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Nonequilibrium properties of quantum materials present many intriguing properties, among them athermal
behavior, which violates the eigenstate thermalization hypothesis. Such behavior has primarily been observed
in disordered systems. More recently, experimental and theoretical evidence for athermal eigenstates, known
as “quantum scars,” has emerged in nonintegrable disorder-free models in one dimension with constrained
dynamics. In this Rapid Communication, we show the existence of quantum scar eigenstates and investigate
their dynamical properties in many simple two-body Hamiltonians with “staggered” interactions, involving
ferromagnetic and antiferromagnetic motifs, in arbitrary dimensions. These magnetic models include simple
modifications of widely studied ones (e.g., the XXZ model) on a variety of frustrated and unfrustrated lattices.
We demonstrate our ideas by focusing on the two-dimensional frustrated spin-1/2 kagome antiferromagnet,
which was previously shown to harbor a special exactly solvable point with “three-coloring” ground states in
its phase diagram. For appropriately chosen initial product states—for example, those which correspond to any
state of valid three-colors—we show the presence of robust quantum revivals, which survive the addition of
anisotropic terms. We also suggest avenues for future experiments which may see this effect in real materials.
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Introduction. How does an isolated quantum system “ther-
malize” given a particular set of initial conditions? This is one
of the most basic questions of nonequilibrium dynamics of
quantum matter in cold atom and condensed matter systems.
The dynamics of an isolated quantum system at a macroscopic
energy above the ground state is known to exhibit two univer-
sal behaviors: Either the system undergoes thermalization, or
it is many-body localized (MBL) and fails to thermalize. The
eigenstate thermalization hypothesis (ETH) [1–3] remarkably
holds true for a wide variety of thermalizing systems, whereas
it breaks down completely for MBL systems [4–8] or partially
[9] in systems with conservation laws. Recent observations of
long-lived periodic oscillations in one-dimensional Rydberg
atom chains for a certain class of initial states [10] inspired
the question of whether there are other alternatives to ther-
malization and many-body localization.

There are now various models in one [11–18] and higher
dimensions [19,20] where ETH is violated for a set of
measure-zero highly excited eigenstates, known as many-
body quantum scars, while the vast majority of eigenstates
continue to satisfy ETH. It appears that scar eigenstates
occur in the spectrum when the Hilbert space is fragmented
due to kinetic constraints [21,22], thereby suppressing the
relaxation of the initial state [23,24]. A major motivation for
this Rapid Communication is to investigate the formation of
ETH-violating excited states in frustrated magnetic systems
potentially relevant for glassy dynamics in quantum magnets
with degenerate energy landscapes [25–27]. The relevance of
quantum dynamics at high energy to nonequilibrium effects in
glassy spin systems remains a relatively unexplored question.

While not obviously directly related, ETH-violating ather-
mal states appear instrumental in the observed quantum

revivals [12,19]. This gives rise to a general prescription
for observing scar states, which is to have a simple initial
product state that has a large overlap with the athermal scar
eigenstates. A constant energy spacing of the participating
eigenstates guarantees the observations of a distinct revival
timescale. The focus on “simple” states is crucial; while it is
possible in theory to induce quantum oscillations between an
arbitrary linear combination of a finite number of eigenstates,
such a preparation may require control of nonlocal observ-
ables, which is experimentally challenging.

Given this prelude to quantum scars, we now elaborate the
objective of this Rapid Communication, which is threefold.
First, we present strategies that utilize geometric frustration
for generating a large family of lattice Hamiltonians in arbi-
trary dimensions that have athermal states. Our prescription is
general in nature, and shows that geometric frustration offers a
route to constructing exponentially many scars in simple two-
(or few-) body quantum spin Hamiltonians. Second, we show
that these idealized models show perfect revivals, and retain
several aspects of the scar physics under perturbation (e.g.,
changing anisotropy). In addition, we also identify several
unfrustrated models. And finally, we argue that a family of
models may contain realistic candidates where revival effects
will be observable on accessible timescales.

Before discussing a general recipe, we elucidate our key
ideas with the help of a (quasi)exactly solvable point in the
phase diagram of the nearest-neighbor XXZ model on the spin-
1/2 kagome lattice,

HXXZ [Jz] = J
∑

〈i, j〉

(
Sx

i Sx
j + Sy

i Sy
j

) + Jz

∑

〈i, j〉
Sz

i Sz
j, (1)

2469-9950/2020/101(24)/241111(6) 241111-1 ©2020 American Physical Society

https://orcid.org/0000-0001-6018-4014
https://orcid.org/0000-0001-8583-1281
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.101.241111&domain=pdf&date_stamp=2020-06-12
https://doi.org/10.1103/PhysRevB.101.241111


LEE, MELENDREZ, PAL, AND CHANGLANI PHYSICAL REVIEW B 101, 241111(R) (2020)

FIG. 1. Two representative three-colorings on the kagome lattice
corresponding to two magnetically ordered configurations: (a) q = 0
and (b)

√
3 × √

3. The colors red, blue, and green represent the
classical 120◦ states or their quantum equivalents. The gray-shaded
region in (a) indicates the subsystem used for the entanglement
entropy result presented in Fig. 3. Two different red-green two-color
loops are highlighted in orange.

where Sα
i are spin-1/2 operators on site i, and 〈i, j〉 refer

to nearest-neighbor pairs. J (set to 1 throughout) and Jz are
the XY and Ising couplings, respectively. We will denote the
Hamiltonian HXXZ [Jz = −1/2] as HXXZ0, as in Ref. [28].
While the existence of a classical degeneracy and its quantum
lifting in kagome magnets have been studied for a long time
[28–32], Refs. [33,34] explicitly showed that, at this special
point of Jz/J = −1/2, an exponential degeneracy exists in
all Sz sectors. The exact solutions apply to any lattice of
triangular motifs with the Hamiltonian of the form H =∑

� HXXZ0(�), where HXXZ0(�) is the XXZ0 Hamiltonian
on a single triangular motif �, as long as the vertices are
consistently three-colorable, i.e., no two neighboring vertices
have the same color. The proof relies on rewriting HXXZ0

in a frustration-free form as a sum of positive semidefinite
projectors, and then showing that any product state of the
following form is an exact ground state,

|C〉 =
∏

s

⊗|γs〉s, (2)

where s is the site index and |γs〉 is one of |r〉 = (|↑〉 +
|↓〉)/

√
2 (red), |g〉 = (|↑〉 + ω|↓〉)/

√
2 (green), or |b〉 =

(|↑〉 + ω2|↓〉)/
√

2 (blue), with ω = ei2π/3. Examples of
such colorings are shown in Fig. 1. (For details, refer to
Refs. [33–35].)

Eigenstate entanglement structure for HXXZ0. We now
discuss the properties of the three-coloring states |C〉 and
their Sz projections, with the intention of understanding why
they are ETH violating. First, since the number of three-
colorings on the kagome lattice scales exponentially with
system size [36], there are exponentially many ground states
at Jz/J = −1/2, each one of which is a product state. These
states, however, are not orthogonal to each other, and break
the U(1) symmetry of the XXZ Hamiltonian. Projection to a
particular Sz sector restores the U(1) symmetry. The resulting
state is still an eigenstate [33,34], and is weakly entangled:
While the unprojected coloring state is a product state with
zero entanglement, Sz projection introduces entanglement that
follows S ∼ logV subvolume law [37].

FIG. 2. (a)–(c) Lattices with alternating signs of interactions, i.e.,
“staggered” motifs: (a) kagome lattice, (b) one-dimensional chain,
and (c) square lattice. The precise meaning of “+” and “−” is model
dependent, and is explained in the text. (d) Perfect revival seen in
the time evolution of |〈ψ (0)|ψ (t )〉|2 at Jz/J = −1/2 and h/J = 0.1,
with a q = 0 three-coloring state as the initial state.

Importantly, despite existing at the same energy density,
each three-coloring state has distinct local properties from
most other three-coloring states. Consider, for example, the
two three-colorings shown in the Fig. 1, the so-called q = 0
and

√
3 × √

3 coloring states. In either state one can identify
“two-color” loops (examples highlighted in orange in Fig. 1).
A new coloring state can be generated by color inverting a
two-color loop (e.g., red↔green). These effective tunnelings
“connect” three-colorings to one another, yet, q = 0 and√

3 × √
3 are not connected to each other via any local or

topological move [38]. More generally, the three-coloring
subspace fragments into topological and Kempe sectors [39].
The three-coloring manifold is a degenerate soup of quantum
many-body states, magnetically ordered or disordered, all
at exactly the same energy but arising from very different
origins.

At face value, this observation might seem a quirk of low-
energy physics; after all, low-energy states are expected to be
outside the realm of validity of ETH [40]. To show that this
is not the case, and with the objective of making these states
relevant at infinite temperature (i.e., the middle of the many-
body spectrum), we modify the Hamiltonian such that all the
“up” triangles have one sign of interaction, and all the “down”
triangles have exactly the opposite sign, i.e.,

H =
∑

�
HXXZ0(�) −

∑

�
HXXZ0(�). (3)

A schematic for the kagome lattice is shown in Fig. 2(a), with
“+” and “−” indicating the signs of the participating Hamil-
tonian pieces. This “staggered” construction destroys the
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FIG. 3. Entanglement entropy of every eigenstate of the Hamil-
tonian in Eq. (3). The orange curve on the right panel indicates the
EE of the q = 0 state projected to each Sz sector, which is expected
to follow logV subvolume-law scaling.

positive semidefinite property of the Hamiltonian. Neverthe-
less, the three-coloring states (both projected and unprojected)
still remain exact eigenstates, just not the lowest-energy ones
[20]; they appear as zero-energy states in the many-body
spectrum, which has a manifest E ↔ −E symmetry by con-
struction [see Supplemental Material (SM) [41]].

Our proposed prescription for constructing scar states with
athermal dynamics is agnostic to whether or not the resultant
Hamiltonian from the staggered construction is exactly inte-
grable. Moreover, any arrangement of “+” and “−” which
occurs in equal numbers will guarantee exact zero modes. In
fact, even if the numbers of the “+” and “−” motifs are not
exactly the same, or their interaction strengths are different,
the coloring states remain eigenstates that lie in the interior of
the many-body spectrum.

We explicitly check these analytic assertions with the help
of numerical full diagonalizations. In Fig. 3(a), we show the
entanglement entropy (EE) of every eigenstate computed on
a 12-site system shown in Fig. 1(a) with periodic boundary
conditions, as a function of the eigenstate energy En. Since
there are exact degeneracies in the spectrum (especially the
exponentially large degeneracy at E = 0), the EE is not well
defined for those states. Nevertheless, even if one focuses on
nondegenerate states (for which the EE is reproducible), the
EE is not a single-valued function of the energy as one would
expect if ETH were to hold. While the model was originally
designed to have ETH violation at E = 0, we find that many
more eigenstates at other energies also violate ETH.

To clarify the nature of the projected coloring states at
E = 0, we pick a representative three-coloring, here a trans-
lationally invariant q = 0 state shown in Fig. 1(a). The EE
of this state projected to every Sz sector, shown in Fig. 3(b),
follows logV subvolume law, and is lower than a majority of
the eigenstates in the same sector [42].

Perfect quantum revivals in HXXZ0 from splitting degen-
eracy. Analogous to the quasidegenerate Anderson tower of
states that appear in the low-energy spectra of unfrustrated
magnets [43–48], for each three-coloring state, all its Sz

projections also form a tower. They are related by U(1)
symmetry unlike the full (physical) SU(2) of the Heisenberg
case. Importantly, the degeneracy in zero field is exact on
any three-colorable lattice, which is split on adding a Zee-
man term HZeeman = −h

∑
i Sz

i . The projected coloring states
remain exact eigenstates, and only their energy changes; the

FIG. 4. Sx
1 vs time for h/J = 0.1 in the 12-site system, (a) for

two initial states q = 0 three-coloring state (purple) and a random
product state (green), both having |r〉 on site 1 [Sx

1 (t = 0) = +1/2],
at Jz/J = −1/2, and (b) for three values of anisotropy of the Hamil-
tonian, with the fully polarized |X 〉 as the initial state.

degeneracy within every Sz sector arising from different col-
oring configurations remains.

The unprojected three-coloring product state can be de-
composed into Sz sectors,

|C〉 =
∑

Sz

PSz |C〉 ≡
∑

Sz

NSz |ESz〉, (4)

where NSz is a sector-specific normalization factor and |ESz 〉
is the normalized projected three-coloring eigenstate with
energy −hSz. Starting with the initial state |ψ (t = 0)〉 = |C〉,
the Loschmidt echo thus gives

〈ψ (0)|ψ (t )〉 ≡
∑

Sz

e−ithSz |NSz |2. (5)

A characteristic timescale emerges from this expression which
is τ = 2π/h.

Numerical results shown in Fig. 2(d) confirm our analytic
findings for the Loschmidt echo. Starting from a q = 0 state,
we observe that the echo shows perfect revivals which repeat
with time period τ = 2π/h. The profiles for both 12 and
18 sites are shown, and are consistent with the expectation
that it gets sharper with increasing size. In contrast, if one
starts with a random product state at the same energy density
as the coherent state (i.e., 〈H〉 = 0) the memory of the initial
state is rapidly lost (see SM [41] for further details).

These observations are further supported by dynamics of
observables. We find perfect revivals in the time evolution of
Sx

1, the x component of the spin at site 1, for a q = 0 state [see
Fig. 4(a)]; a random product state with 〈Sx

1〉 = +1/2, on the
other hand, shows a rapid decay.

Away from the special point. We now ask what happens
away from the exactly solvable point Jz/J = −1/2 where the
three-coloring states are no longer eigenstates of the Hamilto-
nian HXXZ , and thus the quantum revival is not expected to be
perfect. Will the same coherent state eventually thermalize?
Figure 5 addresses this question. Indeed, we find that the
revival is not perfect at Jz/J = −0.4. (Other anisotropies are
discussed in SM [41].) What is surprising, however, is that the
fidelity at long times saturates to a nonzero value (at least for
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FIG. 5. Results at Jz/J = −0.4, away from the exactly solvable
point. (a) Fidelity vs time, with h = 0.1J (blue) and h = 0 (orange)
in an 18 site system. The red dotted line marks the overlap between
the initial state and the zero-energy manifold (see SM [41]). (b), (c)
Distribution of overlap with the q = 0 state as a function (b) of En,
and (c) of Sz. The numbers in (c) indicate the degeneracies.

the largest size we simulated) rather than slowly decaying to
zero. This suggests the existence of scar states even away from
the exactly solvable point; the fidelity saturates to the overlap
between the participating states (i.e., the scar manifold) and
the initial state (i.e., the q = 0 state).

Figures 5(b) and 5(c) show the distribution of the overlap
between the eigenstate manifolds and the q = 0 state, respec-
tively, as functions of En and Sz. As shown in Fig. 5(b), and
more clearly in its inset, a group of zero-energy states exist,
with large overlaps with the q = 0 state. These states comprise
the scar manifold at Jz/J = −0.4. Furthermore, when plotted
as a function of Sz, the scar manifold is clearly separated
from all the other states [see Fig. 5(c)]. This manifold remains
highly degenerate even within each Sz sector, as indicated
by the numbers in Fig. 5(c). (See SM [41] for details of
calculating the overlap.)

Generalization to other models. Based on the analyses
of the kagome model, we surmise that the key ingredients
for perfect revivals are the following: (a) Generate a perfect
degeneracy in the spectrum. One mechanism to do this is to
have states in different Sz sectors to be all degenerate. (b) Split
this degeneracy with a field (here, the Zeeman term). (c) Pre-
pare the system in a simple initial state, preferably a product
state. These ingredients resonate with Schecter and Iadecola’s
[19] observation of scars in spin-1 XY magnets on hypercubic
lattices: They found an expression similar to Eq. (5), but in a
very different model from ours. This raises a natural question:
Is there a more general way to generate lattice Hamiltonians
and initial conditions which satisfy criteria (a)–(c)?

Here, we offer two possible routes. The first route
is to leverage properties of highly frustrated lattices—
such as the kagome, hyperkagome, or pyrochlore—to en-
gineer a Hamiltonian that makes any of its valid “color-
ings” an exact eigenstate [33,49,50]. This recipe is equiv-
alent to finding the operators which annihilate the color-
ing states. (See SM [41] for further discussion and how a

representative calculation was done with the DIRACQ pack-
age [51].) The phase space of such Hamiltonians is large
[33], although not all of them consist solely of two-spin
interactions.

The second route is to focus on models with isotropic
two-spin Heisenberg interactions on lattices, with or without
frustration, and introduce “staggered” interactions [examples
are shown in Figs. 2(a)–2(c)]—more precisely, a Hamiltonian
of the form H = ∑

+ motifs H+[Jz = J] − ∑
− motifs H−[Jz =

J]. In all such models, SU(2) symmetry guarantees that the
fully polarized (i.e., ferromagnetic) state |S, S〉 ≡ |↑↑↑ · · · 〉
and all other members of the multiplet |S, Sz〉 are eigenstates
with exactly zero energy. Once again, applying a magnetic
field splits the degeneracy of this multiplet, while retaining
the eigenstate structure. For example, an initial state with
all spins pointing in the x direction |X 〉 = ⊗

(|↑〉 + |↓〉)/
√

2
under magnetic field B = hẑ leads to an expression identi-
cal to Eq. (5) for the Loschmidt echo. Furthermore, tuning
away from the Heisenberg point also leads to imperfect re-
vivals, as can be observed in the local spin measurement [see
Fig. 4(b)].

Conclusions and future prospects. Quantum revivals are
well studied in the context of Rabi oscillations of two-level
systems (e.g., single spin in a magnetic field). The crucial
difference in the case of scars is that it is a macroscopic
spin that is precessing, not allowing the system to thermalize.
This effect arises from the special choice of initial conditions
and the nature of the many-body spectrum in our proposed
models. Among our proposed models, we believe that the
“second route” of Heisenberg interactions with staggered
motifs may be a realistic possibility. A possible experimental
protocol, which parallels that used in NMR experiments, is to
place the candidate material in a static magnetic field in one
direction (e.g., in the z direction), and then to apply a much
larger magnetic field transverse to it to polarize the starting
state of spins in that direction (e.g., in the x direction) for a
time much shorter than the time period of the scar oscillations
τ = 2π h̄/gμBh, where the g factor depends on the effective
magnetic moment. Assuming that g in the spin (or pseudospin)
Hamiltonians can vary on a scale of 1–10 [52,53], and that
fields of 0.001–10 T are applied, timescales are of orders
10−12–10−7 s. Note that this time period of oscillation is
completely independent of the magnetic coupling strength J ,
and thus we believe that this effect could be observable in a
wide class of materials (were they to exist) with staggered
interactions.
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