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Abstract
It is shown that a full-dimensional polytope P is uniquely determined by its r -
dimensional fibre polytopes when r ≥ 2. Further, if r ≥ 4 and the r -dimensional
fibre polytopes are zonotopes, then P itself must be a zonotope.
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1 Introduction

Fibre polytopes were devised by Billera and Sturmfels (1992) (see also Billera and
Sturmfels (1994)), generalizing the notion of secondary polytopes introduced by
Gel’fand et al. (1990). The purpose of these constructions was to describe how differ-
ent subdivisions of a projected convex polytope arise from the faces of the original.
In McMullen (2004), answering a question of McDonald (2002), we modified the
original definition in order to allow mixed fibre polytopes. It is the definition of fibre
polytope given there that we adopt here.

It is a well-known fact that a d-dimensional polytope P can be recovered from its
orthogonal projections on r -dimensional subspaces when r ≥ 1; the basic reason is
that the support functional of P is given by the support functionals of these projections.
Perhaps closer in spirit to what we do here is the solution of Hammer’s X-ray problem
inGardner andMcMullen (1980); see alsoGardner (2006) for awider picture.Whatwe
shall show is that something analogous happens with fibre polytopes. More precisely,
if P is a full-dimensional polytope in the d-dimensional euclidean space V then, when
2 ≤ r < d is fixed, knowing the fibre polytopes fib(P; L) for each r -dimensional
linear subspace L of V determines P uniquely.
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It is known that a fibre polytope of a zonotope is a zonotope; see [McMullen (2003),
Theorem 14.1]. We shall also show a kind of converse: if r ≥ 4 and the r -dimensional
fibre polytopes of P are zonotopes, then P itself is a zonotope.

In outline, the rest of the paper is as follows. In Sect. 2, we define fibre polytopes
and discuss some of their basic properties. In Sect. 3, we look at a special case, which
gives us some insight into the general problem. In Sect. 4, we show how to recover
enough of the normal fan of a polytope from those of its fibre polytopes. In Sect. 5, we
apply this result to establish the main claim of the paper. Section 6 treats the special
case of zonotopes. We then make some additional comments in Sect. 7.

2 Fibre polytopes

The setting until Sect. 7 is a d-dimensional euclidean space V . If Gr = Gr (V ) denotes
the Grassmannian of r -dimensional linear subspaces of V and L ∈ Gr , then we have
a short exact sequence

O −→ L
Φ−→ V

Ψ−→ M −→ O,

with Φ the isometric injection of L in V and Ψ the orthogonal projection of V on
M = L⊥. We shall not distinguish between spaces and their duals, so that the dual
exact sequence is

O ←− L
Φ∗←− V

Ψ ∗←− M ←− O,

with the rôles of injection and projection reversed. We find it convenient to write
s := d − r .

Following [McMullen (2004), Section 2], if P is a (convex) polytope in V , then we
define its fibre polytope in L by

fib(P; L) = fib(P;Φ) :=
∫

Ψ P

(
(P − z) ∩ L

)
dz; (1)

we use the two notations interchangeably, depending on where we wish to place the
emphasis (in McMullen (2004) there is an equivalent formulation in terms of support
functionals). A consequence of the definition is [McMullen (2004), (2.2)], namely, if
t ∈ V , then

fib(P + t;Φ) = fib(P;Φ) + vols(Ψ P)(Φ∗t) (2)

In the present context, we shall demand that P itself be full-dimensional unless
we say otherwise, because the fibre polytope construction can degenerate on lower-
dimensional polytopes (it always produces {o} if dim P < d − r ).

We define N (F, P) to be the cone of outer normal vectors to a polytope P at a face
F . The normal fanN (P) of P is the complex consisting of its normal cones N (F, P).
An important fact from [McMullen (2004), Section 4] is
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Proposition 2.1 The normal fan of fib(P;Φ) is the common refinement of the fan
induced by the projection of the normal fan of P under Φ∗:

N (fib(P;Φ)) =
∧

Φ∗N (P).

Indeed, each point u ∈ L determines a (unique) cone in N (fib(P;Φ)), given by

⋂
{Φ∗C | C ∈ N (P) and u ∈ relintΦ∗C}.

In [McMullen (2004), Propositions 5.1 and 5.2], we showed how to find the vertices
and edges of fib(P; L); we repeat those results here.We first need to define the scaling
factor κ(F, Φ∗) for a face F of P . If X is a k-dimensional subspace of V and B is a
unit k-cube in X , let μ(X) := volk(Φ∗B). Note that μ(X) = 0 if Φ∗ is singular on
X , and in particular if k > r . We then define

κ(F, Φ∗) := μ
(
lin N (F, P)

)
, (3)

with lin N (F, P) denoting the linear hull of N (F, P). (In McMullen (2004), an alter-
native definition is given in terms of the projection Ψ F of F on M , but the equivalent
one given here is simpler.) If u ∈ relint N (F, P), then we say that F is the face of P
in direction u.

For vertices, writing

ms(F) :=
∫
F
x dx

for the moment vector of an s-face F of P (the measure is s-dimensional measure in
lin F), we have

Proposition 2.2 If u ∈ L is a general direction vector, then the vertex of fib(P;Φ) in
direction u is

∑
int(Φ∗N (F,P))
u

κ(F, Φ∗)Φ∗ms(F).

The formula for edge-lengths is very similar.

Proposition 2.3 If u ∈ L is a direction vector lying in the relative interior of a cone
of the normal fan of fib(P;Φ) of codimension exactly 1, then the edge of fib(P;Φ)

in direction u has length

∑
relint(Φ∗N (F,P))
u

κ(F, Φ∗) vols+1(F).
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3 A special case

Before we introduce the machinery that we employ generally, we first look at the case
r = 2 which is easy to treat and, at the same time, is of interest beyond the main topic
of the paper.

When P ∈ P(V ) is full-dimensional, Proposition 2.3 tells us that the edges of
the fibre polygon fib(P; L) in the plane L ∈ G2(V ) arise from the facets (faces of
codimension 1) of P . Indeed, if the facet Fi of P has unit outer normal vector ui
and corresponding area αi for i = 1, . . . , n, then we write ai := αi ui , and call
A := (a1, . . . , an) the area vector array of P . Observe that A is equilibrated, in that
a1 + · · · + an = o. At this point, it is worth recalling Minkowski’s existence and
uniqueness theorem (see, for instance, [Schneider (2014), Theorems 8.1.1, 8.2.1])

Proposition 3.1 An equilibrated set A that spans V is the area vector array of a
full-dimensional polytope P ∈ P(V ), which is unique up to translation.

Bearing in mind Proposition 3, we can see that the area vector array of fib(P, L) is
just Φ∗A = (Φ∗a1, . . . , Φ∗an), with the understanding that, if two or more Φ∗a j are
positive multiples of each other, then they are replaced in Φ∗A by their sum (in other
words, the same convention applies as for the Blaschke addition # – see [Schneider
(2014) ,p. 459]); naturally, a vector ai ∈ A such thatΦ∗ai = omakes no contributuion.
If L is in general position relative to P , then such coincidences will not occur.

We now vary L , and keep track of how just one Φ∗a j moves. Since Φ∗a j is the
image of a j under orthogonal projection on L , we see that the vectorsΦ∗a j trace out a
sphere in V with diameter [o, a j ] (the trianglewith vertices o, a j , Φ

∗a j is right-angled
at Φ∗a j ). Moreover, in fact, any open subset of G2 provides enough information to
reconstruct this sphere. In other words, we can recover the original area vector array
A from those of the fibre polygons.

Appealing to Proposition 3.1 shows that we have specified P up to translation; in
particular, we know vols(Ψ P) for each given L ∈ Gr . But finally we can identify P
completely, because (2) provides enough information to fix P in its translation class.

Remark 3.2 It is worth making a further comment about this case. Bearing in mind
that Blaschke addition really acts on translation classes of polytopes, we can see that
the fibre polytope mapping induces a homomorphism from (P(V ), #) to (P(L), #);
note that Blaschke and Minkowski addition almost coincide in the planar case. It
extends to lower-dimensional polytopes in P(V ); it produces line segments (possibly
degenerate) from those of codimension 1, and just {o} for those of codimension 2 or
more. As well, of course, it was at the core of the definition of mixed fibre polytopes
in McMullen (2004) that the mapping P �→ fib(P; L) is also a valuation.

4 Recovering the normal fan

Proposition 2.1 tells us what the normal fan of the fibre polytope fib(P;Φ) is. The
first stage in the general case is to show how to recover enough of the original normal
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fan N := N (P) from the fans N (fib(P;Φ)
)
. We begin with the fairly obvious

C =
⋂{

L⊥ + Φ∗C | L ∈ Gr
}

, (4)

if C is a cone in V of dimension at most r (we write L⊥ instead of M , to make the
connexion between Φ and L more clear). If C ∈ N , the problem in recovering C lies
in the fact that it will be refined in L through being intersected with the images of
other cones of N . A crucial fact is that the projections Φ∗C move continously with
L ∈ Gr .

As we have seen, the cones in N (
fib(P; L)

)
arise as intersections of cones Φ∗C

whose relative interiors have common points. But if neither C1 nor C2 is a face of the
other, then there is some hyperplane H in V that separates them and meets them only
in C1 ∩ C2. If M is any s-subspace of H , then the projection Φ∗ with kernel M is
such that relintΦ∗C1 ∩ relintΦ∗C2 = ∅. In other words, while such pairs of cones
C1,C2 can contribute to cones in N (

fib(P; L)
)
for some subspaces L , they will not

for others.
The procedure is thus to reconstruct the conesC ∈ N by increasing dimension. We

begin with those of dimension 1 (normal cones to facets of P), which are particularly
straightforward to single out in the way described, because their projections must
survive in all fansN (

fib(P; L)
)
.We thenmove on to those of dimension 2,whichmust

have edges among those of the known 1-dimensional cones, and trace their projections
to see which survive—possibly refined—into the N (

fib(P; L)
)
. In general, once we

have identified the family Nk−1 of (k − 1)-cones in N , the potential cones in Nk

must have facets among those in Nk−1; we then look among them to see which are
identified by their projections as genuinely belonging to N , and so survive for every
L ∈ Gr . What we have shown is

Theorem 4.1 The (r−1)-skeleton of the normal fanN (P) is determined by the family{N (
fib(P; L)

) | L ∈ Gr (V )
}
of normal fans of the fibre polytopes of P.

Remark 4.2 There is not quite enough information to reconstruct the r -skeleton,
because r -cones cannot be distinguished by their projections. However, the (r − 1)-
skeleton is all that we shall need.

5 General polytopes

Proposition 2.3 tells us that the edges of a fibre polytope fib(P;Φ) arise from the
(s+1)-faces F of P alone; however, at this stage, all that we know is that their lengths
are sums of terms arising from different such faces F . We have shown in Sect. 4 how
to reconstruct the (r − 1)-skeleton of the normal fan N (P) from the normal fans
N (fib(P;Φ)); in particular, this yields enough of the strong isomorphism class of P
(with faces determined by their normal cones – see, for instance, [Schneider (2014)
,p. 109]), namely, the linear subspaces F‖ parallel to the k-faces F ≤ P with k > s.
Moreover, if k ≥ s + 2 and G is a k-face of P , then we also know the outer normal
vector u(F,G) to G at each of its (k − 1)-faces F .
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The normal cone N (F, P) to F spans the subspace F⊥ := lin N (F, P) othogonal
to F‖. If F, F ′ are two (s + 1)-faces of P , then there are two possibilities. Either
F⊥ ∪ F ′⊥ spans V , or H := lin

(
F⊥ ∪ F ′⊥

)
is a proper subspace of V . In the first

case, Φ∗F⊥ �= Φ∗F ′⊥ because these (r − 1)-dimensional images span L . For the
second case, if the kernel M = kerΦ∗ does not lie in H , then againΦ∗F⊥ �= Φ∗F ′⊥.
In neither case, therefore, can the images under Φ∗ of the normal cones N (F, P)

and N (F ′, P) overlap, and hence F and F ′ cannot contribute to the same edge of
fib(P; L) (compare Proposition 2.3). (In saying that two cones C1,C2 overlap we
mean that linC1 = linC2 and that relintC1 ∩ relintC2 �= ∅.) Since there are only
finitely many proper subspaces of V spanned by pairs of normal cones to (s+1)-faces
of P , we deduce

Lemma 5.1 For all but a set of subspaces L ∈ Gr of measure 0, each edge of fib(P; L)

arises from a single (s + 1)-face of P.

We now employ Proposition 2.3. If L ∈ Gr is a general subspace as in Lemma 5.1,
then each (s + 1)-face F of P contributes a single edge of fib(P; L) of length
κ(F, Φ∗) vols+1 F . Since we now know the subspace F‖, we then know the scal-
ing factor κ(F, Φ∗), and hence we know vols+1 F .

Finally, we appeal to Proposition 3.1 in increasing dimensions. For each (s + 2)-
face G of P , we have found the unit outer normals to G at its (s + 1)-faces and the
volumes of these faces. In other words, we have the area vector array of G, and hence
we know G up to translation and, in particular, vols+2 G. Carrying on the procedure
eventually yields P itself, up to translation.

Finally, exactly as in Sect. 3, applying (2) for varying L ∈ Gr enables us to identify
P in its translation class. In other words, we have proved

Theorem 5.2 If 2 ≤ r < d, then a full-dimensional polytope P in a d-dimensional
euclidean space V is uniquely determined by its fibre polytopes fib(P; L) with L ∈
Gr (V ).

Remark 5.3 If we want to use slightly more technical language, we can say that the
mapping from P(V ) to P(V ) ⊗ Gr (V ) given by P �→ fib(P; L) ⊗ L is injective on
the sub-family of full-dimensional polytopes.

Remark 5.4 While it is not clear that the analogue of the result of Section 3 will hold,
in that any large enough subset of Gr will suffice to reconstruct P , one should expect
that to be the case.

6 Zonotopes

The following result was proved in McMullen (2003) on the level of strong isomor-
phism; here, we look at it in the metrical context.

Theorem 6.1 If Z ∈ P(V ) is a zonotope, then a fibre polytope fib(Z; L) is a zonotope.

Proof In fact, we need only pay attention to the (centrally symmetric) (s+2)-faces G
of Z . Each 2-face of fib(Z; L) is a sum of centrally symmetric images of such faces
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G and line segments, and hence is centrally symmetric; this ensures that fib(Z; L) is
a zonotope (see [Schneider (2014), Theorem 3.5.2]).

We also need a different characterization of a zonotope, which comes from
McMullen (1970).

Proposition 6.2 If 2 ≤ k ≤ d − 2 and all the k-faces of a d-polytope P are centrally
symmetric, then all the faces of P are centrally symmetric, so that P is a zonotope.

We now show

Theorem 6.3 If 4 ≤ r < d and the fibre polytopes fib(P; L) of the full-dimensional
P ∈ P(V ) are zonotopes for each L ∈ Gr (V ), then P is a zonotope.

Proof A characteristic property of a zonotope Z is the fact that its normal cones
N (G, Z) fit together to form complete subspaces of V . Moreover, the faces G corre-
sponding to such subspaces are translates of each other and so, in particular, have the
same volume of the appropriate dimension.

To reverse this, consider the varying fibre polytopes fib(P; L). If each is a zonotope,
when we lift the normal fansN (

fib(P; L)
)
back up toN (P) the (r − 1)-dimensional

cones N (F, P) (normal to (s + 1)-faces F) again fall into subspaces, with each F
having the same (s + 1)-volume because κ(F, Φ∗) is the same. We now follow the
proof of Theorem 5.2.

If G ≤ P is a typical (s + 2)-face, then its (s + 1)-faces fall into parallel and
opposite pairs with the same volume; again, this information comes from what we
know ofN (P). Since s = d − r ≥ 1 by assumption, so that s + 2 ≥ 3, we can appeal
to Proposition 3.1 again to see that G must be centrally symmetric. The argument
really begins with the case r = 2, when we simply have G = P . If r = 3, all we can
deduce is that P is a polytope with centrally symmetric facets; by the Aleksandrov-
Shephard theorem (Aleksandrov (1933), Shephard (1967) see McMullen (1976) for a
shorter proof), it follows that P is itself centrally symmetric. (This should be obvious
as well from the central symmetry of the fibre polytopes.)

Finally, if r ≥ 4, in which case 3 ≤ s + 2 ≤ d − 2, then we have a d-polytope P ,
all of whose (s + 2)-faces are centrally symmetric. Now Proposition 6.2 implies that
P is a zonotope, as claimed.

Remark 6.4 The example of the 4-dimensional regular 24-cell Q, say, shows that we
cannot obtain anything stronger when r = 3. The facets of Q are regular octahedra.
Thus the facets of any 3-dimensional fibre polytope of Q are sums of fibre polygons
of octahedra and fibre polytopes of triangles, which are line segments. In other words,
every fibre polyhedron fib(Q; L) has centrally symmetric facets, and so is a zonotope;
however, Q itself is not a zonotope.

7 Final remarks

Our approach actually allows us to work in vector spaces over a more general field F
than the real numbers R. We need to compare fibre polytopes as we vary the subspace
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L in the Grassmannian Gr (V ), and for this we must have something like a euclidean
structure on V ; hence F should be square-root-closed. (In this context, observe that
the fibre polytope construction only needs Riemann integration.) In many respects, the
most appropriate field for convex polytope theory is that of the real algebraic numbers.

One of the referees further observed that we could even take F = Q (the rational
numbers), apply the fibre polytope construction to lattice polytopes, and blow up any
resulting fibre polytope fib(P; L) by a factor that only depends on the rational subspace
L to make it a lattice polytope (the same factor must be applied, whatever fib(P; L)

may be). Reversing this known scaling recovers each original fibre polytope fib(P; L),
and for varying L these will still provide enough information to identify the original
polytope P .
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