
Digging Into Self-Supervised Monocular Depth Estimation

Clément Godard1 Oisin Mac Aodha2 Michael Firman3 Gabriel Brostow3,1

1UCL 2Caltech 3Niantic
www.github.com/nianticlabs/monodepth2

Abstract

Per-pixel ground-truth depth data is challenging to ac-
quire at scale. To overcome this limitation, self-supervised
learning has emerged as a promising alternative for train-
ing models to perform monocular depth estimation. In this
paper, we propose a set of improvements, which together re-
sult in both quantitatively and qualitatively improved depth
maps compared to competing self-supervised methods.

Research on self-supervised monocular training usually
explores increasingly complex architectures, loss functions,
and image formation models, all of which have recently
helped to close the gap with fully-supervised methods. We
show that a surprisingly simple model, and associated de-
sign choices, lead to superior predictions. In particular, we
propose (i) a minimum reprojection loss, designed to ro-
bustly handle occlusions, (ii) a full-resolution multi-scale
sampling method that reduces visual artifacts, and (iii) an
auto-masking loss to ignore training pixels that violate cam-
era motion assumptions. We demonstrate the effectiveness
of each component in isolation, and show high quality,
state-of-the-art results on the KITTI benchmark.

1. Introduction
We seek to automatically infer a dense depth image from

a single color input image. Estimating absolute, or even
relative depth, seems ill-posed without a second input image
to enable triangulation. Yet, humans learn from navigating
and interacting in the real-world, enabling us to hypothesize
plausible depth estimates for novel scenes [18].

Generating high quality depth-from-color is attractive
because it could inexpensively complement LIDAR sensors
used in self-driving cars, and enable new single-photo appli-
cations such as image-editing and AR-compositing. Solv-
ing for depth is also a powerful way to use large unlabeled
image datasets for the pretraining of deep networks for
downstream discriminative tasks [23]. However, collecting
large and varied training datasets with accurate ground truth
depth for supervised learning [55, 9] is itself a formidable
challenge. As an alternative, several recent self-supervised

Input Monodepth2 (M)

Monodepth2 (S) Monodepth2 (MS)

Zhou et al. [76] (M) Monodepth [15] (S)

Zhan et al. [73] (MS) DDVO [62] (M)

Ranjan et al. [51] (M) EPC++ [38] (MS)

Figure 1. Depth from a single image. Our self-supervised model,
Monodepth2, produces sharp, high quality depth maps, whether
trained with monocular (M), stereo (S), or joint (MS) supervision.

approaches have shown that it is instead possible to train
monocular depth estimation models using only synchro-
nized stereo pairs [12, 15] or monocular video [76].

Among the two self-supervised approaches, monocular
video is an attractive alternative to stereo-based supervision,
but it introduces its own set of challenges. In addition to
estimating depth, the model also needs to estimate the ego-
motion between temporal image pairs during training. This
typically involves training a pose estimation network that
takes a finite sequence of frames as input, and outputs the
corresponding camera transformations. Conversely, using
stereo data for training makes the camera-pose estimation a
one-time offline calibration, but can cause issues related to
occlusion and texture-copy artifacts [15].

We propose three architectural and loss innovations that
combined, lead to large improvements in monocular depth
estimation when training with monocular video, stereo
pairs, or both: (1) A novel appearance matching loss to ad-
dress the problem of occluded pixels that occur when us-
ing monocular supervision. (2) A novel and simple auto-
masking approach to ignore pixels where no relative camera

ar
X

iv
:1

80
6.

01
26

0v
4

 [
cs

.C
V

]
 1

7
A

ug
 2

01
9

www.github.com/nianticlabs/monodepth2

Input Geonet [71] (M)

Ranjan [51] (M) EPC++ [38] (MS)

Baseline (M) Monodepth2 (M)

Figure 2. Moving objects. Monocular methods can fail to predict
depth for objects that were often observed to be in motion dur-
ing training e.g. moving cars – including methods which explicitly
model motion [71, 38, 51]. Our method succeeds here where oth-
ers, and our baseline with our contributions turned off, fail.

motion is observed in monocular training. (3) A multi-scale
appearance matching loss that performs all image sampling
at the input resolution, leading to a reduction in depth ar-
tifacts. Together, these contributions yield state-of-the-art
monocular and stereo self-supervised depth estimation re-
sults on the KITTI dataset [13], and simplify many compo-
nents found in the existing top performing models.

2. Related Work
We review models that, at test time, take a single color

image as input and predict the depth of each pixel as output.

2.1. Supervised Depth Estimation
Estimating depth from a single image is an inherently ill-

posed problem as the same input image can project to mul-
tiple plausible depths. To address this, learning based meth-
ods have shown themselves capable of fitting predictive
models that exploit the relationship between color images
and their corresponding depth. Various approaches, such as
combining local predictions [19, 55], non-parametric scene
sampling [24], through to end-to-end supervised learning
[9, 31, 10] have been explored. Learning based algorithms
are also among some of the best performing for stereo esti-
mation [72, 42, 60, 25] and optical flow [20, 63].

Many of the above methods are fully supervised, requir-
ing ground truth depth during training. However, this is
challenging to acquire in varied real-world settings. As a
result, there is a growing body of work that exploits weakly
supervised training data, e.g. in the form of known object
sizes [66], sparse ordinal depths [77, 6], supervised appear-
ance matching terms [72, 73], or unpaired synthetic depth
data [45, 2, 16, 78], all while still requiring the collection
of additional depth or other annotations. Synthetic train-
ing data is an alternative [41], but it is not trivial to generate
large amounts of synthetic data containing varied real-world
appearance and motion. Recent work has shown that con-
ventional structure-from-motion (SfM) pipelines can gen-
erate sparse training signal for both camera pose and depth
[35, 28, 68], where SfM is typically run as a pre-processing

step decoupled from learning. Recently, [65] built upon our
model by incorporating noisy depth hints from traditional
stereo algorithms, improving depth predictions.

2.2. Self-supervised Depth Estimation
In the absence of ground truth depth, one alternative is to

train depth estimation models using image reconstruction as
the supervisory signal. Here, the model is given a set of im-
ages as input, either in the form of stereo pairs or monocu-
lar sequences. By hallucinating the depth for a given image
and projecting it into nearby views, the model is trained by
minimizing the image reconstruction error.

Self-supervised Stereo Training
One form of self-supervision comes from stereo pairs.

Here, synchronized stereo pairs are available during train-
ing, and by predicting the pixel disparities between the pair,
a deep network can be trained to perform monocular depth
estimation at test time. [67] proposed such a model with dis-
cretized depth for the problem of novel view synthesis. [12]
extended this approach by predicting continuous disparity
values, and [15] produced results superior to contemporary
supervised methods by including a left-right depth consis-
tency term. Stereo-based approaches have been extended
with semi-supervised data [30, 39], generative adversarial
networks [1, 48], additional consistency [50], temporal in-
formation [33, 73, 3], and for real-time use [49].

In this work, we show that with careful choices regarding
appearance losses and image resolution, we can reach the
performance of stereo training using only monocular train-
ing. Further, one of our contributions carries over to stereo
training, resulting in increased performance there too.

Self-supervised Monocular Training
A less constrained form of self-supervision is to use

monocular videos, where consecutive temporal frames pro-
vide the training signal. Here, in addition to predicting
depth, the network has to also estimate the camera pose be-
tween frames, which is challenging in the presence of object
motion. This estimated camera pose is only needed during
training to help constrain the depth estimation network.

In one of the first monocular self-supervised approaches,
[76] trained a depth estimation network along with a sep-
arate pose network. To deal with non-rigid scene motion,
an additional motion explanation mask allowed the model
to ignore specific regions that violated the rigid scene as-
sumption. However, later iterations of their model available
online disabled this term, achieving superior performance.
Inspired by [4], [61] proposed a more sophisticated motion
model using multiple motion masks. However, this was not
fully evaluated, making it difficult to understand its utility.
[71] also decomposed motion into rigid and non-rigid com-
ponents, using depth and optical flow to explain object mo-
tion. This improved the flow estimation, but they reported
no improvement when jointly training for flow and depth

ItIt-1 It+1

Good match
Occluded pixel

pe(,) =

pe(,) =
✓

Baseline: avg(,) =

Ours: min(,) =

❌
error

error

Depth decoder

Baseline Ours

Looking up pixels using the correct depth

De
pth
enc
od
er

De
pth
dec
od
er

c
o
l
o
r

d
e
p
t
h

⊗

SSIM

⊗

SSIM

Upsample

Baseline Ours

Depth
decoder

Baseline Ours

⊗

SSIM

loss

⊗

Upscale

(c) Our appearance loss (d) Our full-res multi-scale

Depth decoder

Baseline Ours

⊗

SSIM

SSIM

⊗

 Upscale

(c) Our reprojection loss

(b) Pose network

(a) Depth network

Depth encoder Depth decoder

color depth

color depth

loss

Baseline Ours

(b) Pose network

Figure 3. Overview. (a) Depth network: We use a standard, fully convolutional, U-Net to predict depth. (b) Pose network: Pose between
a pair of frames is predicted with a separate pose network. (c) Per-pixel minimum reprojection: When correspondences are good, the
reprojection loss should be low. However, occlusions and disocclusions result in pixels from the current time step not appearing in both the
previous and next frames. The baseline average loss forces the network to match occluded pixels, whereas our minimum reprojection loss
only matches each pixel to the view in which it is visible, leading to sharper results. (d) Full-resolution multi-scale: We upsample depth
predictions at intermediate layers and compute all losses at the input resolution, reducing texture-copy artifacts.

estimation. In the context of optical flow estimation, [22]
showed that it helps to explicitly model occlusion.

Recent approaches have begun to close the performance
gap between monocular and stereo-based self-supervision.
[70] constrained the predicted depth to be consistent with
predicted surface normals, and [69] enforced edge con-
sistency. [40] proposed an approximate geometry based
matching loss to encourage temporal depth consistency.
[62] use a depth normalization layer to overcome the pref-
erence for smaller depth values that arises from the com-
monly used depth smoothness term from [15]. [5] make use
of pre-computed instance segmentation masks for known
categories to help deal with moving objects.

Appearance Based Losses
Self-supervised training typically relies on making as-

sumptions about the appearance (i.e. brightness constancy)
and material properties (e.g. Lambertian) of object surfaces
between frames. [15] showed that the inclusion of a local
structure based appearance loss [64] significantly improved
depth estimation performance compared to simple pairwise
pixel differences [67, 12, 76]. [28] extended this approach
to include an error fitting term, and [43] explored combining
it with an adversarial based loss to encourage realistic look-
ing synthesized images. Finally, inspired by [72], [73] use
ground truth depth to train an appearance matching term.

3. Method
Here, we describe our depth prediction network that

takes a single color input It and produces a depth map Dt.
We first review the key ideas behind self-supervised train-
ing for monocular depth estimation, and then describe our
depth estimation network and joint training loss.

3.1. Self-Supervised Training

Self-supervised depth estimation frames the learning
problem as one of novel view-synthesis, by training a net-

work to predict the appearance of a target image from the
viewpoint of another image. By constraining the network
to perform image synthesis using an intermediary variable,
in our case depth or disparity, we can then extract this in-
terpretable depth from the model. This is an ill-posed prob-
lem as there is an extremely large number of possible in-
correct depths per pixel which can correctly reconstruct
the novel view given the relative pose between those two
views. Classical binocular and multi-view stereo methods
typically address this ambiguity by enforcing smoothness
in the depth maps, and by computing photo-consistency on
patches when solving for per-pixel depth via global opti-
mization e.g. [11].

Similar to [12, 15, 76], we also formulate our problem
as the minimization of a photometric reprojection error at
training time. We express the relative pose for each source
view It′ , with respect to the target image It’s pose, as Tt→t′ .
We predict a dense depth map Dt that minimizes the photo-
metric reprojection error Lp, where

Lp =
∑
t′

pe(It, It′→t), (1)

and It′→t = It′
〈
proj(Dt, Tt→t′ ,K)

〉
. (2)

Here pe is a photometric reconstruction error, e.g. the L1
distance in pixel space; proj() are the resulting 2D coordi-
nates of the projected depths Dt in It′ and

〈〉
is the sam-

pling operator. For simplicity of notation we assume the
pre-computed intrinsics K of all the views are identical,
though they can be different. Following [21] we use bilin-
ear sampling to sample the source images, which is locally
sub-differentiable, and we follow [75, 15] in using L1 and
SSIM [64] to make our photometric error function pe, i.e.

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)‖Ia − Ib‖1,

where α = 0.85. As in [15] we use edge-aware smoothness

Ls = |∂xd∗t | e−|∂xIt| + |∂yd∗t | e−|∂yIt|, (3)

L

R -1 +1

Figure 1: Colors show
which image each pixel
in L is matched to with
our loss. Pixels in circled
region are occluded in R
so are matched to a mono
frame (-1) instead.

Colors here
show which
source frame
each pixel in L
is matched to.

Figure 4. Benefit of min. reprojection loss in MS training. Pix-
els in the the circled region are occluded in IR so no loss is applied
between (IL, IR). Instead, the pixels are matched to I−1 where
they are visible. Colors in the top right image indicate which of the
source images on the bottom are selected for matching by Eqn. 4.

where d∗t = dt/dt is the mean-normalized inverse depth
from [62] to discourage shrinking of the estimated depth.

In stereo training, our source image It′ is the second
view in the stereo pair to It, which has known relative pose.
While relative poses are not known in advance for monocu-
lar sequences, [76] showed that it is possible to train a sec-
ond pose estimation network to predict the relative poses
Tt→t′ used in the projection function proj. During train-
ing, we solve for camera pose and depth simultaneously,
to minimize Lp. For monocular training, we use the two
frames temporally adjacent to It as our source frames, i.e.
It′ ∈ {It−1, It+1}. In mixed training (MS), It′ includes the
temporally adjacent frames and the opposite stereo view.

3.2. Improved Self-Supervised Depth Estimation

Existing monocular methods produce lower quality
depths than the best fully-supervised models. To close this
gap, we propose several improvements that significantly in-
crease predicted depth quality, without adding additional
model components that also require training (see Fig. 3).

Per-Pixel Minimum Reprojection Loss
When computing the reprojection error from multiple
source images, existing self-supervised depth estimation
methods average together the reprojection error into each
of the available source images.This can cause issues with
pixels that are visible in the target image, but are not vis-
ible in some of the source images (Fig. 3(c)). If the net-
work predicts the correct depth for such a pixel, the corre-
sponding color in an occluded source image will likely not
match the target, inducing a high photometric error penalty.
Such problematic pixels come from two main categories:
out-of-view pixels due to egomotion at image boundaries,
and occluded pixels. The effect of out-of-view pixels can
be reduced by masking such pixels in the reprojection loss
[40, 61], but this does not handle disocclusion, where aver-
age reprojection can result in blurred depth discontinuities.

We propose an improvement that deals with both issues

Figure 5. Auto-masking. We show auto-masks computed after
one epoch, where black pixels are removed from the loss (i.e. µ =
0). The mask prevents objects moving at similar speeds to the
camera (top) and whole frames where the camera is static (bottom)
from contaminating the loss. The mask is computed from the input
frames and network predictions using Eqn. 5.

at once. At each pixel, instead of averaging the photometric
error over all source images, we simply use the minimum.
Our final per-pixel photometric loss is therefore

Lp = min
t′
pe(It, It′→t). (4)

See Fig. 4 for an example of this loss in practice. Using our
minimum reprojection loss significantly reduces artifacts at
image borders, improves the sharpness of occlusion bound-
aries, and leads to better accuracy (see Table 2).

Auto-Masking Stationary Pixels
Self-supervised monocular training often operates under the
assumptions of a moving camera and a static scene. When
these assumptions break down, for example when the cam-
era is stationary or there is object motion in the scene, per-
formance can suffer greatly. This problem can manifest it-
self as ‘holes’ of infinite depth in the predicted test time
depth maps, for objects that are typically observed to be
moving during training [38] (Fig. 2). This motivates our
second contribution: a simple auto-masking method that fil-
ters out pixels which do not change appearance from one
frame to the next in the sequence. This has the effect of
letting the network ignore objects which move at the same
velocity as the camera, and even to ignore whole frames in
monocular videos when the camera stops moving.

Like other works [76, 61, 38], we also apply a per-pixel
mask µ to the loss, selectively weighting pixels. However
in contrast to prior work, our mask is binary, so µ ∈ {0, 1},
and is computed automatically on the forward pass of the
network, instead of being learned or estimated from object
motion. We observe that pixels which remain the same be-
tween adjacent frames in the sequence often indicate a static
camera, an object moving at equivalent relative translation
to the camera, or a low texture region. We therefore set µ to
only include the loss of pixels where the reprojection error
of the warped image It′→t is lower than that of the original,
unwarped source image I ′t, i.e.

µ =
[
min
t′
pe(It, It′→t) < min

t′
pe(It, It′)

]
, (5)

where [] is the Iverson bracket. In cases where the camera
and another object are both moving at a similar velocity,

µ prevents the pixels which remain stationary in the image
from contaminating the loss. Similarly, when the camera is
static, the mask can filter out all pixels in the image (Fig. 5).
We show experimentally that this simple and inexpensive
modification to the loss brings significant improvements.

Multi-scale Estimation
Due to the gradient locality of the bilinear sampler [21], and
to prevent the training objective getting stuck in local min-
ima, existing models use multi-scale depth prediction and
image reconstruction. Here, the total loss is the combina-
tion of the individual losses at each scale in the decoder.
[12, 15] compute the photometric error on images at the
resolution of each decoder layer. We observe that this has
the tendency to create ‘holes’ in large low-texture regions
in the intermediate lower resolution depth maps, as well as
texture-copy artifacts (details in the depth map incorrectly
transferred from the color image). Holes in the depth can
occur at low resolution in low-texture regions where the
photometric error is ambiguous. This complicates the task
for the depth network, now freed to predict incorrect depths.

Inspired by techniques in stereo reconstruction [56], we
propose an improvement to this multi-scale formulation,
where we decouple the resolutions of the disparity images
and the color images used to compute the reprojection er-
ror. Instead of computing the photometric error on the
ambiguous low-resolution images, we first upsample the
lower resolution depth maps (from the intermediate layers)
to the input image resolution, and then reproject, resam-
ple, and compute the error pe at this higher input resolution
(Fig. 3 (d)). This procedure is similar to matching patches,
as low-resolution disparity values will be responsible for
warping an entire ‘patch’ of pixels in the high resolution
image. This effectively constrains the depth maps at each
scale to work toward the same objective i.e. reconstructing
the high resolution input target image as accurately as pos-
sible.

Final Training Loss
We combine our per-pixel smoothness and masked photo-
metric losses as L = µLp + λLs, and average over each
pixel, scale, and batch.

3.3. Additional Considerations

Our depth estimation network is based on the general
U-Net architecture [53], i.e. an encoder-decoder network,
with skip connections, enabling us to represent both deep
abstract features as well as local information. We use a
ResNet18 [17] as our encoder, which contains 11M pa-
rameters, compared to the larger, and slower, DispNet
and ResNet50 models used in existing work [15]. Simi-
lar to [30, 16], we start with weights pretrained on Ima-
geNet [54], and show that this improves accuracy for our
compact model compared to training from scratch (Table 2).

Our depth decoder is similar to [15], with sigmoids at the
output and ELU nonlinearities [7] elsewhere. We convert
the sigmoid output σ to depth with D = 1/(aσ + b), where
a and b are chosen to constrainD between 0.1 and 100 units.
We make use of reflection padding, in place of zero padding,
in the decoder, returning the value of the closest border pix-
els in the source image when samples land outside of the
image boundaries. We found that this significantly reduces
the border artifacts found in existing approaches, e.g. [15].

For pose estimation, we follow [62] and predict the rota-
tion using an axis-angle representation, and scale the rota-
tion and translation outputs by 0.01. For monocular train-
ing, we use a sequence length of three frames, while our
pose network is formed from a ResNet18, modified to ac-
cept a pair of color images (or six channels) as input and to
predict a single 6-DoF relative pose. We perform horizon-
tal flips and the following training augmentations, with 50%
chance: random brightness, contrast, saturation, and hue jit-
ter with respective ranges of ±0.2, ±0.2, ±0.2, and ±0.1.
Importantly, the color augmentations are only applied to the
images which are fed to the networks, not to those used to
compute Lp. All three images fed to the pose and depth
networks are augmented with the same parameters.

Our models are implemented in PyTorch [46], trained for
20 epochs using Adam [26], with a batch size of 12 and an
input/output resolution of 640× 192 unless otherwise spec-
ified. We use a learning rate of 10−4 for the first 15 epochs
which is then dropped to 10−5 for the remainder. This was
chosen using a dedicated validation set of 10% of the data.
The smoothness term λ is set to 0.001. Training takes 8,
12, and 15 hours on a single Titan Xp, for the stereo (S),
monocular (M), and monocular plus stereo models (MS).

4. Experiments
Here, we validate that (1) our reprojection loss helps with

occluded pixels compared to existing pixel-averaging, (2)
our auto-masking improves results, especially when train-
ing on scenes with static cameras, and (3) our multi-scale
appearance matching loss improves accuracy. We evaluate
our models, named Monodepth2, on the KITTI 2015 stereo
dataset [13], to allow comparison with previously published
monocular methods.

4.1. KITTI Eigen Split

We use the data split of Eigen et al. [8]. Except in
ablation experiments, for training which uses monocular
sequences (i.e. monocular and monocular plus stereo) we
follow Zhou et al.’s [76] pre-processing to remove static
frames. This results in 39,810 monocular triplets for train-
ing and 4,424 for validation. We use the same intrinsics
for all images, setting the principal point of the camera to
the image center and the focal length to the average of all
the focal lengths in KITTI. For stereo and mixed training

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [9] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890
Liu [36] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967
Klodt [28] D*M 0.166 1.490 5.998 - 0.778 0.919 0.966
AdaDepth [45] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971
Kuznietsov [30] DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986
DVSO [68] D*S 0.097 0.734 4.442 0.187 0.888 0.958 0.980
SVSM FT [39] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984
Guo [16] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986
DORN [10] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994
Zhou [76]† M 0.183 1.595 6.709 0.270 0.734 0.902 0.959
Yang [70] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963
Mahjourian [40] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968
GeoNet [71]† M 0.149 1.060 5.567 0.226 0.796 0.935 0.975
DDVO [62] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974
DF-Net [78] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973
LEGO [69] M 0.162 1.352 6.276 0.252 - - -
Ranjan [51] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973
EPC++ [38] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976
Struct2depth ‘(M)’ [5] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979
Monodepth2 w/o pretraining M 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Monodepth2 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Monodepth2 (1024 × 320) M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Garg [12]† S 0.152 1.226 5.849 0.246 0.784 0.921 0.967
Monodepth R50 [15]† S 0.133 1.142 5.533 0.230 0.830 0.936 0.970
StrAT [43] S 0.128 1.019 5.403 0.227 0.827 0.935 0.971
3Net (R50) [50] S 0.129 0.996 5.281 0.223 0.831 0.939 0.974
3Net (VGG) [50] S 0.119 1.201 5.888 0.208 0.844 0.941 0.978
SuperDepth + pp [47] (1024 × 382) S 0.112 0.875 4.958 0.207 0.852 0.947 0.977
Monodepth2 w/o pretraining S 0.130 1.144 5.485 0.232 0.831 0.932 0.968
Monodepth2 S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Monodepth2 (1024 × 320) S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
UnDeepVO [33] MS 0.183 1.730 6.57 0.268 - - -
Zhan FullNYU [73] D*MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971
EPC++ [38] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979
Monodepth2 w/o pretraining MS 0.127 1.031 5.266 0.221 0.836 0.943 0.974
Monodepth2 MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Monodepth2 (1024 × 320) MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980

Table 1. Quantitative results. Com-
parison of our method to existing
methods on KITTI 2015 [13] using
the Eigen split. Best results in each
category are in bold; second best are
underlined.
All results here are presented with-
out post-processing [15]; see supple-
mentary Section F for improved post-
processed results. While our contribu-
tions are designed for monocular train-
ing, we still gain high accuracy in the
stereo-only category.
We additionally show we can get
higher scores at a larger 1024 × 320
resolution, similar to [47] – see sup-
plementary Section G. These high res-
olution numbers are bolded if they beat
all other models, including our low-res
versions.

Legend
D – Depth supervision
D* – Auxiliary depth supervision
S – Self-supervised stereo supervision
M – Self-supervised mono supervision
† – Newer results from github.
+ pp – With post-processing

(monocular plus stereo), we set the transformation between
the two stereo frames to be a pure horizontal translation of
fixed length. During evaluation, we cap depth to 80m per
standard practice [15]. For our monocular models, we re-
port results using the per-image median ground truth scaling
introduced by [76]. See also supplementary material Sec-
tion D.2 for results where we apply a single median scaling
to the whole test set, instead of scaling each image indepen-
dently. For results that use any stereo supervision we do not
perform median scaling as scale can be inferred from the
known camera baseline during training.

We compare the results of several variants of our model,
trained with different types of self-supervision: monocular
video only (M), stereo only (S), and both (MS). The results
in Table 1 show that our monocular method outperforms
all existing state-of-the-art self-supervised approaches. We
also outperform recent methods ([38, 51]) that explicitly
compute optical flow as well as motion masks. Qualitative
results can be seen in Fig. 7 and supplementary Section E.
However, as with all image reconstruction based approaches
to depth estimation, our model breaks when the scene con-
tains objects that violate the Lambertian assumptions of our
appearance loss (Fig. 8).

As expected, the combination of M and S training data
increases accuracy, which is especially noticeable on met-
rics that are sensitive to large depth errors e.g. RMSE. De-
spite our contributions being designed around monocular

training, we find that the in the stereo-only case we still
perform well. We achieve high accuracy despite using a
lower resolution than [47]’s 1024× 384, with substantially
less training time (20 vs. 200 epochs) and no use of post-
processing.

4.1.1 KITTI Ablation Study
To better understand how the components of our model con-
tribute to the overall performance in monocular training,
in Table 2(a) we perform an ablation study by changing
various components of our model. We see that the base-
line model, without any of our contributions, performs the
worst. When combined together, all our components lead
to a significant improvement (Monodepth2 (full)). More
experiments turning parts of our full model off in turn are
shown in supplementary material Section C.

Benefits of auto-masking The full Eigen [8] KITTI split
contains several sequences where the camera does not move
between frames e.g. where the data capture car was stopped
at traffic lights. These ‘no camera motion’ sequences can
cause problems for self-supervised monocular training, and
as a result, they are typically excluded at training time using
expensive to compute optical flow [76]. We report monoc-
ular results trained on the full Eigen data split in Table 2(c),
i.e. without removing frames. The baseline model trained
on the full KITTI split performs worse than our full model.

Auto-
masking

Min.
reproj.

Full-res
multi-scale Pretrained

Full Eigen
split Abs Rel Sq Rel RMSE

RMSE
log δ <1.25 δ <1.252 δ < 1.253

(a) Baseline X 0.140 1.610 5.512 0.223 0.852 0.946 0.973
Baseline + min reproj. X X 0.122 1.081 5.116 0.199 0.866 0.957 0.980
Baseline + automasking X 0.124 0.936 5.010 0.206 0.858 0.952 0.977
Baseline + full-res m.s. X X 0.124 1.170 5.249 0.203 0.865 0.953 0.978
Monodepth2 w/o min reprojection X X X 0.117 0.878 4.846 0.196 0.870 0.957 0.980
Monodepth2 w/o auto-masking X X X 0.120 1.097 5.074 0.197 0.872 0.956 0.979
Monodepth2 w/o full-res m.s. X X X 0.117 0.866 4.864 0.196 0.871 0.957 0.981
Monodepth2 with [76]’s mask X X X 0.123 1.177 5.210 0.200 0.869 0.955 0.978
Monodepth2 smaller (416 × 128) X X X X 0.128 1.087 5.171 0.204 0.855 0.953 0.978
Monodepth2 (full) X X X X 0.115 0.903 4.863 0.193 0.877 0.959 0.981

(b) Baseline w/o pt 0.150 1.585 5.671 0.234 0.827 0.938 0.971
Monodepth2 w/o pt X X X 0.132 1.044 5.142 0.210 0.845 0.948 0.977

(c) Baseline (full Eigen dataset) X X 0.146 1.876 5.666 0.230 0.848 0.945 0.972
Monodepth2 (full Eigen dataset) X X X X X 0.116 0.918 4.872 0.193 0.874 0.959 0.981

Table 2. Ablation. Results for different variants of our model (Monodepth2) with monocular training on KITTI 2015 [13] using the Eigen
split. (a) The baseline model, with none of our contributions, performs poorly. The addition of our minimum reprojection, auto-masking
and full-res multi-scale components, significantly improves performance. (b) Even without ImageNet pretrained weights, our much simpler
model brings large improvements above the baseline – see also Table 1. (c) If we train with the full Eigen dataset (instead of the subset
introduced for monocular training by [76]) our improvement over the baseline increases.

Input Zhou et al. [76] DDVO [62] Monodepth2 (M) Ground truth

Figure 6. Qualitative Make3D results. All methods were trained
on KITTI using monocular supervision.

Further, in Table 2(a), we replace our auto-masking loss
with a re-implementation of the predictive mask from [76].
We find that this ablated model is worse than using no mask-
ing at all, while our auto-masking improves results in all
cases. We see an example of how auto-masking works in
practice in Fig. 5.

Effect of ImageNet pretraining We follow previous work
[14, 30, 16] in initializing our encoders with weights pre-
trained on ImageNet [54]. While some other monocular
depth prediction works have elected not to use ImageNet
pretraining, we show in Table 1 that even without pretrain-
ing, we still achieve state-of-the-art results. We train these
‘w/o pretraining’ models for 30 epochs to ensure conver-
gence. Table 2 shows the benefit our contributions bring
both to pretrained networks and those trained from scratch;
see supplementary material Section C for more ablations.

4.2. Additional Datasets

KITTI Odometry In Section A of the supplementary ma-
terial we show odometry evaluation on KITTI. While our
focus is better depth estimation, our pose network performs
on par with competing methods. Competing methods typ-
ically feed more frames to their pose network which may
improve their ability to generalize.

KITTI Depth Prediction Benchmark We also perform ex-
periments on the recently introduced KITTI Depth Predic-
tion Evaluation dataset [59], which features more accurate
ground truth depth, addressing quality issues with the stan-

Type Abs Rel Sq Rel RMSE log10
Karsch [24] D 0.428 5.079 8.389 0.149
Liu [37] D 0.475 6.562 10.05 0.165
Laina [31] D 0.204 1.840 5.683 0.084
Monodepth [15] S 0.544 10.94 11.760 0.193
Zhou [76] M 0.383 5.321 10.470 0.478
DDVO [62] M 0.387 4.720 8.090 0.204
Monodepth2 M 0.322 3.589 7.417 0.163
Monodepth2 MS 0.374 3.792 8.238 0.201

Table 3. Make3D results. All M results benefit from median scal-
ing, while MS uses the unmodified network prediction.

dard split. We train models using this new benchmark split,
and evaluate it using the online server [27], and provide re-
sults in supplementary Section D.3. Additionally, 93% of
the Eigen split test frames have higher quality ground truth
depths provided by [59]. Like [1], we use these instead
of the reprojected LIDAR scans to compare our method
against several existing baseline algorithms, still showing
superior performance.

Make3D In Table 3 we report performance on the Make3D
dataset [55] using our models trained on KITTI. We out-
perform all methods that do not use depth supervision, with
the evaluation criteria from [15]. However, caution should
be taken with Make3D, as its ground truth depth and input
images are not well aligned, causing potential evaluation is-
sues. We evaluate on a center crop of 2× 1 ratio, and apply
median scaling for our M model. Qualitative results can be
seen in Fig. 6 and in supplementary Section E.

5. Conclusion
We have presented a versatile model for self-supervised

monocular depth estimation, achieving state-of-the-art
depth predictions. We introduced three contributions: (i) a
minimum reprojection loss, computed for each pixel, to deal

In
pu

t
M

on
od

ep
th

[1
5]

Z
ho

u
et

al
.[

76
]

D
D

V
O

[6
2]

G
eo

N
et

[7
1]

Z
ha

n
et

al
.[

73
]

R
an

ja
n

et
al

.[
51

]
3N

et
-R

50
[3

8]
E

PC
++

(M
S)

[3
8]

M
D

2
M

M
D

2
M

(n
o

p/
t)

M
D

2
S

M
D

2
M

S

Figure 7. Qualitative results on the KITTI Eigen split. Our models (MD2) in the last four rows produce the sharpest depth maps, which
are reflected in the superior quantitative results in Table 1. Additional results can be seen in the supplementary materiale Section E.

Monodepth2 (M)

Monodepth2 (M)

Figure 8. Failure cases. Top: Our self-supervised loss fails to
learn good depths for distorted, reflective and color-saturated re-
gions. Bottom: We can fail to accurately delineate objects where
boundaries are ambiguous (left) or shapes are intricate (right).

with occlusions between frames in monocular video, (ii)
an auto-masking loss to ignore confusing, stationary pixels,
and (iii) a full-resolution multi-scale sampling method. We
showed how together they give a simple and efficient model
for depth estimation, which can be trained with monocular
video data, stereo data, or mixed monocular and stereo data.

Acknowledgements Thanks to the authors who shared their
results, and Peter Hedman, Daniyar Turmukhambetov, and
Aron Monszpart for their helpful discussions.

References
[1] Filippo Aleotti, Fabio Tosi, Matteo Poggi, and Stefano Mat-

toccia. Generative adversarial networks for unsupervised
monocular depth prediction. In ECCV Workshops, 2018.

[2] Amir Atapour-Abarghouei and Toby Breckon. Real-time
monocular depth estimation using synthetic data with do-
main adaptation via image style transfer. In CVPR, 2018.

[3] V Madhu Babu, Kaushik Das, Anima Majumdar, and Swagat
Kumar. Undemon: Unsupervised deep network for depth and
ego-motion estimation. In IROS, 2018.

[4] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning
rigid body motion using deep neural networks. In ICRA,
2017.

[5] Vincent Casser, Soeren Pirk, Reza Mahjourian, and Anelia
Angelova. Depth prediction without the sensors: Leveraging
structure for unsupervised learning from monocular videos.
In AAAI, 2019.

[6] Weifeng Chen, Zhao Fu, Dawei Yang, and Jia Deng. Single-
image depth perception in the wild. In NeurIPS, 2016.

[7] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-
iter. Fast and accurate deep network learning by exponential
linear units (elus). arXiv, 2015.

[8] David Eigen and Rob Fergus. Predicting depth, surface nor-
mals and semantic labels with a common multi-scale convo-
lutional architecture. In ICCV, 2015.

[9] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map
prediction from a single image using a multi-scale deep net-
work. In NeurIPS, 2014.

[10] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-
manghelich, and Dacheng Tao. Deep ordinal regression net-
work for monocular depth estimation. In CVPR, 2018.

[11] Yasutaka Furukawa and Carlos Hernández. Multi-view
stereo: A tutorial. Foundations and Trends in Computer
Graphics and Vision, 2015.

[12] Ravi Garg, Vijay Kumar BG, and Ian Reid. Unsupervised
CNN for single view depth estimation: Geometry to the res-
cue. In ECCV, 2016.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we
ready for Autonomous Driving? The KITTI Vision Bench-
mark Suite. In CVPR, 2012.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra
Malik. Rich feature hierarchies for accurate object detection
and semantic segmentation. In CVPR, 2014.

[15] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-
tow. Unsupervised monocular depth estimation with left-
right consistency. In CVPR, 2017.

[16] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and
Xiaogang Wang. Learning monocular depth by distilling
cross-domain stereo networks. In ECCV, 2018.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR,
2016.

[18] Carol Barnes Hochberg and Julian E Hochberg. Familiar
size and the perception of depth. The Journal of Psychology,
1952.

[19] Derek Hoiem, Alexei A Efros, and Martial Hebert. Auto-
matic photo pop-up. TOG, 2005.

[20] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,
Alexey Dosovitskiy, and Thomas Brox. FlowNet2: Evolu-
tion of optical flow estimation with deep networks. In CVPR,
2017.

[21] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and
Koray Kavukcuoglu. Spatial transformer networks. In
NeurIPS, 2015.

[22] Joel Janai, Fatma Güney, Anurag Ranjan, Michael Black,
and Andreas Geiger. Unsupervised learning of multi-frame
optical flow with occlusions. In ECCV, 2018.

[23] Huaizu Jiang, Erik Learned-Miller, Gustav Larsson, Michael
Maire, and Greg Shakhnarovich. Self-supervised relative
depth learning for urban scene understanding. In ECCV,
2018.

[24] Kevin Karsch, Ce Liu, and Sing Bing Kang. Depth transfer:
Depth extraction from video using non-parametric sampling.
PAMI, 2014.

[25] Alex Kendall, Hayk Martirosyan, Saumitro Dasgupta, Peter
Henry, Ryan Kennedy, Abraham Bachrach, and Adam Bry.
End-to-end learning of geometry and context for deep stereo
regression. In ICCV, 2017.

[26] Diederik P Kingma and Jimmy Ba. Adam: A method for
stochastic optimization. arXiv, 2014.

[27] KITTI Single Depth Evaluation Server.
http://www.cvlibs.net/datasets/kitti/eval depth.php?
benchmark=depth prediction. 2017.

[28] Maria Klodt and Andrea Vedaldi. Supervising the new with
the old: learning SFM from SFM. In ECCV, 2018.

[29] Shu Kong and Charless Fowlkes. Pixel-wise attentional gat-
ing for parsimonious pixel labeling. arXiv, 2018.

[30] Yevhen Kuznietsov, Jörg Stückler, and Bastian Leibe. Semi-
supervised deep learning for monocular depth map predic-
tion. In CVPR, 2017.

[31] Iro Laina, Christian Rupprecht, Vasileios Belagiannis, Fed-
erico Tombari, and Nassir Navab. Deeper depth prediction
with fully convolutional residual networks. In 3DV, 2016.

[32] Bo Li, Yuchao Dai, and Mingyi He. Monocular depth es-
timation with hierarchical fusion of dilated cnns and soft-
weighted-sum inference. Pattern Recognition, 2018.

[33] Ruihao Li, Sen Wang, Zhiqiang Long, and Dongbing Gu.
UnDeepVO: Monocular visual odometry through unsuper-
vised deep learning. arXiv, 2017.

[34] Ruibo Li, Ke Xian, Chunhua Shen, Zhiguo Cao, Hao Lu, and
Lingxiao Hang. Deep attention-based classification network
for robust depth prediction. ACCV, 2018.

[35] Zhengqi Li and Noah Snavely. Megadepth: Learning single-
view depth prediction from internet photos. In CVPR, 2018.

[36] Fayao Liu, Chunhua Shen, Guosheng Lin, and Ian Reid.
Learning depth from single monocular images using deep
convolutional neural fields. PAMI, 2015.

[37] Miaomiao Liu, Mathieu Salzmann, and Xuming He.
Discrete-continuous depth estimation from a single image.
In CVPR, 2014.

[38] Chenxu Luo, Zhenheng Yang, Peng Wang, Yang Wang, Wei
Xu, Ram Nevatia, and Alan Yuille. Every pixel counts++:
Joint learning of geometry and motion with 3D holistic un-
derstanding. arXiv, 2018.

[39] Yue Luo, Jimmy Ren, Mude Lin, Jiahao Pang, Wenxiu Sun,
Hongsheng Li, and Liang Lin. Single view stereo matching.
In CVPR, 2018.

[40] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-
supervised learning of depth and ego-motion from monocu-
lar video using 3D geometric constraints. In CVPR, 2018.

[41] Nikolaus Mayer, Eddy Ilg, Philipp Fischer, Caner Hazir-
bas, Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox.
What makes good synthetic training data for learning dispar-
ity and optical flow estimation? IJCV, 2018.

[42] Nikolaus Mayer, Eddy Ilg, Philip Häusser, Philipp Fischer,
Daniel Cremers, Alexey Dosovitskiy, and Thomas Brox. A
large dataset to train convolutional networks for disparity,
optical flow, and scene flow estimation. In CVPR, 2016.

[43] Ishit Mehta, Parikshit Sakurikar, and PJ Narayanan. Struc-
tured adversarial training for unsupervised monocular depth
estimation. In 3DV, 2018.

[44] Raul Mur-Artal, Jose Maria Martinez Montiel, and Juan D
Tardos. ORB-SLAM: a versatile and accurate monocular
SLAM system. Transactions on Robotics, 2015.

[45] Jogendra Nath Kundu, Phani Krishna Uppala, Anuj Pahuja,
and R. Venkatesh Babu. AdaDepth: Unsupervised content
congruent adaptation for depth estimation. In CVPR, 2018.

[46] Adam Paszke, Sam Gross, Soumith Chintala, Gregory
Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-
ban Desmaison, Luca Antiga, and Adam Lerer. Automatic
differentiation in PyTorch. In NeurIPS-W, 2017.

[47] Sudeep Pillai, Rares Ambrus, and Adrien Gaidon. Su-
perdepth: Self-supervised, super-resolved monocular depth
estimation. In ICRA, 2019.

[48] Andrea Pilzer, Dan Xu, Mihai Marian Puscas, Elisa Ricci,
and Nicu Sebe. Unsupervised adversarial depth estimation
using cycled generative networks. In 3DV, 2018.

[49] Matteo Poggi, Filippo Aleotti, Fabio Tosi, and Stefano Mat-
toccia. Towards real-time unsupervised monocular depth es-
timation on cpu. In IROS, 2018.

[50] Matteo Poggi, Fabio Tosi, and Stefano Mattoccia. Learning
monocular depth estimation with unsupervised trinocular as-
sumptions. In 3DV, 2018.

[51] Anurag Ranjan, Varun Jampani, Kihwan Kim, Deqing Sun,
Jonas Wulff, and Michael J Black. Competitive collabora-
tion: Joint unsupervised learning of depth, camera motion,
optical flow and motion segmentation. In CVPR, 2019.

[52] Zhe Ren, Junchi Yan, Bingbing Ni, Bin Liu, Xiaokang Yang,
and Hongyuan Zha. Unsupervised deep learning for optical
flow estimation. In AAAI, 2017.

[53] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-
Net: Convolutional networks for biomedical image segmen-
tation. In MICCAI, 2015.

[54] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-
jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,
Aditya Khosla, Michael Bernstein, et al. Imagenet large
scale visual recognition challenge. IJCV, 2015.

[55] Ashutosh Saxena, Min Sun, and Andrew Ng. Make3d:
Learning 3d scene structure from a single still image. PAMI,
2009.

[56] Daniel Scharstein and Richard Szeliski. A taxonomy and
evaluation of dense two-frame stereo correspondence algo-
rithms. IJCV, 2002.

[57] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. In ICLR,
2015.

[58] Deqing Sun, Xiaodong Yang, Ming-Yu Liu, and Jan Kautz.
PWC-Net: CNNs for optical flow using pyramid, warping,
and cost volume. In CVPR, 2018.

[59] Jonas Uhrig, Nick Schneider, Lukas Schneider, Uwe Franke,
Thomas Brox, and Andreas Geiger. Sparsity invariant CNNs.
In 3DV, 2017.

[60] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-
laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas
Brox. DeMoN: Depth and motion network for learning
monocular stereo. In CVPR, 2017.

[61] Sudheendra Vijayanarasimhan, Susanna Ricco, Cordelia
Schmid, Rahul Sukthankar, and Katerina Fragkiadaki. SfM-
Net: Learning of structure and motion from video. arXiv,
2017.

[62] Chaoyang Wang, Jose Miguel Buenaposada, Rui Zhu, and
Simon Lucey. Learning depth from monocular videos using
direct methods. In CVPR, 2018.

[63] Yang Wang, Yi Yang, Zhenheng Yang, Liang Zhao, and Wei
Xu. Occlusion aware unsupervised learning of optical flow.
In CVPR, 2018.

[64] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and
Eero P Simoncelli. Image quality assessment: from error
visibility to structural similarity. TIP, 2004.

[65] Jamie Watson, Michael Firman, Gabriel J Brostow, and
Daniyar Turmukhambetov. Self-supervised monocular depth
hints. In ICCV, 2019.

[66] Yiran Wu, Sihao Ying, and Lianmin Zheng. Size-to-depth:
A new perspective for single image depth estimation. arXiv,
2018.

[67] Junyuan Xie, Ross Girshick, and Ali Farhadi. Deep3D: Fully
automatic 2D-to-3D video conversion with deep convolu-
tional neural networks. In ECCV, 2016.

[68] Nan Yang, Rui Wang, Jörg Stückler, and Daniel Cremers.
Deep virtual stereo odometry: Leveraging deep depth predic-
tion for monocular direct sparse odometry. In ECCV, 2018.

[69] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram
Nevatia. LEGO: Learning edge with geometry all at once by
watching videos. In CVPR, 2018.

[70] Zhenheng Yang, Peng Wang, Wei Xu, Liang Zhao, and Ra-
makant Nevatia. Unsupervised learning of geometry with
edge-aware depth-normal consistency. In AAAI, 2018.

[71] Zhichao Yin and Jianping Shi. GeoNet: Unsupervised learn-
ing of dense depth, optical flow and camera pose. In CVPR,
2018.

[72] Jure Žbontar and Yann LeCun. Stereo matching by training
a convolutional neural network to compare image patches.
JMLR, 2016.

[73] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,
Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-
ing of monocular depth estimation and visual odometry with
deep feature reconstruction. In CVPR, 2018.

[74] Zhenyu Zhang, Chunyan Xu, Jian Yang, Ying Tai, and Liang
Chen. Deep hierarchical guidance and regularization learn-
ing for end-to-end depth estimation. Pattern Recognition,
2018.

[75] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss
functions for image restoration with neural networks. Trans-
actions on Computational Imaging, 2017.

[76] Tinghui Zhou, Matthew Brown, Noah Snavely, and David
Lowe. Unsupervised learning of depth and ego-motion from
video. In CVPR, 2017.

[77] Daniel Zoran, Phillip Isola, Dilip Krishnan, and William T
Freeman. Learning ordinal relationships for mid-level vi-
sion. In ICCV, 2015.

[78] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. DF-Net: Un-
supervised joint learning of depth and flow using cross-task
consistency. In ECCV, 2018.

Supplementary Material
Note on arXiv versions In an earlier pre-print of this pa-
per, 1806.01260v1, we included a shared encoder for pose
and depth. While this reduced the number of training pa-
rameters, we have since found that we can gain even higher
results with a separate ResNet pose encoder which accepts
a stack of two frames as input (see ablation study in Sec-
tion H). Since v1, we have also introduced auto-masking
to help the model ignore pixels that violate our motion as-
sumptions.

A. Odometry Evaluation
In Table 4 we evaluate our pose estimation network fol-

lowing the protocol in [76]. We trained our models on se-
quences 0-8 from the KITTI odometry split and tested on
sequences 9 and 10. As in [76], the absolute trajectory error
is then averaged over all overlapping five-frame snippets in
the test sequences. Here, unlike [76] and others who use
custom models for the odometry task, we use the same ar-
chitecture for this task as our other results, and simply train
it again from scratch on these new sequences.

Baselines such as [76] use a pose network which pre-
dicts transformations between sets of five frames simulta-
neously. Our pose network only takes two frames as in-
put, and ouputs a single transformation between that pair of
frames. In order to evaluate our two-frame model on the
five-frame test sequences, we make separate predictions for
each of the four frame-to-frame transformation for each set
of five frames and combine them to form local trajectories.
For completeness we repeat the same process with [76] pre-
dicted poses, which we denote as ‘Zhou∗’. As we can see in
Table 4, our frame-to-frame poses come close to the accu-
racy of methods trained on blocks of five frames at a time.

B. Network Details
Except where stated, for all experiments we use a stan-

dard ResNet18 [17] encoder for both depth and pose net-
works. Our pose encoder is modified to accept a pair of
frames, or six channels, as input. Our pose encoder there-
fore has convolutional weights in the first layer of shape
6×64×3×3, instead of the ResNet default of 3×64×3×3.
When using pretrained weights for our pose encoder, we
duplicate the first pretrained filter tensor along the channel
dimension to make a filter of shape 6 × 64 × 3 × 3. This
allows for a six-channel input image. All weights in this
new expanded filter are divided by 2 to make the output of
the convolution in the same numerical range as the origi-
nal, one-image ResNet. In Table 5 we describe the param-
eters of each layer used in our depth decoder and pose net-
work. Our pose network is larger and deeper than previous
works [76, 62], and we only feed two frames at a time to the

Sequence 09 Sequence 10 # frames
ORB-Slam [44] 0.014±0.008 0.012±0.011 -
DDVO [62] 0.045±0.108 0.033±0.074 3
Zhou* [76] 0.050±0.039 0.034±0.028 5→ 2
Zhou [76] 0.021±0.017 0.020±0.015 5
Zhou [76]† 0.016±0.009 0.013±0.009 5
Mahjourian [40] 0.013±0.010 0.012±0.011 3
GeoNet [71] 0.012±0.007 0.012±0.009 5
EPC++ M [38] 0.013±0.007 0.012±0.008 3
Ranjan [51] 0.012±0.007 0.012±0.008 5
EPC++ MS [38] 0.012±0.006 0.012±0.008 3
Monodepth2 M* 0.017±0.008 0.015±0.010 2
Monodepth2 MS* 0.017±0.008 0.015±0.010 2
Monodepth2 M w/o pretraining* 0.018±0.010 0.015±0.010 2
Monodepth2 MS w/o pretraining* 0.018±0.009 0.015±0.010 2

Table 4. Odometry results on the KITTI [13] odometry
dataset. Results show the average absolute trajectory error, and
standard deviation, in meters.

† – newer results from the respective online implementations.
* – evaluation on trajectories made from pairwise predictions – see text for
details.
‘# frames’ is the number of input frames used for pose prediction. To eval-
uate our method we chain integrate the poses from four pairs to make five
frames for evaluation.

Depth Decoder
layer k s chns res input activation
upconv5 3 1 256 32 econv5 ELU [7]
iconv5 3 1 256 16 ↑upconv5, econv4 ELU
upconv4 3 1 128 16 iconv5 ELU
iconv4 3 1 128 8 ↑upconv4, econv3 ELU
disp4 3 1 1 1 iconv4 Sigmoid
upconv3 3 1 64 8 iconv4 ELU
iconv3 3 1 64 4 ↑upconv3, econv2 ELU
disp3 3 1 1 1 iconv3 Sigmoid
upconv2 3 1 32 4 iconv3 ELU
iconv2 3 1 32 2 ↑upconv2, econv1 ELU
disp2 3 1 1 1 iconv2 Sigmoid
upconv1 3 1 16 2 iconv2 ELU
iconv1 3 1 16 1 ↑upconv1 ELU
disp1 3 1 1 1 iconv1 Sigmoid

Pose Decoder
layer k s chns res input activation
pconv0 1 1 256 32 econv5 ReLU
pconv1 3 1 256 32 pconv0 ReLU
pconv2 3 1 256 32 pconv1 ReLU
pconv3 1 1 6 32 pconv3 -

Table 5. Our network architecture Here k is the kernel size, s
the stride, chns the number of output channels for each layer, res
is the downscaling factor for each layer relative to the input image,
and input corresponds to the input of each layer where ↑ is a 2×
nearest-neighbor upsampling of the layer.

Auto-
masking

Min.
reproj.

Full-res
multi-scale Encoder Pretrained Abs Rel Sq Rel RMSE

RMSE
log δ < 1.25 δ < 1.252 δ < 1.253

(a) Baseline R18 X 0.140 1.610 5.512 0.223 0.852 0.946 0.973
Monodepth2 w/o min reprojection X X R18 X 0.117 0.878 4.846 0.196 0.870 0.957 0.980
Monodepth2 w/o auto-masking X X R18 X 0.120 1.097 5.074 0.197 0.872 0.956 0.979
Monodepth2 w/o full-res m.s. X X R18 X 0.117 0.866 4.864 0.196 0.871 0.957 0.981
Monodepth2 w/o SSIM X X X R18 X 0.118 0.853 4.824 0.198 0.868 0.956 0.980
Monodepth2 with [76]’s mask X X R18 X 0.123 1.177 5.210 0.200 0.869 0.955 0.978
Monodepth2 (full) X X X R18 X 0.115 0.903 4.863 0.193 0.877 0.959 0.981

(b) Baseline w/o pt R18 0.150 1.585 5.671 0.234 0.827 0.938 0.971
Monodepth2 w/o pt or auto-masking X X R18 0.138 1.197 5.369 0.215 0.842 0.945 0.975
Monodepth2 w/o pt or min reproj X X R18 0.133 1.021 5.219 0.214 0.841 0.945 0.976
Monodepth2 w/o pt or full-res m.s. X X R18 0.131 1.030 5.206 0.210 0.846 0.948 0.978
Monodepth2 w/o pt X X X R18 0.132 1.044 5.142 0.210 0.845 0.948 0.977

(c) Monodepth2 ResNet18 w/o pt X X X R18 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Monodepth2 ResNet18 X X X R18 X 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Monodepth2 ResNet 50 w/o pt X X X R50 0.131 1.023 5.064 0.206 0.849 0.951 0.979
Monodepth2 ResNet 50 X X X R50 X 0.110 0.831 4.642 0.187 0.883 0.962 0.982

Table 6. Ablation. Results for different variants of our model (Monodepth2) with monocular training (except where specified) on KITTI
2015 [13].

Figure 9. Qualitative ablation study. We can see that our model with all components added result in the smallest amount of depth artifacts.
‘Baseline (M)’ is our model without our full-resolution multi-scale appearance loss, minimum reprojection loss, or auto-masking loss.

pose network in contrast to previous works which use three
[76, 62] or more for their depth estimation experiments. In
Section H we validate the benefit of bringing additional pa-
rameters to the pose network.

C. Additional Ablation Experiments

In Table 6 we show a full ablation study on our algo-
rithm, turning on and off different components of the sys-
tem. We confirm the finding of the main paper, that all our
components together gives the highest quality model, and
that pretraining helps. We observe in Table 6 (d) that our

results with ResNet 50 are even higher than our ResNet18
models. ResNet 50 is a standard encoder used by previ-
ous works e.g. [15, 50]. However, training with a 50-layer
ResNet comes at the expense of longer training and test
times. In Fig. 9 we show additional qualitative results for
the monocular trained variants of our model from Table 6.
We observe ‘depth holes’ in both non-pretrained and pre-
trained versions of the baseline model compared to ours.

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou [76]† M 0.176 1.532 6.129 0.244 0.758 0.921 0.971
Mahjourian [40] M 0.134 0.983 5.501 0.203 0.827 0.944 0.981
GeoNet [71] M 0.132 0.994 5.240 0.193 0.833 0.953 0.985
DDVO [62] M 0.126 0.866 4.932 0.185 0.851 0.958 0.986
Ranjan [51] M 0.123 0.881 4.834 0.181 0.860 0.959 0.985
EPC++ [38] M 0.120 0.789 4.755 0.177 0.856 0.961 0.987
Monodepth2 w/o pretraining M 0.112 0.715 4.502 0.167 0.876 0.967 0.990
Monodepth2 M 0.090 0.545 3.942 0.137 0.914 0.983 0.995
Monodepth [15] S 0.109 0.811 4.568 0.166 0.877 0.967 0.988
3net [50] (VGG) S 0.119 0.920 4.824 0.182 0.856 0.957 0.985
3net [50] (ResNet 50) S 0.102 0.675 4.293 0.159 0.881 0.969 0.991
SuperDepth [47] + pp S 0.090 0.542 3.967 0.144 0.901 0.976 0.993
Monodepth2 w/o pretraining S 0.110 0.849 4.580 0.173 0.875 0.962 0.986
Monodepth2 S 0.085 0.537 3.868 0.139 0.912 0.979 0.993
Zhan FullNYU [73] D*MS 0.130 1.520 5.184 0.205 0.859 0.955 0.981
EPC++ [38] MS 0.123 0.754 4.453 0.172 0.863 0.964 0.989
Monodepth2 w/o pretraining MS 0.107 0.720 4.345 0.161 0.890 0.971 0.989
Monodepth2 MS 0.080 0.466 3.681 0.127 0.926 0.985 0.995

Table 7. KITTI improved ground
truth. Comparison to existing meth-
ods on KITTI 2015 [13] using 93%
of the Eigen split and the improved
ground truth from [59]. Baseline meth-
ods were evaluated using their pro-
vided disparity files, which were either
available publicly or from private com-
munication with the authors.

Legend
D* – Auxiliary depth supervision
S – Self-supervised stereo supervision
M – Self-supervised mono supervision
† – Newer results from the respective on-
line implementations.
+ pp – With post-processing

D. Additional Evaluation

D.1. Improved Ground Truth

As mentioned in the main paper, the evaluation method
introduced by Eigen [8] for KITTI uses the reprojected LI-
DAR points but does not handle occlusions, moving objects,
or the fact that the car is moving. [59] introduced a set of
high quality depth maps for the KITTI dataset, making use
of 5 consecutive frames and handling moving objects using
the stereo pair. This improved ground truth depth is pro-
vided for 652 (or 93%) of the 697 test frames contained in
the Eigen test split [8]. We evaluate our results on these 652
improved ground truth frames and compare to existing pub-
lished methods without having to retrain each method, see
Table 7. We present results for all other methods for which
we have obtained predictions from the authors. We use the
same error metrics from the standard evaluation, and clip
the predicted depths to 80 meters to match the Eigen evalu-
ation. We evaluate on the full image and do not crop, unlike
with the Eigen evaluation. We can see that our method still
significantly outperforms all previously published methods
on all metrics. While Superdepth [47] comes a close sec-
ond to our algorithm in the S category, they are run at high
resolution (1024 × 384 vs. our 640 × 192), and in Table 1
we show that at higher resolutions our model’s performance
also increases.

D.2. Single-Scale Evaluation

Our monocular trained approach, like all self-supervised
baselines, has no guarantee of producing results with a
metric scale. Nonetheless, we anticipate that there could
be value in estimating depth-outputs that are, without spe-
cial measures, consistent with each other across all predic-
tions. In [76], the authors independently scale each pre-
dicted depth map by the ratio of the median of the ground
truth and predicted depth map – for each individual test im-

age. This is in contrast to stereo based training where the
scale is known and as a result no additional scaling is re-
quired during the evaluation e.g. [12, 15]. This per-image
depth scaling hides unstable scale estimation in both depth
and pose estimation and presents a best-case scenario for the
monocular training case. If a method outputs wildly varying
scales for each sequence, then this evaluation protocol will
hide the issue. This gives an unfair advantage over stereo
trained methods that do not perform per-image scaling.

We thus modified the original protocol to instead use a
single scale for all predicted depth maps of each method.
For each method, we compute this single scale by taking
the median of all the individual ratios of the depth medians
on the test set. While this is still not ideal as it makes use
of the ground truth depth, we believe it to be fairer and rep-
resentative of the performance of each method. We also
calculated the standard deviation σscale of the individual
scales, where lower values indicate more consistent output
depth map scales. As can be seen in Table 8, our method
outperforms previously published self-supervised monocu-
lar methods, especially in the near range depth values i.e.
δ < 1.25, and is more stable overall.

D.3. KITTI Evaluation Server Benchmark

Here, we report the performance of our self-supervised
monocular plus stereo model on the online KITTI single
image depth prediction benchmark evaluation server [27].
[27] uses a different split of the data, which is not the same
as the Eigen split. As a result, we train a new model on the
provided training data. At the time of writing, there were
no published self-supervised approaches among the sub-
missions on the leaderboard. Despite not using any ground
truth data during training, our monocular only predictions
are competitive with fully supervised methods, see Table 9.
Adding stereo data and a more powerful encoder at train-
ing time results in even better performance (Monodepth2

Method σscale Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Zhou [76]† 0.210 0.258 2.338 7.040 0.309 0.601 0.853 0.940
Mahjourian [40] 0.189 0.221 1.663 6.220 0.265 0.665 0.892 0.962
GeoNet [71] 0.172 0.202 1.521 5.829 0.244 0.707 0.913 0.970
Ranjan [51] 0.162 0.188 1.298 5.467 0.232 0.724 0.927 0.974
EPC++ [38] 0.123 0.153 0.998 5.080 0.204 0.805 0.945 0.982
DDVO [62] 0.108 0.147 1.014 5.183 0.204 0.808 0.946 0.983
Monodepth2 0.093 0.109 0.623 4.136 0.154 0.873 0.977 0.994

Table 8. Single scale monocular
evaluation. Comparison to exist-
ing monocular supervised methods on
KITTI 2015 [13] using the Eigen split
with improved ground truth from [59]
using a single scale for each method.
† indicates newer results from the on-
line implementation.

Method Train SILog sqErrorRel absErrorRel iRMSE
DORN [10] D 11.77 2.23 8.78 12.98
DABC [34] D 14.49 4.08 12.72 15.53

APMoE [29] D 14.74 3.88 11.74 15.63
CSWS [32] D 14.85 3.48 11.84 16.38

DHGRL [74] D 15.47 4.04 12.52 15.72
Monodepth [15] S 22.02 20.58 17.79 21.84

Monodepth2 M 15.57 4.52 12.98 16.70
Monodepth2 MS 15.07 4.16 11.64 15.27

Monodepth2 (ResNet 50) MS 14.41 3.67 11.22 14.73

Table 9. KITTI depth prediction benchmark. Comparison of
our monocular plus stereo approaches to fully supervised methods
on the KITTI depth prediction benchmark [27]. D indicates mod-
els that were trained with ground truth depth supervision, while M
and S are monocular and stereo self-supervision respectively.

(ResNet50)).
Because the evaluation server does not do median scaling

(required for monocular methods), we needed a way to find
the correct scaling for our mono-only model, which makes
unscaled predictions. We make predictions with our mono-
model on 1,000 images from the KITTI training set which
have ground truth depths available, and for each of the 1,000
images we find the scale factor which best align the depth
maps [76]. Finally, we take the median of these 1,000 scale
factors as the single factor which we use to scale all pre-
dictions from our mono model. Note that, to remain true
to our ‘self-supervised’ philosophy, we never do any other
form of validation, model selection or parameter tuning us-
ing ground truth depths. For comparison, we trained a ver-
sion of the original Monodepth [15] using the online code1

on the same benchmark split.

E. Additional Qualitative Comparisons
We include additional qualitative results from the KITTI

test set in Fig. 13. We can see that our models generate
higher quality outputs and do not produce ‘holes’ in the
depth maps or border artifacts that can be seen in many ex-
isting baselines e.g. [76, 51, 15, 73]. We also show addi-
tional results from Make3D in Fig. 10.

F. Results with Post-Processing
Post-processing, introduced by [15], is a technique to im-

prove test time results on stereo-trained monocular depth
1https://github.com/mrharicot/monodepth

Input Zhou et al. [76] DDVO [62] MD2 M Ground truth

Figure 10. Additional Make3D results. Our model (MD2 M)
trained on KITTI results in plausible depths, predicting more detail
than existing monocular methods. The last row is an interesting
failure for all methods as it contains an image that is very different
than those from the KITTI training set.

estimation methods by running each test image through
the network twice, once unflipped and then flipped. The
two predictions are then masked and averaged. This has
been shown to bring significant gains in accuracy for stereo
results, at the expense of requiring two forward-passes
through the network at test time [15, 50]. In Table 10 we
show, for the first time, that post-processing also improves
quantitative performance in the monocular only (M) and
mixed (MS) training cases.

G. Effect of Image Resolution
In the main paper, we presented results at our standard

resolution (640 × 192). We also showed additional results
at higher (1024×320) and lower (416×128) resolutions. In
Table 11 we show a full set of results at all three resolutions.
We see that higher resolution helps, confirming the finding
in [47]. We also include an ablation showing that, even at
the highest resolution, our full-res multi-scale still provides
benefit beyond just higher resolution training (vs. ‘Ours w/o
full-res multi-scale’).

Our high resolution models were initialized using the
weights from our standard resolution (640 × 192) model
after 10 epochs of training. We then trained our high reso-
lution models for 5 epochs with a learning rate of 10−5. We
used a batch size of 4 to enable this higher resolution model
to fit on a single 12GB Titan X GPU.

Qualitative results of the effect of resolution are illus-

https://github.com/mrharicot/monodepth

Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Monodepth2 w/o pretraining M 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Monodepth2 w/o pretraining + pp M 0.129 1.003 5.072 0.207 0.848 0.949 0.978
Monodepth2 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981
Monodepth2 + pp M 0.112 0.851 4.754 0.190 0.881 0.960 0.981
Monodepth2 (1024 × 320) M 0.115 0.882 4.701 0.190 0.879 0.961 0.982
Monodepth2 (1024 × 320) + pp M 0.112 0.838 4.607 0.187 0.883 0.962 0.982
Monodepth2 w/o pretraining S 0.130 1.144 5.485 0.232 0.831 0.932 0.968
Monodepth2 w/o pretraining + pp S 0.128 1.089 5.385 0.229 0.832 0.934 0.969
Monodepth2 S 0.109 0.873 4.960 0.209 0.864 0.948 0.975
Monodepth2 + pp S 0.108 0.842 4.891 0.207 0.866 0.949 0.976
Monodepth2 (1024 × 320) S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
Monodepth2 (1024 × 320) + pp S 0.105 0.822 4.692 0.199 0.876 0.954 0.977
Monodepth2 w/o pretraining MS 0.127 1.031 5.266 0.221 0.836 0.943 0.974
Monodepth2 w/o pretraining + pp MS 0.125 1.000 5.205 0.218 0.837 0.944 0.974
Monodepth2 MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979
Monodepth2 + pp MS 0.104 0.786 4.687 0.194 0.876 0.958 0.980
Monodepth2 (1024 × 320) MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980
Monodepth2 (1024 × 320) + pp MS 0.104 0.775 4.562 0.191 0.878 0.959 0.981

Table 10. Effect of post-processing. We observe that post-processing, originally motivated only for stereo training, also brings consistent
benefits to all our monocular-trained models. Interestingly, for some metrics post-processing results in a larger quantitative gain than
models trained at higher resolution.

Train Resolution Full-res multi-scale Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253 Train. time (h)
Monodepth2 M 416× 128 X 0.128 1.087 5.171 0.204 0.855 0.953 0.978 9
Monodepth2 M 640× 192 X 0.115 0.903 4.863 0.193 0.877 0.959 0.981 12
Monodepth2 M 1024× 320 X 0.115 0.882 4.701 0.190 0.879 0.961 0.982 6 + 9 †

Monodepth2 S 416× 128 X 0.118 0.971 5.231 0.218 0.848 0.943 0.973 6
Monodepth2 S 640× 192 X 0.109 0.873 4.960 0.209 0.864 0.948 0.975 8
Monodepth2 S 1024× 320 X 0.105 0.822 4.692 0.199 0.876 0.954 0.977 4 + 8 †

Monodepth2 MS 416× 128 X 0.118 0.935 5.119 0.210 0.852 0.949 0.976 11
Monodepth2 MS 640× 192 X 0.106 0.818 4.750 0.196 0.874 0.957 0.979 15
Monodepth2 MS 1024× 320 X 0.106 0.806 4.630 0.193 0.876 0.958 0.980 7.5 + 10 †

Table 11. Ablation study on the input/output resolutions of our model. †Timings for the highest resolution models comprise 10 epochs
training of the 640× 192 model and 5 epochs of the 1024× 320 model.

Input Monodepth2 MS 128× 416 Monodepth2 MS 192× 640 Monodepth2 MS 320× 1024

Figure 11. Effect of varying resolutions on the KITTI Eigen split. All predicted disparity maps have been resized to the same size for
visualization. Our lowest resolution model (128× 416) captures the broad shape of the scene successfully, but struggles with thin objects
and sometimes fails to accurately capture the shape of depth discontinuities around object boundaries.

trated in Fig. 11. It is clear that all resolutions accurately
capture the overall shape of the scene. However, only the
highest resolution model accurately represents the shape of

thin objects.

Pose network architecture Input frames Pretrained Abs Rel Sq Rel RMSE
RMSE

log δ <1.25 δ <1.252 δ < 1.253

PoseCNN [62] 2 X 0.138 1.122 5.308 0.209 0.840 0.950 0.978
PoseCNN [62] 3 X 0.148 1.211 5.595 0.219 0.815 0.942 0.976
Shared encoder (arXiv v1) 2 X 0.125 0.986 5.070 0.201 0.857 0.954 0.979
Shared encoder (arXiv v1) 3 X 0.123 1.031 5.052 0.199 0.863 0.954 0.979

Monodepth2⇒ Separate ResNet 2 X 0.115 0.919 4.863 0.193 0.877 0.959 0.981
Separate ResNet 3 X 0.115 0.902 4.847 0.193 0.877 0.960 0.981
PoseCNN [62] 2 0.147 1.164 5.445 0.221 0.818 0.940 0.974
PoseCNN [62] 3 0.147 1.117 5.403 0.222 0.815 0.940 0.976
Shared encoder (arXiv v1) 2 0.149 1.153 5.567 0.229 0.807 0.934 0.972
Shared encoder (arXiv v1) 3 0.145 1.159 5.482 0.224 0.818 0.937 0.973

Monodepth2⇒ Separate ResNet 2 0.132 1.044 5.142 0.210 0.845 0.948 0.977
Separate ResNet 3 0.132 1.017 5.169 0.211 0.842 0.947 0.977

Table 12. Ablation of the effect of pose networks on depth prediction. Results shown are on depth prediction on the KITTI dataset,
when trained from monocular sequences only. ‘Input Frames’ indicate how many frames are fed to the pose network. ‘Shared encoder
(arXiv v1)’ denotes the architecture proposed in v1 of this paper.

H. Comparison of Pose Encoder
In Table 12 we evaluate different pose encoders. In an

earlier version of this paper, we proposed the use of a shared
pose encoder that shared features with the depth network.
This resulted in fewer parameters to optimize during train-
ing, but also results in a decrease in depth prediction accu-
racy, see Table 12. As a baseline we compare against the
pose network used by [62], which builds upon [76] with
an additional scaling of the translation by the mean of the
inverse depth. Overall, our separate encoder is superior for
both pretrained and non-pretrained variants, whether we use
two or three frames as input.

I. Supplementary Video Results
In the supplementary video, we show results on ‘Wan-

der’, a monocular dataset collected from the ‘Wind Walk
Travel Videos’ YouTube channel.2 This dataset is quite dif-
ferent from the car mounted videos of KITTI as it only fea-
tures a monocular hand-held camera in a non-European en-
vironment. We train on four sequences and present results
on a fifth unseen sequence. We use an input/output reso-
lution of 128 × 224. As with our KITTI experiments we
train for 20 epochs with a batch size of 12, with a learn-
ing rate of 10−4 which is reduced by a factor of 10 for the
final 5 epochs. For these handheld videos we found that
the SSIM loss produced artifacts at object edges. As a re-
sult, we used a feature reconstruction loss in the appearance
matching term, as in [52, 58, 73], by computing the L1 dis-
tance on the reprojected and normalized relu1 1 features
from an ImageNet pretrained VGG16 [57] as our pe func-
tion. This takes significantly longer to train, but results in
qualitatively better depth maps on this dataset. Examples of
predicted depths can be seen in Fig. 12.

2https://www.youtube.com/channel/
UCPur06mx78RtwgHJzxpu2ew

Figure 12. Additional Wander results. We observe that our
model (Ours M) results in fewer visual artifacts when compared
to the the baseline (i.e. the same model including VGG loss, but
without our contributions).

https://www.youtube.com/channel/UCPur06mx78RtwgHJzxpu2ew
https://www.youtube.com/channel/UCPur06mx78RtwgHJzxpu2ew

In
pu

t
G

ar
g

et
al

.[
12

]
M

on
od

ep
th

[1
5]

Z
ho

u
et

al
.[

76
]

Z
ha

n
et

al
.[

73
]

D
D

V
O

[6
2]

M
ah

jo
ur

ia
n

et
al

.[
40

]
G

eo
N

et
[7

1]
R

an
ja

n
et

al
.[

51
]

E
PC

++
[3

8]
3N

et
[5

0]
B

as
el

in
e

M
O

ur
sM

O
ur

sS
O

ur
sM

S

Figure 13. Additional KITTI Eigen split test results. We can see that our approaches in the last three rows produce the sharpest depth
maps. ‘Baseline M’ is our model without our contributions.

