
ar
X

iv
:1

70
6.

02
52

6v
1

 [
cs

.S
E

]
 8

 J
un

 2
01

7

Conditional Transition Systems with Upgrades

Harsh Beohar
Universität Duisburg-Essen

Barbara König
Universität Duisburg-Essen

Sebastian Küpper
Universität Duisburg-Essen

Alexandra Silva
University College London

Abstract—We introduce a variant of transition systems, where
activation of transitions depends on conditions of the environ-
ment and upgrades during runtime potentially create additional
transitions. Using a cornerstone result in lattice theory, we show
that such transition systems can be modelled in two ways:
as conditional transition systems (CTS) with a partial order
on conditions, or as lattice transition systems (LaTS), where
transitions are labelled with the elements from a distributive
lattice. We define equivalent notions of bisimilarity for both
variants and characterise them via a bisimulation game.

We explain how conditional transition systems are related
to featured transition systems for the modelling of software
product lines. Furthermore, we show how to compute bisimilarity
symbolically via BDDs by defining an operation on BDDs that
approximates an element of a Boolean algebra into a lattice. We
have implemented our procedure and provide runtime results.

I. INTRODUCTION

Conditional transition systems (CTS) have been introduced

in [1] as a model for systems whose behaviour is guarded

by different conditions. Before an execution, a condition is

chosen by the environment from a pre-defined set of conditions

and, accordingly, the CTS is instantiated to a classical labelled

transition system (LTS). In this work, we consider ordered sets

of conditions which allow for a change of conditions during

runtime. It is allowed to replace a condition by a smaller

condition, called upgrade. An upgrade activates additional tran-

sitions compared to the previous instantiation of the system.

Our focus lies on formulating a notion of behavioural

equivalence, called conditional bisimilarity, that is insensitive

to changes in behaviour that may occur due to upgrades. Given

two states, we want to determine under which conditions they

are behaviourally equivalent. To compute this, we adopt a dual,

but equivalent, view from lattice theory due to Birkhoff to rep-

resent a CTS by a lattice transition system (LaTS). In general,

LaTSs are more compact in nature than their CTS counterparts.

Moreover, we also develop an efficient procedure based on

matrix multiplication to compute conditional bisimilarity.

Such questions are relevant when we compare a system with

its specification or we want to modify a system in such a way

that its observable behaviour is invariant. Furthermore, one

requires minimisation procedures for transition systems that

are potentially very large and need to be made more compact

to be effectively used in analysis.

An application of CTSs with upgrades is to model systems

that deteriorate over time. Consider a system that is dependent

Research partially supported by DFG project BEMEGA and ERC Starting
Grant ProFoundNet (grant agreement 679127).

on components that break over time or require calibration,

in particular sensor components. In such systems, due to

inconsistent sensory data from a sensor losing its calibration,

additional behaviour in a system may be enabled (which can

be modelled as an upgrade) and chosen nondeterministically.

Another field of interest, which will be explored in more

detail, are software product lines (SPLs). SPLs refer to a

software engineering method for managing and developing a

collection of similar software systems with common features.

To ensure correctness of such systems in an efficient way, it

is common to specify the behaviour of many products in a

single transition system and provide suitable analysis methods

based on model-checking or behavioural equivalences (see [3],

[6]–[9], [12], [15], [17], [24]).

Featured transition systems (FTS) – a recent extension of

conventional transition system proposed by Classen et al.[7]

– have become the standard formalism to model an SPL. An

important issue usually missing in the theory of FTSs is the

notion of self-adaptivity [11], i.e., the view that features or

products are not fixed a priori, but may change during runtime.

We will show that FTSs can be considered as CTSs without

upgrades where the conditions are the powerset of the features.

Additionally, we propose to incorporate a notion of upgrades

into software product lines, that cannot be captured by FTSs.

Furthermore, we also consider deactivation of transitions in

Appendix C, to which our techniques can easily be adapted,

though some mathematical elegance is lost in the process.

Our contributions are as follows. First, we make the dif-

ferent levels of granularity – features, products and sets of

products – in the specification of SPLs explicit and give a

theoretical foundation in terms of Boolean algebras and lat-

tices. Second, we present a theory of behavioural equivalences

with corresponding games and algorithms and applications

to conventional and adaptive SPLs. Third, we present our

implementation based on binary decision diagrams (BDDs),

which provides a compact encoding of a propositional formula

and also show how they can be employed in a lattice-based

setting. Lastly, we show how a BDD-based matrix multipli-

cation algorithm provides us with an efficient way to check

bisimilarity relative to the naive approach of checking all

products separately.

This paper is organised as follows. Section II recalls the

fundamentals of lattice theory relevant to this paper. Then,

in Section III we formally introduce CTSs and conditional

bisimilarity. In Section IV, using the Birkhoff duality, it is

shown that CTSs can be represented as lattice transition

systems (LaTSs) whose transitions are labelled with the el-978-1-5386-1925-4/17/$31.00 c© 2017 IEEE

http://arxiv.org/abs/1706.02526v1

ements from a distributive lattice. Moreover, the bisimilarity

introduced on LaTSs is shown to coincide with the conditional

bisimilarity on the corresponding CTSs. In Section V, we

show how bisimilarity can be computed using a form of

matrix multiplication. Section VI focusses on the translation

between an FTS and a CTS, and moreover, a BDD-based

implementation of checking bisimilarity is laid out. Lastly, we

conclude with a discussion on related work and future work

in Section VII. All the proofs can be found in Appendix A.

II. PRELIMINARIES

We now recall some basic definitions concerning lattices,

including the well-known Birkhoff’s duality result from [13].

Definition 1 (Lattice, Heyting Algebra, Boolean Algebra). Let

(L,⊑) be a partially ordered set. If for each pair of elements

ℓ,m ∈ L there exists a supremum ℓ ⊔ m and an infimum

ℓ ⊓ m, we call (L,⊔,⊓) a lattice. A bounded lattice has a

top element 1 and a bottom element 0. A lattice is complete

if every subset of L has an infimum and a supremum. It is

distributive if (ℓ ⊔m) ⊓ n = (ℓ ⊓ n) ⊔ (m ⊓ n) holds for all

ℓ,m, n ∈ L.

A bounded lattice L is a Heyting algebra if for any ℓ,m ∈
L, there is a greatest element ℓ′ such that ℓ ⊓ ℓ′ ⊑ m. The

residuum and negation are defined as ℓ→ m =
⊔

{ℓ′ | ℓ⊓ℓ′ ⊑
m} and ¬ℓ = ℓ → 0. A Boolean algebra L is a Heyting

algebra satisfying ¬¬ℓ = ℓ for all ℓ ∈ L.

Example 1. Given a set of atomic propositions N , consider

B(N), the set of all Boolean expressions over N , i.e., the set

of all formulae of propositional logic. We equate every subset

C ⊆ N with the evaluation that assigns true to all f ∈ C
and false to all f ∈ N\C. For b ∈ B(N), we write C |= b
whenever C satisfies b. Furthermore we define JbK = {C ⊆
N | C |= b} ∈ P(P(N)). Two Boolean expressions b1, b2
are called equivalent whenever Jb1K = Jb2K. Furthermore b1
implies b2 (b1 |= b2), whenever Jb1K ⊆ Jb2K.

The set B(N), quotiented by equivalence, is a Boolean alge-

bra, isomorphic to P(P(N)), where Jb1K⊔Jb2K = Jb1K∪Jb2K =
Jb1 ∨ b2K, analogously for ⊓,∩,∧, ¬JbK = P(N)\JbK = J¬bK,

and Jb1K → Jb2K = P(N)\Jb1K ∪ Jb2K = J¬b1 ∨ b2K.

Distributive lattices and Boolean algebras give rise to an in-

teresting duality result, which was first stated for finite lattices

by Birkhoff and extended to the infinite case by Priestley [13].

In the sequel we will focus on finite distributive lattices (which

are Heyting algebras). We first need the following concepts.

Definition 2. Let L be a lattice. An element n ∈ L\{0} is said

to be (join-)irreducible if whenever n = ℓ ⊔ m for elements

ℓ,m ∈ L, it always holds that n = ℓ or n = m. We write

J (L) for the set of all irreducible elements of L.

Let (S,≤) be a partially ordered set. A subset S′ ⊆ S is

downward-closed, whenever s′ ∈ S′ and s ≤ s′ implies s ∈ S′.

We write O(S) for the set of all downward-closed subsets of

S and ↓s = {s′ | s′ ≤ s} for the downward-closure of s ∈ S.

1

df

c

a b

e

0

{a, b, e, f}

{a, b, e}{a, b, f}

{a, b}

{a} {b}

{b, e}

∅

Fig. 1. An example motivating Birkhoff’s representation theorem.

Example 2. For our example of a Boolean algebra B(N),
quotiented by equivalence, the irreducibles are the complete

conjunctions of literals, or, alternatively, all sets C ⊆ N .

We can now state the Birkhoff’s representation theorem for

finite distributive lattices [13].

Theorem 1. If L is a finite distributive lattice, then

(L,⊔,⊓) ∼= (O(J (L)),∪,∩) via the isomorphism η : L →
O(J (L)), defined as η(ℓ) = {ℓ′ ∈ J (L) | ℓ′ ⊑ ℓ}. Further-

more, given a finite partially ordered set (S,≤), the downward-

closed subsets of S, (O(S),∪,∩) form a distributive lattice,

with inclusion (⊆) as the partial order. The irreducibles of this

lattice are all downward-closed sets of the form ↓s for s ∈ S.

Example 3. Consider the lattice L = {0, a, b, c, d, e, f, 1}
with the order depicted in Figure 1. The irreducible elements

are a, b, e, f , i.e. exactly those elements that have a unique

direct predecessor. On the right we depict the dual repre-

sentation of the lattice in terms of downward-closed sets of

irreducibles, ordered by inclusion. This example suggests an

embedding of a distributive lattice L into a Boolean algebra,

obtained by taking the powerset of irreducibles.

Proposition 1 (Embedding). A finite distributive lattice L

embeds into the Boolean algebra B = P(J (L)) via the

mapping η : L → B given by η(ℓ) = {ℓ′ ∈ J (L) | ℓ′ ⊑ ℓ}.

We will simply assume that L ⊆ B. Since an embedding

is a lattice homomorphism, supremum and infimum coincide

in L and B and we write ⊔,⊓ for both versions. Negation

and residuum may however differ and we distinguish them

via a subscript, writing ¬L,¬B and →L,→B. Given such an

embedding, we can approximate elements of a Boolean algebra

in the embedded lattice.

Definition 3. Let a complete distributive lattice L that embeds

into a Boolean algebra B be given. Then, the approximation

of ℓ ∈ B is given by: ⌊ℓ⌋
L
=

⊔

{ℓ′ ∈ L | ℓ′ ⊑ ℓ}.

If the lattice is clear from the context, we will in the sequel

drop the subscript L and simply write ⌊ℓ⌋. For instance, in the

previous example, the set of irreducibles {a, e, f}, which is

not downward-closed, is approximated by ⌊{a, e, f}⌋ = {a}.

Lemma 1. Let L be a complete distributive lattice that embeds

into a Boolean algebra B. For ℓ, m ∈ B, we have ⌊ℓ ⊓m⌋ =
⌊ℓ⌋ ⊓ ⌊m⌋ and furthermore that ℓ ⊑ m implies ⌊ℓ⌋ ⊑ ⌊m⌋. If

ℓ,m ∈ L, then ⌊ℓ ⊔ ¬m⌋ = m→L ℓ.

Note that in general it does not hold that ⌊ℓ⊔m⌋ = ⌊ℓ⌋⊔⌊m⌋

2

ready received

safe

unsafe

receive,b

check,b

check,b

u,b

u,b

e,a

Fig. 2. Adaptive routing protocol with the alphabet A =
{receive, check, u, e}.

and ⌊ℓ ⊔ ¬m⌋ = ⌊m⌋ →L ⌊ℓ⌋ for arbitrary ℓ,m ∈ B. To

witness why these equations fail to hold, take ℓ = {a, e} and

m = {b, f} in the previous example as counterexample.

III. CONDITIONAL TRANSITION SYSTEMS

In this section we introduce conditional transition systems

together with a notion of behavioural equivalence based on

bisimulation. In [1], such transition systems were already in-

vestigated in a coalgebraic setting, where the set of conditions

was trivially ordered. In the sequel, we will always use CTS

for the variant with upgrades defined as follows:

Definition 4. A conditional transition system (CTS) over an

alphabet A and a finite ordered set of conditions (Φ,≤) is a

triple (X,A, f), where X is a set of states and f : X ×A→
(Φ → P(X)) is a function mapping every ordered pair in

X ×A to a monotone function of type (Φ,≤) → (P(X),⊇).

As usual, we write x
a,ϕ
−−→ y whenever y ∈ f(x, a)(ϕ).

Intuitively, a CTS evolves as follows. Before the system

starts acting, it is assumed that a condition ϕ ∈ Φ is chosen ar-

bitrarily which may represent a selection of a valid product of

the system. Now all the transitions that have a condition greater

than or equal to ϕ are activated, while the remaining transitions

are inactive. Henceforth, the system behaves like a standard

transition system; until at any point in the computation, the

condition is changed to a smaller one (say, ϕ′) signifying

a selection of a valid, upgraded product. This, in turn, has

a propelling effect in the sense that now (de)activation of

transitions depends on the new condition ϕ′, rather than on the

old condition ϕ. Note that due to the monotonicity restriction

we have that x
a,ϕ
−−→ y and ϕ′ ≤ ϕ imply x

a,ϕ′

−−→ y. That

is, active transitions remain active during an upgrade, but new

transitions may become active. In Appendix C, we weaken

this requirement by discussing a mechanism for deactivating

transitions via priorities on the alphabet.

Example 4. Consider an example (simplified from [11]) of an

adaptive routing protocol modelled as a CTS in Figure 2. The

system has two products: the basic system, denoted b, with no

encryption feature and the advanced system, denoted a, with

an encryption feature. The ordering on the products is a < b.

Transitions that are present due to monotonicity are omitted.

Initially, the system is in state ’ready’ and is waiting

to receive a message. Once a message is received there

is a check whether the system’s environment is safe or

unsafe, leading to non-deterministic branching. If the en-

cryption feature is present, then the system can send an

encrypted message (e) from the unsafe state only; otherwise,

the system sends an unencrypted message (u) regardless of

the state being ’safe’ or ’unsafe’. Note that such a be-

haviour description can easily be encoded by a transition

function. E.g., f(received, check)(b) = {safe, unsafe} and

f(received, a)(x) = ∅ (for x ∈ {a,b} and a ∈ A \ {check})

specifies the transitions that can be fired from the received

state to the (un)safe states.

Next, we turn our attention towards (strong) bisimulation

relations for CTSs which consider the ordering of conditions

in their transfer properties.

Definition 5. Let (X,A, f), (Y,A, g) be two CTSs over the

same set of conditions (Φ,≤). For a condition ϕ ∈ Φ, we

define fϕ(x, a) = f(x, a)(ϕ) to denote the traditional (A-

)labelled transition system induced by a CTS (X,A, f). Two

states x ∈ X, y ∈ Y are conditionally bisimilar under a

condition ϕ ∈ Φ, denoted x ∼ϕ y, if there is a family of

relations Rϕ′ ⊆ X × Y (for every ϕ′ ≤ ϕ) such that

(i) each relation Rϕ′ is a traditional bisimulation relation

between fϕ′ and gϕ′ ,

(ii) whenever ϕ′ ≤ ϕ′′, we have Rϕ′ ⊇ Rϕ′′ , and

(iii) Rϕ relates x and y, i.e., (x, y) ∈ Rϕ.

Example 5. Consider the CTS illustrated in Figure 2 where

the condition b of the transition ‘received
check,b
−−−−→ unsafe’

is replaced by a. Let ready1 and ready2 denote the initial

states of the system before and after the above modifica-

tion, respectively. Then, we find ready1 ∼a ready2; however,

ready1 6∼b ready2. To see why the latter fails to hold, let Rb

be the bisimulation relation in the traditional sense between

the states ready1, ready2 under condition b. Then, one finds

that the states unsafe1, safe2 are bisimilar in the traditional

sense, i.e., (unsafe1, safe2) ∈ Rb. However, the two states

cannot be related by any traditional bisimulation relation

under condition a; thus, violating Condition 2 of Definition 5.

Indeed, the two systems behave differently. In the first, it

is possible to perform actions receive, check (arrive in state

unsafe), do an upgrade, and send an encrypted message (e),

which is not feasible in the second system because the check

transition forces the system to be in the safe state before doing

the upgrade. However, without upgrades, the above systems

would be bisimilar for both products.

We end this section by adapting the classical bisimulation

game to conditional transition systems; thus, incorporating

our intuitive explanation of upgrades with the notion of

bisimilarity.

Definition 6 (Bisimulation Game). Given two CTSs (X,A, f)
and (Y,A, g) over a poset (Φ,≤), a state x ∈ X , a state

y ∈ Y , and a condition ϕ ∈ Φ, the bisimulation game

is a round-based two-player game that uses both CTSs as

game boards. Let (x, y, ϕ) be a game instance indicating that

x, y are marked and the current condition is ϕ. The game

progresses to the next game instance as follows:

3

• Player 1 is the first one to move. Player 1 can decide

to make an upgrade, i.e., replace the condition ϕ by a

smaller one (say ϕ′ ≤ ϕ, for some ϕ′ ∈ Φ).

• Player 1 can choose the marked state x ∈ X (or y ∈ Y)

and performs a transition x
a,ϕ′

−−→ x′ (y
a,ϕ′

−−→ y′).
• Player 2 then has to simulate the last step, i.e., if Player 1

made a step x
a,ϕ′

−−→ x′, Player 2 is required to make step

y
a,ϕ′

−−→ y′ and vice-versa.

• In turn, the new game instance is (x′, y′, ϕ′).

Player 1 wins if Player 2 cannot simulate the last step

performed by Player 1. Player 2 wins if the game never

terminates or Player 1 cannot make another step.

So bisimulation is characterised as follows: Player 2 has

a winning strategy for a game instance (x, y, ϕ) if and only

if x ∼ϕ y. The proof and the computation of the winning

strategies for both players are given in Appendix A-B.

IV. LATTICE TRANSITION SYSTEMS

Recall from Section II that there is a duality between partial

orders and distributive lattices. In fact, as we will show below,

this result can be lifted to the level of transition systems

as follows: a conditional transition system over a poset is

equivalent to a transition system whose transitions are labelled

by the downward-closed subsets of the poset.

Definition 7. A lattice transition system (LaTS) over a finite

distributive lattice L and an alphabet A is a triple (X,A, α)
with a set of states X and a transition function α : X ×A×
X → L. A LaTS (X,A, α) is finite if the sets X,A are finite.

Note that superficially, lattice transition systems resemble

weighted automata [14]. However, while in weighted automata

the lattice annotations are seen as weights that are accumulated,

in CTSs they play the role of guards that control which tran-

sitions can be taken. Furthermore, the notions of behavioural

equivalence are quite different.

Given a CTS (X,A, f) over (Φ,≤), we can easily construct

a LaTS over O(Φ) by defining α(x, a, x′) = {ϕ ∈ Φ | x′ ∈
f(x, a)(ϕ)} for x, x′ ∈ X , a ∈ A. Due to monotonicity,

α(x, a, x′) is always downward-closed. Similarly, a LaTS can

be converted into a CTS by using the Birkhoff duality and by

taking the irreducibles as conditions.

Theorem 2. The set of all CTSs over a set of conditions Φ
is isomorphic to the set of all LaTSs over the lattice whose

elements are the downward-closed subsets of Φ.

So every LaTS over a finite distributive lattice gives rise

to a CTS in our sense (cf. Definition 4) and since finite

Boolean algebras are finite distributive lattices, conditional

transition systems in the sense of [1] are CTSs in our sense as

well. We chose the definition of a CTS using posets instead

of the dual view using lattices, because this view yields

a natural description which models transitions in terms of

conditions (product versions), though when computing with

CTSs we often choose the lattice view. By adopting this view,

conditional bisimulations can be computed symbolically and

hence more efficiently (cf. Section VI-B).

Definition 8. Let (X,A, α) and (Y,A, β) be any two LaTSs

over a lattice L. A conditional relation R, i.e., a function of

type R : X × Y → L is a lattice bisimulation for α, β if and

only if the following transfer properties are satisfied.

(i) For all x, x′ ∈ X , y ∈ Y , a ∈ A, ℓ ∈ J (L) whenever

x
a,ℓ
−−→ x′ and ℓ ⊑ R(x, y), there exists y′ ∈ Y such that

y
a,ℓ
−−→ y′ and ℓ ⊑ R(x′, y′).

(ii) Symmetric to (i) with the roles of x and y interchanged.

In the above, we write x
a,ℓ
−−→ x′, whenever ℓ ⊑ α(x, a, x′).

For ϕ ∈ Φ, a transition x
a,ϕ
−−→ x′ exists in the CTS if and

only if there is a transition x
a,↓ϕ
−−→ x′ in the corresponding

LaTS. Hence they are denoted by the same symbol.

Theorem 3. Let (X,A, f) and (Y,A, g) be any two CTSs over

Φ. Two states x ∈ X, y ∈ Y are conditionally bisimilar under

a condition ϕ if and only if there is a lattice bisimulation R
between the corresponding LaTSs such that ϕ ∈ R(x, y).

Incidentally, the order in L gives rise to a natural order on

lattice bisimulations. For any two lattice bisimulationsR1, R2 :
X × Y → L, we write R1 ⊑ R2 if and only if R1(x, y) ⊑
R2(x, y) for all x ∈ X, y ∈ Y . As a result, taking the element-

wise supremum of a family of lattice bisimulations is again a

lattice bisimulation. Therefore, the greatest lattice bisimulation

for a LaTS always exists, just like in the traditional case.

Lemma 2. Let Ri ∈ X × Y → L, i ∈ I be lattice

bisimulations for a pair of LaTSs (X,A, α) and (Y,A, β).
Then

⊔

{Ri | i ∈ I} is a lattice bisimulation.

V. COMPUTATION OF LATTICE BISIMULATION

The goal of this section is to present an algorithm that com-

putes the greatest lattice bisimulation between a given pair of

LaTSs. In particular, we first characterise lattice bisimulation

as a post-fixpoint of an operator F on the set of all conditional

relations. Then, we show that this operator F is monotone

with respect to the ordering relation ⊑; thereby, ensuring that

the greatest bisimulation always exists by applying the well-

known Knaster-Tarski fixpoint theorem. Moreover, on finite

lattices and finite sets of states, the usual fixpoint iteration

starting with the trivial conditional relation (i.e., the constant

1-matrix over L) can be used to compute the greatest lattice

bisimulation. Lastly, we give a translation of F in terms of

matrices using a form of matrix multiplication found in the

literature of residuated lattices [4] and database design [18].

A. A Fixpoint Approach

Throughout this section, we let α : X × A × X → L,

β : Y ×A× Y → L denote any two LaTSs, L denote a finite

distributive lattice, and B denote the Boolean algebra that this

lattice embeds into.

Definition 9. Recall the residuum operator → on a lattice

and define three operators F1, F2, F : (X × Y → L) →

4

(X × Y → L) in the following way (for R ∈ X × Y → L,

x ∈ X , y ∈ Y):

F1(R)(x, y) =
l

a∈A,x′∈X

(

α(x, a, x′) →
(

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))
)

)

,

F2(R)(x, y) =
l

a∈A,y′∈Y

(

β(y, a, y′) →
(

⊔

x′∈X

(α(x, a, x′) ⊓R(x′, y′))
)

)

,

F (R)(x, y) = F1(R)(x, y) ⊓ F2(R)(x, y).

Note that the above definition is provided for a distributive

lattice, viewing it in classical two-valued Boolean algebra

results in the well-known transfer properties of a bisimulation.

Theorem 4. A conditional relation R is a lattice bisimulation

if and only if R ⊑ F (R).

Next, it is easy to see that F is a monotone operator

with respect to the ordering ⊑ on L since the infimum and

supremum are both monotonic, and moreover, the residuum

operation is monotonic in the second component. As a result,

we can use the following fixpoint iteration to compute the

greatest bisimulation while working with finite lattices and

finite sets of states.

Algorithm 1. Let (X,A, α) and (Y,A, β) be two finite LaTSs.

Fix R0 as R0(x, y) = 1 for all x ∈ X, y ∈ Y . Then, compute

Ri+1 = F (Ri) for all i ∈ N0 until Ri ⊑ Ri+1. Lastly, return

Ri as the greatest bisimulation.

Suppose α = β, it is not hard to see that the fixpoint

iteration must stabilise after at most |X | steps, since each

Ri induces equivalence relations for all conditions ϕ and

refinements regarding ϕ are immediately propagated to every

ϕ′ ≥ ϕ. An equivalence relation can be refined at most |X |
times, limiting the number of iterations.

B. Lattice Bisimilarity is Finer than Boolean Bisimilarity

We now show the close relation of the notions of bisimilarity

for a LaTS defined over a finite distributive lattice L and a

Boolean algebra B. As usual, let (X,A, α) and (Y,A, β) be

any two LaTSs together with the restriction that the lattice

L embeds into the Boolean algebra B. Moreover, let FL and

FB be the monotonic operators as defined in Definition 9 over

the lattice L and the Boolean algebra B, respectively. We say

that R is an L-bisimulation (resp. B-bisimulation) whenever

R ⊑ FL(R) (resp. R ⊑ FB(R)).

Proposition 2.

(i) If R : X × Y → L, then ⌊FB(R)⌋ = FL(R).
(ii) Every L-bisimulation is also a B-bisimulation.

(iii) A B-bisimulation R : X × Y → B is an L-bisimulation

whenever all the entries of R are in L.

However, even though the two notions of bisimilarity are

closely related, they are not identical, i.e., it is not true that

whenever a state x is bisimilar to a state y in B that it is

also bisimilar in L (see Example 4 where we encounter a B-

bisimulation, which is not an L-bisimulation).

C. Matrix Multiplication

An alternative way to represent a LaTS (X,A, α) is to view

the transition function α as a family of matrices αa : X×X →
L (one for each action a ∈ A) with αa(x, x

′) = α(x, a, x′),
for every x, x′ ∈ X . We use standard matrix multiplication

(where ⊔ is used for addition and ⊓ for multiplication), as

well as a special form of matrix multiplication [4], [18].

Definition 10 (⊗-multiplication). Given an X × Y -matrix

U : X × Y → L and a Y × Z-matrix V : Y × Z → L, we

define the ⊗-multiplication of U and V as follows:

U ⊗ V : X × Z → L

(U ⊗ V)(x, z) =
l

y∈Y

(

U(x, y) →L V (y, z)
)

.

Theorem 5. Let R : X × Y → L be a conditional relation

between a pair of LaTSs (X,A, α) and (Y,A, β). Then,

F (R) =
d

a∈A((αa ⊗ (R ·βa
T))⊓ (βa ⊗ (αa ·R)

T)T), where

AT denotes the transpose of a matrix A.

We end this section by making an observation on LaTSs

over a Boolean algebra. In a Boolean algebra, it is well-known

that the residuum operator can be replaced by the negation

and join operators. Thus, in this case, using only the standard

matrix multiplication and (componentwise) negation we get

U ⊗ V = ¬(U · (¬V)) which further simplifies F (R) as:

F (R) =
l

a∈A

(

¬(αa · ¬(R · βT
a)) ⊓ ¬(¬(αa · R) · βT

a)
)

.

This reduction is especially relevant to software product lines

with no upgrade features.

VI. APPLICATION AND IMPLEMENTATION

A. Featured Transition Systems

A Software Product Line (SPL) is commonly described as

“a set of software-intensive systems that share a common,

managed set of features satisfying the specific needs of a

particular market segment or mission and that are developed

from a common set of core assets [artifacts] in a prescribed

way” [10]. The idea of designing a set of software systems that

share common functionalities in a collective way is becoming

prominent in the field of software engineering (cf. [21]). In

this section we show that a featured transition system (FTS)

[12] – a well-known formal model that is expressive enough

to specify an SPL – is a special instance of a CTS.

Definition 11. A featured transition system (FTS) over a finite

set of features N is a tuple F = (X,A, T, γ), where X is

a finite set of states, A is a finite set of actions and T ⊆
X × A ×X is the set of transitions. Finally, γ : T → B(N)
assigns a Boolean expression over N to each transition.

FTSs are often accompanied by a so-called feature diagram

[7], [9], [11], a Boolean expression d ∈ B(N) that specifies

admissible feature combinations. Given a subset of features

5

C ⊆ N (called configuration or product) such that C |= d
and an FTS F = (X,A, T, γ), a state x ∈ X can perform an

a-transition to a state y ∈ X in the configuration C, whenever

(x, a, y) ∈ T and C |= γ(x, a, y).
It is easy to see that an FTS is a CTS, where the conditions

are subsets of N satisfying d with the discrete order. Moreover,

an FTS is a special case of an LaTS due to Theorem 2 and

O(JdK,=) = P(JdK). Given an FTS F = (X,A, T, γ) and a

feature diagram d, then the corresponding LaTS is (X,A, α)
with α(x, a, y) = Jγ(x, a, y)∧dK, if (x, a, y) ∈ T ; α(x, a, y) =
∅, if (x, a, y) 6∈ T .

Furthermore, we can extend the notion of FTSs by fixing a

subset of upgrade features U ⊆ N that induces the following

ordering on configurations C,C′ ∈ JdK:

C ≤ C′ ⇐⇒ ∀f ∈ U(f ∈ C′ ⇒ f ∈ C) ∧

∀f ∈ (N\U) (f ∈ C′ ⇐⇒ f ∈ C).

Intuitively, the configuration C can be obtained from C′ by

“switching” on one or several upgrade features f ∈ U . Notice

that it is this upgrade ordering on configurations which gives

rise to the partially ordered set of conditions in the definition

of a CTS. Hence, in the following we will consider the lattice

O(JdK,≤) (i.e., the set of all downward-closed subsets of JdK).

B. BDD-Based Representation

In this section, we discuss our implementation of lattice

bisimulation using a special form of binary decision diagrams

(BDDs) called reduced and ordered binary decision diagrams

(ROBDDs). Our implementation can handle adaptive SPLs

that allow upgrade features, using finite distributive lattices.

Note that non-adaptive SPLs based on Boolean algebras are

a special case. BDD-based implementations of FTSs without

upgrades have already been mentioned in [8], [12].

A binary decision diagram (BDD) is a rooted, directed, and

acyclic graph which serves as a representation of a Boolean

function. Every BDD has two distinguished terminal nodes

1 and 0, representing the logical constants true and false.

The inner nodes are labelled by the atomic propositions of a

Boolean expression b ∈ B(N) represented by the BDD, such

that on each path from the root to the terminal nodes, every

variable of the Boolean formula occurs at most once. Each

inner node has exactly two distinguished outgoing edges called

high and low representing the case that the atomic proposition

of the inner node has been set to true or false. Given a BDD for

a Boolean expression b ∈ B(N) and a configuration C ⊆ N
(representing an evaluation of the atomic propositions), we can

check whether C |= b by following the path from the root node

to a terminal node. At a node labelled f ∈ N we go to the

high-successor if f ∈ C and to the low-successor if f 6∈ C. If

we arrive at the terminal node labelled 1 we have established

that C |= b, otherwise C 6|= b.
We use a special class of BDDs called ROBDDs (see [2] for

more details) in which the order of the variables occurring in

the BDD is fixed and redundancy is avoided. If both the child

nodes of a parent node are identical, the parent node is dropped

from the BDD and isomorphic parts of the BDD are merged.

The advantage of ROBDDs is that two equivalent Boolean

formulae are represented by exactly the same ROBDD (if

the order of the variables is fixed). Furthermore, there are

polynomial-time implementations for the basic operations –

negation, conjunction, and disjunction. These are however sen-

sitive to the ordering of atomic propositions and an exponential

blowup cannot be ruled out, but often it can be avoided.

f0

f1 f1

f2

f3 f3

1 0

Fig. 3. BDD for b.

Consider a Boolean expression

b with JbK = {∅, {f2, f3},
{f0, f1}, {f0, f1, f2, f3}} and the

ordering on the atomic propositions

as f0, f1, f2, f3. Figure 3 shows

the corresponding ROBDD

representation for b, where the

inner nodes, terminal nodes, and high

(low) edges are depicted as circles,

rectangles, and solid (dashed) lines, respectively.

Formally, an ROBDD b over a set of features N is an expres-

sion in one of the following forms: 0, or 1, or (f, b1, b0). Here,

0, 1 denote the two terminal nodes and the triple (f, b1, b0)
denotes an inner node with variable f ∈ N and b0, b1 as the

low- and high-successors, respectively. If b = (f, b1, b0), we

write root(b) = f , high(b) = b1, and low (b) = b0.

Note that the elements of the Boolean algebra P(P(N))
correspond exactly to ROBDDs over N . We now discuss how

ROBDDs can be used to specify and manipulate elements of

the lattice O(JdK,≤). In particular, computing the infimum

(conjunction) and the supremum (disjunction) in the lattice

O(JdK,≤) is standard, since this lattice can be embedded into

P(P(N)) and the infimum and supremum operations coincide

in both structures. Thus, it remains to characterize the lattice

elements and the residuum operation.

We say that an ROBDD b is downward-closed w.r.t. ≤ (or

simply, downward-closed) if the set of configurations JbK is

downward-closed w.r.t. ≤. The following lemma characterises

when an ROBDD b is downward-closed. It follows from the

fact that F ∈ P(P(N)) is downward-closed if and only if for

all C ∈ F, f ∈ U we have C ∪ {f} ∈ F .

Lemma 3. An ROBDD is downward-closed if and only if for

each node labelled with a upgrade feature, the low-successor

implies the high-successor.

Next, we compute the residuum in O(JdK,≤) by using the

residuum operation of the Boolean algebra P(P(N)). For

this, we first describe how to approximate an element of the

Boolean algebra (represented as an ROBDD) in the lattice

O(P(N),≤).
In the above algorithm, for each non-terminal node that

carries a label in U (line 3), we replace the high-successor

with the conjunction of the low and the high-successor using

the procedure described above. Since this might result in

a BDD that is not reduced, we apply the build procedure

appropriately, which simply transforms a given ordered BDD

into an ROBDD. The result of the algorithm ⌊⌊b⌋⌋ coincides

with the approximation ⌊b⌋ of the ROBDD b seen as an

element of the Boolean algebra P(P(N)) (Definition 3).

6

Algorithm 1 Approximation ⌊⌊b⌋⌋ of an ROBDD b in the lattice

O(P(N),≤)

Input: An ROBDD b over a set of features N and a set of

upgrade features U ⊆ N .

Output: An ROBDD ⌊⌊b⌋⌋, which is the best approximation

of b in the lattice.

1: procedure ⌊⌊b⌋⌋
2: if b is a leaf then return b
3: else if root(b) ∈ U then return

4: build(root(b), ⌊⌊high(b)⌋⌋, ⌊⌊high(b)⌋⌋ ∧ ⌊⌊low (b)⌋⌋)
5: else return build(root(b), ⌊⌊high(b)⌋⌋, ⌊⌊low (b)⌋⌋)
6: end if

7: end procedure

α :

0

2

1

b, JfK

b, JfK b, JtrueK
c, JfK

β :

0

2

1

b, JfK

b, JfK b, JfK
c, JfK

Fig. 4. Components for α and β, where f is viewed as a Boolean expression
indicating the presence of feature f .

Lemma 4. For an ROBDD b, ⌊⌊b⌋⌋ is downward-closed. Fur-

thermore, ⌊⌊b⌋⌋ |= b and there is no other downward-closed

ROBDD b′ such that ⌊⌊b⌋⌋ |= b′ |= b. Hence ⌊⌊b⌋⌋ = ⌊b⌋.

For each node in the BDD we compute at most one

supremum, which is quadratic. Hence the entire runtime of the

approximation procedure is at most cubic. Finally, we discuss

how to compute the residuum in O(JdK,≤).

Proposition 3. Let b1, b2 be two ROBDD which represent

elements of O(JdK,≤), i.e., b1, b2 are both downward-closed

and b1 |= d, b2 |= d. (i) ⌊¬b1 ∨ b2 ∨ ¬d⌋ ∧ d is the residuum

b1 → b2 in the lattice O(JdK,≤). (ii) If d is downward-closed,

then this simplifies to b1 → b2 = ⌊¬b1 ∨ b2⌋ ∧ d.

Here, ¬ is the negation in the Boolean algebra P(P(N)).

C. Implementation and Runtime Results

We have implemented an algorithm that computes the lattice

bisimulation relation based on the matrix multiplication (see

Theorem 5) in a generic way. Specifically, this implementation

is independent of how the irreducible elements are encoded,

ensuring that no implementation details of operations such as

matrix multiplication can interfere with the runtime results.

For our experiments we instantiated it in two possible ways:

with bit vectors representing feature combinations and with

ROBDDs as outlined above. Our results show a significant

advantage when we use BDDs to compute lattice bisimilarity.

The implementation is written in C# and uses the CUDD

package by Fabio Somenzi via the interface PAT.BDD [22].

To show that the use of BDDs can potentially lead to

an exponential gain in speed when compared to the naive

bit-vector implementation, we executed the algorithm on a

family of increasingly larger LaTSs over an increasingly larger

number of features, where all features are upgrade features. Let

F be a set of features. Our example contains, for each feature

f ∈ F , one disconnected component in both LaTSs that is

depicted in Figure 4: the component for α on the left, the

component for β is on the right. The only difference between

the two is in the guard of the transition from state 0 to state

2.

The quotient of the times taken without BDDs and with

BDDs is growing exponentially by a factor of about 2 for

each additional feature (see the table in Appendix B). Due to

fluctuations, an exact rate cannot be given. By the eighteenth

iteration (i.e. 18 features and copies of the basic component),

the implementation using BDDs needed 17 seconds, whereas

the version without BDDs took more than 96 hours. The nine-

teenth iteration exceeded the memory for the implementation

without BDDs, but terminated within 22 seconds with BDDs.

VII. CONCLUSION, RELATED WORK, AND FUTURE WORK

In this paper, we endowed CTSs with an order on conditions

to model systems whose behaviour can be upgraded by re-

placing the current condition by a smaller one. Corresponding

verification techniques based on behavioural equivalences can

be important for SPLs where an upgrade to a more advanced

version of the same software should occur without unexpected

behaviour. To this end, we proposed an algorithm, based on

matrix multiplication, that allows to compute the greatest

bisimulation of two given CTSs. Interestingly, the duality

between lattices and downward-closed sets of posets, as well

as the embedding into a Boolean algebra proved to be fruitful

when developing it and proving its correctness.

There are two ways in which one can extend CTSs as a

specification language: first, in some cases it makes sense to

specify that an advanced version offers improved transitions

with respect to a basic version. For instance, in our running

example, allowing the router to send unencrypted messages

in an unsafe environment is superfluous because the advanced

version always has the encryption feature. Such a situation can

be modelled in a CTS by adding a precedence relation over

the set of actions, leading to the deactivation of transitions,

which is worked out in Appendix C. The second question is

how to incorporate downgrades: one solution could be to work

with a pre-order on conditions, instead of an order. This simply

means that two conditions ϕ 6= ψ with ϕ ≤ ψ, ψ ≤ ϕ can

be merged since they can be exchanged arbitrarily. Naturally,

one could study more sophisticated notions of upgrade and

downgrade in the context of adaptivity.

As for the related work on adaptive SPLs, literature can be

grouped into either empirical or formal approaches; however,

given the nature of our work, below we rather concentrate only

on the formal ones [6], [11], [15], [23].

Cordy et al. [11] model an adaptive SPL using an FTS which

encodes not only a product’s transitions, but also how some of

the features may change via the execution of a transition. In

contrast, we encode adaptivity by requiring a partial order on

the products of an SPL and its effect on behaviour evolution

7

by the monotonicity requirement on the transition function.

Moreover, instead of studying the model checking problem as

in [11], our focus was on bisimilarity between adaptive SPLs.

In [6], [15], [20], alternative ways to model adaptive SPLs

by using the synchronous parallel composition on two separate

computational models is presented. Intuitively, one models

the static aspect of an SPL, while the other focuses on

adaptivity by specifying the dynamic (de)selection of features.

For instance, Dubslaff et al. [15] used two separate Markov

decision processes (MDP) to model an adaptive SPL. They

modelled the core behaviour in an MDP called feature module;

while dynamic (de)activation of features is modelled separately

in a MDP called feature controller. In retrospect, our work

shows that for monotonic upgrades it is possible to compactly

represent an adaptive SPL over one computational model

(CTSs in our case) rather than a parallel composition of two.

In [23], a process calculus QFLan motivated by concurrent

constraint programming was developed. Thanks to an in-

built notion of a store, various aspects of an adaptive SPL

such as (un)installing a feature and replacing a feature by

another feature can be modelled at run-time by operational

rules. Although QFLan has constructs to specify quantitative

constraints in the spirit of [15], their aim is to obtain statistical

evidence by performing simulations.

Behavioural equivalences such as (bi)simulation relations

have already been studied in the literature of traditional SPLs.

In [12], the authors proposed a definition of simulation relation

between any two FTSs (without upgrades) to combat the state

explosion problem by establishing a simulation relation be-

tween a system and its refined version. In contrast, the authors

in [3] used simulation relations to measure the discrepancy in

behaviour caused by feature interaction, i.e., whether a feature

that is correctly designed in isolation works correctly when

combined with the other features or not.

(Bi)simulation relations on lattice Kripke structures were

also studied in [19], but in a very different context (in model-

checking rather than in the analysis of adaptive SPLs). Disre-

garding the differences between transition systems and Kripke

structures (i.e., forgetting the role of atomic propositions),

the definition of bisimulation in [19] is quite similar to our

Definition 9 (another similar formula occurs in [12]). However,

in [19] the stronger assumption of finite distributive de Morgan

algebras is used, the results are quite different and symbolic

representations via BDDs are not taken into account. Moreover,

representing the lattice elements and computing residuum over

them using the BDDs is novel in comparison with [12], [19].

Lastly, Fitting [16] studied bisimulation relations in the

setting of unlabelled transition systems and gave an elegant

characterisation of bisimulation when transition systems and

the relations over states are viewed as matrices. By restricting

ourselves to LaTSs over Boolean algebras and fixing our

alphabet to be a singleton set, we can establish the following

correspondence between Fitting’s formulation of bisimulation

and lattice bisimulation (see Appendix A-A for the proof).

Theorem 6. Let (X,α) be a LaTS over an atomic Boolean

algebra B. Then, a conditional relation R : X × X → B is

a lattice bisimulation for α if and only if R · α ⊑ α · R and

RT · α ⊑ α · RT . Here we interpret α as a matrix of type

X ×X → L by dropping the occurrence of action labels.

In hindsight, we are treating general distributive lattices that

allow us to conveniently model and reason about upgrades.

Current and future work: In the future we plan to obtain

runtime results for systems of varying sizes. In particular, we

are interested in real-world applications in the field of SPLs,

together with other applications, such as modelling transition

systems with access rights or deterioration.

On the more theoretical side of things, we have worked

out the coalgebraic concepts for CTSs [5] and compared the

matrix multiplication algorithm to the final chain algorithm

presented in [1], when applied to CTSs.

Acknowledgements: We thank Filippo Bonchi and Mathias

Hülsbusch for interesting discussions on earlier drafts.

REFERENCES

[1] J. Adámek, F. Bonchi, M. Hülsbusch, B. König, S. Milius, and A. Silva.
A coalgebraic perspective on minimization and determinization. In Proc.

of FOSSACS ’12, pages 58–73. Springer, 2012. LNCS/ARCoSS 7213.
[2] H. R. Andersen. An introduction to binary decision diagrams. Course

Notes, 1997.
[3] J. M. Atlee, U. Fahrenberg, and A. Legay. Measuring behaviour

interactions between product-line features. In Proc. of Formalise ’15,
pages 20–25, Piscataway, NJ, USA, 2015. IEEE Press.

[4] R. Belohlavek and J. Konecny. Row and column spaces of matrices over
residuated lattices. Fundam. Inf., 115(4):279–295, December 2012.

[5] Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva.
A coalgebraic treatment of conditional transition systems with upgrades.
arXiv:1612.05002, submitted to LMCS.

[6] P. Chrszon, C. Dubslaff, S. Klüppelholz, and C. Baier. Family-based
modeling and analysis for probabilistic systems – featuring ProFeat. In
Proc. of FASE ’16, pages 287–304. Springer, 2016. LNCS 9633.

[7] A. Classen, M. Cordy, P.-Y. Schobbens, P. Heymans, A. Legay, and
J.-F. Raskin. Featured transition systems: Foundations for verifying
variability-intensive systems and their application to LTL model check-
ing. IEEE Trans. Softw. Eng., 39(8):1069–1089, August 2013.

[8] A. Classen, P. Heymans, P.-Y. Schobbens, and A. Legay. Symbolic
model checking of software product lines. In Proc. of ICSE ’11. ACM,
2011.

[9] A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay, and J.-F. Raskin.
Model checking lots of systems: efficient verification of temporal
properties in software product lines. In Proc. of ICSE ’10. ACM, 2010.

[10] P. Clements and L. M. Northrop. Software Product Lines: Practices and

Patterns. Addison-Wesley, Boston, USA, 2001.
[11] M. Cordy, A. Classen, P. Heymans, A. Legay, and P.-Y. Schobbens.

Model checking adaptive software with featured transition systems. In
Assurances for Self-Adaptive Systems, pages 1–29. Springer, 2013.

[12] M. Cordy, A. Classen, G. Perrouin, P.-Y. Schobbens, P. Heymans, and
A. Legay. Simulation-based abstractions for software product-line model
checking. In Proc. of ICSE ’12, pages 672–682. IEEE, 2012.

[13] B. A. Davey and H. A. Priestley. Introduction to lattices and order.
Cambridge University Press, 2002.

[14] M. Droste, W. Kuich, and H. Vogler, editors. Handbook of Weighted

Automata. Springer, 2009.
[15] C. Dubslaff, S. Klüppelholz, and C. Baier. Probabilistic model checking

for energy analysis in software product lines. In Proc. of MODULARITY
’14, pages 169–180. ACM, 2014.

[16] M. Fitting. Bisimulations and boolean vectors. In Advances in Modal

Logic, volume 4, pages 97–126. World Scientific Publishing, 2002.
[17] A. Gruler, M. Leucker, and K. Scheidemann. Modeling and model

checking software product lines. In Proc. of FMOODS’08, pages 113–
131. Springer, 2008. LNCS 5051.

[18] L. J. Kohout and W. Bandler. Relational-product architectures for
information processing. Inf. Sci., 37(1-3):25–37, December 1985.

8

[19] O. Kupferman and Y. Lustig. Latticed simulation relations and games.
Int. Journal of Found. of Computer Science, 21(02):167–189, 2010.

[20] M. Lochau, J. Bürdek, S. Hölzle, and A. Schürr. Specification and
automated validation of staged reconfiguration processes for dynamic
software product lines. Software & Sys. Modeling, 16(1):125–152, 2017.

[21] A. Metzger and K. Pohl. Software product line engineering and
variability management: Achievements and challenges. In Proc. of FOSE
’14, pages 70–84, New York, NY, USA, 2014. ACM.

[22] T. K. Nguyen, J. Sun, Y. Liu, J. S. Dong, and Y. Liu. Improved BDD-
based discrete analysis of timed systems. In Proc. of FM ’12, volume
7436 of LNCS, pages 326–340. Springer, 2012.

[23] M. H. ter Beek, A. Legay, A. Lluch Lafuente, and A. Vandin. Statistical
analysis of probabilistic models of software product lines with quantita-
tive constraints. In Proc. of SPLC ’15, pages 11–15. ACM, 2015.

[24] M.H. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti. Modelling
and analysing variability in product families: Model checking of modal
transition systems with variability constraints. JLAMP, 85(2):287 – 315,
2016.

APPENDIX A

PROOFS

Here we give proofs for all lemmas and propositions for

which we have omitted the proofs in the article.

A. Proofs concerning Lattices and Lattice Transition Systems

Proof of Lemma 1

Proof: Let ℓ,m ∈ B. Monotonicity of the approximation

is immediate from the definition.

We next show ⌊ℓ ⊓m⌋ ⊒ ⌊ℓ⌋ ⊓ ⌊m⌋: by definition we have

⌊ℓ⌋ ⊑ ℓ, ⌊m⌋ ⊑ m and hence ⌊ℓ⌋ ⊓ ⌊m⌋ ⊑ ℓ ⊓ m. Since

⌊ℓ ⊓m⌋ is the best approximation of ℓ ⊓m and ⌊ℓ⌋ ⊓ ⌊m⌋ is

one approximation, the inequality follows.

In order to prove ⌊ℓ⊓m⌋ ⊑ ⌊ℓ⌋⊓⌊m⌋ observe that ⌊ℓ⌋ ⊒ ⌊ℓ⊓
m⌋ and ⌊m⌋ ⊒ ⌊ℓ⊓m⌋ by monotonicity of the approximation.

Hence ⌊ℓ ⊓ m⌋ is a lower bound of ⌊ℓ⌋, ⌊m⌋, which implies

⌊ℓ⌋ ⊓ ⌊m⌋ ⊒ ⌊ℓ⌋ ⊓ ⌊m⌋.

Now let ℓ,m ∈ L. Recall the definitions ⌊ℓ⊔¬m⌋ =
⊔

{x ∈
L | x ⊑ ℓ ⊔ ¬m} and m→L ℓ =

⊔

{x ∈ L | m ⊓ x ⊑ ℓ}. We

will prove that both sets are equal.

Assume x ∈ L with x ⊑ ℓ ⊔ ¬m, then m ⊓ x ⊑ m ⊓ (ℓ ⊔
¬m) = (m⊓ℓ)⊔(m⊓¬m) = (m⊓ℓ)⊔0 = m⊓ℓ ⊑ ℓ. For the

other direction assume m ⊓ x ⊑ ℓ, then ℓ ⊔ ¬m ⊒ (m ⊓ x) ⊔
¬m = (m⊔¬m)⊓ (x⊔¬m) = 1⊓ (x⊔¬m) = x⊔¬m ⊒ x.

Proof of Theorem 2

Proof: Given a set X , a partially ordered set (Φ,≤),
and L = O(Φ), we define an isomorphism between the

sets (Φ
mon.
−−→ P(X))X×A and O(Φ)X×A×X . Consider the

following function mappings η : (Φ
mon.
−−→ P(X))X×A →

O(Φ)X×A×X , f 7→ η(f) and η′ : O(Φ)X×A×X → (Φ
mon.
−−→

P(X))X×A, α 7→ η′(α) defined as:

η(f)(x, a, x′) = {ϕ ∈ Φ | x′ ∈ fϕ(x, a)},

η′(α)(x, a)(ϕ) = {x′ | ϕ ∈ α(x, a, x′)}.

Downward-closed Let ϕ ∈ η(f)(x, a, x′) and ϕ′ ≤ ϕ. By

using these facts in the definition of fϕ′ we find x′ ∈
fϕ′(x, a), i.e., ϕ′ ∈ η(f)(x, a, x′).

Anti-monotonicity Let ϕ ≤ ϕ′ and x′ ∈ η′(α)(x, a)(ϕ′).
Then by the above construction we find ϕ′ ∈ α(x, a, x′).

And by downward-closedness of α(x, a, x′) we get ϕ ∈
α(x, a, x′), i.e., x′ ∈ η′(α)(x, a)(ϕ).

Now it suffices to show that η, η′ are inverse of each other

because by the uniqueness of inverses we then have η′ = η−1.

We only give the proof of η′ ◦ η = id, the proof of the other

case (η ◦ η′ = id) is similar. The former follows from the

following observation:

x′ ∈ f(x, a)(ϕ) ⇔ x′ ∈ fϕ(x, a) ⇔ ϕ ∈ η(f)(x, a, x′)

⇔x′ ∈ η′(η(f))(x, a)(ϕ) .

Proof of Theorem 3

Proof: Let x ∈ X, y ∈ Y be any two states in

CTSs (LaTSs) (X,A, f), (Y,A, g) over the conditions Φ
((X,A, α), (Y,A, β) over the lattice O(Φ ≤)), respectively.

(⇐) Let ϕ ∈ Φ be a condition and let R be a lattice

bisimulation relation such that ϕ ∈ R(x, y). Then, we can

construct a family of relations Rϕ′ (for ϕ′ ≤ ϕ) as follows:

xRϕ′y ⇔ ϕ′ ∈ R(x, y). For all other ϕ′ we set Rϕ′ = ∅. The

downward-closure of R(x, y) ensures that Rϕ′′ ⊆ Rϕ′ (for

ϕ′, ϕ′′ ≤ ϕ), whenever ϕ′ ≤ ϕ′′.

Thus, it remains to show that every relation Rϕ′ is a

bisimulation. Let xRϕ′y and x′ ∈ fϕ′(x, a). Then, x
a,↓ϕ′

−−−→ x′.
Since ↓ ϕ′ is an irreducible in the lattice, ↓ ϕ′ ⊆ R(x, y)

and R is a lattice bisimulation, we find y
a,↓ϕ′

−−−→ y′ and ↓ϕ′ ⊆
R(x′, y′), which implies ϕ′ ∈ R(x′, y′). That is, y′ ∈ gϕ′(y, a)
and x′Rϕ′y′. Likewise, the remaining symmetric condition of

bisimulation can be proved.

(⇒) Let ∼ϕ be a conditional bisimulation between the CTSs

(X,A, f), (Y,A, g), for some ϕ ∈ Φ. Then, construct a

conditional relation: R(x, y) = {ϕ | x ∼ϕ y}. Clearly,

the set R(x, y) is a downward-closed subset of Φ due to

Definition 5(ii); i.e., an element in the lattice O(Φ). Next, we

show that R is a lattice bisimulation.

Let x
a,↓ϕ′

−−−→ x′ and ↓ ϕ′ ⊆ R(x, y). This implies

x′ ∈ fϕ′(x, a) and ϕ′ ∈ R(x, y), hence x ∼ϕ′ y. So using

the transfer property of traditional bisimulation, we obtain

y′ ∈ gϕ′(y, a) and x′ ∼ϕ′ y′. That is, y
b,↓ϕ′

−−−→ y′ and

ϕ′ ∈ R(x′, y′), which implies ↓ϕ′ ⊆ R(x′, y′). Likewise the

symmetric condition of lattice bisimulation can be proved.

Proof of Lemma 2

Proof: Let x, x′ ∈ X, a ∈ A, y ∈ Y and ℓ ∈ J (L)

such that ℓ ⊑
⊔

i∈I Ri(x, y) and x
a,ℓ
−−→ x′. Then, there is an

index i ∈ I such that ℓ ⊑ Ri(x, y), since ℓ is an irreducible.

Thus, there is a y′ such that y
a,ℓ
−−→ y′ and ℓ ⊑ Ri(x

′, y′) ⊑
⊔

i∈I Ri(x
′, y′). Likewise, the symmetric condition when a

transition emanates from y can be proved.

Proof of Theorem 4

Proof:

(⇐) Let R : X × Y → L be a conditional relation over a pair

of LaTSs (X,A, α), (Y,A, β) such that R ⊑ F (R). Next, we

show that R is a lattice bisimulation. For this purpose, let ℓ ∈

J (L), a ∈ A. Furthermore, let x
a,ℓ
−−→ x′ (which implies ℓ ⊑

9

α(x, a, x′)) and ℓ ⊑ R(x, y). From R(x, y) ⊑ F1(R)(x, y)
we infer ℓ ⊑ F1(R)(x, y). This means that ℓ ⊑ α(x, a, x′) →
(
⊔

y′∈Y (β(y, a, y
′) ⊓ R(x′, y′))

)

. Since ℓ1 ⊓ (ℓ1 → ℓ2) ⊑ ℓ2
we can take the infimum with α(x, a, x′) on both sides and

obtain ℓ ⊑ ℓ ⊓ α(x, a, x′) ⊑
⊔

y′∈Y (β(y, a, y
′) ⊓ R(x′, y′))

(the first inequality holds since ℓ ⊑ α(x, a, x′)). Since ℓ is

irreducible there exists a y′ such that ℓ ⊑ β(y, a, y′), i.e.,

y
a,ℓ
−−→ y′, and ℓ ⊑ R(x′, y′).

Likewise, the remaining condition when a transition em-

anates from y can be proved.

(⇒) Let R : X × Y → L be a lattice bisimulation on

(X,A, α), (Y,A, β). Then, we need to show that R ⊑ F (R),
i.e., R ⊑ F1(R) and R ⊑ F2(R). We will only give the

proof of the former inequality, the proof of the latter is

analogous. To show R ⊑ F1(R), it is sufficient to prove

ℓ ⊑ R(x, y) ⇒ ℓ ⊑ F1(R)(x, y), for all x ∈ X, y ∈ Y
and all irreducibles ℓ. So let ℓ ⊑ R(x, y), for some x, y. Next,

simplify F1(R) as follows:

F1(R)(x, y)

=
l

a,x′

(α(x, a, x′) →
⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′)))

=
l

a,x′

⌊

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′)) ⊔ ¬α(x, a, x′)
⌋

(L. 1)

=
l

a,x′

⊔

{m ∈ L | m ⊑
⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))

⊔ ¬α(x, a, x′)}.

Thus, it is sufficient to show that ℓ ⊑
⊔

y′∈Y (β(y, a, y
′) ⊓

R(x′, y′))⊔¬α(x, a, x′), for any a ∈ A, x′ ∈ X . We do this by

distinguishing the following cases: either ℓ ⊑ ¬α(x, a, x′) or

ℓ ⊑ α(x, a, x′). If the former holds (which corresponds to the

case where there is no a-labelled transition under ℓ), then the

result holds trivially. So assume ℓ ⊑ α(x, a, x′). Recall, from

above, that ℓ ⊑ R(x, y) and R is a lattice bisimulation. Thus,

there is a y′ ∈ Y such that ℓ ⊑ β(y, a, y′) and ℓ ⊑ R(x′, y′);
hence,

ℓ ⊑
⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′)) ⊔ ¬α(x, a, x′) .

Proof of Proposition 2

Proof:

(i) This follows directly from Lemma 1, allowing to move

the approximations to the inside towards the implications

and Lemma 1, allowing to approximate the implication

in B via the implication in L.

(ii) If R is a bisimulation in L, then FL(R) ⊒ R. Since by

definition, ⌊Q⌋ ⊑ Q for all conditional relations Q and

we have shown in (i) that FL(R) = ⌊FB(R)⌋, we can

conclude FB(R) ⊒ ⌊FB(R)⌋ = FL(R) ⊒ R. Thus, R is

a B-bisimulation.

(iii) Clearly R ⊑ FB(R) because R is a B-bisimulation. Since

R has exclusively entries from L, FB(R) = ⌊FB(R)⌋, and

finally (i) yields that ⌊FB(R)⌋ = FL(R); thus, R is an L-

bisimulation.

Proof of Theorem 6

Proof:

(⇐) Let R : X ×X → B be a conditional relation satisfying

R · α ⊑ α · R and RT · α ⊑ α · RT . Then, we need to show

that R is a lattice bisimulation. Let x
ℓ
−→ y such that ℓ ∈ J (B)

and ℓ ⊑ R(x, x′). Then, we find ℓ ⊑ α(x, y). That is,

ℓ ⊑ R(x, x′) ⊓ α(x, y) = RT (x′, x) ⊓ α(x, y)

⊑(RT · α)(x′, y) ⊑ (α · RT)(x′, y).

By expanding the last term from above, we find that ℓ ⊑
α(x′, y′)⊓RT (y′, y), for some y′. Thus, ℓ ⊑ α(x′, y′) (which

implies x′
ℓ
−→ y′) and ℓ ⊑ R(y, y′). Similarly, the remaining

condition when the transition emanates from x′ can be verified

using R · α ⊑ α ·R.

(⇒) Let R : X ×X → B be a lattice bisimulation. Then, we

only prove R · α ⊑ α · R; the proof of RT · α ⊑ α · RT is

similar. Note that, for any x, y′ ∈ X , we know that the element

(R ·α)(x, y′) can be decomposed into a set of atoms, since B

is an atomic Boolean algebra. Let (R · α)(x, y′) =
⊔

i ℓi for

some index set I such that the ℓi are atoms or irreducibles in

B.

Furthermore, expanding the above inequality we get, for

every i ∈ I there is a state y ∈ X such that ℓi ⊑ R(x, y) ⊓
α(y, y′), since the ℓi are irreducibles. That is, for every i ∈ I
we have some state y such that ℓi ⊑ R(x, y) and ℓi ⊑ α(y, y′).
Now using the transfer property of R we find some state x′

such that ℓi ⊑ α(x, x′) and ℓi ⊑ R(x′, y′). Thus, for every

i ∈ I we find that ℓi ⊑ (α·R)(x, y′); hence, since (α·R)(x, y′)
is an upper bound of all ℓi, (R ·α)(x, y′) ⊑ (α ·R)(x, y′).

B. Strategies for the Bisimulation Game

In the main text we claimed that there exists a winning

strategy for Player 2 in the conditional bisimulation game

if and only if the start states are conditionally bisimilar. In

this section we will describe the strategy and prove that it is

correct.

Lemma 5. Given two CTSs (X,A, f), (Y,A, g) and an

instance (x, y, ϕ) of a bisimulation game, then whenever

x ∼ϕ y, Player 2 has a winning strategy for (x, y, ϕ).

Proof: The strategy of Player 2 can be directly derived

from the family of CTS bisimulation relations {Rϕ′ | ϕ′ ∈ Φ}
where (x, y) ∈ Rϕ. The strategy works inductively. Assume

at any given point of time in the game, we have that the

currently investigated condition is ϕ and (x, y) ∈ Rϕ, where

x and y are the currently marked states in X respectively Y .

Then Player 1 upgrades to ϕ′ ≤ ϕ. Due to the condition on

CTS bisimulations of reverse inclusion, we have Rϕ′ ⊇ Rϕ,

therefore (x, y) ∈ Rϕ′ . Then, when Player 1 makes a step

x
a,ϕ′

−−→ x′ in f , there must exist a transition y
a,ϕ′

−−→ y′ in

g such that (x′, y′) ∈ Rϕ′ due to Rϕ′ being a (traditional)

bisimulation. Analogously if Player 1 chooses a transition

10

y
a,ϕ′

−−→ y′ in g, there exists a transition x
a,ϕ′

−−→ x′ in f for

Player 2 such that (x′, y′) ∈ Rϕ′ . Hence, Player 2 will be

able to react and establish the inductive condition again. In the

beginning, the condition holds per definition. Thus, Player 2

has a winning strategy.

We will now prove the converse by explicitly constructing

a winning strategy for Player 1 whenever two states are not

in a bisimulation relation.

Lemma 6. Given two CTSs A,B and an instance (x, y, ϕ) of

a bisimulation game, then whenever x 6∼ϕ y, Player 1 has a

winning strategy for (x, y, ϕ).

Proof: We consider the LaTSs which correspond to the

CTSs A, B and compute the fixpoint by using the matrix mul-

tiplication algorithm, obtaining a sequence R0, R1, . . . , Rn =
Rn+1 = . . . of lattice-valued relations Ri : X×Y → O(Φ,≤).
Note that instead of using exactly the matrix multiplication

method, we can also use the characterisation of Definition 8:

whenever there exists a transition x
a,ϕ
−−→ x′, for which there is

no matching transition with y
y,ϕ
−−→ y′ with ϕ ∈ Ri−1(x

′, y′),
the condition ϕ and all larger conditions ϕ′ ≥ ϕ have to be

removed from Ri−1(x, y) in the construction of Ri(x, y).
We will now define Mϕ′

(x, y) = max{i ∈ N0 | ϕ′ ∈
Ri(x, y)}, where maxN0 = ∞. An entry Mϕ′

(x, y) = ∞
signifies that x ∼ϕ′ y, whereas any other entry i <∞ means

that x, y were separated under condition ϕ′ at step i and hence

x 6∼ϕ′ y.

Now assume we are in a game situation with game instance

(x, y, ϕ) where Player 1 has to make a step. We will show that

if Mϕ(x, y) = i <∞, Player 1 can choose an upgrade ϕ ≤ ϕ,

an action a ∈ A and a step x
a,ϕ
−−→ x′ (or y

a,ϕ
−−→ y′) such

that independently of the choice of the corresponding state y′,
respectively x′, which Player 2 makes, Mϕ(x′, y′) < i.

For each ϕ′ ≤ ϕ compute

ω(ϕ′)

=min {min
a,x′

{max
y′

{Mϕ′

n (x′, y′) | y
a,ϕ′

−−→ y′} | x
a,ϕ′

−−→ x′},

{min
a,y′

{max
x′

{Mϕ′

n (x′, y′) | x
a,ϕ′

−−→ x′} | y
a,ϕ′

−−→ y′}}

The formula can be interpreted as follows: The outer min
corresponds to the choice of making a step in transition system

A or B. The inner min corresponds to choosing the step that

yields the best, i.e. lowest, guaranteed separation value and

the max corresponds to the choice of Player 2 that yields the

best, i.e. greatest, separation value for him.

Now choose a minimal condition ϕ such that ω(ϕ) is

minimal for all ϕ′ ≤ ϕ. Player 1 now makes an upgrade from

ϕ to ϕ and chooses a transition x
a,ϕ
−−→ x′ or y

a,ϕ
−−→ y′ such that

the minimum in ω(ϕ) is reached. This means that Player 2 can

only choose a corresponding successor state y′ respectively x′

such that Mϕ(x′, y′) ≤ ω(ϕ).
Now it remains to be shown that ω(ϕ) < i, via contradiction:

assume that ω(ϕ) ≥ i. Since ω(ϕ) is minimal for all ϕ′ ≤ ϕ,

we obtain ω(ϕ′) ≥ i for all ϕ′ ≥ ϕ. This implies that for each

step x
a,ϕ′

−−→ x′ there exists an answering step y
a,ϕ′

−−→ y′ such

that Mϕ′

(x′, y′) ≥ i (analogously for every step of y). The

condition Mϕ′

(x′, y′) ≥ i is equivalent to ϕ′ ∈ Ri(x
′, y′) and

hence we can infer that ϕ′ ∈ Ri+1(x, y). This also holds for

ϕ′ = ϕ, which is a contradiction to Mϕ(x, y) = i.
In order to conclude, take two states x, y and a condition

ϕ such that x 6∼ϕ y. Then Mϕ(x, y) = i < ∞ and the

above strategy allows Player 1 to force Player 2 into a game

instance (x′, y′, ϕ) where Mϕ(x′, y′) < Mϕ(x, y). Whenever

Mϕ(x, y) = 1 Player 1 wins immediately, because then x
allows a transition that y can not mimic or vice-versa, and

Player 1 simply takes this transition. Therefore we have found

a winning strategy for Player 1.

C. Proofs concerning ROBDDs

Proof of Lemma 3

Proof:

(⇒) Assume that low (n) |= high(n) for all nodes n of b.
Let C′ ∈ JbK and C ≤ C′. Without loss of generality we

can assume that C = C′ ∪ {f} for some f ∈ U . (The rest

follows from transitivity.) For the configuration C′ there exists

a path in b that leads to 1. We distinguish the following two

cases:

• There is no f -labelled node on the path. Then the path

for C also leads to 1 and we have C ∈ JbK.

• If there is an f -labelled node n on the path, then C′

takes the low-successor, C the high-successor of this

node. Since low (n) |= high(n) we obtain Jlow (n)K ⊆
Jhigh(n)K. Hence the remaining path for C, which con-

tains the same features as the path for C′, will also reach

1.

(⇐) Assume by contradiction that JbK is downward-closed,

but there exists a node n with low(n) 6|= high(n) and

f = root(n) ∈ U . Hence there must be a path from the

low-successor that reaches 1, but does not reach 1 from the

high-successor. Prefix this with the path that reaches n from

the root of b.

In this way we obtain two configurations C = C′∪{f}, i.e.,

C ≤ C′, where C′ ∈ JbK, but C 6∈ JbK. This is a contradiction

to the fact that JbK is downward-closed.

Proof of Lemma 4

Proof:

• We show that ⌊⌊b⌋⌋ as obtained by Algorithm 1 is

downward-closed. This can be seen via induction over

the number of different features occurring in the BDD b.
If b only consists of a leaf node, then ⌊⌊b⌋⌋ is certainly

downward-closed. Otherwise, we know from the induc-

tion hypothesis that ⌊⌊high(b)⌋⌋, ⌊⌊low (b)⌋⌋ are downward-

closed. If root(b) 6∈ U , then ⌊⌊b⌋⌋ is downward-

closed due to Lemma 3. If however root(b) ∈ U ,

then ⌊⌊high(b)⌋⌋ ∧ ⌊⌊low (b)⌋⌋ is downward-closed (since

11

downward-closed sets are closed under intersection). Fur-

thermore ⌊⌊high(b)⌋⌋∧⌊⌊low (b)⌋⌋ |= ⌊⌊high(b)⌋⌋, i.e., the new

low-successor implies the high-successor. That means that

the condition of Lemma 3 is satisfied at the root and

elsewhere in the BDD and hence the resulting BDD ⌊⌊b⌋⌋
is downward-closed.

• First, from the construction where a low-successor is

always replaced by a stronger low-successor, it is easy

to see that ⌊⌊b⌋⌋ |= b.
We now show that there is no other downward-closed

ROBDD b′ such that ⌊⌊b⌋⌋ |= b′ |= b: Assume to the

contrary that there exists such a downward-closed BDD

b′. Hence there exists a configuration C ⊆ N such that

C 6|= ⌊⌊b⌋⌋, C |= b′, C |= b. Choose C maximal wrt.

inclusion.

Now we show that there exists a feature f ∈ U such that

f 6∈ C and C ∪ {f} = C′ 6|= b. If this is the case, then

C′ ≤ C and C′ 6|= b′, which is a contradiction to the fact

that b′ is downward-closed.

Consider the sequence b = b0, . . . , bm = ⌊⌊b⌋⌋ of BDDs

that is constructed by the approximation algorithm (Algo-

rithm 1), where the BDD structure is upgraded bottom-up.

We have ⌊⌊b⌋⌋ = bm |= bm−1 |= . . . |= b0 = b, since in

each newly constructed BDD for some node n low (n)
with root(n) ∈ U is replaced by high(n) ∧ low (n).
Since C |= b and C 6|= ⌊⌊b⌋⌋, there must be an index

k such that C |= bk, C 6|= bk+1. Let n be the node

that is modified in step k, where root(n) = f ∈ U .

We must have f 6∈ C, since the changes concern only

the low-successor and if f ∈ C, the corresponding path

would take the high-successor and nothing would change

concerning acceptance of C from bk to bk+1.

Now assume that C′ = C ∪ {f} |= b. This would be

a contradiction to the maximality of C and hence C ∪
{f} 6|= b, as required.

Proof of Proposition 3

Proof:

(i) For this proof, we work with the set-based interpretation,

which allows for four views, one on the Boolean algebra

B = P(P(N)), one on the lattice L = O(P(N),≤),
one of the Boolean algebra B

′ = P(JdK) and one on

the lattice L
′ = (O(JdK),≤′) where ≤′ =≤ |JdK×JdK. We

will mostly argue in the Boolean algebra B. When talking

about downward-closed sets, we will usually indicate

with respect to which order. Similarly, the approximation

relative to ≤ is written ⌊_⌋, whereas the approximation

relative to ≤′ is written ⌊_⌋′.

We can compute:

b1 →L′ b2 ≡ ⌊¬B′b1 ∨ b2⌋
′ ≡ ⌊(¬Bb1 ∧ d) ∨ b2⌋

′

To conclude the proof, we will now show that ⌊b⌋′ ≡
⌊b ∨ ¬d⌋ ∧ d for any b ∈ B

′. We prove this via mutual

implication.

• We show ⌊b ∨ ¬d⌋ ∧ d |= ⌊b⌋′:

⌊b∨¬d⌋∧d |= (b∨¬d)∧d ≡ (b∧d)∨(¬d∧d) ≡ b∧d |= b

Since ⌊b ∨ ¬d⌋ ∧ d implies d, it certainly is in B
′. We

now show that it is downward-closed wrt. ≤′: we use

an auxiliary relation ≤′′, which is the smallest partial

order on B that contains ≤′, i.e., ≤′ extended to B. We

have ≤′′ ⊆≤. Since ⌊b∨¬d⌋ is an approximation it is

downward-closed wrt. ≤ and hence downward-closed

wrt. ≤′. Moreover, d is downward-closed relative to

≤′′ (obvious by definition). Since the intersection of

two downward-closed sets is again downwards closed,

⌊b∨¬d⌋∧d is downward-closed relative to ≤′′ and since

finally, downward-closure relative to ≤′′ is the same as

downward-closure relative to ≤′ provided we discuss

an element from B
′, we can conclude that ⌊b∨¬d⌋∧d

belongs to L
′.

From ⌊b ∨ ¬d⌋ ∧ d ∈ L
′ and ⌊b ∨ ¬d⌋ ∧ d |= b it

follows that ⌊b ∨ ¬d⌋ ∧ d |= ⌊b⌋′ by definition of the

approximation.

• We show ⌊b⌋′ |= ⌊b ∨ ¬d⌋ ∧ d:

Let any C ∈ P(N) be given, such that C ∈ J⌊b⌋′K. We

show that in this case C ∈ J⌊b∨¬d⌋∧dK, which proves

⌊b⌋′ |= ⌊b∨¬d⌋∧d. Let ↓C be the downwards-closure

of C wrt. ≤.

Since ⌊b⌋′ must de downward-closed relative to ≤′, it

holds that ↓C ∩ JdK ⊆ J⌊b⌋′K. Disjunction with ¬d on

both sides yields ↓C ⊆ J⌊b⌋′ ∨ ¬dK ⊆ Jb ∨ ¬dK, since

c |= c∨¬d ≡ (c∧ d)∨¬d. The set ↓C is downwards-

closed wrt. ≤, so it is contained in the approximation

relative to ≤ of this set, i.e ↓C ⊆ J⌊b ∨ ¬d⌋K. Thus,

in particular, C ∈ J⌊b ∨ ¬d⌋K. Since C ∈ J⌊b⌋′K, it

follows that C ∈ JdK, therefore we can conclude C ∈
J⌊b ∨ ¬d⌋ ∧ dK.

Hence

⌊(¬Bb1 ∧ d) ∨ b2⌋
′ ≡ ⌊(¬Bb1 ∧ d) ∨ b2 ∨ ¬d⌋ ∧ d

≡⌊¬Bb1 ∨ b2 ∨ ¬d⌋ ∧ d

(ii) Since d is downward-closed wrt. ≤, d = ⌊d⌋, therefore,

using Lemma 1, we obtain ⌊¬b1 ∨ b2 ∨¬d⌋∧d ≡ ⌊¬b1 ∨
b2 ∨ ¬d⌋ ∧ ⌊d⌋ ≡ ⌊(¬b1 ∨ b2 ∨ ¬d) ∧ d⌋ ≡ ⌊(¬b1 ∨ b2) ∧
d ∨ ¬d ∧ d⌋ ≡ ⌊(¬b1 ∨ b2) ∧ d⌋ ≡ ⌊¬b1 ∨ b2⌋ ∧ ⌊d⌋ ≡
⌊¬b1 ∨ b2⌋ ∧ d.

APPENDIX B

RUN-TIME RESULTS

In this section we present the detailed run-time results for

our BDD-based implementation versus the non-BDD-based

implementation for a sequence of CTSs.

Table 5 shows the runtime results (in milliseconds) for the

computation of the largest bisimulation for our implementation

on the family of CTSs described in Section VI-C. Despite

some fluctuations, the quotient of the time taken when not

using BDDs and when using BDDs increases exponentially

by factor of about 2.

12

features time(BDD) time(without BDD) time(without BDD)/time(BDD)

1 42 13 0.3

2 64 32 0.5

3 143 90 0.6

4 311 312 1.0

5 552 1128 2.0

6 1140 3242 2.8

7 1894 8792 4.6

8 1513 13256 8.8

9 1872 39784 21

10 3208 168178 52

11 5501 513356 93

12 7535 1383752 184

13 5637 3329418 591

14 6955 8208349 1180

15 11719 23700878 2022

16 15601 57959962 3715

17 18226 150677674 8267

18 17001 347281057 20427

19 22145 out of memory —

Fig. 5. Run-time results (in milliseconds)

APPENDIX C

DEACTIVATING TRANSITIONS

We will now work on an extension that allows transitions

to deactivate when upgrading.

We have introduced conditional transition systems (CTS) as

a modelling technique that can be used for modelling software

product lines (SPLs). CTSs are a strictly stronger model than

(standard) FTSs, allowing for upgrades. Products derived from

a software product line may be upgraded to advanced versions,

activating additional transitions in the system. A change in the

transition function can only be realised in one direction: by

adding transitions which were previously not available, while

all previously active transitions remain active.

However, this choice may not be the optimal choice in all

cases, because sometimes an advanced version of a system

may offer improved transitions over the base product. For

instance, a free version of a system may display a commercial

when choosing a certain transition, whereas a premium model

may forego the commercial and offer the base functionality

right away.

A practical motivation may be derived from our Example 4.

In this transition system one may want to be able to model

that in the unsafe state, the advanced version can only send an

encrypted message, since we assume that the user is always

interested in a secure communication, ensured either by a safe

channel or by encryption. However, it is not an option to

simply drop the unencrpyted transition from the unsafe state

with respect to the base version, because then, whenever the

system encounters an unsafe state in the base version, the

system will remain in a deadlock unless the user decides to

perform an upgrade. We will solve such a situation as follows:

we will add priorities that allow to deactivate the unencrypted

transition in the presence of an encrypted transition.

In order to allow for deactivation of transitions when

upgrading, we propose a slight variation of of the definition

of CTS/LaTS and the corresponding bisimulation relation. A

conditional transition system with action precedence is a triple

(X, (A,<A), f), where (X,A, f) is a CTS and <A is a strict

order on A.

Intuitively, a CTS with action precedence evolves in a very

similar way to standard CTS. Before the system starts acting,

it is assumed that all the conditions are fixed and a condition

ϕ ∈ Φ is chosen arbitrarily which represents a selection of

a valid product of the system (product line). Now all the

transitions that have a condition greater than or equal to ϕ
are activated, while the remaining transitions are inactive. This

is unchanged from standard CTS, however, if from a state x

there exist two transitions x
a,ϕ
−−→ x′ and x

a′,ϕ
−−→ x′′ where

a′ > a, i.e. a′ takes precedence over a, then additionally

x
a,ϕ
−−→ x′ remains inactive. Henceforth, the system behaves

like a standard transition system; until at any point in the

computation, the condition is changed to a smaller one (say,

ϕ′) signifying a selection of a valid, upgraded product. Now

(de)activation of transitions depends on the new condition ϕ′,

rather than on the old condition ϕ. As before, active transitions

remain active during an upgrade, unless new active transitions

appear that are exiting the same state and are labelled with

an action of higher priority.

In the sequel we will just write CTS for CTS with action

precedence, since for the remainder of this section we will

solely investigate this variation of CTS. This changed inter-

pretation of the behaviour of a CTS of course also has an

13

effect on the bisimulation.

Definition 12. Let (X, (A,<A), f), (Y, (A,<A), g) be two

CTSs over the same set of conditions (Φ,≤). For a condition

ϕ ∈ Φ, we define f̄ϕ(x, a) to denote the labelled transition sys-

tem induced by a CTS (X, (A,<A), f) with action precedence,

where

f̄ϕ(x, a) =

{x′ | x
a,ϕ
−−→ x′ ∧ ¬(∃a′ ∈ A, x′′ ∈ X : a′ > a ∧ x

a′,ϕ
−−→ x′′)}.

Two states x ∈ X, y ∈ Y are conditionally bisimilar (wrt.

action precedence) under a condition ϕ ∈ Φ, denoted x ∼p
ϕ y,

if there is a family of relations Rϕ′ (for every ϕ′ ≤ ϕ) such

that

(i) each relation Rϕ′ is a traditional bisimulation relation

between f̄ϕ′ and ḡϕ′ ,

(ii) whenever ϕ′ ≤ ϕ′′, we have Rϕ′ ⊇ Rϕ′′ , and

(iii) Rϕ relates x and y, i.e. (x, y) ∈ Rϕ.

The definition of bisimilarity is analogous to traditional CTS

but refers to the new transition system given by f̄ , which

contains only the maximal transitions.

Lattice transition systems (LaTSs) can be extended in the

same way, by adding an order on the set of actions and leaving

the remaining definition unchanged. Disregarding deactivation,

there still is a duality between CTSs and LaTSs. Now, in order

to characterise bisimulation using a fixpoint operator, we can

modify the operators F1, F2 and F to obtain G1, G2 and G,

respecting the deactivation of transitions as follows.

Definition 13. Let (X, (A,<A), α) and (Y, (A,<A), β) be

LaTSs (with ordered actions). Recall the residuum operator

(→) on a lattice and define three operators G1, G2, G : (X ×
Y → L) → (X × Y → L) in the following way:

G1(R)(x, y) =
l

a∈A,x′∈X

(

α(x, a, x′) →
(

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))

⊔
⊔

a′>a,x′′∈X

α(x, a′, x′′)
)

)

,

G2(R)(x, y) =
l

a∈A,y′∈Y

(

β(y, a, y′) →
(

⊔

x′∈X

(α(x, a, x′) ⊓R(x′, y′))

⊔
⊔

a′>a,y′′∈Y

β(y, a′, y′′)
)

)

,

G(R)(x, y) = G1(R)(x, y) ⊓G2(R)(x, y).

Now, we need to show that we can characterise the new

notion of bisimulations as post-fixpoints of this operator G.

For the corresponding proof we will make use of the following

observation:

Lemma 7. Let L = O(Φ) for any finite partially ordered set

(Φ,≤) be a lattice that embeds into B = P(Φ). Take ϕ ∈ Φ.

Then, in order to show that ϕ ∈ (l1 → l2), for any given

l1, l2 ∈ L, it suffices to show that for all ϕ′ ≤ ϕ, ϕ′ /∈ l1 or

ϕ′ ∈ l2.

Proof: We have already shown that l1 → l2 = ⌊l1 →
l2⌋ = ⌊¬l1 ⊔ l2⌋. Now, if all ϕ′ ≤ ϕ are not in l1, i.e. in

¬l1, or in l2, then all ϕ′ ≤ ϕ are in ¬l1 ⊔ l2. Therefore,

↓ ϕ ⊆ ¬l1 ⊔ l2, and thus ϕ ∈ l1 → l2.

Theorem 7. Let (X, (A,<A), f), (Y, (A,<A), g) be two CTSs

over (Φ,≤) and (X, (A,<A), α), (Y, (A,<A), β) over O(Φ)
be the corresponding LaTS. For any two states x ∈ X, y ∈ Y
it holds that x ∼p

ϕ y if and only if there exists a post-fixpoint

R : X × Y → L of G (R ⊑ G(R)) such that ϕ ∈ R(x, y).

Proof:

• Assume R is a post-fixpoint of G, i.e. R ⊑ G(R), let

x ∈ X and y ∈ Y be given arbitrarily and ϕ ∈ R(x, y).
We define for each ϕ′ ≤ ϕ a relation Rϕ′ according to

(x′, y′) ∈ Rϕ′ ⇔ ϕ′ ∈ R(x′, y′).

Since each set R(x′, y′) is downward-closed for all x′ ∈
X, y′ ∈ Y , it holds that Rϕ1

⊆ Rϕ2
whenever ϕ1 ≥ ϕ2.

Moreover, since we assume ϕ ∈ R(x, y), (x, y) ∈ Rϕ′

must hold for all ϕ′ ≤ ϕ.

So we only need to show that all Rϕ′ are traditional

bisimulations for f̄ϕ′ . For this purpose let x′, y′, ϕ′ be

given, such that (x′, y′) ∈ Rϕ′ . Moreover, let a ∈ A
and x′′ ∈ X be given such that x′′ ∈ f̄ϕ′(x′, a) –

if no such a and x′′ exists then the first bisimulation

condition is trivially true. For G1, it must be true that

ϕ′ ∈ G1(R)(x, y). Thus,

ϕ′ ∈

(

α(x′, a, x′′) →
(

⊔

y′′∈Y

(β(y′, a, y′′) ⊓R(x′′, y′′))⊔

⊔

a′>a,x′′′∈X

α(x′, a′, x′′′)
)

)

Since we also know that ϕ′ ∈ α(x′, a, x′′) because x′′ ∈
f̄ϕ′(x′, a), it must be true that

ϕ′ ∈

(

⊔

y′′∈Y

(β(y′, a, y′′) ⊓R(x′′, y′′))

⊔
⊔

a′>a,x′′′∈X

α(x′, a′, x′′′)

)

.

This is true because ψ ∈ l1 → l2 ⇔ ψ ∈ ⌊¬l1 ∨ l2⌋ ⇒
ψ ∈ ¬l1 ∨ l2 (Lemma 7) and, if ψ ∈ l1, hence ψ /∈ ¬l1,

it follows that ψ ∈ l2.

Per definition of f̄ϕ′ , there exists no a′ > a such that

f̄ϕ′(x′′, a′) 6= ∅. Therefore,

ϕ′ /∈
⊔

a′>a,x′′′∈X

α(x′, a′, x′′′).

It follows that

ϕ′ ∈
⊔

y′′∈Y

β(y′, a, y′′) ⊓R(x′′, y′′).

Then, there must exist at least one y′′ ∈ Y such that ϕ′ ∈
β(y′, a, y′′) ⊓ R(x′′, y′′). It follows that ϕ′ ∈ R(x′′, y′′),
i.e. (x′′, y′′) ∈ Rϕ′ .

14

We will now show that y′′ ∈ ḡϕ′(y′, a), holds as well.

Assume, to the contrary, that y′′ /∈ ḡϕ′(y′, a), then, due

to ϕ′ ∈ β(y′, a, y′′), there must exist an a′ > a and a

y′′′ ∈ Y such that ϕ′ ∈ β(y′, a′, y′′′). W.l.o.g. choose a′

maximal. Since we required (x′, y′) ∈ Rϕ′ , it has to hold

that ϕ′ ∈ G2(R)(x
′, y′). So in particular,

ϕ′ ∈

(

β(y′, a′, y′′′) →
(

⊔

x′′′∈X

(α(x′, a′, x′′′)

⊓R(x′′′, y′′′)) ⊔
⊔

a′′>a′,y′′′′∈Y

β(y′, a′′, y′′′′)
)

)

Since we chose a′ maximal, we know that ϕ′ /∈
⊔

a′′>a′,y′′′′∈Y β(y
′, a′′, y′′′′). Moreover, since a′ > a

and x′′ ∈ f̄ϕ′(x′, a), there exists no x′′′ such that

ϕ′ ∈ α(x′, a′, x′′′). Thus, ϕ′ is not in the right side of

the residuum, yet it is in the left side of the residuum,

therefore, it is not in the residuum. Thus, we can conclude

ϕ′ /∈ G2(R)(x
′, y′), which is a contradiction.

Thus, the first bisimulation condition is true. The second

condition can be proven analogously, reversing the roles

of G2 and G1 to find the answer step in f̄ϕ′ .

• Now, assume the other way around, that a family Rϕ of

bisimulations from f̄ϕ to ḡϕ exists such that for all states

x ∈ X , y ∈ Y and for all pairs of conditions ϕ1, ϕ2 ∈ Φ
the expression ϕ1 ≤ ϕ2 implies Rϕ1

⊇ Rϕ2
. Moreover,

let ϕ, x ∈ X and y ∈ Y be given such that (x, y) ∈ Rϕ.

We define R : X × Y → L according to

R(x, y) = {ϕ′ | (x, y) ∈ Rϕ′}.

Due to anti-monotonicity of the family of Rϕ′ all entries

in R are indeed lattice elements from O(Φ,≤). Moreover,

by definition, ϕ ∈ R(x, y). So it only remains to be

shown that R is a post-fixpoint.

For this purpose, let x′ ∈ X , y′ ∈ Y and ϕ′ ∈ Φ be

given, such that ϕ′ ∈ R(x′, y′). (If no such x′, y′, ϕ′ exist,

then R is the zero matrix (where all entries are ∅) and

R ⊑ G(R) holds trivially.) We will now show that ϕ′ ∈
G1(R)(x

′, y′). The fact that ϕ′ ∈ G2(R)(x
′, y′) can be

shown analogously. We need to show that

ϕ′ ∈

(

α(x, a, x′) →
(

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))

⊔
⊔

a′>a,x′′∈X

α(x, a′, x′′)
)

)

for all x′′ ∈ X and a ∈ A.

We recall that l1 →L l2 = ⌊l1 →B l2⌋ = ⌊¬l1 ∨ l2⌋
(Lemma 1) and show that whenever ϕ′ ∈ α(x, a, x′),
it holds that ϕ′ ∈

(
⊔

y′∈Y (β(y, a, y
′) ⊓ R(x′, y′)) ⊔

⊔

a′>a,x′′∈X α(x, a′, x′′)
)

. We distinguish according to

whether a is maximal such that ϕ′ ∈ α(x, a, x′′):

– There is no a′ > a such that ϕ′ ∈ α(x, a, x′′) for any

x′′ ∈ X :

Then there must exist a y′ ∈ Y such that ϕ′ ∈
β(y, a, y′) and (x′, y′) ∈ Rϕ′ , i.e. ϕ′ ∈ R(x′, y′),

because Rϕ′ is a bisimulation and for all ϕ′′ ≤ ϕ′

we have Rϕ′ ⊆ Rϕ′′ .

– There is an a′ > a such that ϕ′ ∈ α(x, a, x′′) for some

x′′ ∈ X :

Then ϕ′ ∈
⊔

a′>a,x′′∈X α(x, a′, x′′).

So we have shown for all ϕ′ ∈ R(x′, y′) that ϕ′ ∈
α(x, a, x′) implies

ϕ′ ∈
(

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))⊔

⊔

a′>a,x′′∈X

α(x, a′, x′′)
)

,

i.e. we have

ϕ′ ∈¬α(x, a, x′) ⊔
(

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))

⊔
⊔

a′>a,x′′∈X

α(x, a′, x′′)
)

in the Boolean algebra. Since R(x′, y′) is a lattice element

and therefore downward-closed, we can apply Lemma 7

and conclude that

ϕ′ ∈

(

α(x, a, x′) →
(

⊔

y′∈Y

(β(y, a, y′) ⊓R(x′, y′))

⊔
⊔

a′>a,x′′∈X

α(x, a′, x′′)
)

)

in the lattice, concluding the proof.

Hence we can compute the bisimulation via a fixpoint

iteration, as with LaTSs without an ordering on the action

labels. Due to the additional supremum in the fixpoint operator,

the matrix notation cannot be used anymore. However, since

the additional supremum term can be precomputed for each

pair of states x ∈ X or y ∈ Y and action a ∈ A, the

performance of the algorithm should not be affected in a

significant way.

Note that, different from the Boolean case, l1 → (l2⊔ l3) 6≡
(l1 → l2)⊔ l3, which is relevant for the definition of G. In fact,

moving the supremum
⊔

a′>a,x′′∈X α(x, a′, x′′) outside of the

residuum would yield an incorrect notion of bisimilarity.

In addition, it may appear more convenient to drop the

monotonicity requirement for transitions and to allow arbitrary

deactivation of transitions, independently of their label. How-

ever, this would result in a loss of the duality result and as

a result, the fixpoint algorithm that allows to compute the

bisimilarity in parallel for all products would be rendered

incorrect.

15

	I Introduction
	II Preliminaries
	III Conditional Transition Systems
	IV Lattice Transition Systems
	V Computation of Lattice Bisimulation
	V-A A Fixpoint Approach
	V-B Lattice Bisimilarity is Finer than Boolean Bisimilarity
	V-C Matrix Multiplication

	VI Application and Implementation
	VI-A Featured Transition Systems
	VI-B BDD-Based Representation
	VI-C Implementation and Runtime Results

	VII Conclusion, Related Work, and Future Work
	References
	Appendix A: Proofs
	A-A Proofs concerning Lattices and Lattice Transition Systems
	A-B Strategies for the Bisimulation Game
	A-C Proofs concerning ROBDDs

	Appendix B: Run-Time Results
	Appendix C: Deactivating Transitions

