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Abstract

We propose an efficient algorithm to visualise symmetries in neural networks.
Typically, models are defined with respect to a parameter space, where non-equal
parameters can produce the same input-output map. Our proposed method, GENNI,
allows us to efficiently identify parameters that are functionally equivalent and then
visualise the subspace of the resulting equivalence class. By doing so, we are now
able to better explore questions surrounding identifiability, with applications to
optimisation and generalizability, for commonly used or newly developed neural
network architectures.

1 Introduction

Confusion around identifiability2 and its consequences in machine learning, especially in deep
learning, continues to critically impact aspects of model development. Intuitively, identifiability
describes the situation where two models defined with distinct parameters in the model parameter
space are functionally equivalent. Thus, when learning on the parameter space, one cannot uniquely
identify a suitable solution for their problem3. Such cases can mislead design choices in inference
[20] or optimisation [3], and our understanding of generalisability of machine learning models [7, 21].

For deep learning in particular, the lack of identifiability in the parameter space can lead to multiple
global minima [1, 2]. For example, this can arise from permutation symmetries, where swapping the
incoming and outgoing weights across different pairs of neurons results in the same input-output map.
Work in the literature handle these symmetries by a choice of a reparameterisation [20], regularisation
[8], or natural gradients [3] to produce an optimisation scheme that is invariant under such symmetries.
However, this is only possible with an understanding of the transformation groups which generate
such symmetries. Often, identifying such symmetries is a tedious undertaking that involves trial and
error, and an unreasonable analytical understanding of modern neural network architectures. While
∗Equal contribution
2This is not exactly the same as statistical identifiability, which traditionally refers to problems of inference

[5]. We are extending this term to discuss model equivalences in deep networks.
3We note that functionally distinct networks can be unidentifiable due to weaknesses in the loss function. In

the present work, only the impact of the network architecture on identifiability is considered.
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generally visualisations would be the first method by which to explore poorly understood structures,
such intuition aiding tools have not been available.

Through our tool, GENNI4, we propose to visually and empirically find and explore symmetries of
neural networks to guide analytical studies. GENNI uses an optimisation-based search algorithm to
both efficiently and systematically find subsets of high-dimensional parameter spaces that produce
equivalent neural networks. Plots of these parameters then immediately give insight into topological
and geometric properties of these equivalent sets. We demonstrate how one could reason about
identifiability using our visualisations by considering a simple fully connected network for which the
symmetries are well understand. We believe that using GENNI, such analysis can then be applied to
more complex models. Our work is in contrast to other methods which visualize the loss landscape
[14, 8]; GENNI is independent of the loss function chosen and finds only the symmetries inherent to
the network architecture.

2 Theory

Given a domain X and co-domain Y , we want to find the set of parameters in parameter space Θ
which are functionally equivalent under a model architecture φ : X ×Θ→ Y . An equivalence class
[θ] for a parameter θ ∈ Θ is given by the equivalence relation θ1 ∼ θ2 iff φ(·, θ1) = φ(·, θ2). To
practically check whether θ1 ∼ θ2, a metric on the space of functions (for which the parameters

are fixed) is introduced: d(φ(·, θ1), φ(·, θ2)) =
√∫
X |φ(x, θ1)− φ(x, θ2)|22dx. Then due to the

definition of a metric: φ(·, θ1) = φ(·, θ2) iff d(φ(·, θ1), φ(·, θ2)) = 0; thus the equivalence holds.

It is common to express equivalence classes in terms of a group of transformations that result in
them; let us denote the group that corresponds to [θ] by Gθ. This group can be composed of several
smaller groups that each represent a class of symmetries (e.g. the group of permutations Gperm).
Then, given a set of groups {Gi}i∈I acting on a specific θ, the equivalence class [θ] is the orbit [13,
Chapter 7] of the action of the direct product group G1 × ...×Gi, ∀i ∈ I, denoted as Gθ 5. In order
to form Gθ, each Gi must be identified. This can be difficult to do for modern neural networks, as
they can be overtly over-parameterised with many complex layers (such as CNNs [11], ResNets [9],
transformers [6], etc.). Furthermore, the set of groups Gi is not equal for all θ; [19] showed this for a
simple feedforward network. Finally, the structure of the orbit can be non-trivial, even once Gθ is
known. This could, for example, be due to non-trivial isotropy subgroups6 [13, Chapter 7] of the
group action.

Thus, the equivalence class of θ, and by extension the quotient set Θ/∼, can be difficult to study
analytically. A visualisation of a single equivalence class could help derive the symmetries of various
network architectures by looking at its topological and geometric properties, such as connectedness,
dimension and curvature, among others. Following this, we can gain an understanding of the
quotient set by looking at how different equivalence classes in a neighbourhood stack together. While
this is useful [16, 8], we presently focus on visualising a single equivalence class; extensions to
understanding the quotient set is beyond the scope of this work.

3 GENNI: Visualising the Geometry of Equivalences for Neural Network
Identifiability

GENNI4 is our visualisation tool for studying complex symmetries of neural networks.

Since neural network parameter spaces are high-dimensional, it is difficult to find [θ] via brute-force
methods such as exhaustive grid search or random guessing, as they scale exponentially with the
number of dimensions. At a high level, GENNI uses stochastic gradient descent (SGD) to efficiently
search for likely candidates of [θ], even as the dimension of Θ increases. More concretely, to find
parameters which are in [θ] we randomly initialize vectors in Θ and use SGD to minimize the auxiliary

4The code is available on Github at https://github.com/Do-Not-Circulate/GENNI.
5The group operator is the canonical operator on a direct product of groups. The group action here is given by

the composition of transformations. That is, for (g1, ..., gi) ∈ Gθ , the action π(θ, (g1, ..., gi)) = g1 ◦ ... ◦ gi(θ)
6An isotropy, or stabilizer subgroup (SG(θ) ⊆ G) = {g ∈ G|g(θ) = θ}, where θ ∈ Θ, and g(θ) is the

action of g on θ. It is trivial if SG(θ) = {e}, where e is the neutral element of G.
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loss J(θ̃) = 1
|C|

∑
x∈C |φ(x, θ)− φ(x, θ̃)|22. We use J(θ̃) as an approximation of d(φ(·, θ), φ(·, θ̃)),

as seen in the pseudo-code found in Appendix A. With this method, we can efficiently explore Θ to
find parameters with low enough loss7 to be considered in [θ]. Given the points found by GENNI, we
conjecture that the hyperplane they lie in contains further ’good’ solutions, making it more suitable
for visualisation than a randomly chosen subset.

To construct an m dimensional hyperplane for a visualisation, we run GENNI until we find m+ 1
linearly independent vectors with low enough loss. We then use Gram-Schmidt to produce an
orthonormal basis {θ̃i}mi=1 for the hyperplane from the set of vectors {(θi − θ0)}mi=1 centered at
θ0. Since we can only visualize a finite subset of the hyperplane, we define a grid of coefficients
in Rm as {ci}i∈I where I is a finite index set for the grid8. To restrict our search to candidates
that approximately belong to [θ], we choose some sufficiently small ε > 0 and construct the set of
vectors [θ]ε;I = {θ′|θ′ = θ0 +

∑m
i=1 c

j
i θ̃i ∈ Θ; J(θ′) < ε;∀j ∈ I}, which we call the ε-equivalent

set. We can also define the ε-equivalent coefficient set as C([θ]ε;I) = {cj |θ0 +
∑m
i=1 c

j
i θ̃i ∈ [θ]ε;I}.

Since C([θ]ε;I) ⊂ Rm, it can be directly visualised if m ≤ 3; otherwise, we have to resort to a
dimensionality reduction tool, such as UMAP [15]. The runtime of creating such a set isO(N) where
N is the number of grid points. However, using standard griding techniques, the runtime will be
exponential in the dimension m. For larger m (approximately > 7), we found that visualisation was
computationally infeasible while trying to be sensitive to the spacing of the grid and the value of ε.

We note that there are other methods to locally explore the parameter space or speed-up the population
of [θ] such as continue running SGD as a MCMC sampling method or continue along level sets of
the loss J(θ). The disadvantage of these methods for visualization is that we are unable to restrict
the subspace in which these solutions lie to be at most three dimensional; which we circumvent by
constructing C([θ]ε;I). We leave exploration of other methods for future work.

4 Experiments

We consider a simple neural network architecture to compare our visualisations to theoretical ex-
pectations. Specifically, this is a feedforward network consisting of ReLU non-linearities with the
model architecture given by φ(x, θ) = θT2 ReLU(θ1x) where θ1, θ2 ∈ R2 and x ∈ R. We consider a
more complex architecture in Appendix D, where we replicate our results for the high dimensional
LeNet [12]. We compare our visualisations to two theoretically well-understood symmetries for the
feedward network: the permutation [22, 20] and the scaling symmetries [7]. The latter is due to the
non-negative homogeneity property, where for α ∈ R+, ReLU(αx) = αReLU(x). Therefore, we
can scale the input weight to a node by a valid α and its output weight by α−1 without changing the
function. This symmetry defines a topologically connected equivalence class.

In Figure 1, we consider a 2D subspace of our parameter space and plot the auxiliary loss for each
parameter vector. We can see that there is a connected region with low loss and the expected shape of
α−1. There also seem to be two distinct, yet similar regions of such shapes, which may be attributed
to the permutation symmetries. However, in Figure 1, we do not observe the full shape with equally
low loss. This leads us to consider a three dimensional subspace in which we may have access to a
more complete view of the equivalence class. In Figure 2, we clearly see two different intersecting
surfaces in the shape of α−1. Due to the permutation symmetries, such intersecting surfaces should
be expected. An interesting feature, which is not obviously explained by scaling and permutation
symmetries is the hole in Figure 2(b); may be explained by other groups of symmetries, as discussed
in [19].

Lastly, we visualise higher-dimensional spaces via UMAP, as can be seen in Appendix C. Such
visualisations do seem to be less interpretable however. For LeNet [12] we also observe connectedness
albeit with a different geometry and the additional property of a non-empty interior, as can be seen in
Appendix D.

7In a practical setting, this means that the loss should be comparable to a parameter that has been found by
known symmetries.

8Generally, we use a grid which is defined by a grid bound [a, b] and the number of grid points n on that
interval. The grid for a m dimensional space is then be given by×m

{a + i−1
n−1

(b− a)}1≤i≤n, which is the
Cartesian product of the grid on [a, b].
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Figure 1: We fix a parameter vector θ and used our method as in Section 3. Then c1 and c2 represent
the coordinates of the orthonormal basis vectors. We visualize the space via the auxiliary loss which
allows us to visually infer the ε-equivalent coefficient sets. We visualize θ0, θ1 and θ2 on the plot by
denoting them by the red, purple and yellow dots. We let the grid bound be [−2, 2] with 100 points.

Figure 2: Similar to Figure 1 but extended to the 3D case. c1, c2 and c3 represent the coordinates
of the orthonormal basis vectors. The color bar indicates the auxiliary loss for the parameter vector
represented by c1, c2, c3 and also demonstrates our chosen value of ε = 0.0025. We plot the 3D plot
from different angles to better visualize the shape of the ε-equivalent coefficient set on the chosen
subset. We let the grid bound be [−2, 2] with 50 points.

5 Conclusions and Future Work

We propose a scaleable (in the size of the network) method for identifying and visualising equivalent
classes of a given parameter vector; which can be used for studying the identifiability problem.
We showcased its use on a simple network, where we observed some non-trivial properties of the
equivalence class, in addition to the expected symmetries. In addition, GENNI can be used to
proactively probe regions of interest to, among other applications, inform initialization techniques
for deep learning tasks. Instead of restricting the visualisations to only a hyperplane, GENNI could
also be used as a Monte Carlo estimator to generate elements of an equivalence class. However, this
would require further and more principled dimensionality reduction techniques for visualisations.

Immediate future work is to develop an in-depth guide on how to use our visualisations to deduce the
symmetries of a specific neural network architecture. We hope to extend such a guide to complicated
neural networks, such as the one visualised and depicted in Appendix D. Following this, we will
explore how the quotient space, under the defined equivalence relation, looks like using GENNI.
Further, we would like to explore extended applications, such as in understanding meta-learning
[10] and transfer learning [17]. Truly understanding meta-learning requires us to explore additional
structure on a set of related models in the model space [18]. With GENNI, the behaviour of meta-
learning techniques can be better understood.
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A Algorithm

Algorithm 1 GENNI: Calculate approximate equivalence class using SGD

1: procedure CALCULATE-APPROXIMATE-EQUIVALENCE(θ, C)
2: [θ]Approx ← ∅
3: Form auxiliary problem J(θ̃) = 1

|C|
∑
x∈C(φ(x, θ̃)− φ(x, θ))2

4: Generate m starting points (θi)
m
i=1

5: for j = 1, . . . ,m do
6: θ̃i ← SGD(J, θi) . Run SGD on J(θ̃) starting from θi
7: [θ]Approx ← [θ]Approx ∪ {θ̃i}
8: end for
9: return [θ]Approx

10: end procedure

B Hyperparameters

B.1 LeNet

The architecture of the network used is as in [12].

Table 1: Hyperparameters for the LeNet experiments seen in Section D
Hyperparameter Value
Batch size 256
No. of data points 8192
Learning rate 0.001
Seed 0
Network input dim. 28× 28
Network output dim. 1× 1
Optimizer SGD

B.2 Fully Connected Network

The fully connected network architecture has four trainable parameters a, b, c, d ∈ R and the form:
φ(x, (a, b, c, d)) = cReLU(ax) + dReLU(bx).

Table 2: Hyperparameters for the simple experiments seen in Section 4
Hyperparameter Value
Batch size 256
No. of data points 16384
Learning rate 0.015
Seed 10
Network input dim. 1× 1
Network output dim. 1× 1
Optimizer SGD
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C Further Visualizations

In Figure 3a, we use UMAP to visualize the 3D space, and see that the shape of Figure 2 is roughly
maintained. Importantly, the region remains connected. We also plot the equivalence class for a 4D
subset in Figure 3b. Here, the shape is generally less interpretable, but the region remains connected.
We do note that visualizations become much less explainable when using UMAP to move to higher
dimensions, but that some topological properties, such as connectedness, may still be deduced.

(a) UMAP of a 3D subset. (b) UMAP of a 4D subset.

Figure 3: In Figure 3a we use the same grid as in Figure 2 but use UMAP to visualise [θ]ε;I . We
also extend the same to 4D (we find an additional θ4 vector equivalent to θ via our gradient descent
method). The color bars indicate the auxiliary loss for the parameter vectors and also demonstrate our
chosen value of ε = 0.005 for Figure 3a and ε = 0.1 for Figure 3b. We visualise θ0, θ1, θ2, θ3 and θ4
on the plot by denoting them by the blue, red, purple, yellow and brown dots. For the 3D figure we let
the grid bound be [−2, 2] with 50 points. For the 4D case we let the bound be [−1, 1] with 20 points.

D Convolutional Neural Network Visualization

By considering a high-dimensional neural network, we can get a more complete picture of the benefits
of our method. For that we consider the LeNet-5 [12] convolutional neural network architecture
which has 60, 000 parameters. Due to the curse of dimensionality, it becomes even more difficult to
simply grid the entire space to find equivalent parameters. Hence, a more principled method for the
selection of such subsets is necessary. This makes GENNI a good candidate.

We replicate the experiments in Section 4. In Figure 4 we can see that in contrast to the results for the
feedforward network in Section 4, the hyperplane has a large and wider connected region of low loss.
We can see similar results in Figures 5 and 6. The width of the equivalence class seems to be due to
different symmetry groups acting on convolutional layers and due to the higher dimensionality of the
parameter space. However, we leave further investigations of symmetries to future work.
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Figure 4: We fix a parameter vector θ and use our gradient descent method to find equivalent vectors
θ0, θ1 and θ2. We grid the the hyperplane centered at θ0 as described in Section 3. Then c1 and c2
represent the coordinates of the orthonormal basis vectors. We visualize the space via the auxiliary
loss which allows us to visually infer the ε-equivalent coefficient sets. We visualize θ0, θ1 and θ2 as
the red, purple and yellow dots. The grid bound was [−13, 13] with 100 points.
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Figure 5: Similar to Figure 4, extended to the 3D case by using our gradient-descent method to find a
θ3 which is equivalent to θ. c1, c2 and c3 represent the coordinates of the orthonormal basis vectors.
The colorbar indicates the auxiliary loss for the parameter vector represented by c1, c2, c3 and also
demonstrates our chosen value of ε = 0.0025. We plot the 3D plot from different angles to better
visualize the shape of the ε-equivalent coefficient sets. The grid bound was [−13, 13] with 35 points.

(a) UMAP of a 3D subset. (b) UMAP of a 4D subset.

Figure 6: In Figure 6a we use the same grid as in Figure 5 but instead use UMAP to visualize the
set of parameters [θ]ε;I , rather than the coefficients, in 2D. We also extend the same to 4D (we
find an additional θ4 vector equivalent to θ via our gradient descent method) and again use UMAP
to represent it in 2D. The colorbar indicates the auxiliary loss for the parameter vectors and also
demonstrates our chosen value of ε = 0.0025 for Figure 6a and ε = 10−5 for Figure 6b. We visualize
θ0, θ1, θ2, θ3 and θ4 as the blue, red, purple, yellow and brown dots. For the 3D figure, the grid bound
was [−13, 13] with 35 points. For the 4D case, the grid bound was [−1, 1] with 20 points.
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