dz

(
zb−1

1F1(a, b, z)
)

= (b− 1)zb−2
1F1(a, b− 1, z),

where Jν(x) is the J-Bessel function, the second formula can be found in [GR00],

9.215 #3 and the last two formulae can be found in [Erd53] section 2.1.2. From these

it follows that

∫ Y

0

us−
1
2 e−2πyuKs− 1

2
(2πyu) du =

1

4(πy)
1
2 s

(Af (y, s) +Bf (y, Y, s) + Cf (y, Y, s)) ,

where

Af = Af (y, s) = (πy)−sΓ(1/2 + s)
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Bf = Bf (y, Y, s) = (πy)−sΓ(1/2 + s)1F1(−s, 1− 2s,−4πyY )

and

Cf = Cf (y, Y, s) = (πyY 2)sΓ(1/2− s)1F1(s, 1 + 2s,−4πyY ).

The ζ(2s) from the evaluation of the sum over h cancels against the ζ(2s) in the

denominator of (4.8), eliminating its poles. Given that Af +Bf +Cf is holomorphic

in s past the Re(s) = 0 line, we are now free to pass the contour to the left. Picking

up a residue at s = 0 we get

Y∑
h=1

Ef,h(ψ) = − Γ(κ)

(4π)κ
L(1, sym2f)

2ζ(2)

∫ ∞
0

ψ(y)

y2
dy +

1

(4π)κ−
1
2

∫ ∞
0

ψ(y)

y2

× 1

2πi

∫
(−a)

Λ(s, f × f)

ξ(2s− 1)

(Af (y, s) +Bf (y, Y, s) + Cf (y, Y, s))

π−sΓ(s+ 1)
ds dy

+Oκ,ε

(
Y

27
82

+ε

∫ ∞
0

|ψ(y)|
y

3
2

dy

)
,

where 0 < a < 1/2, and we have again made use of the prime number theorem in

estimating the error term.

The integrals over y converge at ∞, so the asymptotic size of
∑
Ef,h(ψ) depends

only on the behavior of ψ(y) for small y. We now make some estimates assuming

that y is small. The remaining contour integral

1

2πi

∫
(−a)

Λ(s, f × f)

ξ(2s− 1)

(Af (y, s) +Bf (y, Y, s) + Cf (y, Y, s))

π−sΓ(s+ 1)
ds

is a sum of three terms coming from Af , Bf and Cf . The term coming from Af is

�κ y
1
2 as y → 0. The hypergeometric function appearing in Bf is bounded above

and below by universal constants in the half-plane Re(s) < 0 and when 0 ≤ yY ≤ 4π,

thus term coming from Bf is also � y
1
2 , uniformly in Y . Thus it remains to inspect
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the term coming from Cf . Explicitly, let

Cf,1(y, Y ) :=
1

2πi

∫
(−a)

Λ(s, f × f)

ξ(2s− 1)

Cf (y, Y, s)

π−sΓ(s+ 1)
ds

=
1

2πi

∫
(−a)

Λ(s, f × f)

ξ(2s− 1)

Γ
(

1
2
− s
)

Γ(s+ 1)
1F1(s, 1 + 2s,−4πyY )

(
π2yY 2

)s
ds.

Thus

Y∑
h=1

Ef,h(ψ) = − Γ(κ)

(4π)κ
L(1, sym2f)

2ζ(2)

∫ ∞
0

ψ(y)

y2
dy +

1

(4π)κ−
1
2

∫ ∞
0

ψ(y)

y2
Cf,1(y, Y ) dy

+ Oκ,ε

(
Y

27
82

+ε

∫ ∞
0

|ψ(y)|
y

3
2

dy

)
.

In the transition region, Cf,1(y, Y ) is the crucial term.

Lemma 11 Suppose that y, Y ∈ R>0 with Y becoming large and y becoming small.

Then

Cf,1(y, Y ) =
1

2
√
π
cf
(
4πyY 2

)
+Oκ

(
y

1
2

)
,

where

cf (α) =
π

3
2

2
α
∑
n≥1

λf (n)2Wκ(π
2nα),

and

Wκ(x) =
1

2πi

∫
(1+a)

Γ(s+ κ− 1)Γ(s− 1
2
)

Γ(2− s)
x−s ds

for any fixed a > 0.

Proof. We apply the functional equation for the L-function to find that

Cf,1(y, Y ) = π2yY 2 1

2πi

∫
(1+a)

L(s, f × f)

ζ(2s)

Γ(s+ κ− 1)Γ(s− 1
2
)

Γ(2− s)

×1F1(1− s, 3− 2s,−4πyY )
(
4π3yY 2

)−s
ds.
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From the definition one finds that 1F1(1− s, 3− 2s, u) = 1 +Os(u), which we use to

eliminate the hypergeometric function from the above expression. We proceed in two

slightly different ways depending on whether yY 2 becomes large or becomes small.

If yY 2 remains bounded, either approach is acceptable. First, assume that yY 2 is

becoming small. In this case, choose a = 1/4, and observe that the s-dependence

in the hypergeometric function is uniformly bounded along the line Re(s) = 5/4.

Together with the rapid decay of the integrand of Cf,1(y, Y ), this gives us that∣∣∣∣Cf,1(y, Y )− 1

2
√
π
cf
(
4πyY 2

)∣∣∣∣�κ y
1
2 (yY 2)

1
4 .

If yY 2 becomes large shift the line of integration to the right, past the pole of

the hypergeometric function at s = 3/2 to a = 3/4. The contribution to Cf,1(y, Y )

coming from this residue is �κ y
1
2 , uniformly in Y , and the s-dependence in the

hypergeometric function is uniformly bounded along the line Re(s) = 7/4. We find

in this case that∣∣∣∣Cf,1(y, Y )− 1

2
√
π
cf
(
4πyY 2

)∣∣∣∣�κ y
1
2

(
1 + (yY 2)−

1
4

)
.

In either case, we obtain the error term stated in the Lemma. �

Lemma 12 The function cf (α) defined above is C∞(R>0). As α → ∞ it decays

faster than any polynomial, and as α→ 0

cf (α) =
Γ(κ)L(1, sym2f)

2ζ(2)
+ Eκ(α)

where Eκ(α) = oκ

(
α

1
2

)
unconditionally, and Eκ(α) = Oκ,ε

(
α

3
4
−ε
)

for any ε > 0

assuming the Riemann hypothesis for the classical Riemann zeta function.
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Proof. The Wκ(x) defined above is C∞(R) and its integrand has no poles to the

right, thus Wκ(x) is rapidly decaying as x → +∞. After differentiating the series

for cf (α) in the second line of Lemma 1 arbitrarily many times, the resulting series

for c
(n)
f (α) converges absolutely for any α > 0, so cf ∈ C∞(R>0). The rapid decay

of cf (α) follows from that of Wκ(x). By shifting the line of integration in the def-

inition of cf (α) to the left, we investigate the behavior of cf (α) near α = 0. The

main term comes from the residue of the pole of L(s, f × f) at s = 1, and the error

term is estimated by pushing the contour just past the Re(s) = 1/2 line, or to the

Re(s) = 1/4 + ε line if one assumes the Riemann hypothesis. �

Thus we have proved the following Proposition.

Proposition 5 For Ef,h(ψ) and cf (α) as defined above, we have that

Y∑
h=1

Ef,h(ψ) =
1

(4π)κ

∫ ∞
0

(
cf
(
4πyY 2

)
− Γ(κ)L(1, sym2f)

2ζ(2)

)
ψ(y)

y2
dy

+Oκ,ε

(
Y

27
82

+ε

∫ ∞
0

ψ(y)

y
3
2

dy

)
.

The term involving 27/82 is smaller than the remainder terms coming from Maass

forms, as we will see in the next section.

4.3.2 Maass Forms

The discrete spectrum of ∆ is spanned by Maass cusp forms. The Hecke algebra

acting on L2(Γ\H) is defined to be the algebra generated by the commuting self-

adjoint bounded operators Tn, where for u ∈ L2(Γ\H), define Tn by

(Tnu)(z) :=
1√
n

∑
ad=n

∑
b (mod d)

u

(
az + b

d

)
.
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These operators commute with ∆ as well, so in fact our basis of Maass forms can

be taken to be eigenfunctions of the Hecke algebra as well, and we denote the Hecke

eigenvalues of the Maass form uj by λuj(n). A Maass form of Laplace eigenvalue

λj = sj(1− sj) = 1/4 + t2j is cuspidal, so it has a Fourier expansion of the form

uj(z) =
∑
n 6=0

auj(n)Wsj(nz),

where

Wsj(z) = 2y
1
2Kitj(2πy)e(x).

For Γ = SL2(Z), it was known to Selberg in the early 50s that the smallest

Laplace eigenvalue λ1 is > 1/4, hence tj ∈ R. For a proof of this fact, see [Hej83],

chapter 11. Computationally, it has been verified that t1 = 9.53369526 . . ., see for

example [Hej91]. To apply the spectral theorem we must assume the normalization

||uj||2L2 = 1, in which case the Fourier coefficient and Hecke eigenvalue are related by

auj(n) =

(
coshπtj

2|n|L(1, sym2uj)

) 1
2

λuj(n),

where the symmetric square L-function appearing here is defined

L(s, sym2uj) =
∏
p

(
1−

αuj(p)
2

ps

)−1(
1−

αuj(p)βuj(p)

ps

)−1(
1−

βuj(p)
2

ps

)−1

.

The Hecke eigenvalues conform to the bound |λuj(n)| ≤ d(n)nθ, where the general-

ized Ramanujan Conjecture implies that θ = 0 is admissible, and the best known

unconditional bound is due to Kim and Sarnak [Kim03], which gives θ = 7/64.
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We call the Maass form contribution to (4.7)

Mf,h(ψ) :=
∞∑
j=1

〈Ph(·|ψ), uj〉〈Fuj, F 〉.

By unfolding we have

〈Ph(·|ψ), uj〉 =

(
coshπtj

L(1, sym2uj)

) 1
2

λuj(h)

∫ ∞
0

ψ(y)

y
3
2

e−2πhyKitj(2πhy) dy

so that

Y∑
h=1

Mf,h(ψ) =

∫ ∞
0

ψ(y)

y
3
2

∞∑
j=1

(
cosh πtj

L(1, sym2uj)

) 1
2

〈Fuj, F 〉
Y∑
h=1

λuj(h)e−2πhy

×Kitj(2πhy) dy.

Lemma 13 The spectral sum

∞∑
j=1

(
cosh πtj

L(1, sym2uj)

) 1
2

〈Fuj, F 〉
Y∑
h=1

λuj(h)e−2πhyKitj(2πhy)

appearing in
∑
Mf,h(ψ) converges absolutely.

Proof. There are three factors in the summand: that which involves cosh πtj ,

the inner product, and the sum over h. We show that the first of these two balance

each other, and then show that the sum over h decays rapidly in |tj|, uniformly in

the other variables. To study |〈Fuj, F 〉| we will use a beautiful formula of Watson

[Wat01], but follow a classical work-out of it from Soundararajan’s paper [Sou10]. In

that paper both f and uj are normalized to have mass 1, but in this chapter we take

f to be Hecke normalized so that Watson’s formula is

|〈Fuj, F 〉|2 =
1

8

(
Γ(κ)

(4π)κ
Vol (Γ\H)

ζ(2)

)2 Λ(1
2
, f × f × uj)

L∞(1, sym2f)2Λ(1, sym2uj)
,
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where

Λ(s, f × f × uj) = L∞(s, f × f × uj)L(s, f × f × uj),

L∞(s, sym2f) = π−
3
2
sΓ

(
s+ 1

2

)
Γ

(
s+ κ− 1

2

)
Γ

(
s+ κ

2

)
,

Λ(s, sym2uj) = L∞(s, sym2uj)L(s, sym2uj),

L∞(s, f × f × uj)

= π−4s
∏
±

Γ

(
s+ κ− 1± itj

2

)
Γ

(
s+ κ± itj

2

)
Γ

(
s+ 1± itj

2

)
Γ

(
s± itj

2

)
,

L∞(s, sym2uj) = π−3s/2Γ

(
s− 2it

2

)
Γ
(s

2

)
Γ

(
s+ 2it

2

)
and

L(s, f × f × uj) =
∏
p

(
1−

αf (p)
2αuj(p)

ps

)−1(
1−

αuj(p)

ps

)−2(
1−

βf (p)
2αuj(p)

ps

)−1

×
(

1−
αf (p)

2βuj(p)

ps

)−1(
1−

βuj(p)

ps

)−2(
1−

βf (p)
2βuj(p)

ps

)−1

.

The archimedian parts evaluate to

L∞(1
2
, f × f × uj)

L∞(1, sym2f)2L∞(1, sym2uj)
= 4π2 |Γ(κ− 1

2
+ itj)|2

Γ(κ)2

after repeated application of the duplication formula. Using this, Watson’s formula

simplifies to

|〈Fuj, F 〉| =
√

2
|Γ(κ− 1

2
+ itj)|

(4π)κ

(
L(1

2
, f × f × uj)

L(1, sym2uj)

) 1
2

(4.9)

for f Hecke normalized, and uj mass 1 normalized. By applying Stirling’s formula, we

find that |Γ(κ−1/2+ itj)|(coshπtj)
1
2 is polynomially bounded as |tj| → ∞. Together
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with standard convexity bounds in the |tj| aspect for L(1
2
, f × f × uj), we find that

∣∣∣∣ cosh πtj
L(1, sym2uj)

∣∣∣∣ 12 |〈Fuj, F 〉|
is polynomially bounded as |tj| gets large.

Now we turn to the sum over h. We have by a “folklore” result written down by

Hafner and Ivić [HI89] that

Y∑
h=1

λuj(h)�uj Y
1
3

(1+θ)

where θ = 0 or = 7/64 as above, and where the implied constants depend at most poly-

nomially on |tj|. As on the Eisenstein series side, the conjectural truth is Ou,ε(Y
1
4

+ε),

but this seems very difficult. By partial summation

Y∑
h=1

λu(h)e−2πhyKitj(2πhy)�uj e
−2πyYKitj(2πyY )Y

1
3

(1+θ)

+

∫ Y

1
2

u
1
3

(1+θ)

∣∣∣∣ ∂∂ue−2πyuKitj(2πyu)

∣∣∣∣ du,
where the implied constants again depend at most polynomially on |tj|. We have that

|Kit(u)| ∼ π | sin(t log u/2)|
|Γ(1+it) sinh(πt)| for small u, thus after taking derivatives, changing variables,

and using the power series expansion for the lower incomplete gamma function, we

have that
Y∑
h=1

λu(h)e−2πhyKitj(2πhy) ≤ P (tj)e
−π

2
|tj |Y

1
3

(1+θ), (4.10)

uniformly in y, where P (t) is a real-valued function on R that grows at most polyno-

mially as |t| becomes large. From these estimates together with Weyl’s law (see, e.g.
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Iwaniec [Iwa02]) ∑
|tj |≤T

1 =
Vol (Γ\H)

4π
T 2 +Oε

(
(1 + T )1+ε

)
the Lemma follows. �

We apply trivial estimates along with (4.10) to obtain the following proposition.

Proposition 6 For Mf,h(ψ) defined above we have

Y∑
h=1

Mf,h(ψ)�κ Y
1
3

(1+θ)

∫ ∞
0

|ψ(y)|
y

3
2

dy.

The application of trivial bounds is justified by the absolute convergence given by

Lemma 3.

Drawing together the Propositions from the two preceding sections, we obtain

Theorem 5.

4.4 Proof of Corollaries

Now we make some choices for ψ, and record the results as corollaries. First, we give

the result stated in the introduction.

Proof of Corollary 3. Let ψ be a smooth approximation to a point mass. Specifi-

cally, let ψ be smooth, non-negative, supported on a set of radius X−4 about the point

y = (4πX)−1 and have mass 1. Then for any continuously differentiable function φ

on R>0, we have∣∣∣∣φ( 1

4πX

)
−
∫ ∞

0

ψ(y)φ(y) dy

∣∣∣∣� ∣∣∣∣φ′( 1

4πX

)∣∣∣∣X−4,

where the implied constants are absolute. First, let φ(u) = uκ−2e−4π(n+h)u, so that
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∣∣φ′ ( 1
4πX

)∣∣�κ (n+ h)X3−κe−
n+h
X , and thus we find that

∣∣∣∣∣Sf (ψ, Y )−
Y∑
h=1

∑
n≥1

λf (n)λf (n+ h)
(n(n+ h))

κ−1
2

Xκ−2
e−

n+h
X

∣∣∣∣∣�κ,ε X
1+ε,

hence the difference between the left hand sides of the Main Theorem and Corollary

3 is �ε X
ε. Secondly, let

φ(u) =

(
cf (4πuY

2)− Γ(κ)L(1, sym2f)

2ζ(2)

)
1

u2
.

From the definition of cf (α) as a sum one sees that |c′f (α)| �f α
−1 as α→ 0, so that∣∣φ′ ( 1

4πX

)∣∣ �f X
3. The error term can be treated similarly. Hence, the difference

between the right hand side of Theorem 5 and the right hand side of Corollary 3 is

�f X
−2 with this choice of ψ. �

Let

Γ(s, x) =

∫ ∞
x

e−tts
dt

t

denote the incomplete gamma function.

Corollary 4 Let

Σf (X, Y ) :=
Y∑
h=1

∑
n≥1

λf (n)λf (n+ h)

(
1− h

n+ h

)κ−1
2 Γ(κ− 1, (κ− 1)n+h

X
)

Γ(κ− 1)
.

Then

Σf (X, Y ) = −L(1, sym2f)

2ζ(2)
X +

Y 2

Γ(κ− 1)

∫ ∞
(κ−1)Y

2

X

cf (u)

u2
du+Oκ

(
X

1
2Y

1
3

(1+θ)
)
.

The integral appearing here either cancels the main term if Y 2/X approaches 0, or

decays rapidly as a function of Y 2/X if this parameter grows without bound.

Proof. Let 1>x denote the indicator function of the open set (x,∞) ⊂ R. In



124CHAPTER 4. TRANSITIONMEANVALUES OF SHIFTED CONVOLUTION SUMS

similar fashion to the previous proof, let ψ(y) be a smooth approximation to

1

4πΓ(κ− 1)
1> κ−1

4πX
(y),

and compute the answer. �

The spectral theorem as used in this chapter holds for L2 functions which are also

C∞ and bounded, however, it should also hold for a much wider class of functions, and

thus Theorem 5 should in fact hold for a much wider class of functions. In practice

however, one may always obtain a corollary for a specific choice of ψ by elementary

arguments similar to the proof of Corollary 3, so we do not pursue the problem of

expanding the class of functions for which Theorem 5 holds.
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