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Global expanding solutions of compressible Euler equations with small
initial densities

Shrish Parmeshwar* Mahir HadZi¢! JuhiJ angi

Abstract

We prove the existence of a large class of global-in-time expanding solutions to vacuum free boundary com-
pressible Euler flows without relying on the existence of an underlying finite-dimensional family of special affine
solutions of the flow.
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1 Introduction

In this work we prove the existence of a wide class of global solutions to the free boundary isentropic compressible
Euler equations expanding into the vacuum, under a suitable assumption of smallness on the initial gas density and
an outgoing condition on the initial velocity profile which roughly speaking states ug(x) ~ x. The key property of
the Euler flow is the behaviour under scaling of the nonlinearity, which generates a stabilising effect under a suitable
outgoing condition on the initial velocity profile. We work in a vacuum free boundary setting which translates this
stabilising effect into the expansion of the gas support. Through the mass conservation this will, morally speaking,
force the gas density to decay and hence disperse away as ¢ — 0.

We work with the compressible Euler equations describing the motion of an isentropic and ideal gas. We consider
the free-boundary formulation of the problem wherein a blob of gas supported on a moving domain Q(t) C R? is
surrounded by vacuum. Further unknowns are the gas velocity vectorfield u, the density p, and the pressure p. We
assume the isentropic equation of state

p=P(p)=p", 7>1. @

The associated system of equations takes the form

Op+V-(pu)=0 inQ(¢), (2a)
p(Or+u-V)u+V(p")=0 inQ(t), (2b)
p=0 ondQt), (2¢)
V (09(t)) = u-non 0Q(t), (2d)
equipped with initial conditions
(p,u) = (po,up) on = Q(0). 3)

Here V (0€2(t)) denotes the normal velocity of 9Q(t), and n is the outward unit normal of 0§(t).
A crucial requirement for the well-posedness theory of the moving vacuum boundary Euler equations is the
so-called physical vacuum condition [13, 9]. We first define the speed of sound c through the relationship

dP _
c2zd—:'yp'y L “4)
1)
Then the physical vacuum boundary condition reads
o 2
—o < 2| <o 5)
on |50
If we set
w(z) == p M (x), (6)

then (5) in particular implies that there exists a constant C' > 0 such that

édist(a:, 09) < w(z) < Cdist(z, 9Q) %

in the vicinity of the initial vacuum boundary 9€). Quantity w is proportional to the enthalpy of the system and it
will play an important role in our analysis. For notational convenience, define

ot ®)
so that pp = w®.

There are several works on the expansion-into-vacuum for gases described by the compressible Euler flows. As
a rule, the vast majority of such results rely on a reduction of the flow to a finite-dimensional dynamical system, by



means of separation of variables arguments for the Lagrangian flow map. Such reductions of compressible flows
with the affine ansatz on the Lagrangian flow can be tracked back to the works of Ovsiannikov [14] and Dyson [2],
where one may obtain solutions with different properties based on the choice of the equation of state. With the choice
of the equation of state (1), a finite dimensional class of special affine compactly supported expanding solutions of
the vacuum free boundary compressible Euler flows was discovered by Sideris [19, 18]. Nonlinear stability of such
motions was shown by HadZi¢ and Jang [5] for the range of adiabatic exponents 1 < vy < g and it was extended to
the range v > % by Shkoller and Sideris [16].

In the absence of free boundaries, the stabilising effect of the expansion was already understood by Serre [17]
and generalised in the subsequent work by Grassin [3]. In the latter work a class of smooth expanding solutions to
Euler equations with small initial densities was constructed for any v > 1. In 2003 Rozanova [15] also showed the
existence of a class of global solutions with expansion as a driving mechanism. The associated velocity profiles are
essentially linear (or affine) - this amounts to an assumption on the initial velocity field that drives the expansion of
the fluid, which in turn overcomes a possible focusing effect that can lead to shock formation.

It is well-known that the presence of the free boundary causes severe difficulties in the analysis, and a central
theme in the well-posedness theory is a delicate interplay between the energy estimates and the transport equation
satisfied by the vorticity of the velocity vector field [1, 8, 10, 11]. Our analysis is performed entirely in Lagrangian
coordinates and our solutions are unique in a suitable regularity class which includes the physical vacuum boundary
condition (5).

Our main result, Theorem 4.1, shows by contrast to [5, 6, 16] that the global existence of expanding solutions
does not crucially depend on the existence of the underlying ODE-type affine motions. Instead, in addition to the
stabilising effects of the expansion described in [5], this work exploits an additional scaling structure of the problem,
already observed in [6] for the Euler-Poisson system, which allows us to insert a small parameter in front of the fluid
density. As a consequence we identify an open class of initial data, with small, but otherwise essentially arbitrary
density profiles satisfying (7) which lead to the global existence for (2)—(5).

2 Lagrangian Coordinates, Rescaling, and Derivatives

The well-posedness theory for (2) with the physical vacuum condition (5) was developed independently in [11]
and [1] for domains that are periodic in two directions. For the purpose of this work we rely on the well-posedness
framework developed in [11] that has been suitably adapted to handle ball-like domains in [5]. At the heart of this
approach are the Lagrangian coordinates; they allow us to pull back the free boundary problem onto a fixed domain.

2.1 Lagrangian Coordinates

In order to address the movement of the vacuum free boundary, we shall reformulate the problem using the La-
grangian coordinates. To that end we introduce the flow map 7 : [0,7] x 2 — R3 as a solution of the ordinary
differential equation

8t77(t>$) = u(t,n(t,a:)), te [0>T]7
n(0,z) =, ©9)

for some T' > 0. Let



The following differentiation identities are useful to note:

OAF = —ALoO" A3, (10)
0T = J A0, (11)

where 0 = 0; or 0 = 0;, 1 = 1, 2, 3. Here and hereafter we use the Einstein summation convention. From these, and
the definition of a, we obtain the Piola identity

opakf = 0. (12)

We now pull back (2)—(3) with respect to the Lagrangian coordinates, thus fixing the domain. The new system of
equations is given by

Of + fAIDW =0 inlxQ, (13)
fo' + Ak0LfY =0 inlxQ, (14)
f=0 onl x 09, (15)

(f:v,m) = (po,uo, ) in{t =0} x Q. (16)

Note that we can use the identity (11) with the differential operator 0, to rewrite (13) as
Of+ I 10T = 0.
This simplifies to 0, (log fJ) = 0, which gives the formula
IT = po=w" (17)
Multiplying (14) by 7, and using (12), we arrive at
w*dt + akoy, (P T 7)) = w* o' + 0y, <afp7t7_7> = 0.

Using the identities p? = w!'™® and afj‘“’ = Afjl_”’ = Afj_l/a, we finally obtain

w*Ayn’ + Oy (wHa.Afj_l/o‘) =0 inl xQ, (18a)
(v,m) = (ug,z) in {t =0} x Q, (18b)
w=0 on 0f2. (18¢)

2.2 Rescaling and a new formulation

As the expected mechanism for the global existence is the expansion of the support of 2(¢), we pass to a new set of
variables:

T =log (1 +1), (19)
C=en. (20)

We then define
v=0.C, M=D¢ o =D, F=detd, a= F. (21)

Comparing with Lagrangian coordinates, we have similar differentiation formulae for the jacobian, and inverse of
the gradient, given by

Ot = —aF00,(" oy, (22)
07 = Ja700(", (23)



giving rise to an analogous Piola identity:

opak = 0. (24)

Now the chain rule gives us

dr 1

Oh=—0,=—-0;,=¢ "0
LTt 1+t °
Applying this to the first term in (18a), we get
de™ 0
om(t,x) = %C + eTa—C =e e(+ee (G =((1,2)+ (T, x),
T

which implies
8tt77 = e_TCT + e_TCTT'

Now, for the pressure term, we can see that ¢ = det D{ = det (e7"Dn) = e 37T, Finally, Mf = eT///ik, and
therefore A¥ = e~7./*. Combining these identities allows us to rewrite (18a) as

T o N e A B

Multiplying by the appropriate power of €7 to get rid of exponential terms on the pressure term we get

we (¢l + 1) + 0 (Wit g ) =, (25)
where for clarity, we define
3
B=—=3(y—-1). (26)
o
In this paper we assume
Q(0) =Q = By, (27)

the closed unit ball on R3. Assumption (27) will simplify some of the technical steps in the proof, but we can easily
treat more general domains that are small smooth deformations of domains of the form AB1(0), for A € GL™(3)
(i.e. small deformations of ellipsoids).

We also introduce an ansatz for the weight function w.

Definition 2.1. Let W : Q — R be a given nonnegative function such that

o W > 0onint(Q) and
Wlaq = 0. (28)

o There exists a positive constant C' > 0 such that for any x € ()

%d(ac, 9Q) < W (x) < Cd(z, 0), (29)

where x +— d(x,0%) is the distance function to OS).

o The function given by

(30)

is smooth on a neighbourhood of the boundary 0.



For any 6 > 0 we consider the enthalpy profile
w(z) = ws(x) = oW (x).

The set {ws}scr.., forms a I-parameter family of initial enthalpies, which generate a I1-parameter family of the

corresponding initial densities via
[e%

po(x) = ws(x)*.
Remark 2.2. A model example of a function W satisfying the above assumptions is W (r) = (1 — r2),.

Remark 2.3. The parameter § > 0 will be assumed small in our work and will be used as an effective measure of
smallness for the initial gas density. The freedom to make § > 0 small will be crucial in our strategy, as it will also
be used as an additional small factor in the closing our estimates. Without this smallness our strategy would fail.

From now on we drop the explicit J-dependence in w;s and simply write w. Using such a choice of w in (25) and
Definition 2.1, upon dividing (25) by 6%, we obtain

1 . .
SWEET (G Gh) + 0 (Wt g 1) ~ 0. 31
We shall look for solutions where ( is a small perturbation of the identity map. To that end, we introduce
0=(—ux,
and note that 8, = (. Then (31) reads
1 . .
SWOET (61, + 61) + (W”%sz 7 —l/a) ~0. (32)
Muliplying (32) by 6; and integrating over €2, we arrive at
11d 1 B ;
- Jekg 0 2Wa d “ (12 / BT 0 2Wa d ((Wl+a52f-k —1/a> 92) -0
53 7r Qe 6] 3:—1—5< 5 Qe 6] T+ w7 ) o)

Therefore, to guarantee the non-negativity of the second term on the left-hand side above, it appears necessary to
assume 1 — 3/2 > 0, which is in turn equivalent to y < 5/3. This apparent restriction is analogous to the one in [5].
A way to go around this when 3 > 2 has was introduced in [16]: we multiply (32) by e2~#)7 and obtain

%W“e% (61, +62) + 7, (W1+a%k /—W) —0. (33)

This removes the above mentioned issue with the potentially wrongly signed damping term, at the expense of a
negative exponential in front of the pressure term. Nevertheless, we will be able to close our estimates, thereby
allowing some of the spatial norms to grow as 7 — oo when 5 > 2.

To unify the two cases we introduce some more notation

Definition 2.4. For any 3 € (0, 00) we define

_ ) B =2
_fo0  ifB<2

Remark 2.5. Note that 1() + o2(5) = B.

We shall drop the explicit 5 dependence in o1(f3), 02(/3) and write instead o1, 09 respectively. We recall that

B = % = 3(y — 1). We may therefore rewrite our system succinctly as

%W%W (61, 4 602) + e 0 (W”a.@gk /—W) =0 in T x Q, (36a)
(v,0) = (ugp — z,0) in {7 =0} x Q, (36b)

where the profile W is given in Definition 2.1, § > 0 is a constant, and ¢;, ¢ = 1, 2, are given in Definition 2.4.



3 Notation

3.1 General Notation

For a function ' : O — R, some domain O, the support of F'is denoted supp F'. For a real number A, the ceiling
function, denoted [\], is the smallest integer M such that A < M. For two real numbers A and B, we say A < B
if there exists a positive constant C' such that

A< CB, (37

and for two real valued functions f and g, we say f < g if f(z) < g(x) holds pointwise. For two real-valued
non-negative functions f,g : O — R>g, some domain O, we say f ~ g if there exist positive constants c; and c
such that

ag(z) < f(z) < ag(w), (38)

forallz € O.
For a collection of rank 2 tensors M[i|,i = 1,...,j by

M]... M[j), (39)

we mean a particular element of the rank 27 tensor M[1] ® - - - ® M[j], that is, something of the form

ki
ML ML, (40)
for some kq,i1,...,k;j,4; € {1,2,3}. We say this is a schematic representation of the object. Note that this
notation is ambiguous and will only be used when we are looking to bound such a quantity using the properties of
MI1],..., M[j] themselves, rather than any of their specific elements.
We also record the definition of the radial function on €2 = Bj the unit ball:
T Bl — RZO
x> r(z) = x| (41)
It is convenient to define shorthand for the distance function on 2. Define
do(x) = d(z,00). (42)

3.2 Derivatives

As we have seen above, rectangular derivatives will be denoted as 0;, for ¢ in 1, 2, 3. In addition, we define various
rectangular and ¢ Lie derivatives that will be used throughout. The gradient, divergence, and curl on vector fields
are given by

[VF]: = §;F", (43)
div F = 9;F", (44)
[curl F]' = ¢;;,0; F*, (45)
fori,7 =1,2,3.
The ¢ versions are given by
V¢ F) = o OpF", (46)
dive F = o0, F', 47)
leurle F)' = &;5,.9/ O, F". (48)



In addition, we also need the matrix ¢ curl, given by
[Curle F|} = o/ 0,F" — of? 0. F. (49)

As stated in (27), our initial domain will be the closed unit ball in R3, so Q = Bj. Therefore, there exists a
natural choice of spherical coordinates (r,w, ¢). An advantage of this choice of domain is that we can privilege the
outward normal derivative, the direction in which the degeneracy of the problem occurs, due to the vacuum boundary
condition.

Accordingly, in essence we use O, as the normal derivative, and J,,, 0, as the tangential derivatives. However we
modify these derivatives by using linear combinations. These modifications allow for better commutation relations
with the rectangular derivatives.

Let the angular derivatives #;; and radial derivative A be given by

ﬁij = :L'Z'aj — :L'jai, (50)
A= 1’,82 = r@r, (51)
where the x; and 0; are rectangular, and 4, j run through 1,2, 3.

Remark 3.1. The coefficients of the derivatives we have defined go to 0 at the origin, which means we can only
use them to do estimates on a region separated from the origin. This can be dealt with using a partition of unity
argument. Near the boundary we use these modified spherical derivatives, and on the interior, we are free to use
rectangular derivatives as the degeneracy at the vacuum boundary is not an issue in this case.

Now, for m € Z>g, and n = (n1,ng,n3) € Z?;O, we define
AP = NPTV D53. (52)
Although there are six non-zero # derivatives to consider, ﬁij = —ﬁji, so (52) covers all cases. For such an
n e Z?éo, In| = n1 + ng + ng.
Similarly for rectangular derivatives we define, for k = (k1, k2, k3) € Z%O,

VE =911 52950 (53)

We have the commutation relations between the modified spherical and rectangular derivatives, for ¢, j, k, m €
{1, 2,3}, given by

i, ] =0, (54)
iy, D] = D, (55)
[Om, ] = Om, (56)
[amyﬁ]z] - 5mja 5mzaj (57)

We also define commutators between the higher order differential operator defined in (52), and V:
([V,A™ @™ F); = 0; (A™F"F") — A" (9, F") . (58)

We can do the same thing with V:

(IVe, A™ 8] F)} = o/ o) (A" 92F") — A" 9" (/O F*) (59)
V¢, VE F) = ko, (VEFY) - VE (oo, P . 60
([ 9] #), = oon (V2F) =" (o 0ur") )

There is no corresponding definition to (60) for V, as V and V£ commute for all k € Z?éo- Note that (59) and (60)
also define analogous objects for Curl: and div, as the former is V — VT, and the latter is Tr V.
We also use the following decomposition frequently:

I'j €Ty
= r—zﬁji + 54 (61)



3.3 Higher Order Energies and Local Well-Posedness

We now define the function spaces, and their associated norms, that we use to prove global-in-time solutions for (36)
with small initial data.

As noted in Remark 3.1, our choice of derivatives requires a separation of the analysis in two parts; near the
boundary of the ball, and near the origin. Our choice of function spaces will reflect this fact. Let 0 < r; < rg <1
be given and define a smooth cutoff function 1 on the unit ball such that

[ 1 ifreir,l]
¢_{ 0 ifre(0,r] ’ ©62)

and such that 1W/dq, is smooth on supp v, as in (30). In addition define ¢ by
P=1-1. (63)

Before we define our energy spaces, recall the definition of « given in (8) and W in Definition 2.1, and that our
initial domain 2 is given by the closed unit ball B; on R3.

Definition 3.2. Let b € Z>q and define the space X b py
o _ 2
xb = {W2F e L*(Q): / Wty \Amﬁﬂﬂz + WY ‘VEF‘ dr < 00,0 < max (m + |n|, |k|) < b} )
Q

The norm of X is given by
b b B 9
IFI3 = > /wwa+myAmﬁ”F12dx+ 3y /wwa(ka( dz. (64)
m+|n|=07¢ k=07

For 9 € {V,V,div,div¢, Curl, Curle } define the set V(D) by
o _ 2
W(2) = {WHT@F e L2(Q) : / Witetm g=1/ay | gAmgnp|? 1 wite) (QVEF‘ dz < oo,
Q
0 < max (m + |n|,|k]) < b},

and associate to it the quantity

b b
_ 2
IF 30y = Y. /Q¢W1+°‘+m/‘l/°‘|_@AmﬁﬂF|2d:n+ > /Q¢W1+a/—1/a QVEF( de.  (65)

me+|nl=0 k=0

Remark 3.3. By the assumption (29), W is bounded uniformly from below and above by some constant depending
on 11 in all of the above integrals that are weighted by 1. In particular, it is strictly speaking superfluous to keep the
corresponding powers of W in such integrals, but it provides a notational unity in the derivation of various energy
identities and does not create any issues.

Remark 3.4. It is important to note that while X° is a Banach space with ||-|| y» as its norm, the same is not true for
V(D) for any of the possible choices of 9 given in Definition 3.2. Nevertheless, the non-negative quantity ||- ||yb( 2
is crucial as it forms part of our higher order energy function.

We now define our higher order energy function and Curl; energy functions. Recall § from Definition 2.1.

Definition 3.5. Let (v,0) be the solution to (36) on [0, T in the sense of Theorem 3.6, for some N > 2[«| + 12.
We define, for all T € [0, T, the total energy

IN(T) = SNn(v,0,71)

<1 o1r!
‘= sup 56 !

s (5 ) o+ [0+

1 ,
H(Tl)Hi)N(vC) +oe

9(7—/)H§)N(divC)> )
(66)



and the curl energy
En(r) =Cn(v.0,7)

—oa1’ 2 9
- OSSE’I;Te i (HV(T,)HJ)N(Curl<) + HH(T,)H:)/N(CurIC)> . (67)

The local well-posedness theory for (18a)—(18c) is given in [11]. From this proof we can adapt an argument to
show local well-posedness for (36).

Theorem 3.6 (Local Well-Posedness of the Rescaled Free Boundary Euler System). Let N be an integer such that
N > 2[a] + 12, with a defined in (8). Additionally, assume that VW € XN, Let ug be such that

IN(0) +En(0) = Sy(up — 2,0,0) + Cn(up — ,0,0) < oco.
Then, there exists a T > 0 such that there exists a unique solution (v, 0) to (36) on the interval [0, T] such that

In(T) 4+ En (1) < 2(SN(0) + En(0) +V6), Vrelo,T],
(1(0),6(0)) = (ug — z,0).

Moreover, the function T — SN(T) is continuous.

4 Main Theorem and A Priori Assumptions

Now we state the main theorem. Recall the definition of « in (8), as well as TV and § in Definition 2.1.

Theorem 4.1 (Global Existence of Expanding Solutions with Small Initial Data). Ler v € (1, 00), or equivalently,
a € (0,00). Let N be an integer such that N > 2[a| +12. Assume VW € XN. Then there exists sufficiently small
d,e0 > 0 such that for all 0 < ¢ < &g, and ug with

IN(0) +En(0) = Sy (up — 2,0,0) + Cn(ug — ,0,0) < e,

there exists a global-in-time solution to (36), with (up — x,0) as the initial conditions, and
In(r) < C (s + \/3) , Ve [0,00), (68)

some constant C. Finally, there exists a T independent function 0, : By — R? such that
0(7) = 0|l yn — 0 7 — 00. (69)

Remark 4.2 (Initial density profiles). The above theorem in particular implies that there exists a global solution
to (18a)—(18b) with initial densities of the form py = w§ = 0“W< and the initial domain ) = B1(0). There-
fore, apart for the smallness parameter & and the physical vacuum condition (30), the density profile is essentially
arbitrary! This highlights the difference to the results relying on finite-dimensional reductions of the flow [19, 14, 2].

Remark 4.3 (Initial velocity profiles). Unlike the densities, there is more rigidity for the initial Eulerian velocity
profile, as it takes the form of a nearly linear field

up(x) = x4+ 0;0(0,z) = x + O(Ved).
Thus, to leading order ug(x) ~ x and this assumption encodes the expansive nature of our flow.

Remark 4.4. Unwinding the change of variables (19)—(20), Theorem 4.1 gives us the formulas

n(t,z) = (1 +1) <x+0(\/5+5i)> ,
u(t,x) = dn(t,z) =  + O(V=8 + 51)

where we recall Definition 2.4.

10



Remark 4.5. Observe that the expansion as a mechanism for global existence is a stable phenomenon, since our
initial data form an open set in a suitable topology.

We note that our perturbed equations (36) do not admit § = 0 as a solution, whereas in [5] § = 0 of the perturbed
equations is the solution and it represents the Sideris’ affine motions with a correct choice of the density. Hence it is
a priori not clear why one would expect global solutions near § = 0. A key to success of achieving the global-in-time
solutions without being close to the affine motions is the scaling structure of the Euler equations that grants a small
parameter 6. With sufficiently small 0 < § < 1 as well as the stabilising effect of the coefficient e”*”, one would
expect that 6, in (36) decays and 6 stays small for large time if initial data are sufficiently small.

In order to capitalise on this viewpoint and prove Theorem 4.1, we adapt the weighted energy methods developed
in [4, 5, 6, 11]. We use suitable spatial vector fields to deal with the vacuum degeneracy and obtain the leading order
energy by high order energy estimates and curl estimates. We keep track of the § dependence and critically use the
smallness of d to continue the solution for all forward in time.

Our method gives a unified treatment for all v > 1. In order to treat all v > 1, we design y-dependent time
weights in the energy norms, which still exhibit the stabilising effect and allow some growth for spatial norms in
the energy at the top order for v > g In this regime (y > %) we control the lower order spatial norms, inspired by
[16], by making use of the fundamental theorem of calculus in time variable to obtain their boundedness (without
any growth in time) by the given total energy.

Remark 4.6. It is not hard to see that the analogue of Theorem 4.1 holds for the Euler-Poisson system in both the
gravitational and the plasma case. However, in that case, due to the nature of the nonlocal forcing term, the same
restriction on the values of 7y as in [6] applies, i.e. we allow v =1+ %, neN,n>2orye(l, %)

Here we also state a priori assumptions that will be used to prove the energy estimates. In turn we use the
energy estimates to improve upon these assumptions, thereby closing the proof via a continuation argument. The
assumptions are, for a solution (v, 6) on [0, T:

1 1
INE) S5 1 Dy <5 17 = Uy < 5 (70)

Wl

For sufficiently small enough initial data, the assumptions (70) are initially true. Then the local well-posedness
theory for this system ensures these bounds will hold for at least some, possibly short period of time. These condi-
tions also ensure the invertibility of V{ on the time interval of existence for the solution.

5 Lower Order Estimates

In this section we record several estimates of the lower order terms. We start with a lemma that explains how |||y~
is bounded in terms of the energy function defined in Definition 3.5.

Lemma 5.1. Let (v,0) be the solution to (36) on [0,T)] in the sense of Theorem 3.6, for some N > 2[«a]| + 12.
Suppose the a priori assumptions (70) hold. Then for all T € [0, T}, we have

1615~ < 6N (7).

Remark 5.2. The § in front of the energy function provides an extra source of smallness that we will use repeatedly
in our estimates.

Proof. The quantity ||f|| ,~ is defined in (64). Let m € Z>¢, and let n € Z%O be such that m + |n| < N. First we
observe

N A i R an
0

11



Here we make use of 6(0,x) = 0 for all x € 2. Taking the square of the norm on both sides above gives

/ VOW ST A" I dr!
0

Now, integrating over {2 and using the generalised Minkowski’s integral inequality gives us

r 1/2 2
/ YW A" g9 dar < ( / < / ¢Wa+m\Amﬁ”1/]2dx> dT’>
Q 0 Q

T 2
Ny
0
S 0N (7)),

2
we | gl —

where we have used o1 > 0. O
We also have a result that bounds [|€]],, w1 (v, in terms of €]y~ » both defined in (65), for indices M < N.

Lemma 5.3. Let (v,0) be the solution to (36) on [0,T] in the sense of Theorem 3.6, for some N > 2[a| + 12.
Suppose the a priori assumptions (70) hold. Finally, let M € Z>q be such that M < N. Then for all T € [0,T], we
have

100l 3,y S 10l -
Proof. Recall that

M M
- 2
By = Yo [ oWt gl geanagPdn Y [ Gwirern goe|v viof d.
mt|n|=0" < Ik|=0"?
By the definition of V in (46), we have the bound
M M B )
Z /le-ﬁ-a-ﬁ-m/—l/a’VCAman?dx_i_ Z/wwl—ka—km/—l/a chﬁe‘ dx
Q Q

mHnl=0 k=0
M M B 9
s 3 /¢W1+a+m/—1/ay,@zP\VAmaﬂeFder Z/szHam/—W\m?‘vvﬁe( dz.
met{n/=0" k|=0 "¢

For the second term on the second line above,

M 9 M+1 9
Z/@WHQW/—V%M?‘VVE@( dr < Z/&Wﬂm‘vﬁe( dz. (72)
lk|=0"< lk|=07<

We bound the ./ and ¢ —1/e terms, as well as T, in L using the a priori assumptions in (70), and the fact that
W ~ 1 on supp. Using (61), we can write rectangular derivatives as a linear combination of radial and angular
derivatives with coefficients smooth away from the origin. So, for the integrals on supp v, we have

M
So [ uwtrern eV An g0 da
Q

m+|n|=0

M M
< > /1/1W1+°‘+m/‘1/a]%\2\AAmﬁ"6]2dx+ > /¢W1+a+m/—1/aW\mmﬁ"e\?dx
mt|n|=0 " mt|n =07 <!
M+1
< > / YWr™ AT GG dy. (73)
Q

m+|n|=0
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We once again use (70) to bound <7 and _# ~1/® in L>°. We also use that on supp ), W (z) ~ d(z,d) to bound
W in L*>°. Combining (72) and (73), we have

2 2 2
1015 vy S N0lx e S N6
as M + 1 < N. This gives the result. O
Finally, we prove a lemma that shows how to estimate terms of the form A%J% (W I —Ve gy )

Lemma 5.4. Let (v,0) be the solution to (36) on [0,T] in the sense of Theorem 3.6, for some N > 2[a| + 12.
Assume VW € XN. Suppose the a priori assumptions (70) hold. Finally, let (m,n, k) € Z>q X Z?éo X Z?éo be
such that 1 < max (m + |n|, |k|) < N. Then for all T € [0,T], we have

/ pwet amge (w g =te ) ‘2 da +/ Gwe |VE (W g e ) (de S 1+0SN(7) + eI (7),
Q @ (74)

vk (7 Ve w) (2 de < 6.5n(7) + I (r). (75

/52¢W1+a+m ‘Amﬂa (j—l/ad)‘zd:p_i_/gzzwl—i—a

Proof. Consider A™J" (W/_l/aﬂfik), some 7 and k in {1,2,3}. Using (22) and (23) to differentiate <7* and
I —1/e repeatedly, this term can be written as

- W/—l/a%k%sAmﬁ@ (8897") - EW/—I/a%k%sAmﬁg (8897") + /—l/a%kAmﬁ@W
(0%

m+|n|
+ ) Yo Ll apbyed) FTVY G NFEWAD G (VO) . A G (V). (76)
p=1 ai+-+ap+c=m p+1

by+-tbp+d=n
1<c+|d|<m-+|n]

The terms
A .. A NGIWA1 G0 (V) ... A% g (V)

are written schematically in the sense of (39) and (40). As we are looking to bound this sum using the higher
order energy function, the specific structure of the indices for each factor above is not important, only the derivative
distribution across the product. The terms .Z(a1,b; ..., ap, b, ¢, d) are the constant coefficients of expansion,
counting the multiplicity of each term that appears in the sum. Note that if m + |n| = 1 then all of these coefficients
are 0.

To estimate the first term in (76), we use Lemma A.1 to write

m+|n|
~W VG NG (007 = W g [V A = Y Y Wi p I A A

J=1 et|f|=j
e<m+1

where [Cy ; .  are some functions, smooth on supp 7. Thus we have the estimate

/ wWa-‘,—m ‘W/—l/a%k%sAmﬁg (8897“)
Q

2
dxg/le-ﬁ-a-ﬁ-m/—l/a‘chmﬁﬂeﬁ de
Q

m+|n|

. Z Z '/szwl—l—a—l—m‘Aeﬁi@rd;E’ (77)

e<m+1
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where we have used (70) to bound _# ~1/e and o7 terms in L>°. We have also bounded Ks je,rin L>. Then we
have -

2
/Q wW“*’“\W/‘”%%SAW@@T) dx S 105w (v + 101%n S e In(r) + 65N (7). (78)

Analogously for the second term in (76),

2 2
do S ”9”3;1\7(

yF0l5n S e N (1) + 65N (). (19)

a+m —1/a sk 75 Am gn r
[owesm|w e @.) ai

For the third term in (76), if m > 0, we write A™F2W = A~ 19" (- VW), as A = x - V. This implies

m+|n|—1

AW = > Qe p - AFL(VIV). (80)
e+|f|=0
e<m-—1

The coefficients Q. r come from differentiating x, and are smooth on supp ?. Therefore, we have the bound
2
/ pwetm ‘j‘l/%sz/\mﬁﬁw‘ dz < VW |%n < 1. @81)
Q

We have bounded _# —1/@ and @flk in L°° using (70), and the last inequality is due to the assumption that VW €
XN If m = 0, then we can use ﬁij = x;0; — x;0; to instead obtain

n|—1
PW =" Qs L (VW), (82)
|f|=0

and get the same bound as (81). Finally we have the sum of lower order terms on the second line of (76). For each
term in the sum, we have the bound

2 2
/ T;Z)Wa—‘rm |$(alvbly o ’ap,bp’ ¢, d)‘2 /—2/11 |d|2(p+1) Acﬁdw‘ o Allpﬁbp (VO)| dx
Q

Ao gt (ve)(2

ACﬂiW(Q A g (w))(2 .

A% b (ve)‘2

S/wwoc-i-M/—Q/a d.Z', (83)
Q

with the bound coming from the fact that £ are constant coefficients and <7 is bounded in L°°. The estimate for the
right hand side of (83) is comprised of two cases.

Case I: ¢ > 0. Since ¢ > 0, we write

AW = > Qg ALV (84)

I+|gl=c+|d|-1
<c—1

similarly to (80). Once again, we can use Lemma A.1 and (61) to write

a;+1b;|
NPT = S Y Ky, [VAtaL0], (85)
Ji=l eitlf,1=5i

e;<a;
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with K smooth on supp 2. Thus we have the bound

Acfz@w‘z A g (ve)‘2 .. ‘A“Pﬁ% vo)|” da

/Q pwotm g2/

[

a; i

>3 22

+

i=1 ji=1 e;j+|f |=j; l+|gl=c+|d|-1
e;<a; <c—1
2 20 121, 2 ik Lol?
/ ¢Wa+m ‘Kj17e17f1 "ij,ep,f ‘ ‘th‘ ‘A 7t (VW)‘ ‘VAelﬁ_19 ‘VAepﬁ—Pe da- (86)
Q - - B
Choose a term from the right hand side above and, reordering if necessary, assume e; + [f | < - < ep + | ip|.

Suppose for now that p > 2. Then we write

2
=we

2

Y

2
Wg—i—a—i—l-i—ep

pytm (Alﬁz(VW)f ‘vmﬁile L ‘m%ﬁipe VA L0 Alﬁz(VW)f (m%ﬁipe

(87)

where g = m — 1 — >, e;. Note that g > 1because [ +e;+---+e, <c—1+a+--+a, =m—11If
I+1q| 2ep—l—|ip|,thenwemusthaveep+|ip| < (m+|n|)/2,and e; + |f.| < (m+|n|)/2fori=1,...,p— 1
Hence we have foﬂ—kﬁ—i—ep—klip\ < N, and [oﬂ+6+6p+]ip\ < Nfori=1,...,p— 1.

2
Sofori=1,...,p, we bound W€ VA% i in L, then use (234) in Lemma C.5, as well as Lemma 5.3 for

i=1,...,p— 1. This gives us

CL (/cjpvepip(z ‘Ql@f ‘Alﬁg(VW)‘z vaaLio ‘L At e

/ PpWetm "levelil
Q

_ 2
SO 101 o [ o= [N (W) da 5 6627 (), (38)

The first inequality above comes from the L>° embeddings mentioned above, as well as bounding K;, ., ; and Q; ,

in L°°. The second inequality is because W9 is bounded in L>°, and VW € X'V Finally, we have bounded any
extra powers of 6 and .y (7) by a constant. This is as J is itself a constant, and .%y(7) can be bounded using the a
priori assumptions (70).

Ife, + |ip| > 1+ |q|, then we instead write

2 2

+m | Al 2 f0l? f0l? N 2 f !
we m(A ﬁﬂ(VW)( ‘vmﬁ_le ...‘VAepﬁ—pe — W ‘A ﬂﬂ(VW)‘ wer | waaghig]” . woetate |y glog
(89)
Ifp=2ande; + |f | = ez +]f,| then we have
2 2 2 1 2 2 2
/¢‘Kjl7el’f1 ‘]Cj%e%fz‘ ‘th‘ W ‘Aﬁg(VW)‘ wet VAe1ﬂf19 W9tate: VAe2ﬁf29 dx
0 f 1 a

2
VA2FL0| de S VW (Fen 10155 (v ) 1013 rars ot ea 1, (90)

2 2 1+a+e
SITW e o,y [ e o

The first inequality is once again due to L°° bounds followed by Lemma C.5, and the second inequality follows by
the definition of Y*(V) given in (65). Now, since [a] + 6 + es + | f ,| <N, we can apply Lemma 5.3 to obtain

2 2 | Al 2 2 ;oo
‘Ql,g‘ w AHE(VW)‘ we VAelﬁLQ wrtetez (g Aer Flog| dy

2
/Qw‘lcjl,elil‘ ‘Kj2,627i2
SIVWIEen 10155 (v 1013 S 6e27F (7). o1
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Otherwise, e; + | f,| < N/2fori=1,...,p — 1, so we bound analogously to (88):

/ Ppwerm "le,ehil : o "ij,epipf ‘Ql,ﬂr ‘Alﬁg (VVV)‘2 ‘VAelﬁile i i dx

2 1 a-+te
< IVW |2 1022 AwwH+p

N ‘w%ﬁipe

2
VAP F 0| du < 57T SN (7). (92)

Combining bounds (83), (86), (88), (90), (91), and (92), we have

2 2 2
/ YW | L (a1, by, ... ap, by, e, d)|” 7= |7 |2+ A%@W‘ A4 g (ve)( A G (V)| da < 677N (T)
Q
(93)
when ¢ > 0 and p > 2.
If p = 1 then we look to bound
2 2
/ pWetm ‘Alﬂﬂ(VW)‘ ‘vmﬁile dz. (94)
Q

2
Ifl+[g| > e1 +|f,|. we bound W* VA gLig
instead bound W* !Alﬁﬂ (VW) !2 in L°°, and use (233) in Lemma C.5. In both cases we have the bound

in L*°, then use (234) in Lemma C.5. If [ + [g| < e1 +[f |, we

[owerm atgnw)| [vanabiof o < e (). ©2)
Q

Case II: ¢ = 0. We have the bound

[ wen goae
p
DI MUY L

51+|f ‘ =Ji
el<al

Acﬁiw‘z A g (ve)‘2 ey (ve)(2 dx

+

a;+|b;|

K. W | VA glig dz. (96)
[ | [ 2 2

N (m%ﬁfpe

Once again we choose a term from the right hand side and assume e; + [f,| < --- <, + |ip|, with p > 2.
Case Ila: [d| < e, + |£p|. If|d| < e, + |ip|, then we have J4W = dod4(W/dg), where we recall from (42) that

do(z) = d(z,0Q) = 1 — r(z) is a function depending on the radial direction only.
From Definition 2.1, we know that W /d(, is smooth on supp v, so

(&)

2 2 d 2 2
Ko | [72W] | VA0
—p

<1 97)
Lee (supp ¢)

Therefore we have the bound
/Q ¢Wa+m ‘ICj17

S / pr2+a+m ‘vABlﬁile 2
Q

2
dx

N (m%ﬁipe

f 2
N (m%ﬁ—pe da. (98)

Here we have used L on the K, .,  , as well as L> and (97) on ﬁi(W/ dg ). Moreover, from Definition 2.1, we
know |d(z, OQ)|? Watm ~ J2tatm,
The integral on the right hand side of (98) can be estimated as in the ¢ > 0 case. This gives us

2 2
/ ¢W2+a+m ‘quﬁile dx S 56027yN(T). (99)
Q

N (m%ﬁipe
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Case IIb: |d| > ¢, + ]ip[. If |d| > e, + \ip , then write
|d|—1

P = 9 JHVW)
|t]=0

as in (82), with Q; smooth on supp ¢, and we have the bound

wetm | i s *|law |’ [vac gt . [vas gl d
L Y S P S S v
|d|—1
f 2 e ep of 2 o | gl 2 OoT
<SS [ ewer [vaagle| . wer [vacegleg| W ﬁ-(VW)( dz < 6e77 Fy(r).  (100)
Q
|{]=0
2
Ase;+|f| < (m+]n|)/2,i=1,...,p, wecanuse L> bounds, then Lemmas C.5 and 5.3 on the W A glig
terms. This, along with the fact that VIV € X'V, gives the second inequality in (100).
For the case p = 1, the bound follows similarly to (95), and we have
2 2
/ Ywetm ‘HQW‘ ‘VA“ Aol da < e 7y (7). (101)
Q

Combining bounds (78), (79), (81), (93), (95), (99), (100), and (101), along with analogous estimates on supp 1,
gives (74). The inequality in (75) follows similarly. O

6 Curl Estimates

As we will see in Section 7 when we derive the natural energy function, the top order Curl, terms appear with a bad
sign. Closing these estimates therefore requires separate bounds on the Curl, terms. This comes from (25) which
has a specific structure we can exploit, encapsulated in the following lemma.

Lemma 6.1. Let (v, 0) be the solution to (36) on [0, T), for some N > 2[«] + 12. Then for all 7 € [0,T)], we have
Curlev = e " Curle v(0) + €77 /OT e [0, Curle] v(r")dr'.

Proof. To prove this, first write (25) as

(Orr +0,) + (1+ @) V¢ <e_67w/_1/°‘) —0. (102)
The equivalence of (25) and (102) comes from the fact that (, = 6., an application of the Piola identity, (24), and
finally dividing by /7.

As Curl; annihilates V¢, we apply Curle to (102) to obtain
Curl; 0-v + Curle v = 0.
Rewrite this as
0r (Curle v) 4 Curle v — [0;, Curle] v = 0,

where

([0, Curle] F) = 0 (7)) s F' — 0 () D5 F (103)

for 0 € {01, 02,03,0;}.
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Multiplying by e”, we have
Oy (€" Curle v) = €" [0y, Curl¢] v.

Integrating in 7, we arrive at

Curle v = e~ " Curle v(0) + e_T/ ™ [0y, Curld] v(r")dr', (104)
0

Remark 6.2. We recall here that as ( = x at T = 0, we have Curl: v(0) = Curl v(0).

Before we move on to estimates, we first define some functions that will play a role in providing sufficient
bounds for Curl v. Recall the definitions of o and o9 given in (34) and (35).

Definition 6.3. Fori =1,...,6, define G; : (0,00) x (0,00) — R by

Te 2T if 201(8) > 2+ o2(p)

Gi(B,7) = T2 %" if201(8) =2+ 02(B) (105)
relo2—201)7 if201(8) < 2+ 02(8)

Ga(B,7) 72727 ifo1(B) =2+ 02(p) (106)

AT rel o) ifoy(8) < 2+ 02(B)

Te 2T if28 > 2+ 03(5)

G3(B,7) = T if28=2+03(B) , (107)
Tel2 72007 if98 < 2 4 g9(B)
e 2 ifoy(B) > 1

Gi(B,7) =% T2 ifo1(B)=1 , (108)
e 2T ifo(B) < 1

_ 272" ifoi(B) =2

e 2" ifB>1

Ge(B,7) = T2 iff=1 . (110)
e T ifg<1

The first proposition will lead to estimates on Curle v.

Proposition 6.4. Let (v, 0) be the solution to (36) on [0, T in the sense of Theorem 3.6, for some N > 2[«a| + 12.
Suppose the a priori assumptions (70) hold. Then for all T € [0, T, we have

/¢W1+a+m/ 1/a|[Cuﬂ<,Amﬁn]I/| dx + Z /¢Wl+aj 1/a

m+|n|=0 |k|=0
< 87N I (7) 4 0el72 T Ay (1), (111)

[Curlg, Vk] ‘ dx

Z /wwl-i-a-i-m/ 1/a _2T‘Am3ncuﬂ<1/( ’ dx + Z/wwl-i-a/ 1/a —27

m-+|n|=0 |k|=0
S e (En(0) +6.7n(0)), (112)

. 2
VECurle v(0)| dx
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N r 2
Z /¢W1+O‘+mj_l/°‘e_2T/ eT,Amﬁﬂ[aT,Curlg] v(tdr'| dx
mt|n|=0"% 0
N r 2
+ Z/?,Z_)Wl+°‘/_1/ae_2T / eT/VE[aT,Curlg] v(tdr'| dx
k=0 0
6
S (07T 4 57N T).IN (1) + > 8G(B,7). SN (T)?, (113)

=1
with G5(8,7), i =1,...,6, defined in (105) — (110).

Proof. We prove the three statements in the proposition separately.

Proof of (111): If m + |n| or |k| are 0, then the commutators in the integrands on the left hand side of (111) are 0.
Therefore we can assume in this proof that both of these quantities are > 1. Componentwise, we write

([Curlg, A" 72 )} = A" G2 (P00 — 200T) — (AFON"HT — o2 DA™F2)
— [Am @ (APOT) — AN I — [N (A D) — DN T,

A B

recalling the definition of [V, A™ @] given in (59).
It is sufficient to concentrate on bounding A. The strategy for bounding B is identical, due to the fact that the
distribution of derivatives is exactly the same. First we write

A" (A O7) = FON B = 3 Lla,be, NP () AD (D7) — DN FY

at+c=m
b+d=n
= ) Lab e, AP () APL(00) + NI () O + P [ATF 05|V, (114)
at+c=m
b+d=n

1<a+|b|<m+|n|

where . are the coefficients of expansion. For A™ " (@f]s) 9,/', we have the bound
/wwl-i-a—i-m/—l/a ‘Amag%sf |agl/i|2d1‘ 5 / le-ﬁ-a—i—m/—l/a ’Amﬁﬂdlz ’VV’2 dz.
Q Q

For the Vv term, we first use (61) to convert V in to a sum of radial and angular derivatives, after which Lemma
C.4 gives

||VV||%°°(suppw) S ||VH?’('N rs 56_017—‘?]\7(7—)' (115)
Then we have

/ Ywitesm g=tje | mgn e/ * Tyl do < de=' .Sy (1) / Ywiterm g=t/eixman o/ dy < 6el72=007 Fy(1)?,
Q Q

z
(116)

where we employ an analogous argument to the one used in Lemma 5.4 to bound Z and go from the second inequality
to the third.
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The strategy for bounding the sum of lower order terms in (114) is also adapted from Lemma 5.4.

2

/ pwitetm g=ljel N" L(a,b,c, d)A" P () ADL(0u1) | da S 62T IN ()7 4 be T TSy (7).
Q

a+c=m
bt+d=n
1<a+|bl<m+|n|

(117)

The extra decay comes from the fact that we are bounding Vv terms as well as V6 terms.
The remaining term from (114) is /7 [AmF™ 0,1 v°. We apply Lemma A.1 to expand the commutator, and
obtain

3
S [uwrre Ve o] AT 0 of? do S 66T (), (118)
s=1 0

Combining (116), (117), and (118), along with analogous estimates on supp ¢, gives (111).

Proof of (112). Similarly to the proof of (111), we make use of the fact that
A" @™ Curle v(0) = Curle A™F™0(0) + [A"F™, Curle] v(0).

The lower order commutator term is controlled by the estimates above for (111). The top order Curl; A™J%6 term
requires Gy to control it. Therefore, we have that

/ YW itetm g=1/ae=2r | \mgn Oyl p(0)[2 da < e =27 (€ (0) + 675 (0)). (119)
Q

Once again, estimates on supp 1 are analogous, so we have (112).

Proof of (113). Finally we look at

r 2
/ " A" I [0, Curle] v(r")dr'| da.
0

Wl—i—a—i—m -1/ =27
Jypwreen
Recall that

(A" G [0, Curlg] v)!, = NG (0, (o) D) — A" (9 (/) D)

On the right hand side, both terms have the same distribution of derivatives, as in (111), so we focus on A™J" ( (87%5 ) Os I/i> .

First, using (22), we write this term as
A" (0r (77) ') = — A" (oA O D)

When m + |n| = 0 we have the bound

T 2
/wwl—l—a-i-m/—l/ae—%- </ e—r’ dT,> dx
Q 0

57_6—27/ ¢W1+a+m/—l/o¢ </ 627’ |«$Z{|4|VV|4 dT’> dx
Q 0

< 0%re 2 SN (1)? </ 6(2_2‘”)7/(17'/) < 0G4(B, 7). SN ()2 (120)
0

%k%sakylakys
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The first inequality comes from Cauchy-Schwarz inequality on the 7 integral. The second comes from bounding <7,
#,and Vv in L*°, using the a priori assumptions (70) for the first two, and (115) on the last, as well as noting the
integral of YW +2+™ over () is finite. The last inequality is by definition of Gy.

Thus from now we can assume m + |n| > 1. We then expand the expression:

Amﬁ@ (Q%k%sakylasyi) — Amﬁg (%k) %sakylasyi + %kAmﬁg (”Q{ls) 8kylasyi
+ »Q{jk«Q{lSAmﬁﬂ <akyl) 881/2' + %k%sakylAmﬁQ (asyi)
Y Zlabede oA (o) A9 () AL (9") MG (0,07).

a+c+e+g=m
btd+[f+h

1<g+|h|<m+|n
(121)

The first four terms on the right hand side are top order. We look at the first and third of these terms, as the estimation
strategies for the other two are analogous. We are left to consider

NG () PO O+ A (D) D

A B

The term A gives

/wwl+a+m/—l/ae—27— (/T eq—/
Q 0

T 2
5 / ¢W1+a+mj—1/ae—27— </ eq—/ |£{| |Amﬁﬁ£{| |VI/|2 d’7'/> dx
Q 0

A" (o) o 0| d7’> s

§T€_2T/ ¢W1+a+m/—l/a< sup e—az—r’ |Amﬁﬂf£zf|2> </ e(2+02)7—’ |VI/|4d7'/> dr
Q 0

0<7'<7t

5 527_6—2TyN(T)2 </ e(2+02—201)7’d7_1> < sup e—ag'r’ / le-ﬁ-a-ﬁ-m/—l/a |Amﬂﬂd|2 dl’) ) (122)
0 Q

o<r'<r

Ay

To go from the first line to the second, we employ Cauchy-Schwarz on the 7 integral, along with a priori assumptions
from (70) for the .7 terms. From the second to third line we use (115). To go from the third to fourth line, we make
use of the a priori assumptions (70), to estimate ¢ ~1/e (which is of order 1) by its supremum over [0, 7]. Then we
use an argument in the style of Lemma 5.4 to handle .41, and we obtain

< sup 6_027,/Q,Z)W1+°‘+m/_1/a|Amﬂﬂszf|2 dm) < ( sup 6_027—,56027—,yj\[(7’/)> S In(r),  (123)
Q

0<r'<tr o<r'<r

where we have modified the bound from Lemma 5.4, as €”2” > 1. Combining (122) and (123) we get

/¢W1+a+m/_1/a€_27— </T eq—/
Q 0

with G defined in (105), and any extra powers of ¢ and .¥ bounded by a constant.
For the third term on the right hand side in (121), B, there are too many derivatives on J vt so we write

2
dT’> dr < 6G1(B,7)IN(T)?, (124)

AT G (%k> v@{lsaleasVi

Al N (00 0 = 0, (af et A (0,07 D)
— o, (/fop) A2 (040") ' — o cp? A" (040') O,
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and commuting 0y, with A™J™, we get
SF AN (001) O = O, (A ON" 900" ) — 0, (1} ") DA™ 90D,
_ %k%sakAmﬁﬁelasyf_ +0, (%kﬁ{ls [Amﬁﬂ’ ak] elasyi)
— 0, (%k%S) A G2, 0] 000" — o/Fcf? (A", 0] 0'0vE.  (125)

The first term we can write as 0, <szfls V¢ Amﬁﬂﬁ]z. 8sui), and we estimate

2

/ wwl—l—a—l—m/—l/ae—%-
Q

/ e 8, (,@48 (Ve A™ 320 851/) dr’
0

_ /Q YWitatm g—lfa =2 [eT’Mﬁ (Ve A™376)) aszﬂ};— /0 " (Ve A7 320)' 0 (v')dr! i
§/Q¢W1+a+m/—1/a <|M|2|V<Amﬁﬂ¢9|2|Vu|2+e_27|V4Amﬁ99(0)|2|Vu(0)|2) dz
—I—/Q¢W1+O‘+m/_l/°‘e_27 </OT e || |v¢Amﬁﬂe||vu|dT’>2dx

< 667277 A (1) 4 6G (B, 7) N (1), (126)

where G5 is defined in (106). Note that the 7 = 0 term does not contribute to the estimate as # = 0 initially.
For the second term on the right hand side of (125), we first employ (23) which gives

o: (%k%S) DA™ I 0D = — o2 P [V A F) 0,/ D17 — o AP [V AT F) O 0,

and we can control both of these terms by the following estimate:

2
dz < 82G1(B,7).In (1)? < 6G1(B,7) SN (7).
(127)

/T,Z)W1+a+mj_l/a€_27—
Q

/ e 1t 2 [V e AT 0] [Vl dr!
0

For the third term, ;2% has too many 7 derivatives to be in our energy space. We use (31) to relate v, to lower order
terms. We rearrange equation (31) to obtain

vi = —v' = 0e7 (W (af =) 4 (L )t g ),
and write the third term on the right hand side of (125) as
— o [V A 20) 0.t = o [V A™326)} 0,07 + 65T [V A7 526)), 0, <W8k (424-’“ /—W))
+0(1+ a)e™ o [V A28, 0, (7 7 7).

These can all be estimated using methods shown previously, as the terms that come from rewriting v/% are of low
order. We have

i 2
/ A (Ve Amﬂﬂe]z Osvidr'| dax < 6Go(B,7)IN(T)? + 6G3(B,7) SN (T)?,
0

(128)

/ le—l—a-{-m/—l/ae—%'
Q

where G3 is defined in (107).
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For the last three terms on the right hand side of (125) we first use Lemma A.1 to expand the commutator terms,
which can then all be controlled by ||0|| ,,~. Employing Lemma 5.1, we have the bounds

2

/ pWetm g 1fag2r / &7 0, (et A", 0] 000 ) dr'|| da < 667N S () + 6 (8.7) S (7)°,
Q 0

r 2
/ le—i—a—i—m/—l/ae—ZT / e—r’aT ('Q{jk'!z{ls> [Amﬂg7 8k] Ol(?sz/"dr' dr S (5G4(,@,T)yN(T)2,
Q 0

2
dx < 6Gs(B,7) SN (1) + 0Gs(B, 7). (1),

(129)

/wwl—i-a—i-m/—l/ae—}r / eTIJZ{ijZ{ZS [Amﬁﬂ,ak] Hlasyj_dT,
Q 0

with G5 and G defined in (109) and (110).
Finally, we bound the last term on the right hand side of (121), the sum of lower order terms. This term is
bounded analogously to (124), and once again uses an argument adapted from Lemma 5.4. If we denote the sum L,

we have the bound
T /
/ e Ldr!
0

Bounds (124), and (126) — (130), along with analogous estimates on supp % give (113), which completes the proof
of Proposition 6.4. U

2
dz < 6G1(B,7) SN (7)* + 6G4(B,7).In(T)*. (130)

/ ¢W1+a+mj—l/oee—2'r
Q

Proposition 6.4 is used to prove the main estimate for Curl¢ v.

Theorem 6.5. Let (v,0) be the solution to (36) on [0,T] in the sense of Theorem 3.6, for some N > 2[«] + 12.
Suppose the a priori assumptions (70) hold. Then for all T € [0, T, we have

1913w ) Se727 (£x(0) + 8.7 (0)) + be™*17 () + (3el2=0"

6
+ 8% T).Sn (1) + Y 0GH(B. 1) S (7)?, (131)
1=1

for G; definedin6.3,1=1,...,6.

Proof. Act on (104) with A™J to get
Curle A" = [Curle, A" J v + e A" J* Curle v(0) + 77 / e” A" P[0, Curle] v(r")dr'.
0

From here we take the modulus and then square both sides, then use Young’s inequality:

2

|Curl¢ A"y ? = [Curle, A" v + e TA™ I Curle v(0) + e 7 /0 e” A", Curl] v(r")dr’
2
< |[Curle, A" J7 v + le”TA™ F™ Curl 1/(0)‘2 +

e’ / " A0, Curle] v(r")dr’
0
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Multiply by yW'+etm g =1/ and integrate over 2. Finally sum over 0 < m + |n| < N to get

N
Z /QwWHaer/_l/o‘ |Curl¢ A" da

m+|n|=0

N
S > /QibWHaer/_l/a\[CurlC,Amﬁ"]u\2da:

m+|n|=0

N
+ Z /9¢W1+a+m/_1/ae_27 |A™ @™ Curl, v(0)? d

m+|n|=0
N T 2
+ Z / pwitatm g—ljag=2r / e A" (0;, Curle| v(T')dr'| da. (132)
m+|n|=07¢ 0
The result is then obtained by using Proposition 6.4, along with analogous estimates for supp 1. O

We turn our attention to estimates for Curlc 6. First we need to define more functions as in Definition 6.3 that
play a role in proving sufficient bounds for Curl¢ 6.

Definition 6.6. Fori = 1,...,6, define G; : (0,00) x (0,00) — R by

Gi(B,7) = / " Gy(8, 7, (133)
0
with Gy, ..., Gg as in Definition 6.3. Furthermore we define Hy, Hy : (0,00) x (0,00) — R by
e 2= if gy (8) < o2(3)
Hy(B,m) =4 7° if o1(8) = 02(B) (134)
1 if o1(B8) > o2(B)
2= if 51 () < 209(B)
Hy(B,7) =19 7 if o1(B) = 209(B) - (135)
1 if 01(B) > 202(B)

The estimates for Curl; ¢ come directly from Theorem 6.5 along with an application of the Fundamental Theo-
rem of Calculus.

Theorem 6.7. Let (v, ) be the solution to (36) on [0,T] in the sense of Theorem 3.6. Let N be an integer such that
N > 2[a] 4 12. Suppose the a priori assumptions (70) hold. Then for all T € [0,T], we have

10135 (Curty) S (EN(0) + 6.3 (0)) + 6.5N(7) + 65N (7)* + S(H1(B,7) + Ha(B,7))Sn (1)

6
+> 0GB, 7) SN (T)?, (136)
i=1

with G, i =1,...,6, Hy, and Hy defined in 6.6.

Proof. Define the tensor K(m, n), which is given in components by

K(m,n)} = —a/? 0,01 [V A™924]; . (137)

Using the Fundamental Theorem of Calculus we write

Curle A™J"0 = / Or (Curle A" J"0) dr',
0
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because 6 and all its spatial derivatives are 0 at 7 = 0. In component form this gives
m onn\1% k m gnpi k m gn
[0, (Curl; A™776)]" = 0, (mz ) O (A 707 — (mz ) Or (A™7707)

+ O (A" I) — F Oy (A P07

This means
07 (Curle A" @) = K(m,n) — K(m,n)" + Curle A™J"v, (138)
because
Or () 0 (A 520°) = —7} 0,0 D) (A" §207) = 77D, [V A™926)]

Now we look to bound the integral

2

/ Ypwitetm g=l/e|Curle A g2 do = / YW itotm g=1/a / O (Curle A™#20) dr'| da.
Q Q 0
Using the decomposition (138) we obtain
T 2
/ pwiterm g=1/e|Curl, A" g20)* dx < / pwitatm g-l/a / Curle A™ 3% dr'| da
Q Q 0

+/prl+a+mj—l/a dfl:
Q

+/ww1+a+m/—l/a
Q

T 2
/ﬁmm@mf
0
/ K(m,n)T dr’
0

2
dx.

Due to (137), we have the bound

/ K(m,n) dr’
0

The Vv term is dealt with as in (115), and we bound &7 in L due to the a priori assumptions (70). This leaves us

with the bound
T 2
/ K(m,n) dr
0

with H; defined in (134). The bound for K(m,n)T is completely analogous.
It is left to bound the Curle A™J2y term. We have

2
dz.

2
/wal-i-a—i-m/—l/a dwg/ﬂwwl—ka—i-m/—l/a

/ | [V [V A7 519)] dr’
0

/Q pwitatm g-lja dz < 6H (B,7).IN(7)%, (139)

2
dx

/wW1+a+mj—1/a / CurchmﬁﬁV dr'
Q

< (/0 2T dT> (/ /¢W1+a+m/ Ve Curl A™ @[ dxd7'>

i
S [ eH Il cung 0

Here we use Cauchy-Schwarz in 7 on Curl¢ A Gry = e~ AT <e%7 Curl¢ Amﬁﬂy). Both 1) and Wite+™ are 1

independent, and _# —1/@ ~ 1 due to the a priori assumptions in (70), so all three terms can be absorbed in to the 7
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integral on the third line above. Then, using (131), we have

2 T
/Q¢W1+a+m/—1/a dx S (%N(O) + 55/]\[(0)) </0 e—(2—71)-r’d7_/>

/ Curl¢ A"y dr!
0

+ / e 2T (8N () + 6N (r)?) dr' + / 8672 iy ()2 dr!
0

6 T oo
+3 0 TG TSN () T (140)
i=1 70

where we have bounded any extra powers of § and .y (7) by a constant.
The definition of o1() in (34) means that 4 — o1 () > 2 for all 8 € (0, c0). This implies that

/ e~ (=) g < 1. (141)
0
Next, we use that .y (7) is increasing to get
/ e 3T (8N (") + 0N ()?) dr' + / e 2= () 2dr + Z/ e Gi(B,7)8.In (7)) 2dr!
0
S OIN(T) + 05N (1) + SHo (B, 7) SN (1) + Z 6G(B,7) SN (T)2, (142)
=1

with Hy defined in (135), and Gy, = 1, ..., 6, defined in (133).
Combining (140) — (142) gives

/Q le-{—a—l—m/—l/a

2
dz < (En(0) + 67N (0)%) + 6.7N (1) + 0.%n(7)?

/ Curl¢ A" Iy dr!
0

+ 6Hy(8, 7). +Z§G (8,7)In(7)2.

Combine (139) and (142), and sum over (m, n). These, along with analogous estimates on supp 1, give the result.
O

We finish this section with a lemma that shows the functions éi, i =1,...,6, Hy, and Hy have sufficient
pointwise boundedness, and integrability as functions of 7 for our final estimates.

Lemma 6.8. The functions e=°2"G;(8,7), i = 1,...,6, e %" H{(B,7), and e~ 2" Hy(B,7), when considered as
Sfunctions of T, are bounded for all 5 > 0, and integrable for all B > 2.

Proof. From (133) we know that

T e(%— )i 201(8) > 2+ 0a(B)
Cr(B.r) = { o (Pl it 201(8) =2+ 02(8)
Jo 7 ( ) dr’ if 201(8) < 2+ o2(P)
For the case where 201 () > 2 + 02(/3), we once again recall the definition of o1 (3) and note that 4 — 01(3) > 2

for all 5 > 0. Hence on this region, e~ 72" G (8, 7) < e~ 727.
For the case where 201 () < 2 4 02(3), we have

e~%2"  if 301(B) > 209(p)
eT7TG(B,7) S T 7T if301(8) = 202(8)

3017

Te” 2 if 301(B) < 202(P)

which satisfies pointwise boundedness for all 8 > 0, and integrability for 3 > 2. The arguments for G, . . ., Gs,
H,, and Hs are analogous. |
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7 Energy Estimates

In this section we derive the natural higher order energy function coming from (36a). While, in spirit, the process we
go through for both the zero order case and higher order case is the same, there are technical differences. Therefore,
for clarity, we separate the analysis.

To begin with, we define damping functionals which play a role in obtaining adequate energy estimates.

Definition 7.1. Ler (v,0) be solutions to (36) on [0,T] in the sense of Theorem 3.6. On [0,T] define ]D?)m
damping functional on supp 1, at level (m,n) by

, the

n)

Dy (7) = % (2-a1) /Q YW (A gy

+ 09 / emTpWitatm g-l/a <|V< A" g9 4 é |dive Amﬂﬂmz) dz. (143)
Q

Define ]D)lz, the damping functional on supp 1 at level k by

- 1 _ 2
DE(T) =5 (2 —01) /Q T TYWe ‘VEI/‘ dx

_ 2 2
+ 02/ e~ T ite_g-1/e <(v< vEg| -+ 1 div V20| > da. (144)
0 (7

Remark 7.2. Note that due to definitions of o1 and o3 in (34) — (35), the damping functionals are always non-
negative, hence the nomenclature.

Remark 7.3. Both D?’m n) and ]D)g vanish when vy = 5/3, or equivalently, when 3 = 2. All we require is that these
terms have the right sign; they are not otherwise used in our analysis.

7.1 Zero Order Energy Estimates

One of the main differences for the zero order case is the fact that we are not applying A, & or O derivatives to
(36a) before constructing an appropriate energy identity. Therefore, it is unnecessary to deal with the cases near the
boundary and on the interior separately, as we do not use the cutoff functions v and 1p. Moreover, note that at zero
order, the relevant damping term is given by Dy := ]]])’(%70) + ]D)g’.

The energy estimates at zero order rely on the following energy identity.

Theorem 7.4 (Zero Order Energy Identity). Let (v, 0) be solutions to (36) on [0, T in the sense of Theorem 3.6, for
some N > 2[«] 4+ 12. Suppose the a priori assumptions (70) hold. Then for all T € [0,T],

d (1 W (2 —oarpplta g—1/ 1 v, g2 L. 2 1
. _ g1T (0% ag2T (0% (e - 0 _ 0 _]:D)
dr <25/Qe i dm—i—/ge s 2| fl +20z|dwC ") de +2 0

_ 4 <1/ e~TWte g=1/e| Curl, 0\2dx> — 2/ e~TWte g Curle 0)2de = R(0),  (145)
dr 4 0] 4 QO
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where

R(O):—(l—l—a)/

Q
+/ o= o2 14 (/—1/a_1) Ovide — i/e“’QTWHa/_(Hi)C{%/!V<9\2dx
Q 2a Jo

+ / eTWIEe gV g0, () onbida - i / emorite g=(143)a, 7 |Curlc 02 do
Q Q

e~ WO, (W )v'ida — /Qe‘”QTWHa/_l/a&/jkszfpl[VG]?[V@]{@kuidx

n Z /Q 6_02TW1+a/_1/a [aT%kak (9)) _ aﬂ_%kak (91)] [CurlC 9]? dx

1>7
1 1
—~ ﬁ/ﬂe—UﬂW“a/—(Hé)&ﬂ dive 0|2dz + %/96_027—‘/{/1—“1]_1/&87— (| dive 0]%) da.

(146)
Proof. Consider (36a) in a modified form:
%e””W“ (61, 4 6%) + e 77, (WHa (;zfik gl 55)) = —(1+a)e "WoW. (147

We multiply this expression by 6%, integrate over €2, and use integration by parts to

1d 1 1 1 -
A / ZeOITIW O |I/|2 de | + = (2 o 01)/ ZeITIV A |I/|2 dx _/ e~ 2T 1+ (%k/_l/a o 5219) akOid:n
=—(1+ a)/ e 2TW 9, (W)L da,
Q
where for the third term on the left hand side, we have used the divergence theorem, and noted that W is O on the

boundary of the domain.
Now,

g =g = (= ak) Ve (e ).
So we can write
1d 1 2 1 1 2 - 1+ k sk -1/ ‘
- - g1T (6% - _ - g1T (6% _ ag2T (6% g _ A o 1
57 </Q 5¢ W vl dm) +2(2 0'1)/956 W v|® dz /Qe w (.@7@ 51)/ Op0Ldx
=—(1+ a)/ e~ T2TW 0, (W' da +/ e 2Ty It (/_1/a - 1) oi'dz.
Q Q
Note that (e — oF) = /¥ (8 — 7 ) = a/f ([Val] — [9¢]).
Recall that 0 = { — x, so
(et = oF) = —arf 1w,
We can further rewrite this as
(e = 8F) =~} (V) - a7 [Cunl6]]
=~V O] — ] [VOL VO] — o7 [Curl 0],
Next, note that

[Curl0]] = [Curle 0} + o [VOIP[VO]] — a7t [VOIE[VO];.
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Hence we can finally write
(e = 8F) =~ (Ve O]} — o [Cunle 0] — arF A [VOR VY.
So we obtain

%C% (/Q %e”lTWO‘ |1/|2d:13> + % 2— 1) /Q %e””W“ W2 da +/Qe_”2TW1+°‘j_1/a[V< 0] 7040
+ /Q e Wit g Ve (Cule 0] o/ FO0Ldr = —(1 + a) /Q e~ TTW O (W) da
+ /Q e~2Ty It ( gV 1) Ov'dx — /Q e Wt g=1e gk o [V o[V o]l v de.

Now, note that

e T Wte g me v o)kt o 0l = %aT (e—UZTW1+aj—1/a\ Ve 912) + %e“’”WHQ/_I/O‘] Ve o?

1 —02T a — 1 —092T o -1/ 7 7
—l—%e 2T Lt 7 (1+a)37/’V<9\2—e 2T 1+ 7 1/ [V 050, <%k) 90"

For the Curl; term we use an antisymmetrisation argument that gives

e~ oW g1 gk 00 [Curl, 6 — —i@, (e—WWHa Ve Cunl 9\2> - %e‘”QTWH’O‘ Vel 0
_ L orppita 7o, 7 icul 0 + D emTwite gol/e [aT%kak (67) — 0,970, (ei)} [Curle 0] .

4oy —
1>)

We also insert corresponding div, terms, as all higher order energy terms include such expressions:

1 ag
oot/ 1+ 1/a q; 2 2 oot/ 1+ 1/a q; 2
oY 0- (e W 4 | dive 6| ) + o0 e wire 7 | dive 6]

1 1
_ ﬁe—azTW1+a/—(1+é)aTj| diVC 9|2 + %6—027W1+aj—1/a87_ (| diVC 9|2) )

Taking all of this in to account gives us

d (1 2 - lta g—1/a (1 o L0 1
_ _ ag1T (0% ag2T (0% [e% - . -
. (25/96 W v dx—i—/Qe wite 7 2\V¢9] +2a\d1v<6] dx —1-2]1))0

d (1
- — —/ e~ Wt 7=V Curle 0|dx | — 2/ wlte g=1/o| Curl, 6|2dz = R(0), (148)
dr \ 4 QO 4 QO
where Dy = ]D)I(b0 0 T ]D)f_, and the remainder R(0) is given in (146), as required. O

Now we move on to the estimates.

Theorem 7.5 (Zero Order Energy Estimates). Let (v, ) be the solution to (36) on [0, T in the sense of Theorem 3.6,
for some N > 2[a] + 12. Suppose the a priori assumptions (70) hold, and that VW & XN. Then for all
0<mn <7<T, we have

/T "R(O)dr

Proof. Let us first look at the quantity

S / \/ge_%T/yN(T/)l/2dT/ —I—/ e T <<YN(7'/) + YN(T/)3/2> dr’. (149)
T1

T1

//e_UQT/Wo‘ﬁi(W)Vidasz'
1 JQ
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Using Cauchy-Schwarz, we have

/ / e WO, (W)vidwdr'| < / e W%VW‘ H %y‘ dr'.
n Ja " L2(Q) L2(Q)
To bound the VW term, we have
o 2 _
HI/V?VW‘ :/¢W@|VW|2dm+/¢W“|VW|2dm
L2(Q) Q Q
< VW 5w - (150)

The first equality is since 1) + 1) = 1, and the last inequality is by definition of the space XV. Since VIWW € &N,
this quantity is bounded. Similarly,

2
< Wiy < e 7SN (7).

|2
L2 (supp 1)

These bounds give

T ,
—02T
/ e 72
T1

/T 1 /Q e Wite gk o VOV O) o dudr |

wavw| Wy a5 / Ve b g ()2 (151)
T1

Next we have

which is controlled by the quantity
/T/Qe—@T’WHa/—l/a | |? |VO* | V| dzdr. (152)
1
This can be written as
/T/ e 2T Wite g o2 |V V| dedr + /T/ e 2T Wite gl o2 |V V| dedr.
mn JQ mn JO 153)

The </ and 7 —1/@ terms can be bounded in L using the a priori assumptions in (70). For the right hand
side integral above, we bound one of the copies of V6 in L. To do this, we first employ Sobolev embedding
H?(supp®) < L*(supp)) to obtain

HVOHLOO(supp'LZ) Sx ||ve||H2(supp'J}) Sx ||9HH3(Supp’LZ}) . (154)

Then we have

3 3 3
[l —— Z/ 7(vﬁe‘2d$: Z/ 7¢(vﬁe(2dm+ Z/ 7@‘%9(2@
k=0 /*uPP ¥ k=0 /*uPP ¥ k=0 SuPP Y
3 3
_ Z/ ) w(vke‘Qda;JrZ/ _ﬂvﬁefda;. (155)
|k|=0 Y SUPP ¥Nsupp ¢ |k|=0 /SuPP¥

Note that supp 1) N supp 1 is removed from both the origin, and the vacuum boundary. On this region, we can use
Lemma B.2 to write

B
VE= D ZmaA"I"
m+|n|=0
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for some smooth functions Z,,, ). Also on this region, as well as on supp 1, W ~ 1, so we can adjust the powers
of W in the integrals with freedom. Hence we have the bound

1611775 (supp ) Z / PWET | A Gng|* da + Z/ zpwa vke‘ dz
m+|n\ 0 supp ¢Nsupp ¢ |k|=0 supp ¥
Z / YW | A" F2Y|? da + Z / PWe v’“e‘ dx
m+|n\ 0 |E|=0
S 1615 - (156)

Moreover,

B 1/2 B 1/2
( [ \vm?dx) ( [owe rwr?da:) < 0] 7]
Q Q

by definition of the space X'V, and since W ~ 1 on supp #. Therefore,

/ /we—W’WHa/—l/awy?yvemvuyme'5/ e |;9\\XN/¢W1+a\vey\vu\dx
1 JQ Q

T1

S /T 56_%(202+01)T,y]v(7'/)3/2d7'/, (157)

where the last inequality comes from Cauchy Schwartz. The corresponding integral on supp ¢ in (153) is estimated
analogously, but on this region we utilise (61) to transform V in to radial and angular derivatives. Finally, we get

) 6—027’Wl-i—a/—l/a;z{jkngpl[V@]?[V@]{@kl/idlEdT,

,S/ 56_%(2U2+01)T,y]v(7'/)3/2d7',. (158)
T1
To bound

/ / e~ 2T it (/_1/a — 1) Ot dxdr’
1 JQ

-1/«

we write ¢ —1as

1
Ve 1= —Tr[Vo] + o(ve),
which follows from expanding to first order the following identity
7YY = (det [VC]) Y = (det [T + Vo))~

From this we deduce

’ A e~ 2T it (j_l/o‘ — 1) o;vtdxdr’

< / Se—22o2to0)™ g (g (159)
T1
Next we look to bound the quantity
- i T —oor' 7l g—(1+1) 2 /o i T —oot 1171+ —(1+l) 2 /
e wire g o)0; 7| V¢ 0| *dxdr a e wire g «)0, ¢ |Curle 0| dedr
1 JQ

~ 53 / / —oeryite g=(043)0, 7| dive 02 dadr’. (160)
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Now 0. ¢ = #4770, so we can control the first integral above by
T
/ / e_"”,WHO‘/_l/O‘ || |Vv|| V0 dzdr’
71 JQ

The o/ term can be bounded in L°° using the a priori assumptions in (70). For Vv, we have

||VVHL°°(Q) S ||VV||L°°(supp1p) + ||VVHL°°(supp'LZ) . (161)

On the supp ¢ term on the right hand side, we can use (61) to turn V in to radial and angular derivatives, and apply
Lemma C'.4. On the supp ¢ term, the bound is analogous to the one shown for V6 in (154) — (156). So we have
the bound

VU7 o0 0y S G TN (7). (162)
This gives
/T/Qe_"2TW1+a/_1/°‘|d||Vu||V40|2d$§/7 \/Se_%T/yN(T')lﬂ/Qe_UQT,WHa/_l/O‘|V<9|2d:ﬂd7/
< /T Voe 2T ()3 2ar, (163)
.
as
[ et o de £ e s, S ()

The remaining two integrals in (160) have the same bounds.
Finally we have to bound

/ /Q e T Wit g=1e1y . 0]io, (df) akeid:cdf’jti / /Q e~ 2T Wite g=leg (| dive 0f) dedr’
T1 T1

+)° /T 17 /Q e~ ylte g-1/a [a,%’fak (67) — 0-t) O, (ai)} [Curl 0] dadr’. (164)

1>7
As OTQ/J-’“ = —%k%sasuf, and [V 9]; = szfjl 010%, the first integral above can be controlled by

/ / e Wt g7 o [V |V dedr
1 JQ

This can be bounded analogously to (152), so

1 JQ

< /T 56_%(202+01)7/y1v(7'/)3/2d7'/. (165)
T1

The other two integrals in (164) have the same bound.
91

Combining bounds (151), (158), (159), (163), and (165) gives the result once we bound e 2(202toN)T hy =37
wherever necessary. U

Remark 7.6. The smallness of § plays an important role in (151); . (7)'/? under the T integral is not enough on

its own to let us close the estimates, but the extra smallness coming from \/8 on this term counteracts this. This is
an example of a source term estimate, where all spatial derivatives fall on W, and we will need the same argument
at higher orders. These source terms are not present in [5] or [16].
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7.2 Higher Order Energy Estimates

Now we move on to higher order terms. First we deal with estimates near the boundary. In this case, it is important
to derive a higher order energy identity with remainder terms that have enough powers of the weight W to estimate
them in our energy spaces. This is a delicate issue and requires taking advantage of cancellation inherent in the
identities (54) — (61). We do this via the following lemma.

Lemma 7.7. Let Q be a rank 2 tensor. Let ¢ > 0. Then fori,j,1 =1,2,3,

A (gt (770901)) = g (v 0act) v ')

o (00 (WH9Q) ) = 00 (WH18,0E) + D1, Q)
where
CIH@Q) =0, W=LauQl — WoLQE + (1 + q)QFAaW,
and
DY (5.1, Q) = W [0, 0] QF + (1 + Q)QfF 0k W + FaW 0 QF.

For a proof of this result, we refer to [5].

Remark 7.8. The key part of this result is the fact that AW@ka — OkWAQf produces an angular derivative of Q).
On their own, both of these terms include a radial derivative of ), which requires an extra power of W to bound
in the correct energy space. However, the cancellation lowers this requirement, and in essence, lets us close our
estimates.

Next we have a lemma that shows us how ¢ —1/a 47 linearises. For a proof, we once again refer to [5].

Lemma 7.9. Let 9 € {0;, A, @} fori,j, k =1,2,3. Then
1 .
9 (77l = - ek v 0] - — Vgl dive 96 — 7710 eff [Curl 20)]
-1/« S ] 1 —1/« S j
- </ Yook (2,0, 69 +~J Ve ek o (9,0 07>. (166)

Finally, before we prove our higher order energy identity, we make some conventional choices, and define the
remainder terms that we will eventually have to estimate. This is done for the purposes of streamlining exposition.

First of all, to obtain a higher order energy identity on supp v, we need to act on (36a) with a differential operator
of the form A™J2Z. Note that written out fully,

AT = A

To lessen the burden of index tracking when manipulating J2, say during integration by parts, or expanding a term
of the form #(A - B) via the product rule, we prove the higher order energy identity for a differential operator of
the form

AT = AT,

that is, n = (n,0,0). We also assume n > 1. The case for general (m, n) is addressed in Remarks 7.14 and 7.12.
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Definition 7.10 (Higher Order Remainder Terms). Let (v,0) be the solution to (36) on [0, T in the sense of The-
orem 3.6, for some N > 2[a] + 12. Fix (m,n,k) € Z>o X Z%O X Z%O, with n = (n,0,0), n > 1, and
max (m +n, |k|) < N. Forall T € [0,T), define, for i,k =1,2,3,

Ri<m,n>ewwa+m< >o At (wa, (Vo)) + Y AmanDp (124 (/1/%%))),

I+p=m—1 a+b=n—1
(167)
. 1 .
Ry (m,n) = — A" ;! </‘”%%S 12,0407 + — 7 71l ol 12,04 93>

_ /—1/(1%1@%5 [Amﬂ?z—l’as] 3120] _ aj—l/a%k%s [Amﬂ?z—l’as] 3120]
= Y L LN, (T ) Ny (9.81:67)

p+l=m

q+b=n—1

p+q>0

1 .
—= Y L londl, (7w ) N (0.018) (168)

qTI;l::nn—ll
p+q>0

R'(m,n) = YRy (m,n) + e~ 72T, (Wl+a+m7z’§i<m,m) +e WA gl [V A 0],

e Wt gy (e g dive A0+ f e [Curle A0 ) (1o

RE(k) =~ Y Z(p.g) <v2 (7 Vearon?) VL (0.07) + V2 (g~ g g ) 08 (asef)), (170)

2
—
|
~

I

Tk 1 k 7 ki 7 1 k k)’
—ae TGV <8kW R ! <WR22(E)) + e TWop gV, [vg V—e} |
J
+ e 2TW Ot ( J Vgl dive VRO + gt ek [cur1< vﬁe} 7) , (171)
(2
with C and D defined in Lemma 7.7.
We are now ready to state the relevant higher order energy identities.
Theorem 7.11 (Higher Order Energy Identity). Let (v, 0) be the solution to (36) on [0, T in the sense of Theorem 3.6,

forsome N > 2[a|+12. Fix (m,n, k) € Z>g xZ%O xZ%O, n = (n,0,0), n > 1, and such that max (m + n, |k|) <
N. Then for all T € [0,T], we have

d 1 9 _ _ 1 1
o1T ”ra-l—m mgn ooT ”rl—l—a-l—m 1/a [ = mon n|2 . m gn |2
dT (26 /Qe w ‘A 12”’ dx—i_/ﬂe w / (2‘ CCA 8129’ + 2a_’d1V<A @129‘ >dx>
1 d (1
my _ - —0oT 1+a+m —1/a mgm g2
2]D(mﬂ) e (4 /Qe YW p | Curle A" 7,0 dm)

02

-7 e~ itatm g —l/a| Curle A" @07 dx = R(m, n), (172)
Q
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and

d (1 ok |2 —oar. T 1o (1 v, vko|2 L. vkg|2 Ld
1T v_ o2T ‘17 (6% - K K -
dr <25 /Qe ¢‘ V‘ d /Qe s (2' N 2a|dlv< o ) de QDE

— di G/ e~TYW g Y| Curle V@9\2daz> - %/ e~2TYW g Y| Curle VEO2de = R(k), (173)
T Q Q

where

1
R(m,n) =— %/{26_027¢W1+a+m/_(1+é)87/ ’VC Amarlz29’2dx

— ﬁ 6_62T¢W1+a+mf_(l+%)87_f |dive A" @70 da
Q

+ 4_ e—o‘szwl-i-a-‘rm/—(l-i-é)aT/ ’CUI‘IC Amﬁ?20‘2 dx
@ Ja

4 / 6—027'1/}W1+a+m/—1/o¢87 <%k) . (Amﬁ%w) [VC Amﬁ%@]; dx
Q
+ é/ e—U2T,l]Z)W1+Oé+m/_1/a <8T$Z{Zkak (Amﬁ%el)) diVC Amﬁ%@dl‘
Q

-3 / TP g2V o ko) (A" Pi07) — 0,70y (A" 07) | [Curle A" 0] da
Q

i>]

- /Q R (m,n)A™ @' d, (174)
and
R(k) = — % /Qe—@wW/—(Hé)aT/ ‘vc vﬁe(zda;
_ﬁ/ge—ozmwf—(lﬁ)@/

_ 1 2
e _g~(td)a, g ‘Curlc vﬁe‘ dz

2
dive vﬁe‘ dz

T 2a ),
N /Q e GW g e, (dj’f) O (vﬁei) [VC vﬁe];dx
+é /Q eTGW g = (0,7 0) (VE0') ) dive VEQd
_g /Q T IW g e [@Mﬁ@k (vﬁeﬂ') — 0, F 0, (vﬁei)} [cuﬂC vﬁe]jd:c

+ / Ri(k)VEVidz, (175)
Q

with R'(m,n), RY(k), D , and D}f are given in Definitions 7.10 and 7.1.

(m,n)

Remark 7.12. A corresponding higher order energy identity holds true for the case of general (m,n), with the
remainder terms being appropriately defined in the case of dealing with general J™.

Proof. Proof of (172). First we rewrite (36a) by dividing by W<,
—02T

Wa

%e“” (00, +00)+ 55, (WHQ%’C/—W) — 0. (176)
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We act on this equation by A7,
1 i . 6—0'27'
ST (O, AT B+ AT i) + AT (Wak (W”adf j—l/a)> —0. 177)

Apply Lemma 7.7 to the pressure term in (177) in an inductive manner. This leaves us with the equality
—02T

12 <%8k (WHaﬂfikf_l/a)) = ewa O <W1+aﬁ?2 <%k/_1/a))

renr S o (1t (7))

a+b=n—1

Then we apply A™ to the first term on the right hand side. This gives us

—02T
e 2

A™ (e;:ak <W1+aﬂ71‘2 (%k/—l/a») = O (W1+a+mAma,f2 (%k/_l/a»

rerem S N (wy (Ve ).

l+p=m—1

Using these identities in (177), we obtain

%emwﬁm (O A" iy + A1) + e gy (Wt Am g, (7 712 ) ) = Ri(m, ),

where R (m, n), as in Definition 7.10, is given by
—emerwetm (ST N (argy, (e ) ) 1 Y A aDs (12,85 ()
l+p=m—1 a+b=n—1
(178)
Now we concentrate on A™ 7, (szzk I -1/ a). First of all, we see how .szk I —1/@ pehaves upon the application

of an angular derivative (note that the differentiation identities (22) and (23) still hold for &). From the proof of
Lemma 7.9 we have

1 .
o (et 7)== gVodb 0,007 — — 77N e 0ol
1 .
(e 10,0000 4 Lt [P0, 0000
To apply this to our identity, act on both sides with A™ 35 L.
1 .
Amﬁga <%kj—l/a) _ _/—1/@%’6%81&77’18/?2—188@/129] _ a/—l/a%k%sAmﬁ?z—lasﬁHHJ
1 .
— AT (/—”a%’%s (912,007 + — et} 1o, ) eﬂ)

. 1 .
_ Z .,Sf(p,q,l,b) <Apﬂ‘112 (/—1/a%k%s> Alﬁlﬁ (053129J) + EApﬁ«{Q (/—l/a%k%s) Alﬁl{z (555129j)> )
L
p+q>0
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Commute Amﬁ%_ 1 with 0Os on the first two terms on the right hand side above:
1 .
Nty (o g1 ) = = g TG NP — ~ T A ON" o)
1 .
— A"y (f‘”%z@’wf 12,010/ + — 7~ of? 13, 0] ef>

. 1 .
- Y. Zp.alb) <W‘f2 (7 Voatha) Nty (0.00087) + ~ A28, (7 7oty ) A (@me&)
qﬁiizjﬁl
p+lg|>0

o1 .
= ST (A0, Bt — T [N 0] 120
Once again, using the same idea as in the proof of Lemma 7.9, we can rewrite this as

m gn —1/a -1/« m gn o1t 1 1/ . m on
A"y <"Z’7zk/ Y ) ==7 v 'Q{Jk [VeA 3129]]'_5/ Y "Z’{ikdlch 120
— g Megk [Curle Am 27,01 — RE (m,n), (179)

where, as in Definition 7.10,
. 1 .
R () == Ay (el 190,000+ g e 19,0100
1 .
= ST (N0, Bt — T A [N 0] 1ot

- Z f(p, q, lv b)Apﬁ(b </—1/a£{jk%s> Alﬁzb (asﬁm@j)

pHl=m
g+b=n—1
p+g>0

1 —1/a s j

—— ) Zp.glhad, (/ Y %k%)Alﬁ?Q (0s71267) . (180)
R
p+q>0

So we can rewrite our equation as

1 - ' '
ST (9, AT oy 4+ AT Fp) — 0 (Wt g e [V AT 3,6 )

. €_U2Tak <W1+a+m <l

(07

IV agk dive Am 37,0 + /—1/a%k [Curl, Ama’;ge]g»
=Ri(m,n) + e 7270 <W1+°‘+m72'§i(m,@)> .

Finally, multiply by ¢ and commute ) with Jj, to acquire

1 i i —ooT a+m —1/a m gm 1t
SUW TN (D AT By’ + A" Fp) — 70, <1/1W1+ + ( I Mgk (VA 5129]].))
_ e—azrak <¢W1+a+m (é/—l/a%k diVC Amﬁ%e + /—1/&%}6 [Curlg Amﬁ?gﬂi)) _
R (m,n) + ¢ TY0y (WIHTTRE (m,n) ) + e WG g 710k 19 AT 0],

+ eIy, ) ( F Vgl dive AmFL0 + 7wk [Curle Amﬁge]g) =R (m,n). (181)
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Take the scalar product of this equation with A™J",0%, and integrate over the domain . This gives us

d (1 2 1 2
_ 1T at+m | Am amn _ o 1T at+m | Am om
I <25/Qe YW |A™ v dm) + 55 (2 0'1)/96 YW A" dv|” dx

_|_/ e—az'rle-i-a-i-m/—l/aak (Amﬁrbe‘zr) <$Z{]k [VC Amﬁ%@]; + é’Q{zk diVC Amﬁ?29> dr

Q

—I—/ e 2Ty itatmy, (Amﬁ?zﬁi) j_l/aszfjk [Curle Amﬁ’fﬁ]g dx = / Ri(m,n) A" @1 dx.
Q Q

Note that we have used the divergence theorem on the top order V¢, dive, and Curl, terms, as well as the fact that
W is 0 on 0S). We now concentrate on these three integrals on the left hand side. First we have the V. identity given
by
e~ F VN AT P10] 0y (AT 105
1
= 500 (77 STV AT IO ) + e g T AT 017
1 . .
+ %6—027/—(14-%)87/‘ VC Amﬁrlz29’2 - 6—027/—1/a[vc Amﬁ%e];a‘r <%k) O (A’”ﬁ%e’) . (182)
For div; we obtain
1

—e T g dive A" 50,0 (A" 150 )

1 —02T — (0% : m an 02 —02T — (0% : m an
= 5=0r (e 2T g =12 iy, A ;3‘129\2)+%e 2T gV dive A0/
1 . 1 oor At -
b e F IR0, | divg AL — Lo g (v AT ,0) 0, () 0 (AT 6
(183)

The Curl, term requires an antisymmetrisation argument as with the zero order energy identity in Theorem 7.4, so
we end up with

6—027/—1/11 [Curlc Ama?ze]f %kak (Amﬁ%eqz_)
= —%aT (e—fm M| Curle Amﬂ?20|2> - %6_0” Ve Curle A 7,0]
1
_ Be—am—/—(l—i—é)&_/ |Curl¢ Amﬁ?29|2

+3 e gl [&Mﬁ@k (A" @167) — 0,70 (Amﬁggei)] [Curle A 7,0)7 (184)

i>j

Using (182) — (184) leaves us with

d 1 1 1
(_ / 601T¢Wa+m \Amﬁ’fng dz +/ —Jz'rwwl-l-a-i-m/—l/a (5‘ VC Am}grlz29’2 + %’divc Amﬁ?29‘2> dx)
Q

dar \ 26 0
1 P d 1 —0oT 1+a+m 1/« m an |2
+ §D(m7ﬂ) — d_T (Z/S;e 2 ¢W j |CurlCA ﬁ129| dLU
- % 6_02T¢W1+a+m/_1/a‘ Curlg Amﬂ?29’2dx — ’R(m,@),
Q
with ]D(m n) given in 7.1, and R(m, n) in (174).

Proof of (173): This time we write (36a) as

%e”” (61, +61) + e 770, (W 7 —1/a%k> = —ae YW gV gk, (185)
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Then we act on (185) by V&:

1 . .
<€ (VEG;T + vﬁeg) + e, vk (W 7 —1/a¢k) = —qe 72" VE (8kW /—1/a¢k) . (186)
From here the proof of (173) follows that of (172). O

We move on to higher order energy inequalities.

Theorem 7.13 (Higher Order Energy Estimates). Let (v,0) be the solution to (36) on [0,T] in the sense of The-
orem 3.6, for some N > 2[a] + 12. Suppose the a priori assumptions (70) hold, and VW € XN. Fix
(m,n, k) € Zox 234X L, withn = (n,0,0), n > 1, and max (m + n, |k|) < N. Thenforall0 <7 <71 <T,

/ " (R(m.n) + R(E)) dr'| < Fn(m) + VoI () + / V3 (e—%”’ n age—%zf’) (yN(T')?’/? + yN(T')) dr’

1 T1

+ / Voe 37 ()27, (187)
T1

Remark 7.14. Once again, these higher order energy estimates follow for general (m,n) by bounding the corre-
sponding remainder terms in a manner completely analogous to the proof of the Theorem 7.13.

Proof. To begin with, we look at the first line of the right hand side of (174):
/ e—az'rwW1+a+mj—(1+é)aTj |VC Amﬂrlz29|2 dz.
Q

Since 0, 7 = 7 ,°0,v", we have

/ /6_027f¢W1+a+m/—(1+§)8T/|VCAmﬁ?29|2 dxdr’
1 JQ

T o1

< / Ve 2T Iy () 2dr (188)
T1

We use (115) and (70) respectively to bound the Vv and <7 terms in L>°. The second and third lines on the right

hand side of (174) have the same bound.
Next is the fourth line on the right hand side of (174):

/ e—az'rwwl-i-a-i-m/—l/aaT (%k> O, (Amarbez) [VC Amﬁ%e]; dz.
Q
We write, using (22),
a: (yfj’f) O (AT 08) [V A" F356]' = — 20,07 70y, (AT B,0°) [V A" 56
= — 0" [V A0, [V A7,

So we have the bound

/ / 6_02T/1/}W1+a+m/_1/aa—r (%k> 8k (Amﬁ?ﬁl) [VC Amﬁ%@]; drdr’
1 JQ
S / / e 2T pWitetm g o | 1Vu| Ve AT @001 dodr.

1 JQ

Once again using (115) on Vv, and a priori assumptions on .27 we have the bound

/ / e—azr’wwl—l—a—l—m/—l/aa‘r (%k> 8k (Amﬂ?zez) [VC Amﬁ%@]; drdr’
1 JQ

S / \/ge_%lleN(T/)?’ﬂdT/.
T1
(189)
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The corresponding integrals with dive A™@7,6 and Curl: A™J%, terms have the same bound. This deals with all
terms on the right hand side of (174) except for the last.

Estimating R*(m, n).
We have
Ri(m,n) = R (m,n) + =20, (W RE (m,m) ) + WGy g Vg [V AT 0],

e TWIEE g (7 T dive A0 ) + e TW g (g T e [Curl AT 0 )
(190)

and we start by estimating the third term on the right hand side. Since v + 1) = 1, we have
/T /Q e~ Witetmy .y gV gk [V, Amﬁ?ze]; AT G dadr!
1
— /T /Q ¢6_02T’W1+a+m8k¢/—1/a%k Ve Amarlz20]§_ A G2 i dwdr!
1
+ /T /Q @6—027’W1+a+mak¢/—1/a%k Ve Amﬂ?ﬁ]z» A G drdr.
1

For the first integral on the right hand side we have

/ /Qwe—az—r’Wl-i-a-i-makqﬁ/—l/a%k [VC Amﬁ%e]; Amﬁ?QI/idl’dT/

T1

S [ Wl Ilev dr' s [ Voe 37 e yar (191)
T1 T

We have used the a priori assumptions (70) to bound <7 in L*. Moreover, since ¢ is smooth, V1 can also be
bounded in L*°. From there, we use Cauchy-Schwarz to obtain the estimate.

For the corresponding supp ) integral, we can use (230) in Lemma B.1 to turn all A®J% terms in to rectangular
derivatives, and we can again bound all &7 terms in L> using (70). Therefore, this integral has the same bound as
in (191). Overall, we end up with

/ /Q e T WOty g N0 [V A FL6), Ny dad
1

5/ Ve 2T In(r)dr. (192)
T1

The same bounds hold for the last two terms in the (190) involving dive A™@",60 and Curle A™J",0 terms.
Now we turn our attention to estimating R} (m,n).

Remainder Terms from Applying Lemma 7.7 to _# —Aegy,
We recall that fori = 1, 2, 3,

Ri(mu) = e werm |37 Aler e (way (e ) )+ 30 AmaDe (124 (7))

l+p=m—1 a+b=n—1

First we deal the term

e=oRT et m Am ga pa (1, 2, %, ( /—1/%%)) , (193)
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for a + b = n — 1. This term is, by definition,
e TW TN Gy (W [, 04 By (7 0l + (1 @)ty (710 ) oW+ oW oy (7 o))
(194)
From (194), we must take extra care with terms of the form
E_UQTWa—l—mﬁﬁWAmﬂlfz [812,819] 51)2 (/—1/04%16) + (1 + a)e—UQTWa—l—mAmﬁzlz’z (/ 1/adk> ﬁ 8kW
Aq A2
+ e—o’sza+mﬁ§l2lWAmﬁtlll2/akall)2 (/—1/0{%]6)7 (195)

As

fora+c+b=a"+c" +b=mn—1,and d’ + b = n. The extra care is required in dealing with the powers of W
in the integrals, as W™ is not suitable by itself for these particular terms. First we look at .A;. We have

W WA P 0y () = Wy () A B, 0 (),

where the equality comes from d(z, Q) being a function of r only. On supp 1, doWet™ ~ Witetm If ¢ <
N — 2, we have the bound

—oa1’ ¢d Wa-l—mﬁc < >Amﬁ12 [ﬂl%ak] ﬁ12 </—1/a%k> Amﬁ?yjidlEdT/

12| 5
dg Le° (supp )

5/ Voe 27 Sy (r)dr. (196)

S

/ / e YW N (19, 04) By (7T )| [ A7 | dadr

To obtain the final inequality, we use the argument given in (97) to bound the W/dgq term, and then use Cauchy-
Schwarz on the integral over 2. We use (57) and (61) to convert the commutator [J12, )] in to a linear com-
bination of radial and angular derivatives, and then apply Lemma 5.4. If c = N — 1 or N, then we can bound
A™ %, [F12,04) 88 (F ~Y/*aZF) in L™ instead, and obtain the same bound as in (196). Estimating A3 is also
completely analogous to (196), and gives the same bound.

Finally, we look at As:

/ / / W
(14 a)e 2TWotmpAm e, ( /—1/%4’?) YOW = (14 a)e o2 weotmgh, (dgak ( >> A", (/ ‘”“%k)
+ (1 + a)eo2Twotm b, (d—akdg> A", ( /—1/%’@) .
Q
The first term on the right hand side can be bounded analogously to (196). For the other term we first write

(W /
werm g, < am) = Y Wz ), (d—> #y (Orda). (197)
c/+d'=b Q
Now, using the fact that d(z, ) = dq(z) is a function of r only, as well as (57), we have
120kdq = [012, 0] do = k201dg — Op102dg. (198)
We also know that [J12,91] = —0s, and [@12, 02] = O. Hence for any d’ < b/, and k = 1,2, 3, we have

Ay0rda = ZL(d k)orda + ZL(d' k)dada, (199)
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for some constants . and .# depending on d’ and k. Owing to (199), we first look at the integral

w ;
/Q e TPW T do df, < > A"y <j—1/a%k) A" Fpv' d, (200)
The following identity is also key:
1 W\
atmg 4o — R gitotm) 201
W= oude 1+a+m<dg> O (dg ) (201)

So (200) becomes

W .
/Q —crszWa—l—maldQﬁm( >Amﬁ’a (/—1/04%]6) Amﬁ?zyldw

1 1%7%4 a+m , , .
B —o027 gl+a+m c W m ga 1/a sk Am
1—|—oz—|—m/ge o o <¢ <d9> = (dQ>A a </ 7 >A ﬂlzl/)dx’ (202)

with the right hand side coming from integration by parts in 0; as well as (201). Up to constant, the integral on the
right hand side is

—0oT a+m W atm c W m ofa’ —1/a mogm i
[ (5 () o)
w\t W L (W : .
~(atm) / oy () o () #% () A (et s
Q dQ dQ dQ

- a+m Wa+mc’W m oa’ —1/a man i
—/Qe 727 dgs et ¢<%> 12 (@) AP, (/ Y ﬂfik>/\ Apr'de

W a+m , W ,
_/ _027d1+a+m ¢ 32 w Amﬁzlzz (/ 1/adk> 81Am5127/ (203)
Q do do
Note that due to (29),
w dq
Pt <
do| Tl |~

on supp . Hence, the first three integrals above can be bounded as in (196). For the third integral, we also use (61)
to write J; as a linear combination of radial and angular derivatives with smooth coefficients.

This leaves us with the last integral, in which 9; A™#%,v" has too many derivatives to be bounded in the correct
energy space. SO we write

o hn gy () o (8B =, (e Ay (e ert) oy ()
o (£l ()
N (e e o) 0y (N0
Lo (s )

Every term on the right hand side above can be estimated as in (196), along with the Fundamental Theorem of
Calculus in 7 for the first term. We end up with the bound

7 ; (W (W , |
—02T S c M 1+a+m pAm ga —1/a sk mom i ,
0 ¢<dn> 12 <d9>dﬂ A" (/ ; )81 (AP0 dodr

53—%2715@\7(7-1) + \/ge_%TyN(T) + / Vo <O’2€_072T/ + e_gT/) In(dr!

T1

,syN(n)Jr\/SyN(T)Jr/T\/S(age T pem 2T )yN( Y. (204)
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We bound the integral with .Z(d’, k)05 instead of .Z(d’, k)9, analogously. Combining the bounds (196) and (205)
gives us the estimate for (195).

Any terms coming from (194) that are not of the form A;, As, or A3z can be bounded using Lemma 5.4.
Therefore, we have the bound

/ / pe 2T A™ FL D <1, 2, 2%, <j_1/as2{>> A" F Vi dxdr!

a+b=n—

< In(T) + VoSN (1) + / Ve (026_0727—, + 6_%7—,> In(Tdr" + / ﬁe_%T/yN(T')l/2dT'. (205)
T1

T1

It remains to bound all terms of the form
emormyetmpleitaty (Apagg ( /—1/%2%)) , (206)
where [ + p = m — 1. By definition this term is equal to
e—oTpyatm Al (arw%ﬂjkzxpﬂg (7 eal) —wounr gty (7o) + (14 ot pardly (7 ) Ao ).
(207)
We can bound this term analogously to (196) using Lemma 5.4. Thus we have

Z / /¢e‘”2TW°‘+mAlCil+a+p (Apﬁﬁ <f_1/ad>)1\mﬁl2uldazd7/ ,S/ \/ge_%T,yN(T/)dT/.
T1

l+p=m—
(208)

We are left to bound R5!(m, n).
Remainder Terms from Linearising 7 ~'/*¢7.

We look at the expression e~ 72710y, (W1+a+mR’§i(m, @)), which by definition is given by

1

a/_l/a%k%s (D12, 05] 9j>>

;Wl—l—a—l—m/ l/aﬂkﬂs [Amﬁm ,8]3129j>

g, (WA (e 710,00+

6_02T¢8k <W1+a+m/ l/adkds [Amﬁlz 78 ] 3129]

6_02771Z)8k W1+a+m Z g(p, q, l7 b)Apﬁ({Q (/_1/ab(2{jk~(2{is) Alﬁl{2 (8sﬁl2ej)

p+l=m
q+b=n—1
p+q>0

1 _ .
— =Y | W N L g, LNy (7T ) Ny (0,107)
p+l=m
q+b=n—1
p+q>0
We first transform this expression using integration by parts:

/96—0271/)8]g <W1+a+le2€i(m’ﬂ)> Amﬁ%uldl’ - /526—027¢W1+a+m72129i(m’ﬂ)8k (Amﬂrbyi) dr

- / O QWO RE () AT P vtdz. (209)
Q
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The second term on the right hand side is lower order, and we can use an argument similar to that in Lemma 5.4 to
bound all terms coming from R’“ in this case. We have the estimate

/ / e~ O WO RE () AT dacdir!

S /T e~ 27 Sy (r)dr'. (210)
For the other, top order integral, we first write 1
e“’QTQ/JWHaJFngi(m,Q)@k (Amﬁﬁl/i) =0, <e_‘7271/)W1+a+mR'§i(m,Q)8k (Amﬁﬁ@i))
+ o2 P TYW TR (m, )0k (A" F720)
— e PTYW IO RE (m, n) Ok (A" F707) .

All of these terms can again be estimated using the methods set out in the proof of Lemma 5.4, so we have

6_027/1][)W1+a+mR12”(m, ﬂ)ak (Amﬁ%l/l) dxdr

’

< \/Se PN (1) + Voe TSN (r) / Vo(oe™ T + e ) (r)dr!

< In(m) + VoIn(r) /\/_0'26 ERAEE TT)yN(T')dT'. (211)

The bounds for R (k) are analogous as W ~ 1 on supp ¢. Thus we have Theorem 7.13. O

8 Energy Inequality and Proof of Theorem 4.1

In this section we prove the main result of this paper, Theorem 4.1. However, we first need an energy inequality.

Theorem 8.1 (Energy Inequality). Ler (v, ) be the solution to (36) on [0, T in the sense of Theorem 3.6, for some
N > 2[a] + 12. Suppose the a priori assumptions (70) hold, and VW € XN. Then forall 0 < 7 < 7* < T,

In(T*5m) < CLsn(T1) + CaVi + Cs (En(0) + N (0) + CaVo.In (T 71) + 05/ VoG (B, 7SN (s m)dr
T1
(212)
with Cj, j = 1,2,3,4,5 constants > 1, and G(3, T) integrable in T for all fixed f3.

Taken from [5], the notation . (7;71) is a modification of Definition 3.5, in that we take the supremum over
[11, 7] instead of [0, 7].

The proof will require using Theorems 7.11 and 7.13. Once again we stress that while we assumed a specific
form of (m,n) to prove these energy identities and estimates on the vacuum boundary, this was for simplicity, and
there are no additional technicalities when proving the same statements for general (m,n), only extra care when
dealing with #™. Thus, throughout the proof we assume the statement of these theorems for all (m,7n) such that
m+|n| < N.

Proof. Fix 11 < 7" < T'. To begin with we integrate the energy identities (145), (172) and (173) in 7 € [y, 7*],
sum over all (m,n) and k such that max (m + |n/, |k|) < N, and obtain

n)
1 eo1T 27 ||g 2 1 =027 |19 2
5 |5 (1) + e | ||yN(v<) (1) + o€ | HyN(diVC) (1)

DO =

1 o1T —02T: 1 —02T:
< 5 <5 1L |y || % (T1) 4 702 ”9|y§,N(v<) (1) + e |;9|]§,N(divc) (m)
1 —02T — 09T
+ 7 (101 cunte) () = €7 101 cuan) (7))
+ % e 72" ||9||§)N(Curl<) (7")dr' +/ (R(0) + R(m,n) + R(k)) dr’. (213)
T1 T1
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Note that whilst (173) does not have the same powers of W on the supp 1) integrals as the definition of the energy
norms in (64) and (65), W ~ 1 on this region, so this is not an issue. Now we apply Theorems 7.5 and 7.13, and get

1 o117 —0o9T 1 —0o9T
(e 1 (1) € 100wy (1 e 100wy (7))

1

2

1 —02T o i —02T

S¢” 1015~ (Curty) (T)+f/ 01w (o) (AT + I (1) + VoSN (7)
T1

+ / Vo (757 e 3T (A2 4+ () ) dr + / VoeF ()2, (214)
T 1

1

Applying Theorem 6.7, this bound becomes

1 1 o1T 2 —02T 2 1 —02T 2
3 (567 WlBev ()4 I8z ()4 2 160y (1)

S (En(0) + 2N (0)) + \/gyN(T) + In(m) + / \/SG(ﬁ,T/)yN(T/)dT/ + / ﬁe_%T/yN(T/)l/sz/.
1 1 (215)
Here G is defined as

6

2
Gg(B,7) = e T 4oy e T+ Z e 2TH;(B,T) + Z e 72TG (B, T) | (216)
j=1

i=1

where H; and G; are given in Definition 6.6. We have also used the property that e =27 H,(, 7) and e =727 G;(8,T)
are uniformly bounded in 7 for all § > 0. Next we use Young’s Inequality on the last integrand on the right hand
side of (215). We also add ||#||%~ to both sides and employ Lemma 5.1 to obtain

1 g1T —02T 1 —02T
(e I + 18 B + e I e + 2 10 v )

< (BN (0) + . IN(0) + VO + VoSN (1) + I (1) + / ' VG (B,7) SN (7)dr'. 217)

Note that G is given by G + e~ 7. Moreover, since o2(B) = 0 for all 5 € (0,2], and e~ 72" H;(3,7) and
e~ 72"G,(8, ) are integrable in 7 for all § > 2, we have that G is integrable in 7 for all 5 > 0. By definition,
IN(T) < INn(T;711) + SN(T1). As G is integrable, we have

(56 1B () 161Bex + =2 1018wy () + e 161y (7))
< (En(0) + SN (0)) + V6 + (1) + VOIN(T;71) + /T VG (B, 1) (n(Tsm1) + Fn(m)) dr’
< (ENn(0) + IN(0) + Vo + In(1) + VoSN (T;m1) + / VoG (B, 7).In (71 )dr . (218)

Finally, taking the supremum over [y, 7*] on both sides, and adjusting constants on the right hand side if necessary,
we have (212), noting the last two terms in (218) are increasing in 7.

8.1 Proof of Theorem 4.1
Let T be such that

sup Sn(7) = In(T) < C(SN(0) + En(0) +V0), (219)

0<r<T



for some constant C' given by local well-posedness theory. Let C* be defined by
C* = 3(C1C + Cy + C3), (220)
with C;, i = 1,2, 3,4, 5 given in Theorem 8.1. Note that C' < C*, and so if we define

T = sup{ Solution to (36) exists on [0, 7] [N (7) < C*(SN(0) + En(0) + \/5)} , (221)
>0

then T < T*. Now letting 71 = 7'/2 in Theorem 8.1, for any 7* € [Z,T*), we have

T

yN(T*; 5) < ClyN(%) + Cg\/g—i- Cs (CKN(O) + yN(O)) + C4\/5yN(T*' z

)+ Cs [ VEG(E. A

< clyN(g) + CoVo + C3 (En(0) + SN (0)) + CuVo.S N (77 g) + C5V0 (/OOO G(3, T’)dr’> N (T g).

(222)
Let 6 be so small that
§ < min <(404)—2, <405 /OOO g(ﬁ,#)d#) _2>. (223)
Then we have
s 3) < 201w () + 2035 + 205 (4x(0) + Fn(0) (224)
Using (219) to bound .%x (T'/2) by C (%N(O) + . In(0) + \/3), we obtain
(s 3) < 200 (Gn(0) + Fn(0) + V3) + 20275 + 205 (¢n(0) + #x(0)
< 2(C1C + Cy + C3) (%N(O) +.7n(0) + x/S) <cr (%N(O) +.7n(0) + x/S) : (225)

Combining (225) with (219), we obtain .#y (7%) < C* (%N(O) + ~n(0) + \/3), for all 7% € [0, 7). Shrinking &

further if necessary, we also improve our a priori assumptions (70). For &7 we have, for all 7 € [0,7),

’ / 0./ dr’
0
for small enough d. Similarly for ¢ .
Then, by continuity of .y (7) as a function of 7, we must have that 7% = oco. Thus the bound (68) follows. It
is left to prove (69). Let 71 > 5. For any m + |n| < N, we have

Hszf - I”Loo =

< C\/S/ e 2T Iy (r)dr < % (226)
L 0

2

T1
/1/1Wa+m]Amﬂﬂ(9(7'1)—9(7’2))]2dx:/1/1Wa+m / AP (Ydr' | dx
Q Q T
o —Z 5y o LA at+m | Am gn, |2 /
< e 27 dr ez YW A" @™ |* dzdr
T T Q
T1 - ,
,S&YN(Tl)/ e~ 37 dr!
T2
<5 (e—%lﬁ _ e—%lﬁ) . (227)

The first estimate follows from the Cauchy-Schwarz inequality in 7, the second follows from the integrability of
e~ 27, and the last one follows from the uniform-in-r boundedness of 6.7y (7).

An analogous estimate holds for any |k| < N on suppt. Thus [|6(71) — 0(72)|| yv — 0 as 71,72 — oco. In
particular this implies that §(7,,) is Cauchy, for any strictly increasing sequence 7,,. As X'V is a Banach space, this
implies the existence of lim, ., 8(7) in XV, which we call f,. Thus we have (69). O
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Appendix A Commutators

We recall that in Section 3.2, we introduced our angular and radial derivatives, # and A and the various commutator
identities (54) — (57). In this appendix, we state how these commutators can be written as radial and angular
derivatives, following [5].

Lemma A.1 (Higher order commutator identities). Let 05 be a rectangular derivative. Then for n € 73, %o with
|n| > 0, we have

m+|n/

AmF™,0) =Y > KaiapAd, (228)

i=1 a[b|=i
a<m+1

where Ky ; o.p are smooth functions away from the origin.
If |n| = 0, then we instead have

m+|n|
s] = Z Z ]:s,i,a,l_aAaagy (229)
=1 a—i—\}\:i

where, again, Fy; o are smooth functions away from the origin.

Proof. First we prove (228). Recall that (61) gives us the identity
0q = %ﬁkq + %XT.
Write 2 = #%7;;, with || = [n| — 1. We have
(A", 05) = A" #0051 — DA™ F% + A" (P51, 0] -
Then we invoke (57):
A [P 1, 05) = =05, A" (D)) + 5slAmﬁ@( ;)
= g, ;AR (”ﬁkl +ox ) + 5 AR (x’“ﬁm ””;’ XT> .

Now z/r? is a smooth function away from the origin, so expanding the right hand side gives us

m+|n|
m a b
A ﬂ ]17 Z Z s,z,a bA ﬂ
=1 a+|b|=i
a<m+1
where K s( Z) a,p 4r¢ smooth functions away from the origin.

We can keep repeating this procedure with A™J%0 ﬁﬂ, swapping the 0s sequentially with the sequence of
angular derivatives, at each step gaining a term with the same structure as

m+|n

Z Z Ks(,lz,a bAaﬁb

i=1 at|b|=i
a<m+1
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to end up with

m+|n|
(A", 0. = AmO " — OA"F + Y DD K AP
=1 a+|b|=t
a<m+1

where K 5(22.)& , are smooth functions away from the origin.

If m > 0 we note that A9, 7% = A" 19,A9% + A™1 A, 8,] #™, and we invoke (56) to get
A0 P = N0 NG — AT O "
— Am—1 n_ Am—1(%k Zs n
= AMI9AFR — A (ﬂaks + T2XT) y/

m+|n|
= A" AT+ ST ST K At
1=1 a+\<g\:i

with K f? ab smooth away from the origin. We can also keep repeating this process until we get

m+|n|
AmF 0, = Ao AT g — g A gn s S ST KW Aegh,
=1 atl|b|=i
a<m+1
where K 5(42‘) o.p are smooth away from the origin. Finally, note that

AQAN" P — AP = [, O] AT = 0, A P,
and using (56) once again, we finally get

m+|n|

[Amﬁﬁyas]: Z Z ICs,i,a,QAaﬁga

i=1 a[b|=i
a<m+1

for some K ; 4, smooth away from the origin.
If m = 0, write % = @,y d"', with |n/| = |n| — 1. We obtain

m+|n|
70 = oo™ — 00"+ Y D K, AP
i=1 atp|=i
a<l
/ m+|n|
= [Py, 0 0% + > > KO a0,
i=1 a+\<g\1:i

at which point we once again invoke (57) and (61) to obtain the desired statement. The proof for the second part of
the lemma is analogous. ]

Appendix B Transformation of Derivatives

In this appendix we record how A™J™ can be written as a sum of V£ on an appropriate sub-domain of the unit ball
B, and vice versa.
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Lemma B.1. Let By be the closed unit ball in R3, and let A™ @™ and V* be defined as in (52) and (53). Then we
have

m+|n|

AT =N QpVh, (230)

|k|=0
for some Qy, smooth on Bj.

Proof. This is a simple consequence of our definitions of A, given in (51) and &, given in (50). In rectangular
coordinates, they are given as

A=2V
ﬂij = l’iaj — a:]&

Noting that x is a smooth function on the ball, we get the desired statement by using these equalities in A™J% and
expanding the expression. O

There is also a partial converse to Lemma B.1.

Lemma B.2. Let By be the closed unit ball in R3, and let N™J™ and VE be defined as in (52) and (53). Then we
have

||

VE= Y Za AT (231)
m+|n|=0

Jor some functions Z,, ), smooth on any region removed from the origin in Bj.
Proof. This is an application of identity (61), namely
l’j ZT;
0; = ﬁﬁji + T_2Xr-
The function /72 is smooth on any region removed from the origin, so we can use this equality in V* and expand,
giving us the desired result. U
Appendix C Hardy-Type Inequality and Sobolev Embeddings

One of the main tools we use is a higher order Hardy-type embedding which tells us that a weighted Sobolev space
on a domain can be realised in a Sobolev space of lower regularity, in essence sacrificing regularity to remove
degeneracy near the boundary.

Definition C.1. For a bounded domain O C R3, and s € Z>, define the Sobolev space H*(O) by
H(0) = {F € L*(0) : VEF is weakly in L*(0), k € 7%, 0 < |k| < b} :

with norm given by

b
1PN s 0y = Z/O‘VEFfdx.

|k|=0

The definition of H®(O) can be extended to s € R>q by interpolation.
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Definition C.2. For a bounded domain O C R3, a > 0 and b € Z>, define the weighted Sobolev space H @b py
HY(0) = {d%F € L2(0) : VEF isweakly in L*(O,d%dz), k € Z%O, 0 <kl < b},

with norm given by

2
VEF‘ dx,

b
mmm:zéw

|k|=0

where d = d(z, 00) is the distance function to the boundary on O.
Given these definitions, we have the following embedding.

Lemma C.3. Let O be as above and let b € Z~g and 0 < o < 2b. Then the Banach spaces H*®(O) embeds
continuously in H*=2 (O).

Finally, we state the Hardy-Sobolev bounds for L>-norm in terms of our energy norms. Recall the space X’°
and the set Y°(V) given in Definition 3.2, as well as ¢ given in (62).

Lemma C4. Leta € Z>gand b € Z?éo’ and let a + |b| = M. Then
HA“HQFHZ < |IF)? (232)
Lo (suppp) Afelranred
Lemma C.5. Leta € Z>pand b € Z?éo» and let a + |b| = M. Then

2

[eacate]
Lo° (supp ¢)

S HFH2XraHM+6 . (233)

2

[WEPAPE

SIEI rarearoqw - (234)

The proofs of Lemmas C.3—C.5 are standard and can be found in [12, 7].
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