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Abstract—Quantization plays a critical role in digital signal
processing systems. Quantizers are typically designed to obtain
an accurate digital representation of the input signal, operating
independently of the system task, and are commonly implemented
using scalar analog-to-digital converters (ADCs). In this work,
we study hardware-limited task-based quantization, where a
system utilizing a serial scalar ADC is designed to provide
a suitable representation in order recover a parameter vector
underlying the input signal. We propose hardware-limited task-
based quantization systems for a fixed and finite quantization
resolution, and characterize their achievable distortion. Our
results illustrate that properly designed hardware-limited systems
can approach the optimal performance achievable with vector
quantizers, and that by taking the underlying task into account,
the quantization error can be made negligible with a relatively
small number of bits.

Index terms— Quantization, Analog-to-digital conversion.

I. INTRODUCTION

Quantization refers to the representation of a continuous-

amplitude signal using a finite dictionary, or equivalently, a

finite number of bits [1]. Quantizers are implemented in digital

signal processing systems using analog-to-digital convertors

(ADCs), which typically operate in a serial scalar manner

due to hardware-limitations. In such systems, each incoming

continuous-amplitude sample is represented in digital form

using the same mechanism [2]. The quantized representation

is commonly selected to accurately match the original signal,

such that the signal can be recovered with minimal error from

the quantized measurements [3, Ch. 10], [4].

Quantization design is typically performed regardless of the

system task. However, in many signal processing applications,

the goal is not to recover the actual signal, but to capture

certain underlying parameters from the quantized signal [5].

We refer to systems where one wishes to extract some in-

formation from the quantized signal, rather than recovering

the signal, as task-based quantization, and to such systems

operating with serial scalar ADCs as hardware-limited task-

based quantization systems.

Hardware-limited quantization with low resolution is the

focus of growing interest over recent years. Common ap-

plications considered with low resolution hardware-limited

quantization include multiple-input multiple-output (MIMO)

communications [6]–[11], channel estimation [10]–[15], sub-

space estimation [16], time difference of arrival estimation

[17], and direction of arrival estimation [18], [19]. These

works assumed that quantization is carried out separately from

the system task, typically using fixed uniform low-precision
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quantizers. Thus, they do not provide guidelines to designing

quantization systems with a small and finite number of bits by

acknowledging the task of the system.

When hardware-limitations are not present, task-based

quantization systems can take advantage of joint vector quan-

tization, which is known to be superior to serial scalar

quantization [20, Ch. 22.2]. When the signal parameter is

random, task-based quantization can be viewed as an indirect

lossy source coding problem [1, Sec. V-G]. For this setup

with a stationary source that is related to the observation

vector via a stationary memoryless channel, [21] showed that

the rate-distortion function, namely, the minimal number of

bits required to obtain a given representation accuracy, is

asymptotically equivalent to the rate-distortion function for

representing the observed signal with a surrogate distortion

measure. Under mean-squared error (MSE) distortion, [22]

proved that this equivalence also holds for finite signal size.

Recently, [23], [24] characterized nonasymptotic bounds on

the rate-distortion functions with arbitrary distortion measures,

by considering single-shot quantization, and specialized the

bounds for i.i.d. signals with separable distortion. The focus

in [21]–[24] is on the optimal tradeoff between quantization

rate and achievable distortion. Consequently, their results do

not quantify the achievable performance of practical hardware-

limited systems utilizing serial scalar ADCs.

In this work we study quantization for the task of acquiring

a random parameter vector taking values on a continuous

set, from a statistically dependent observations vector, using

practical serial scalar ADCs operating with a fixed number

of bits. We focus on the case where the relationship between

the desired signal and the observed signal is such that the

minimum MSE (MMSE) estimate is a linear function of the

observations. Such relationships are commonly encountered

in channel estimation and signal recovery problems, e.g.,

[5], [8]–[15]. We consider practical systems implementing

uniform quantization with linear processing, allowing analog

combining prior to digital processing. This approach was

previously studied in the context of MIMO communications

as a method for reducing the number of RF chains [6],

[25]–[27]. For this setup, we derive the optimal hardware-

limited task-based quantization system, and characterize the

achievable distortion. The optimal system accounts for the

task by reducing the number of quantized samples via an

appropriate linear transformation to be not larger than the size

of the desired signal. It then rotates the quantized samples

to have identical variance. Quantization is performed based

on a waterfilling-type expression, accounting for the serial

operation and the limited dynamic range of practical ADCs.

We apply our results to the practical setup of channel esti-

mation from quantized measurements [10]–[15]. We demon-

strate that, by properly accounting for the serial scalar ADC,

practical hardware-limited systems operating with a relatively

small number of bits can approach the optimal performance,



achievable with vector quantizers, in practical and relevant

scenarios.

The rest of this paper is organized as follows: Section II

briefly reviews some preliminaries in quantization theory, and

formulates the hardware-limited task-based quantization setup.

Section III derives the hardware-limited task-based quantizer,

and Section IV presents a numerical study.

Throughout the paper, we use boldface lower-case letters

for vectors, e.g., x; the ith element of x is written as (x)i.
Matrices are denoted with boldface upper-case letters, e.g.,

M , and (M)i,j is its (i, j)th element. Sets are denoted with

calligraphic letters, e.g., X . Transpose, Euclidean norm, trace,

expectation, and sign are written as (·)T , ‖·‖, Tr (·), E{·}, and

sign (·), respectively, and R is the set of real numbers. We use

a+ to denote max(a, 0), and In is the n× n identity matrix.

All logarithms are taken to basis 2.

II. PRELIMINARIES AND SYSTEM MODEL

A. Preliminaries in Quantization Theory

To formulate the hardware-limited task-based quantization

problem, we first review standard quantization notations. To

that aim, we recall the definition of a quantizer:

Definition 1 (Quantizer). A quantizer Q
n,k
M (·) with logM

bits, input size n, input alphabet X , output size k, and

output alphabet X̂ , consists of: 1) An encoding function

gen : Xn 7→ {1, 2, . . . ,M} , M which maps the input into a

discrete index i ∈ M. 2) A decoding function gdk : M 7→ X̂ k

which maps each index i ∈ M into a codeword qi ∈ X̂ k.

We write the output of the quantizer with input x ∈ Xn

as x̂ = gdk (g
e
n (x)) , Q

n,k
M (x). Scalar quantizers operate on

a scalar input, i.e., n = 1 and X is a scalar space, while

vector quantizers have a multivariate input. When the input

and output are equally sized, i.e., n = k, we write Qn
M (·) ,

Q
n,n
M (·).
1) Standard Quantization: In the standard quantization

problem, a Qn
M (·) quantizer is designed to minimize some

distortion measure dn : Xn×X̂n 7→ R+ between its input and

its output. The performance of a quantizer is therefore char-

acterized using two measures: The quantization rate, defined

as R , 1
n logM , and the expected distortion E{dn (x, x̂)}.

For a fixed input size n and codebook size M , the optimal

quantizer is thus given by

Q
n,opt
M (·) = argmin

Qn
M

(·)

E {dn (x, Qn
M (x))} . (1)

Characterizing the optimal quantizer via (1) and the optimal

tradeoff between distortion and quantization rate is in general

a very difficult task. Consequently, optimal quantizers are

typically studied assuming either high quantization rate, i.e.,

R → ∞, see, e.g., [28], or asymptotically large input size,

namely, n → ∞, typically with i.i.d. inputs, via rate-distortion

theory [3, Ch. 10]. Comparing high quantization rate analysis

for scalar quantizers and rate-distortion theory for vector

quantizers demonstrates the sub-optimality of serial scalar

quantization. For example, for i.i.d. Gaussian inputs with the

MSE distortion and large R, vector quantization outperforms

serial scalar quantization by 4.35 dB [20, Ch. 23.2].
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Fig. 1. Hardware-limited task-based quantizer.

2) Task-Based Quantization: In task-based quantization the

design objective of the quantizer is some task other than

minimizing the distortion between its input and output. In the

following, we focus on the generic task of acquiring a zero-

mean random vector s ∈ Rk from a statistically dependent

measured zero-mean random vector x ∈ Rn, and n ≥ k > 0.

This formulation accommodates a broad range of tasks. A

natural distortion measure for such setups is the MSE, which

we consider henceforth.

B. System Model

In this work we study task-based quantization with serial

scalar ADCs. We focus on scenarios in which the MMSE

estimate of s from x, s̃ = E{s|x}, is a linear function of

x. Such relationships arise in various channel estimation and

signal recovery setups, e.g., [5], [8]–[15]. By focusing on these

setups, we are able to explicitly derive the achievable distor-

tion and to characterize the system which achieves minimal

distortion.

In the considered setup, each continuous-amplitude sample

is converted into a discrete representation using a single quan-

tization rule, this operation can be modeled using identical

scalar quantizers. Consequently, the system we consider is

modeled using the setup depicted in Fig. 1, and consists of

three steps:

1) Analog Processing: The observed signal x ∈ Rn is

projected into Rp, p ≤ n, using some mapping ha(·), which

represents the pre-quantization processing carried out in the

analog domain. Since general mappings may be difficult to

implement in analog, we henceforth restrict ha(·) to be a linear

function, namely, we only allow analog combining, as in, e.g.,

[6], [25]. In this case, ha(x) = Ax for some A ∈ Rp×n.

2) Scalar Quantization: Each entry of ha

(

x
)

is quantized

using the same scalar quantizer with resolution M̃p , ⌊M1/p⌋,

denoted Q1
M̃p

(·). The overall number of quantization levels is

thus
(

M̃p

)p ≤ M . In particular, the identical scalar quantizers

Q1
M̃p

(·) implement non-subtractive uniform dithered quanti-

zation [29]. Unlike subtractive dithered quantization, non-

subtractive quantizers do not require the realization of the

dithered signal to be subtracted from the quantizer output

in the digital domain, resulting in a practical structure [29].

To formulate the input-output relationship of the serial ADC,

let γ denote the dynamic range of the quantizer, and define

∆p ,
2γ

M̃p

as the quantization spacing. The uniform quantizer

is designed to operate within the dynamic range, namely, the

amplitude of the input is not larger than γ with sufficiently

large probability. To guarantee this, we fix γ to be some

multiple η of the maximal standard deviation of the input.

We assume that η <
√
3M̃p, such that the variable κp ,

η2
(

1 − η2

3M̃2
p

)−1
is strictly positive. Note that η = 3 satisfies



this requirement for any M̃p ≥ 2, i.e., the ADC is implemented

using scalar quantizers with at least one bit. The output of

the serial scalar ADC with input sequence y1, y2, . . . , yp can

be written as Q1
M̃p

(yi) = qp (yi + zi), where z1, z2, . . . , zp

are i.i.d. random variables (RVs) uniformly distributed over
[

−∆p

2 ,
∆p

2

]

, mutually independent of the input, representing

the dither signal. The function qp(·), which implements the

uniform quantization, is given by

qp(y) =















−γ +∆p

(

l + 1
2

) y − l ·∆p + γ ∈ [0,∆p]

l ∈ {0, 1, . . . , M̃p − 1}
sign (y)

(

γ − ∆p

2

)

|y| > γ.

Note that when M̃p = 2, the resulting quantizer is a standard

one-bit sign quantizer of the form qp(y) = c · sign(y), where

the constant c > 0 is determined by the dynamic range γ.

Dithered quantizers significantly facilitate the analysis, due

to the following favorable properties: The output can be

written as the sum of the input and an additive zero-mean

white quantization noise signal, and the quantization noise is

uncorrelated with the input. The drawback of adding dither is

that it increases the energy of the quantization noise, namely, it

results in increased distortion [29]. Nonetheless, the favorable

properties of dithered quantization are also satisfied in uniform

quantization without dithering for inputs with bandlimited

characteristic function, and are approximately satisfied for var-

ious families of input distributions [30]. Consequently, while

in the following analysis we assume dithered quantization,

exploiting the fact that the resulting quantization noise is white

and uncorrelated with the input, the proposed system can also

be applied without dithering. Furthermore, as demonstrated in

Section IV, applying the proposed system without dithering

yields improved performance, due to the reduced energy of

the quantization noise.

3) Digital Processing: The representation of s, denoted ŝ,

is obtained as the output of the mapping hd : Rp 7→ Rk,

applied to the output of the identical scalar quantizers. The

mapping hd(·) represents the joint-processing carried out in

the digital domain. We restrict the digital mapping hd(·) to

be linear, namely, hd(u) = Bu, B ∈ Rk×p. This constraint

leads to practical systems, and is not expected to have a notable

effect on the overall performance, especially when the error

due to quantization is small, since the MMSE estimator here

is linear.

The novelty of the model in Fig. 1, compared to previous

works on quantization for specific tasks with serial scalar

ADCs, e.g., [8]–[19], is in the introduction of the additional

linear processing carried out in the analog domain, repre-

sented by the mapping ha(·). The concept of using analog

combining prior to digital processing was previously studied

in the context of MIMO communications in [6], [7], [25]–

[27]. The motivation for introducing ha(·) is to reduce the

dimensionality of the input to the ADC, thus facilitating

a more accurate quantization without increasing the overall

number of bits, logM . As shown in the following section,

by properly designing ha(·), this approach can substantially

improve the performance of task-based quantizers operating

with serial scalar ADCs.

III. HARDWARE-LIMITED SYSTEMS DESIGN

We now characterize the optimal hardware-limited task-

based quantizer under the system model detailed in the pre-

vious section. Our characterization yields the optimal analog

combining matrix and digital processing matrix, denoted Ao

and Bo, respectively, and the corresponding dynamic range γ.

Since for any quantized representation ŝ, it follows from the

orthogonality principle that the MSE, E{‖s − ŝ‖2}, equals

the sum of the estimation error of the MMSE estimate,

E{‖s − s̃‖2}, and the distortion with respect to the MMSE

estimate, E{‖s̃ − ŝ‖2}, in the following we characterize the

performance of the proposed systems via the distortion with

respect to s̃. The results presented in this section are given

without proofs due to space limitations. Detailed proofs can

be found in [31].

Let Γ be the MSE optimal transformation of x, namely,

s̃ = Γx, and let Σx be the covariance matrix of x, assumed

to be non-singular. Before we derive the optimal hardware-

limited task-based quantization system, we first derive the

optimal digital processing matrix for a given analog combining

matrix A and the resulting MSE, which is stated in the

following lemma:

Lemma 1. For any analog combining matrix A and dynamic

range γ which guarantees that Pr
(∣

∣ (Ax)l + zl
∣

∣ > γ
)

≈ 0,

the optimal digital processing matrix is

Bo (A) = ΓΣxA
T

(

AΣxA
T +

2γ2

3M̃2
p

Ip

)−1

,

and the minimal achievable MSE is given by

MSE (A) = min
B

E

{

‖s̃− ŝ‖2
}

=Tr

(

ΓΣxΓ
T −ΓΣxA

T

(

AΣxA
T +

2γ2

3M̃2
p

Ip

)−1

AΣxΓ
T

)

.

The optimal digital processing matrix in Lemma 1 is the

linear MMSE estimator of s̃ = Γx from the vector Ax + e,

where e represents the quantization noise, which is white and

uncorrelated with Ax. This stochastic representation is a result

of the usage of dithered quantizers. Additionally, it is assumed

in Lemma 1 that the input to the quantizers is in the dynamic

range of the quantizers, namely, Pr
(
∣

∣ (Ax)l + zl
∣

∣ > γ
)

≈ 0
for each l, and we set the value of γ accordingly. When this

requirement is not satisfied, by the law of total expectation,

the resulting MSE includes an additional weighted term which

accounts for working outside the dynamic range.

We now use Lemma 1 to obtain the optimal analog com-

bining matrix Ao. Define the matrix Γ̃ , ΓΣ
1/2
x , and

let {λ
Γ̃,i} be its singular values arranged in a descending

order. Note that for i > rank
(

Γ̃
)

, λ
Γ̃,i = 0. The optimal

hardware-limited task-based quantization system is given in

the following theorem:

Theorem 1. For the optimal quantization system, the analog

combining matrix is given by Ao = UAΛAV T
AΣ

−1/2
x , where

• V A ∈ Rn×n is the right singular vectors matrix of Γ̃.



• ΛA ∈ Rp×n is a diagonal matrix with diagonal entries

(ΛA)
2
i,i =

2κp

3M̃2
p · p

(

ζ · λ
Γ̃,i − 1

)+

, (2a)

where ζ is set such that
2κp

3M̃2
p ·p

p
∑

i=1

(

ζ · λ
Γ̃,i − 1

)+

= 1.

• UA ∈ Rp×p is a unitary matrix which guarantees that

UAΛAΛ
T
AUT

A has identical diagonal entries, namely,

UAΛAΛ
T
AUT

A is weakly majorized by all possible rota-

tions of ΛAΛ
T
A [32, Cor. 2.1]. The matrix UA can be

obtained via [32, Alg. 2.2].

The dynamic range of the ADC is given by

γ2 =
κp

p
=

η2

p

(

1− η2

3M̃2
p

)−1

, (2b)

and the digital processing matrix is equal to

Bo (Ao) = Γ̃V AΛ
T
A

(

ΛAΛ
T
A +

2γ2

3M̃2
p

Ip

)−1

UT
A. (2c)

The resulting minimal achievable distortion is

E

{

‖s̃− ŝ‖2
}

=















k
∑

i=1

λ2

Γ̃,i

(ζ·λΓ̃,i
−1)

+
+1

, p ≥ k

p
∑

i=1

λ2

Γ̃,i

(ζ·λΓ̃,i
−1)

+
+1

+
k
∑

i=p+1

λ2
Γ̃,i

, p < k.

We note that, unlike task-based vector quantizers, the op-

timal hardware-limited system does not recover the MMSE

estimate s̃ in the analog domain. Since the quantization is

carried out using a serial scalar ADC, the optimal analog

combining rotates the input to the ADC such that each entry

has identical variance, accounting for the fact that the same

quantization rule is applied to each entry. Furthermore, the

optimal analog combiner includes a waterfilling-type expres-

sion over its singular values, which accounts for the finite

dynamic range of the ADC. In particular, the waterfilling

allows the optimal system to reduce the quantization error by

quantizing a non-bijective linear transformation of s̃ instead

of s̃ itself. To see this, we note that the matrix ΛA determines

the dynamic range γ. Consequently, by potentially nulling the

diagonal entries corresponding to the less dominant singular

values {λ
Γ̃,i}, the optimal quantizer can reduce the dynamic

range. This yields a more precise quantization and reduces the

quantization error, at the cost of a small estimation error.

Theorem 1 provides guidelines to selecting the dimensions

of the output of the analog combiner, as stated in the following:

Corollary 1. In order to minimize the MSE, p must not be

larger than the rank of the covariance matrix of s̃.

Corollary 1 indicates that analog combining should project

the observed vector such that the signal which undergoes

the serial scalar quantization has reduced dimensionality, not

larger than the rank of the covariance of s̃. This follows since,

by reducing the dimensionality of the input to the ADC while

keeping the overall number of quantization levels M fixed,

the quantization error induced by the scalar quantization is

reduced. The exact optimal value of p is determined by the

values of the non-zero singular values {λ
Γ̃,i}. In particular, the

MSE expression in Theorem 1 implies that decreasing p below

the number of non-zero singular values results in a tradeoff

between improving quantization precision and increasing the

estimation error. In the numerical analysis in Section IV we

demonstrate that using the proposed hardware-limited task-

based system, the quantization error is made negligible for

relatively small M , and the performance the MMSE.

IV. APPLICATIONS AND NUMERICAL STUDY

In this section we study the application of the proposed

hardware-limited task-based quantization system. We con-

sider the estimation of a scalar intersymbol interference (ISI)

channel from quantized observations, as in [12]–[14]. In this

scenario, the parameter vector s represents the coefficients of

a multipath channel with k taps. The channel is estimated from

a set of n = 120 noisy observations x, given by [12, Eq. (1)]

(x)i =

k
∑

l=1

(s)l ai−l+1 + wi, i ∈ {1, 2, . . . , n}, (3)

where ai is a deterministic known training sequence, and

{wi}ni=1 are samples from an i.i.d. zero-mean unit variance

Gaussian noise process independent of s. In particular, the

channel s is modeled as a zero-mean Gaussian vector with

covariance matrix Σs, given by
(

Σs

)

i,j
= e−|i−j|, i, j ∈

{1, 2, . . . , k} , K, and the training sequence is given by

ai = cos
(

2πi
n

)

for i > 0 and ai = 0 otherwise. Note that

s and x are jointly Gaussian, and thus the MMSE estimator

s̃ is a linear function of x.

In the following we evaluate the achievable distortion of

the resulting hardware-limited task-based quantization for this

setup. To that aim, we consider two channels: one with k = 2
taps and one with k = 8 taps, and let the overall number of

quantization bits be logM ∈ [2 ·k, 10 ·k]. As logM is strictly

smaller than n, any quantization system which is based on

applying serial scalar quantization to the observation x without

any processing in the analog domain, such as the quantization

systems considered in [12], [13], cannot be implemented here.

In the numerical study, we compute the achievable dis-

tortion of the optimal system derived in Theorem 1. Since

the covariance matrix of s̃ is non-singular for the considered

setup, we set p = k following Corollary 1. Furthermore, since

dithering increases the energy of the quantization noise, we

also compute the achievable rate of the proposed systems when

the ADCs implement uniform quantization without dithering.

These distortions are compared to the MMSE E
{∥

∥s− s̃
∥

∥

2}
,

which is the optimal distortion of a system with no quanti-

zation. Additionally, we also evaluate a lower bound on the

MSE of the optimal vector quantizer of [22], which is given

by the sum of the MMSE and the distortion-rate function of

s̃, see [31, Sec. III] for details.

Figs. 2-3 depict the distortions for k = 2 and for k = 8, re-

spectively. Observing Figs. 2-3, we note that hardware-limited

task-based quantizers approach the optimal performance as M

increases. In particular, when each scalar quantizer uses at

least five bits, i.e., logM ≥ 5k, the quantization error becomes

negligible and the overall distortion is effectively the minimum

achievable estimation error, i.e., the MMSE.
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Furthermore, we note that the proposed hardware-limited

task-based quantizers, designed assuming dithered uniform

quantizers, obtain improved performance without dithering.

This follows since the favorable properties of dithered quanti-

zation, which are accounted for in the design of the systems in

Section III, are approximately satisfied also for non-dithered

standard quantization, as noted in [30], without the excess

distortion induced by dithering. This illustrates that our pro-

posed design can be applied also without dithering, and that

the resulting performance is improved compared to systems

implementing dithered quantization.

V. CONCLUSIONS

In this work we studied hardware-limited task-based quan-

tization systems, operating with practical serial scalar ADCs,

for finite-size signals with finite-resolution quantization. We

characterized the optimal hardware-limited task-based quan-

tizer when the MMSE estimate of the desired signal is a linear

function of the observed signal. We showed that, unlike when

vector quantizers are used, quantizing the MMSE estimate

is generally not optimal. Finally, we applied our results to

channel estimation in ISI channels, and showed that the

performance of the optimal task-based vector quantizer can

be approached with a practical system utilizing a scalar ADC.
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