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Optimizing automata learning via monads

GERCO VAN HEERDT, MATTEO SAMMARTINO, and ALEXANDRA SILVA, University
College London

Automata learning has been successfully applied in the verification of hardware and software. The size of
the automaton model learned is a bottleneck for scalability, and hence optimizations that enable learning of
compact representations are important. This paper exploits monads, both as a mathematical structure and
a programming construct, to design, prove correct, and implement a wide class of such optimizations. The
former perspective on monads allows us to develop a new algorithm and accompanying correctness proofs,
building upon a general framework for automata learning based on category theory. The new algorithm is
parametric on a monad, which provides a rich algebraic structure to capture non-determinism and other
side-effects. We show that our approach allows us to uniformly capture existing algorithms, develop new ones,
and add optimizations. The latter perspective allows us to effortlessly translate the theory into practice: we
provide a Haskell library implementing our general framework, and we show experimental results for two
specific instances: non-deterministic and weighted automata.
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1 INTRODUCTION
The increasing complexity of software and hardware systems calls for new scalable methods to
design, verify, and continuously improve systems. Black-box inference methods aim at building
models of running systems by observing their response to certain queries. This reverse engineering
process is very amenable for automation and allows for fine-tuning the precision of the model
depending on the properties of interest, which is important for scalability.
One of the most successful instances of black-box inference is automata learning, which has

been used in various verification tasks, ranging from finding bugs in implementations of network
protocols [de Ruiter and Poll 2015] to rejuvenating legacy software [Schuts et al. 2016]. Vaandrager
[2017] has recently written a comprehensive overview of the widespread use of automata learning
in verification.
A limitation in automata learning is that the models of real systems can become too large to

be handled by tools. This demands compositional methods and techniques that enable compact
representation of behaviors.
In this paper, we show how monads can be used to add optimizations to learning algorithms

in order to obtain compact representations. We will use as playground for our approach the well
known L⋆ algorithm [Angluin 1987], which learns a minimal deterministic finite automaton (DFA)
accepting a regular language by interacting with a teacher, i.e., an oracle that can reply to specific
queries about the target language. Monads allow us to take an abstract approach, in which category
theory is used to devise an optimized learning algorithm and a generic correctness proof for a
broad class of compact models. Monads also allow us to straightforwardly implement the algorithm
in Haskell via the corresponding programming constructs.
The inspiration for this work is quite concrete: it is a well-known fact that non-deterministic

finite automata (NFAs) can be much smaller than deterministic ones for a regular language. The
subtle point is that given a regular language, there is a canonical deterministic automaton accepting
it—the minimal one—but there might be many “minimal” non-deterministic automata accepting the
same language. This raises a challenge for learning algorithms: which non-deterministic automaton
should the algorithm learn? To overcome this, Bollig et al. [2009] developed a version of Angluin’s
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L⋆ algorithm, which they called NL⋆, in which they use a particular class of NFAs, namely Residual
Finite State Automata (RFSAs), which do admit minimal canonical representatives. Though NL⋆

indeed is a first step in incorporating a more compact representation of regular languages, there
are several questions that remain to be addressed. We tackle them in this paper.

DFAs and NFAs are formally connected by the subset construction. Underpinning this construc-
tion is the rich algebraic structure of languages and of the state space of the DFA obtained by
determinizing an NFA. The state space of a determinized DFA—consisting of subsets of the state
space of the original NFA—has a join-semilattice structure. Moreover, this structure is preserved
in language acceptance: if there are subsets U and V , then the language of U ∪ V is the union
of the languages of the first two. Formally, the function that assigns to each state its language
is a join-semilattice map, since languages themselves are just sets of words and have a lattice
structure. And languages are even richer: they have the structure of complete atomic Boolean
algebras. This leads to several questions: Can we exploit this structure and have even more compact
representations? What if we slightly change the setting and look at weighted languages over a
semiring, which have the structure of a semimodule (or vector space, if the semiring is a field)?
The latter question is strongly motivated by the widespread use of weighted languages and

corresponding weighted finite automata (WFAs) in verification, from the formal verification of quan-
titative properties [Chatterjee et al. 2008; Droste and Gastin 2005; Kuperberg 2014], to probabilistic
model-checking [Baier et al. 2009], to the verification of on-line algorithms [Aminof et al. 2010].

Our key insight is that the algebraic structures mentioned above are in fact algebras for a monad
T . In the case of join-semilattices this is the powerset monad, and in the case of vector spaces it is
the free vector space monad. These monads can be used to define a notion of T -automaton, with
states having the structure of an algebra for the monad T , which generalizes non-determinism as a
side-effect. From T -automata we can derive a compact, equivalent version by taking as states a set
of generators and transferring the algebraic structure of the original state space to the transition
structure of the automaton.

This general perspective enables us to generalize L⋆ to a new algorithm L⋆T , which learns compact
automata featuring non-determinism and other side-effects captured by a monad. Moreover, L⋆T
incorporates further optimizations arising from the monadic representation, which lead to more
scalable algorithms.

Besides the theoretical aspects, we devote large part of this paper to implementation and experi-
mental evaluation. Monads are key for us to faithfully translate theory into practice. We provide a
library that implements all aspects of our general framework, making use of Haskell monads.1 For
any monad, the library allows the programmer to obtain a basic, correct-by-construction instance
of the algorithm and of its optimized versions for free. This enables the programmer to experiment
with different optimizations with minimal effort. Our library also allows the programmer to re-
define some basic operations, if a more efficient version is available, in order to make the algorithm
more amenable to real-world usage. For instance, generators can be computed efficiently in the
vector space case via Gaussian elimination.

One of the main challenges in applying Angluin-style algorithms to real-world systems is
implementing the teacher. In fact, it is often the case that exact answers to certain queries are
not available. In these cases the teacher often resorts to random testing [e.g., Aarts et al. 2013;
Chalupar et al. 2014; Cho et al. 2010], with an unavoidable trade-off in terms of model accuracy
(see [Vaandrager 2017] for a detailed discussion on this issue). Our library provides support for
both exact and approximate teachers, along with a basic implementation that works for any monad.

1The code is provided as supplementary material.
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Interestingly, the exact teacher relies on bisimulation up to context [Rot et al. 2013; Sangiorgi 1998],
which exploits the monad structure to efficiently determine bisimulation.

2 OVERVIEW AND CONTRIBUTIONS
In this section, we give an overview of our approach and highlight our main contribution. We start
by explaining the original L⋆ algorithm. We then discuss the challenges in adapting the algorithm
to learn automata with side-effects, illustrating them through a concrete example—NFAs.

2.1 L⋆ algorithm
The L⋆ algorithm learns the minimal DFA accepting a language L ⊆ A∗ over a finite alphabet A.
The algorithm assumes the existence of a minimally adequate teacher, which is an oracle that can
answer two types of queries:
• Membership queries: given a wordw ∈ A∗, doesw belong to L?
• Equivalence queries: given a hypothesis DFAH, does H accept L? If not, the teacher will
return a counterexample, i.e., a word incorrectly accepted or rejected byH.

The algorithm incrementally builds an observation table. The table is made of two parts: a top part,
with rows ranging over a finite set S ⊆ A∗; and a bottom part, with rows ranging over S · A (i.e.,
words of the form sa, with s ∈ S and a ∈ A). Columns range over a finite E ⊆ A∗. For eachu ∈ S∪S ·A
and v ∈ E, the corresponding cell in the table contains 1 if and only if uv ∈ L. Intuitively, each
row u contains enough information to fully identify the Myhill-Nerode equivalence class of u with
respect to an approximation of the target language—rows with the same content are considered
members of the same equivalence class. Cells are filled in by the algorithm via membership queries.
As an example, and to set notation, consider the table below over A = {a,b}. It shows that L

contains the word aa and does not contain the words ε (the empty word), a, b, ba, aaa, and baa.
E

ε a aa

S
[

ε 0 0 1

S · A
[

a 0 1 0
b 0 0 0

rowt : S → 2E rowt(u)(v) = 1 ⇐⇒ uv ∈ L
rowb : S → (2E )A rowb(u)(a)(v) = 1 ⇐⇒ uav ∈ L

We use the functions rowt and rowb to describe the top and bottom parts of the table, respectively.
Notice that S and S ·Amay intersect. For the sake of conciseness, when tables are depicted, elements
in the intersection are only shown in the top part.

A key idea of the algorithm is to construct a hypothesis DFA from the different rows in the table.
The construction is the same as that of the minimal DFA from the Myhill-Nerode equivalence, and
exploits the correspondence between table rows and Myhill-Nerode equivalence classes. The state
space of the hypothesis DFA is given by the set H = {rowt(s) | s ∈ S}. Note that there may be
multiple rows with the same content, but they result in a single state, as they all belong to the same
Myhill-Nerode equivalence class. The initial state is rowt(ε), and we use the ε column to determine
whether a state is accepting: rowt(s) is accepting whenever rowt(s)(ε) = 1. The transition function
is defined as rowt(s)

a−→ rowb(s)(a). (Notice that the continuation is drawn from the bottom part of
the table). For the hypothesis automaton to be well-defined, ε must be in S and E, and the table
must satisfy two properties:
• Closedness states that each transition actually leads to a state of the hypothesis. That is, the
table is closed if for all t ∈ S and a ∈ A there is s ∈ S such that rowt(s) = rowb(t)(a).
• Consistency states that there is no ambiguity in determining the transitions. That is, the table
is consistent if for all s1, s2 ∈ S such that rowt(s1) = rowt(s2) we have rowb(s1) = rowb(s2).
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1 S,E ← {ε}
2 repeat
3 while the table is not closed or not consistent
4 if the table is not closed
5 find t ∈ S,a ∈ A such that rowb(t)(a) , rowt(s) for all s ∈ S
6 S ← S ∪ {ta}
7 if the table is not consistent
8 find s1, s2 ∈ S , a ∈ A, and e ∈ E such that

rowt(s1) = rowt(s2) and rowb(s1)(a)(e) , rowb(s2)(a)(e)
9 E ← E ∪ {ae}
10 Construct the hypothesis H and submit it to the teacher
11 if the teacher replies no, with a counterexample z
12 S ← S ∪ prefixes(z)
13 until the teacher replies yes
14 return H

Fig. 1. L⋆ algorithm.

ε
ε 1
a 0
(a)

ε
ε 1
a 0
aa 1
(b)

a

a

(c)

ε
ε 1
a 0
aa 1
aaa 1
aaaa 1

(d)

ε a
ε 1 0
a 0 1
aa 1 1
aaa 1 1
aaaa 1 1

(e)

Fig. 2. Example run of L⋆ on L = {w ∈ {a}∗ | |w | , 1}.

The algorithm updates the sets S and E to satisfy these properties, constructs a hypothesis, submits
it in an equivalence query, and, when given a counterexample, refines the hypothesis. This process
continues until the hypothesis is correct. The algorithm is shown in Figure 1.

Example Run. We now run the algorithm with the target language L = {w ∈ {a}∗ | |w | , 1}.
The minimal DFA accepting L is

M =
a a

a (1)

Initially, S = E = {ε}. We build the observation table given in Figure 2a. This table is not closed,
because the row with label a, having 0 in the only column, does not appear in the top part of the
table: the only row ε has 1. To fix this, we add the word a to the set S . Now the table (Figure 2b)
is closed and consistent, so we construct the hypothesis that is shown in Figure 2c and pose an
equivalence query. The teacher replies no and informs us that the word aaa should have been
accepted. L⋆ handles a counterexample by adding all its prefixes to the set S . We only have to add aa
and aaa in this case. The next table (Figure 2d) is closed, but not consistent: the rows ε and aa both
have value 1, but their extensions a and aaa differ. To fix this, we prepend the continuation a to the
column ε on which they differ and add a · ε = a to E. This distinguishes rowt(ε) from rowt(aa), as
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seen in the next table in Figure 2e. The table is now closed and consistent, and the new hypothesis
automaton is precisely the correct one M.
As mentioned, the hypothesis construction approximates the theoretical construction of the

minimal DFA, which is unique up to isomorphism. That is, for S = E = A∗ the relation that identifies
words of S having the same value in rowt is precisely the Myhill-Nerode’s right congruence.

2.2 Learning non-deterministic automata
As it is well known, NFAs can be smaller than the minimal DFA for a given language. For example,
the language L above is accepted by the NFA

N =

a

a

a (2)

which is smaller than the minimal DFA M. Though in this example, which we chose for simplicity,
the state reduction is not massive, it is known that in general NFAs can be exponentially smaller
than the minimal DFA [Kozen 2012]. This reduction of the state space is enabled by a side-effect—
non-determinism, in this case.
Learning NFAs can lead to a substantial gain in space complexity, but it is challenging. The

main difficulty is that NFAs do not have a canonical minimal representative: there may be several
non-isomorphic state-minimal NFAs accepting the same language, which poses problems for the
development of the learning algorithm. To overcome this, Bollig et al. [2009] proposed to use
a particular class of NFAs, namely RFSAs, which do admit minimal canonical representatives.
However, their ad-hoc solution for NFAs does not extend to other automata, such as weighted or
alternating. In this paper we present a solution that works for any side-effect, specified as a monad.
The crucial observation underlying our approach is that the language semantics of an NFA is

defined in terms of its determinization, i.e., the DFA obtained by taking sets of states of the NFA as
state space. In other words, this DFA is defined over an algebraic structure induced by the powerset,
namely a join semilattice (JSL) whose join operation is set union. This automaton model does admit
minimal representatives, which leads to the key idea for our algorithm: learning NFAs as automata
over JSLs. In order to do so, we use an extended table where rows have a JSL structure, defined as
follows. The join of two rows is given by an element-wise or, and the bottom element is the row
containing only zeroes. More precisely, the new table consists of the two functions

row♯
t : P(S) → 2E row♯

b : P(S) → (2
E )A

given by row♯
t (U ) =

∨{rowt(s) | s ∈ U } and row♯
b(U )(a) =

∨{rowb(s)(a) | s ∈ U }. Formally, these
functions are JSL homomorphisms, and they induce the following general definitions:
• The table is closed if for allU ⊆ S,a ∈ A there isU ′ ⊆ S such that row♯

t (U ′) = row♯
b(U )(a).

• The table is consistent if for allU1,U2 ⊆ S s.t. row♯
t (U1) = row♯

t (U2) we have row♯
b(U1) = row♯

b(U2).
We remark that our algorithm does not actually store the whole extended table, which can be
quite large. It only needs to store the original table over S because all other rows in P(S) are freely
generated and can be computed as needed, with no additional membership queries. The only lines
in Figure 1 that need to be adjusted are lines 5 and 8, where closedness and consistency are replaced
with the new notions given above. Moreover,H is now built from the extended table.

Optimizations. In this paper we also present two optimizations to our algorithm. For the first one,
note that the state space of the hypothesis constructed by the algorithm can be very large since it
encodes the entire algebraic structure. We show that we can extract a minimal set of generators
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ε
ε 1
a 0
(a)

a

a

(b) (c)

ε
ε 1
a 0
aa 1
aaa 1

(d)

ε a
ε 1 0
a 0 1
aa 1 1
aaa 1 1

(e)

Fig. 3. Example run of the L⋆ adaptation for NFAs on L = {w ∈ {a}∗ | |w | , 1}.

from the table and compute a succinct hypothesis in the form of an automaton with side-effects,
without any algebraic structure. For JSLs, this consists in only taking rows that are not the join
of other rows, i.e., the join-irreducibles. By applying this optimization to this specific case, we
essentially recover the learning algorithm of Bollig et al. [2009]. The second optimization is a
generalization of the optimized counterexample handling method of Rivest and Schapire [1993],
originally intended for L⋆ and DFAs. It consists in processing counterexamples by adding a single
suffix of the counterexample to E, instead of adding all prefixes of the counterexample to S . This
can avoid the algorithm posing a large number of membership queries.

Example Revisited. We now run the new algorithm on the language L = {w ∈ {a}∗ | |w | , 1}
considered earlier. Starting from S = E = {ε}, the observation table (Figure 3a) is immediately
closed and consistent. (It is closed because we have row♯

t ({a}) = row♯
t (∅).) This gives the JSL

hypothesis shown in Figure 3b, which leads to an NFA hypothesis having a single state that is
initial, accepting, and has no transitions (Figure 3c). The hypothesis is obviously incorrect, and the
teacher may supply us with counterexample aa. Adding prefixes a and aa to S leads to the table in
Figure 3d. The table is again closed, but not consistent: row♯

t ({a}) = row♯
t (∅), but row

♯
b({a})(a) =

row♯
t ({aa}) , row♯

t (∅) = row♯
b(∅)(a). Thus, we add a to E. The resulting table (Figure 3e) is closed

and consistent. We note that row aa is the union of other rows: row♯
t ({aa}) = row♯

t ({ε,a}) (i.e., it
is not a join-irreducible), and therefore can be ignored when building the succinct hypothesis. This
hypothesis has two states, ε and a, and indeed it is the correct one N.

2.3 Contributions and road map of the paper
After some preliminary notions in Section 3, our main contributions are presented as follows:
• In Section 4, we develop a general algorithm L⋆T , which generalizes the NFA one presented in
Section 2.2 to an arbitrary monad T capturing side-effects, and we provide a general correctness
proof for our algorithm.
• In Section 5, we describe the first optimization and prove its correctness.
• In Section 6 we describe the second optimization. We also show how it can be combined with
the one of Section 5, and how it can lead to a further small optimization, where the consistency
check on the table is dropped.
• In Section 7 we show how L⋆T can be applied to several automata models, highlighting further
case-specific optimizations when available.
• In Section 8 we describe our library and explain in detail how it can be instantiated to NFAs and
WFAs. The implementation of monads for these two cases is non-trivial, due to specific Haskell
requirements. We also give efficient versions of both instances. To the best of our knowledge, we
are the first ones to implement an Angluin-style learning algorithm for WFAs, and to provide
optimizations for it.
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• Finally, in Section 9 we describe experimental results for the non-deterministic and weighted
cases, comparing all the optimizations enabled by our library. In particular, for NFAs we show that
the Rivest and Schapire optimization, not available to Bollig et al. [2009], leads to an improvement
in the number of membership queries, as happens in the DFA case.

3 PRELIMINARIES
In this section we define a notion of T -automaton, a generalization of non-deterministic finite
automata parametric in a monad T . We assume familiarity with basic notions of category theory:
functors (in the category Set of sets and functions) and natural transformations.

Side-effects and different notions of non-determinism can be conveniently captured as amonad. A
monadT = (T ,η, µ) is a triple consisting of an endofunctorT on Set and two natural transformations:
a unit η : Id⇒ T and a multiplication µ : T 2 ⇒ T , which satisfy the compatibility laws µ ◦ ηT =
idT = µ ◦Tη and µ ◦ µT = µ ◦T µ.

Example 3.1 (Monads). An example of a monad is the triple (P, {−},⋃), where P denotes the
powerset functor associating a collection of subsets to a set, {−} is the singleton operation, and

⋃
is just union of sets. Another example is the triple (V (−), e,m), where V (X ) is the free semimodule
(over a semiring S) over X , namely {φ | φ : X → S having finite support}. The support of a
function φ : X → S is the set of x ∈ X such that φ(x) , 0. Then e : X → V (X ) is the characteristic
function for each x ∈ X , and m : V (V (X )) → V (X ) is defined for φ ∈ V (V (X )) and x ∈ X as
m(φ)(x) = ∑

ψ ∈V (X ) φ(ψ ) ×ψ (x).

Given a monad T , a T -algebra is a pair (X ,h) consisting of a carrier set X and a function
h : TX → X such that h ◦ µX = h ◦ Th and h ◦ ηX = idX . A T -homomorphism between two
T -algebras (X ,h) and (Y ,k) is a function f : X → Y such that f ◦ h = k ◦T f . The abstract notion
of T -algebra instantiates to expected notions, as illustrated in the following example.

Example 3.2 (Algebras for a monad). The P-algebras are the (complete) join-semilattices, and
their homomorphisms are join-preserving functions. If S is a field, V -algebras are vector spaces,
and their homomorphisms are linear maps.

We will often refer to a T -algebra (X ,h) as X if h is understood or if its specific definition is
irrelevant. Given a set X , (TX , µX ) is a T -algebra called the free T -algebra on X . One can build
algebras pointwise for some operations. For instance, if Y is a set and (X ,x) a T -algebra, then
we have a T -algebra (XY , f ), where f : T (XY ) → XY is given by f (W )(y) = (x ◦ T (evy ))(W )
and evy : XY → X by evy (д) = д(y). If U and V are T -algebras and f : U → V is a T -algebra
homomorphism, then the image img(f ) of f is a T -algebra, with the T -algebra structure inherited
from V .

The following proposition connects algebra homomorphisms from the free T -algebra on a setU
to an algebra V with functionsU → V . We will make use of this later in the section.

Proposition 3.3. Given a setU and aT -algebra (V ,v), there is a bijective correspondence betweenT -
algebra homomorphismsTU → V and functionsU → V : for aT -algebra homomorphism f : TU → V ,
define f † = f ◦ η : U → V ; for a function д : U → V , define д♯ = v ◦ Tд : TU → V . Then д♯ is a
T -algebra homomorphism called the free T -extension of д, and we have f †♯ = f and д♯† = д.

We now have all the ingredients to define our notion of automaton with side-effects and their
language semantics. We fix a monad (T ,η, µ) with T preserving finite sets, as well as a T -algebra O
that models outputs of automata.
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Definition 3.4 (T -automaton). A T -automaton is a quadruple (Q,δ : Q → QA, out : Q → O, init ∈
Q), where the state space Q is a T -algebra, the transition map δ and output map out are T -algebra
homomorphisms, and init is the initial state.

Example 3.5. DFAs are Id-automata when O = 2 = {0, 1} is used to distinguish accepting from
rejecting states. For the more general case ofO being any set, DFAs generalize intoMoore automata.

Example 3.6. Recall that P-algebras are JSLs, and their homomorphisms are join-preserving
functions. In a P-automaton, Q is equipped with a join operation, and QA is a join-semilattice
with pointwise join: (f ∨ д)(a) = f (a) ∨ д(a) for a ∈ A. Since the automaton maps preserve joins,
we have, in particular, δ (q1 ∨ q2)(a) = δ (q1)(a) ∨ δ (q2)(a). One can represent an NFA over a set
of states S as a P-automaton by taking Q = (P(S),⋃) and O = 2, the Boolean join-semilattice
with the or operation as its join. Let init ⊆ S be the set of initial states and out : P(Q) → 2 and
δ : P(S) → P(S)A the respective extensions (Proposition 3.3) of the NFA’s output and transition
functions. The resulting P-automaton is precisely the determinized version of the NFA.

More generally, an automaton with side-effects given by a monad T always represents a T -
automaton with a free state space: by applying Proposition 3.3, we have the following.

Proposition 3.7. A T -automaton of the form ((TX , µX ),δ , out, init), for any set X , is completely
defined by the set X with the element init ∈ TX and functions

δ† : X → (TX )A out† : X → O .

We call such a T -automaton a succinct automaton, which we sometimes identify with the
representation (X ,δ†, out†, init).
A (generalized) language is a function L : A∗ → O . For every T -automaton we have an observ-

ability and a reachability map, telling respectively which state is reached by reading a given word
and which language each state recognizes.

Definition 3.8 (Reachability/observability maps). The reachability map of a T -automaton A with
state space Q is a function rA : A∗ → Q inductively defined as follows: rA(ε) = init and rA(ua) =
δ (rA(u))(a). The observability map of A is a function oA : Q → OA∗ inductively defined as follows:
oA(q)(ε) = out(q) and oA(q)(av) = oA(δ (q)(a))(v).

The language accepted by A is the function LA : A∗ → O given by LA = oA(init) = outA ◦ rA.

Example 3.9. For an NFA A represented as a P-automaton, as seen in Example 3.6, oA(q) is the
language of q in the traditional sense. Notice that q, in general, is a set of states: oA(q) takes the
union of languages of singleton states. The set LA is the language accepted by the initial states,
i.e., the language of the whole NFA. The reachability map rA(u) returns the set of states reached
via all possible paths reading u.

Given a language L : A∗ → O , there exists a (unique) minimal T -automaton ML accepting L. Its
existence follows from general facts see [see, e.g., van Heerdt 2016].

Definition 3.10 (Minimal T -automaton for L). Let tL : A∗ → OA∗ be the function giving the
residual languages of L, namely tL(u) = λv .L(uv). The minimalT -automatonML accepting L has
state space M = img(t ♯

L
), initial state init = tL(ε), and T -algebra homomorphisms out : M → O

and δ : M → MA given by out(t ♯
L
(U )) = L(U ) and δ (t ♯

L
(U ))(a)(v) = t ♯

L
(U )(av).

In the following, we will also make use of the minimal Moore automaton accepting L. Although
this always exists—it is defined by instantiating Definition 3.10 with T = Id—it need not be finite.
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The following property says that finiteness of Moore automata and of T -automata accepting the
same language are intimately related.

Proposition 3.11. The minimal Moore automaton accepting L is finite if and only if the minimal
T -automaton accepting L is finite.

4 A GENERAL ALGORITHM
In this section we introduce our extension of L⋆ to learn automata with side-effects. The algorithm
is parametric in the notion of side-effect, represented as the monadT , and is therefore called L⋆T . We
fix a language L : A∗ → O that is to be learned, and we assume that there is a finite T -automaton
accepting L. This assumption generalizes the requirement of L⋆ that L is regular (i.e., accepted by
a specific class of T -automata, see Example 3.5).

An observation table consists of a pair of functions
rowt : S → OE rowb : S → (OE )A

given by rowt(s)(e) = L(se) and rowb(s)(a)(e) = L(sae), where S,E ⊆ A∗ are finite sets with
ε ∈ S ∩ E. For O = 2, we recover exactly the L⋆ observation table. The key idea for L⋆T is defining
closedness and consistency over the free T -extensions of those functions.

Definition 4.1 (Closedness and Consistency). The table is closed if for allU ∈ T (S) and a ∈ A there
exists aU ′ ∈ T (S) such that row♯

t (U ′) = row♯
b(U )(a). The table is consistent if for allU1,U2 ∈ T (S)

such that row♯
t (U1) = row♯

t (U2) we have row♯
b(U1) = row♯

b(U2).
For closedness, we do not need to check all elements of T (S) ×A against elements of T (S), but

only those of S ×A, thanks to the following result.

Lemma 4.2. If for all s ∈ S and a ∈ A there is U ∈ T (S) such that row♯
t (U ) = rowb(s)(a), then the

table is closed.

Proof. Let m : img(row♯
t ) ↪→ OE be the embedding of the image of row♯

t into its codomain.
According to van Heerdt et al. [2017], the definition of closedness given in Definition 4.1 amounts
to requiring the existence of a T -algebra homomorphism close making the following diagram
commute:

T (S)

img(row♯
t )A (OE )A

close
row♯

b

mA

(3)

It is easy to see that the hypothesis of this lemma corresponds to requiring the existence of a
function close′ making the diagram below on the left in Set commute.

S

img(row♯
t )A (OE )A

close′
rowb

mA

T (S)

T (img(row♯
t )A) T ((OE )A)

img(row♯
t )A (OE )A

T (close′)
T (rowb)

T (mA)

mA

This diagram can be made into a diagram of T -algebra homomorphisms as on the right, where the
compositions of the left and right legs give respectively close′♯ and row♯

b . This diagram commutes
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1 S,E ← {ε}
2 repeat
3 while the table is not closed or not consistent
4 if the table is not closed
5 find s ∈ S , a ∈ A such that rowb(s)(a) , row♯

t (U ) for allU ∈ T (S)
6 S ← S ∪ {sa}
7 if the table is not consistent
8 findU1,U2 ∈ T (S), a ∈ A, and e ∈ E such that

row♯
t (U1) = row♯

t (U2) and row♯
b(U1)(a)(e) , row♯

b(U2)(a)(e)
9 E ← E ∪ {ae}
10 Construct the hypothesisH and submit it to the teacher
11 if the teacher replies no, with a counterexample z
12 S ← S ∪ prefixes(z)
13 until the teacher replies yes
14 returnH

Fig. 4. Adaptation of L⋆ for T -automata.

because the top triangle commutes by functoriality of T , and the bottom square commutes bymA

being a T -algebra homomorphism. Therefore we have that (3) commutes for close = close′♯ . □

Example 4.3. For NFAs represented as P-automata, the properties are as presented in Section 2.2.
Recall that for T = P and O = 2, the Boolean join-semilattice, row♯

t and row♯
b describe a table

where rows are labeled by subsets of S . Then we have, for instance, row♯
t ({s1, s2})(e) = rowt(s1)(e)∨

rowt(s2)(e), i.e., row♯
t ({s1, s2})(e) = 1 if and only if L(s1e) = 1 or L(s2e) = 1. Closedness amounts to

check whether each row in the bottom part of the table is the join of a set of rows in the top part.
Consistency amounts to check whether, for all sets of rowsU1,U2 ⊆ S in the top part of the table
whose joins are equal, the joins of rows U1 · {a} andU2 · {a} in the bottom part are also equal, for
all a ∈ A.

If closedness and consistency hold, we can define a hypothesis T -automaton H. Its state space is
H = img(row♯

t ), init = rowt(ε), and output and transition maps are given by:

out : H → O out(row♯
t (U )) = row♯

t (U )(ε)

δ : H → HA δ (row♯
t (U )) = row♯

b(U ).
The correctness of this definition follows from the abstract treatment of van Heerdt et al. [2017],
instantiated to the category of T -algebras and their homomorphisms.
We can now give our algorithm L⋆T . In the same way as for the example in Section 2, we only

have to adjust lines 5 and 8 in Figure 1. The resulting algorithm is shown in Figure 4.

Correctness. Correctness for L⋆T amounts to proving that, for any target languageL, the algorithm
terminates returning the minimal T -automatonML accepting L. As in the original L⋆ algorithm,
we only need to prove that the algorithm terminates, that is, that only finitely many hypotheses are
produced. Correctness follows from termination, since line 13 causes the algorithm to terminate
only if the hypothesis automaton coincides with ML.
In order to show termination, we argue that the state space H of the hypothesis increases

while the algorithm loops, and that H cannot be larger than M , the state space of ML. In fact,
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when a closedness defect is resolved (line 6), a row that was not previously found in the image of
row♯

t : T (S) → OE is added, so the set H grows larger. When a consistency defect is resolved (line
9), two previously equal rows become distinguished, which also increases the size of H .
As for counterexamples, adding their prefixes to S (line 11) creates a consistency defect, which

will be fixed during the next iteration, causing H to increase. This is due to the following result,
which says that the counterexample z has a prefix that violates consistency.

Proposition 4.4. If z ∈ A∗ is such that LH(z) , L(z) and prefixes(z) ⊆ S , then there are a prefix ua
of z, withu ∈ A∗ anda ∈ A, andU ∈ T (S) such that rowt(u) = row♯

t (U ) and rowb(u)(a) , row♯
b(U )(a).

Proof. Note that
rowt(z)(ε) = L(z) (definition of rowt)

, LH(z) (assumption)
= outH(rH(z)) (Definition of LH)
= rH(z)(ε) (definition of outH),

so rowt(z) , rH(z). Let p ∈ A∗ be the smallest prefix of z satisfying rowt(p) , rH(p). We have
rowt(ε) = initH = rH(ε), so p , ε and therefore p = ua for certain u ∈ A∗ and a ∈ A. Let S ′ ⊂ S be
the set from which H was constructed—recall that we added prefixes(z) to S after constructing H.
Choose anyU ∈ T (S ′) such that row♯

t (U ) = rH(u), which is possible becauseH is the image of row♯
t

restricted to the domainT (S ′). By the minimality property ofp we have rowt(u) = rH(u) = row♯
t (U ).

Furthermore,
rowb(u)(a) = rowt(ua) (definitions of rowt and rowb)

, rH(ua) (ua = p and rowt(p) , rH(p))
= δH(rH(u))(a) (definition of rH)

= δH(row♯
t (U ))(a) (rH(u) = row♯

t (U ))

= row♯
b(U )(a) (definition of δH). □

Now, note that, by increasing S or E, the hypothesis state space H never decreases in size.
Moreover, for S = A∗ and E = A∗, row♯

t = t ♯
L
, as defined in Definition 6.2. Therefore, since H and

M are defined as the images of row♯
t and t

♯
L
, respectively, the size of H is bounded by that of M .

Since H increases while the algorithm loops, the algorithm must terminate and thus is correct.
We note that the RFSA learning algorithm of Bollig et al. does not terminate using this counterex-

ample processing method [Bollig et al. 2008, Appendix F]. This is due to their notion of consistency
being weaker than ours: we have shown that progress is guaranteed because a consistency defect,
in our sense, is created using this method.

Query complexity. The complexity of automata learning algorithms is usually measured in terms
of the number of both membership and equivalence queries asked, as it is common to assume that
computations within the algorithm are insignificant compared to evaluating the system under
analysis in real-world applications. The complexity of answering the queries themselves is not
considered, as it depends on the implementation of the teacher, which the algorithm abstracts from.
Notice that, as the table is a T -algebra homomorphism, asking membership queries for rows

labeled by words in S is enough to determine all other rows, for which queries need not be asked.
We measure the query complexities in terms of the number of states n of the minimal Moore
automaton, the number of states t of the minimal T -automaton, the size k of the alphabet, and the
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lengthm of the longest counterexample. Note that t cannot be smaller than n, but it can be much
bigger. For example, when T = P, t may be in O(2n).2
The maximum number of closedness defects fixed by the algorithm is n, as a closedness defect

for the setting with algebraic structure is also a closedness defect for the setting without that
structure. The maximum number of consistency defects fixed by the algorithm is t , as fixing a
consistency defect distinguishes two rows that were previously identified. Since counterexamples
lead to consistency defects, this also means that the algorithm will not pose more than t equivalence
queries. A word is added to S when fixing a closedness defect, and O(m) words are added to S when
processing a counterexample. The number of rows that we need to fill using queries is therefore in
O(tmk). The number of columns added to the table is given by the number of times a consistency
defect is fixed and thus in O(t). Altogether, the number of membership queries is in O(t2mk).

5 SUCCINCT HYPOTHESES
We now describe the first of two optimizations, which is enabled by the use of monads. Our
algorithm produces hypotheses that can be quite large, as their state space is the image of row♯

t ,
which has the whole set T (S) as its domain. For instance, when T = P, T (S) is exponentially larger
than S . We show how we can compute succinct hypotheses, whose state space is given by a subset
of S . We start by defining sets of generators for the table.

Definition 5.1. A set S ′ ⊆ S is a set of generators for the table whenever for all s ∈ S there is
U ∈ T (S ′) such that rowt(s) = row♯

t (U ).3

Intuitively, U is the decomposition of s into a “combination” of generators. When T = P, S ′
generates the table whenever each row can be obtained as the join of a set of rows labeled by
S ′. Explicitly: for all s ∈ S there is {s1, . . . , sn} ⊆ S ′ such that rowt(s) = row♯

t ({s1, . . . , sn}) =
rowt(s1) ∨ · · · ∨ rowt(sn).
Recall that H, with state space H , is the hypothesis automaton for the table. The existence of

generators S ′ allows us to compute a T -automaton with state space T (S ′) equivalent to H. We call
this the succinct hypothesis, although T (S ′) may be larger than H . Proposition 3.7 tells us that the
succinct hypothesis can be represented as an automaton with side-effects in T that has S ′ as its
state space. This results in a lower space complexity when storing the hypothesis.
We now show how the succinct hypothesis is computed. Observe that, if generators S ′ exist,

row♯
t factors through the restriction of itself to T (S ′). Denote this latter function r̂owt

♯ . Since we
have T (S ′) ⊆ T (S), the image of r̂owt

♯ coincides with img(row♯
t ) = H , and therefore the surjection

restricting r̂owt
♯ to its image has the form e : T (S ′) → H . Any right inverse i : H → T (S ′) of the

function e (that is, e ◦ i = idH , but whereas e is a T -algebra homomorphism, i need not be one)
yields a succinct hypothesis as follows.

Definition 5.2 (Succinct Hypothesis). The succinct hypothesis is the following T -automaton S: its
state space is T (S ′), its initial state is init = i(rowt(ε)), and we define

out† : S ′→ O out†(s) = rowt(s)(ε)
δ† : S ′→ T (S ′)A δ†(s)(a) = i(rowb(s)(a)).

2This can be seen from the language {ap }, for some p ∈ N and a singleton alphabet {a }. Its residual languages are ∅ and
{ai } for all 0 ≤ i ≤ p , which means the minimal DFA accepting the language has p + 2 states. However, the residual
languages w.r.t. sets of words are all the subsets of {ε, a, aa, . . . , ap }—hence, the minimal T -automaton has 2p+1 states.
3Here and hereafter we assume that T (S ′) ⊆ T (S ), and more generally that T preserves inclusion maps. To eliminate this
assumption, one could take the inclusion map f : S ′ ↪→ S and write row♯

t (T (f )(U )) instead of row♯
t (U ).
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This definition is inspired by that of a scoop, due to Arbib and Manes [1975].

Proposition 5.3. Any succinct hypothesis ofH accepts the same language as H.

The proof can be found in the appendix. We now give a simple procedure to compute a minimal
set of generators, that is, a set S ′ such that no proper subset is a set of generators. This generalizes
a procedure defined by Angluin et al. [2015] for non-deterministic, universal, and alternating
automata.

Proposition 5.4. The following algorithm returns a minimal set of generators for the table:

S ′← S

while there are s ∈ S ′ andU ∈ T (S ′ \ {s}) s.t. row♯
t (U ) = rowt(s)

S ′← S ′ \ {s}
return S ′

The proof can be found in the appendix. Determining whetherU as in the algorithm given in
Proposition 5.4 exists, one can always naively enumerate all possibilities, using that T preserves
finite sets. This is what we call the basic algorithm. For specific algebraic structures, one may find
more efficient methods, as we show in the following example.

Example 5.5. Consider again the powerset monad T = P. We now exemplify two ways of
computing succinct hypotheses, which are inspired by the definitions of canonical RFSAs [Denis
et al. 2002]. The basic idea is to start from a deterministic automaton and to remove states that are
equivalent to a set of other states. The algorithm given in Proposition 5.4 computes a minimal S ′
that only contains labels of rows that are not the join of other rows. (In case two rows are equal,
only one of their labels is kept.) In other words, as mentioned in Section 2, S ′ contains labels of
join-irreducible rows. To concretize the algorithm efficiently, we use a method introduced by Bollig
et al. [2009], which essentially exploits the natural order on the JSL of table rows. In contrast to the
basic exponential algorithm, this results in a polynomial one.4 Bollig et al. determine whether a
row is a join of other rows by comparing the row just to the join of rows below it. Like them, we
make use of this also to compute right inverses of e , for which we will formalize the order.

The function e : P(S ′) → H tells us which sets of rows are equivalent to a single state in H . We
show two right inverses H → P(S ′) for it. The first one,

i1(h) = {s ∈ S ′ | rowt(s) ≤ h},

stems from the construction of the canonical RFSA of a language [Denis et al. 2002]. Here we use
the order a ≤ b ⇐⇒ a ∨ b = b induced by the JSL structure. The resulting construction of a
succinct hypothesis was first used by Bollig et al. [2009]. This succinct hypothesis has a “maximal”
transition function, meaning that no more transitions can be added without changing the language
of the automaton.

The second inverse is

i2(h) = {s ∈ S ′ | rowt(s) ≤ h and for all s ′ ∈ S ′ s.t. rowt(s) ≤ rowt(s ′) ≤ h

we have rowt(s) = rowt(s ′)},

resulting in a more economical transition function, where some redundancies are removed. This
corresponds to the simplified canonical RFSA Denis et al. [2002].
4When we refer to computational complexities, as opposed to query complexities, they are in terms of the sizes of S , E , and
A.
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Example 5.6. Consider again the powerset monad T = P, and recall the table in Figure 3e. When
S ′ = S , the right inverse given by i1 yields the succinct hypothesis shown below.

a a

a

a

a
a

a

Note that i1(rowt(aa)) = {ε,a,aa}. When instead taking i2, the succinct hypothesis is just the
DFA (1) because i2(rowt(aa)) = {aa}. Rather than constructing a succinct hypothesis directly, our
algorithm first reduces the set S ′. In this case, we note that rowt(aa) = row♯

t ({ε,a}), so we can
remove aa from S ′. Now i1 and i2 coincide and produce the NFA (2). Minimizing the set S ′ in this
setting essentially comes down to determining what Bollig et al. [2009] call the prime rows of the
table.

Remark 5.7. The algorithm in Proposition 5.4 implicitly assumes an order in which elements of S
are checked. Although the algorithm is correct for any such order, different orders may give results
that differ in size.

6 OPTIMIZED COUNTEREXAMPLE HANDLING
The second optimization we give generalizes the counterexample processing method due to Rivest
and Schapire [1993], which improves the worst case complexity of the number of membership
queries needed in L⋆. Maler and Pnueli [1995] proposed to add all suffixes of the counterexample
to the set E instead of adding all prefixes to the set S . This eliminates the need for consistency
checks in the deterministic setting. The method by Rivest and Schapire finds a single suffix of the
counterexample and adds it to E. This suffix is chosen in such a way that it either distinguishes two
existing rows or creates a closedness defect, both of which imply that the hypothesis automaton
will grow.

The main idea is finding the distinguishing suffix via the hypothesis automaton H. Given a
word u ∈ A∗, let qu be the state in H reached by reading u, i.e., qu = rH(u). For each q ∈ H , we
pick any Uq ∈ T (S) that yields q according to the table, i.e., such that row♯

t (Uq) = q. Then for a
counterexample z we have that the residual language w.r.t.Uqz does not “agree” with the residual
language w.r.t. z.

The above intuition can be formalized as follows. Let R : A∗ → OA∗ be given by R(u) = t ♯
L
(Uqu )

for all u ∈ A∗, the residual language computation. We have the following technical lemma, saying
that a counterexample z distinguishes the residual languages tL(z) and R(z).

Lemma 6.1. If z ∈ A∗ is such that LH(z) , L(z), then tL(z)(ε) , R(z)(ε).

Proof. We have
tL(z)(ε) = L(z) (definition of tL)

, LH(z) (assumption)
= (outH ◦ rH)(z) (definition of LH)
= rH(z)(ε) (definition of outH)
= qz (ε) (definition of qz )

= row♯
t (Uqz )(ε) (definition ofUqz )

= t ♯
L
(Uqz )(ε) (definitions of rowt and tL)

= R(z)(ε) (definition of R). □
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We assume thatUqε = η(ε). For a counterexample z, we then have R(ε)(z) = tL(ε)(z) , R(z)(ε).
While reading z, the hypothesis automaton passes a sequence of states qu0 , qu1 ,qu2 ,. . . ,qun , where
u0 = ϵ , un = z, and ui+1 = uia for some a ∈ A is a prefix of z. If z were correctly classified by H,
all residuals R(ui ) would classify the remaining suffix v of z, i.e., such that z = uiv , in the same
way. However, the previous lemma tells us that, for a counterexample z, this is not case, meaning
that for some suffix v we have R(ua)(v) , R(u)(av). In short, this inequality is discovered along a
transition in the path to z.

Corollary 6.2. If z ∈ A∗ is such that LH(z) , L(z), then there are u,v ∈ A∗ and a ∈ A such that
uav = z and R(ua)(v) , R(u)(av).

To find such a decomposition efficiently, Rivest and Schapire use a binary search algorithm. We
conclude with the following result that turns the above property into the elimination of a closedness
witness. That is, given a counterexample z and the resulting decomposition uav from the above
corollary, we show that, while currently row♯

t (Uqua ) = row♯
b(Uqu )(a), after adding v to E we have

row♯
t (Uqua )(v) , row♯

b(Uqu )(a)(v). (To see that the latter follows from the proposition below, note
that for all U ∈ T (S) and e ∈ E, row♯

t (U )(e) = t ♯
L
(U )(e) and for each a′ ∈ A, row♯

b(U )(a
′)(e) =

t ♯
L
(U )(a′e), by the definition of those maps.) The inequality means that either we have a closedness

defect, or there still exists someU ∈ T (S) such that row♯
t (U ) = row♯

b(Uqu )(a). In this case, the rows
row♯

t (U ) and row♯
t (Uqua ) have become distinguished by adding v , which means that the size of H

has been increased. We know that a closedness defect leads to an increase in the size of H , so in
any case we make progress.

Proposition 6.3. If z ∈ A∗ is such that LH(z) , L(z), then there are u,v ∈ A∗ and a ∈ A such that
row♯

t (Uqua ) = row♯
b(Uqu )(a) and t

♯
L
(Uqua )(v) , t ♯

L
(Uqu )(av).

Proof. By Corollary 6.2 we have u,v ∈ A∗ and a ∈ A such that R(ua)(v) , R(u)(av). This
directly yields the inequality by the definition of R. Furthermore,

rowt(Uqua ) = qua (definition ofUqua )
= rH(ua) (definition of qua )
= δH(rH(u))(a) (definition of rH)
= δH(qu )(a) (definition of qu )

= δH(row♯
t (Uqu ))(a) (definition ofUqu )

= row♯
b(Uqu )(a) (definition of δH). □

We now show how to combine this optimized counterexample processing method with the
succinct hypothesis optimization from Section 5. Recall that the succinct hypothesis S is based on a
right inverse i : H → T (S ′) of e : T (S ′) → H . Choosing such an i is equivalent to choosingUq for
each q ∈ H . We then redefine R using the reachability map of the succinct hypothesis. Specifically,
R(u) = t ♯

L
(rS(u)) for all u ∈ A∗.

Unfortunately, there is one complication. We assumed earlier thatUqε = η(ε), or more specifically
R(ε)(z) = L(z). This now may be impossible because we do not even necessarily have ε ∈ S ′. We
show next that if this equality does not hold, then there are two rows that we can distinguish by
adding z to E. Thus, after testing whether R(ε)(z) = L(z), we either add z to E (if the test fails) or
proceed with the original method.
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Proposition 6.4. If z ∈ A∗ is such thatR(ε)(z) , L(z), then row♯
t (initS) = rowt(ε) and t ♯L(initS)(z) ,

tL(ε)(z).

Proof. We have row♯
t (initS) = row♯

t (i(rowt(ε))) = rowt(ε) by the definitions of initS and i , and

t ♯
L
(i(rowt(ε)))(z) = t ♯

L
(initS)(z) (definition of initS)

= t ♯
L
(rS(ε))(z) (definition of rS)

= R(ε)(z) (definition of R)
, L(z) (assumption)
= tL(ε)(z) (definition of tL). □

To see that the original method still works, we prove the analogue of Lemma 6.1 for the new
definition of R.

Lemma 6.5. If z ∈ A∗ is such that LS(z) , L(z) and R(ε)(z) = L(z), then R(ε)(z) , R(z)(ε).

Proof. We have

R(ε)(z) = L(z) (assumption)
, LS(z) (counterexample)

= (outS ◦ r †S)(z) (definition of LS)

= (row♯
t ◦ r

†
S
)(z)(ε) (definition of outS)

= t ♯
L
(r †
S
(z))(ε) (definition of row♯

t )
= R(z)(ε) (definition of R). □

Corollary 6.6. If z ∈ A∗ is such that LS(z) , L(z) and R(ε)(z) = L(z), then there are u,v ∈ A∗
and a ∈ A such that uav = z and R(ua)(v) , R(u)(av).

Now we are ready to prove the analogue of Proposition 6.3.

Proposition 6.7. If z ∈ A∗ is such that LS(z) , L(z) and R(ε)(z) = L(z), then there are u,v ∈ A∗
and a ∈ A such that row♯

t (r
†
S
(ua)) = row♯

b(r
†
S
(u))(a) and t ♯

L
(r †
S
(ua))(v) , t ♯

L
(r †
S
(u))(av).

Proof. Let u, a, and v be as in Corollary 6.6. Thus,

t ♯
L
(r †
S
(ua))(v) = R(ua)(v) , R(u)(av) = t ♯

L
(r †
S
(u))(av).

Furthermore, since for all s ∈ S and b ∈ A we have

((row♯
t )
A ◦ δ†

S
)(s)(b) = row♯

t (δ
†
S
(s)(b))

= (row♯
t ◦ i)(rowb(s)(b)) (definition of δ†

S
)

= rowb(s)(b) (definition of i),

it follows that (row♯
t )A ◦ δS = row♯

b . Therefore,

row♯
t (r
†
S
(ua)) = row♯

t (δS(r
†
S
(u))(a)) (definition of r †

S
)

= ((row♯
t )
A ◦ δS)(r †S(u))(a)

= row♯
b(r
†
S
(u))(a). □
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Example 6.8. Recall the succinct hypothesis S from Figure 3c for the table in Figure 2a. Note that
S ′ = S cannot be further reduced. The hypothesis is based on the right inverse i : H → P(S) of
e : P(S) → H given by i(rowt(ε)) = {ε} and i(row♯

t (∅)) = ∅. This is the only possible right inverse
because e is bijective. For the prefixes of the counterexample aa we have rS(ε) = {ε} and rS(a) =
rS(aa) = ∅. Note that t ♯L({ε})(aa) = 1 while tL(∅)(a) = tL(∅)(ε) = 0. Thus, R(ε)(aa) , R(a)(a).
Adding a to E would indeed create a closedness defect.

Query complexity. Again, we measure the membership and equivalence query complexities in
terms of the number of states n of the minimal Moore automaton, the number of states t of the
minimal T -automaton, the size k of the alphabet, and the lengthm of the longest counterexample.
A counterexample now gives an additional column instead of a set of rows, and we have seen

that this leads to either a closedness defect or to two rows being distinguished. Thus, the number
of equivalence queries is still at most t , and the number of columns is still in O(t). However, the
number of rows that we need to fill using membership queries is now in O(nk). This means that a
total of O(tnk) membership queries is needed to fill the table.

Apart from filling the table, we also need queries to analyze counterexamples. The binary search
algorithm mentioned after Corollary 6.2 requires for each counterexample O(logm) computations
of R(x)(y) for varying words x and y. Let r be the maximum number of queries required for a
single such computation. Note that for u,v ∈ A∗, and letting α : TO → O be the algebra structure
on O , we have

R(u)(v) = α(T (evv ◦ tL)(Uqu ))
for the original definition of R and

R(u)(v) = α(T (evv ◦ tL)(r †S(u)))

in the succinct hypothesis case. Since the restricted map T (evv ◦ tL) : TS → TO is completely
determined by evv ◦ tL : S → O , r is at most |S |, which is bounded by n in this optimized algorithm.
For some examples (see for instance the writer automata in Section 7), we even have r = 1. The
overall membership query complexity is O(tnk + tr logm).

Dropping Consistency. We described the counterexample processing method based around Propo-
sition 6.3 in terms of the succinct hypothesis S rather than the actual hypothesisH by showing
that R can be defined using S. Since the definition of the succinct hypothesis does not rely on the
property of consistency to be well-defined, this means we could drop the consistency check from
the algorithm altogether. We can still measure progress in terms of the size of the set H , but it will
not be the state space of an actual hypothesis during intermediate stages. This observation also
explains why Bollig et al. [2009] are able to use a weaker notion of consistency in their algorithm.
Interestingly, they exploit the canonicity of their choice of succinct hypotheses to arrive at a
polynomial membership query complexity that does not involve the factor t .

7 EXAMPLES
In this section we list several examples that can be seen as T -automata and hence learned via an
instance of L⋆T . We remark that, since our algorithm operates on finite structures (recall that T
preserves finite sets), for each automaton type one can obtain a basic, correct-by-construction
instance of L⋆T for free, by just plugging the concrete definition of the monad into the abstract
algorithm. However, we note that this is not how L⋆T is intended to be used in a real-world context.
Instead, it should be seen as an abstract specification of the operations each concrete implementation
needs to perform, or, in other words, as a template for real implementations.
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For each instance below, we discuss whether certain operations admit a more efficient implemen-
tation than the basic one, based on the specific algebraic structure induced by the monad. We also
mention related algorithms from the literature. Due to our general treatment, the optimizations of
Sections 5 and 6 apply to all of these instances.

Non-deterministic automata. As discussed before, non-deterministic automata are P-automata
with a free state space, provided that O = 2 is equipped with the “or” operation as its P-algebra
structure. We also mentioned that, as Bollig et al. [2009] showed, there is a polynomial time
algorithm to check whether a given row is the join of other rows. This gives an efficient method
for handling closedness straight away. Moreover, as shown in Example 5.5, it allows for an efficient
construction of the succinct hypothesis. Unfortunately, checking for consistency defects seems to
require a number of computations exponential in the number of rows. We recall that Bollig et al.
[2009] use an ad-hoc version of consistency which cannot be easily captured in our framework.
However, as explained at the end of Section 6, we can in fact drop consistency altogether.

Universal automata. Just like non-deterministic automata, universal automata can be seen as
P-automata with a free state space. The difference, however, is that the P-algebra structure on
O = 2 is dual: it is given by the “and” rather than the “or” operation. Universal automata accept
a word when all paths reading that word are accepting. One can dualize the optimized specific
algorithms for the case of non-deterministic automata. This is precisely what Angluin et al. [2015]
have done.

Partial automata. Consider the maybe monad Maybe, given by Maybe(X ) = 1 + X , with natural
transformations having components ηX : X → 1 + X and µX : 1 + 1 + X → 1 + X defined in the
standard way. Partial automata with statesX can be represented as Maybe-automata with state space
Maybe(X ) = 1+X , where there is an additional sink state, and output algebraO = Maybe(1) = 1+ 1.
Here the left value is for rejecting states, including the sink one. The transition map δ : 1 + X →
(1 + X )A represents an undefined transition as one going to the sink state. The algorithm L⋆Maybe is
mostly like L⋆, except that implicitly the table has an additional row with zeroes in every column.
Since the monad only adds a single element to each set, there is no need to optimize the basic
algorithm for this specific case.

Weighted automata. Recall from Section 3 the free semimodule monadV , sending a setX to the free
semimodule over a finite semiring S. Weighted automata over a set of states X can be represented
as V -automata whose state space is the semimodule V (X ), the output function out : V (X ) → S
assigns a weight to each state, and the transition map δ : V (X ) → V (X )A sends each state and each
input symbol to a linear combination of states. The obvious semimodule structure on S extends to
a pointwise structure on the potential rows of the table. The basic algorithm loops over all linear
combinations of rows to check closedness and over all pairs of combinations of rows to check
consistency. This is an extremely expensive operation. If S is a field, a row can be decomposed
into a linear combination of other rows in polynomial time using standard techniques from linear
algebra. As a result, there are efficient procedures for checking closedness and constructing succinct
hypotheses. It was shown by van Heerdt et al. [2017] that consistency in this setting is equivalent
to closedness of the transpose of the table. This trick is due to Bergadano and Varricchio [1996],
who first studied learning of weighted automata.

Alternating automata. We use the characterization of alternating automata due to Bertrand
[2017]. Recall that, given a partially ordered set (P , ≤), an upset is a subsetU of P such that, if x ∈ U
and x ≤ y, then y ∈ U . Given Q ⊆ P , we write ↑Q for the upward closure of Q , that is the smallest
upset of P containingQ . We consider the monad A that maps a set X to the set of all upsets of P(X ).
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Its unit is given by ηX (x) =↑{{x}} and its multiplication by
µX (U ) = {V ⊆ X | ∃W ∈U ∀Y ∈W ∃Z ∈Y Z ⊆ V }.

The sets of sets in A(X ) can be seen as DNF formulae over elements ofX , where the outer powerset is
disjunctive and the inner one is conjunctive. Accordingly, we define an algebra structure β : A(2) → 2
on the output set 2 by letting β(U ) = 1 if {1} ∈ U , 0 otherwise. Alternating automata with states X
can be represented as A-automata with state space A(X ), output map out : A(X ) → 2, and transition
map δ : A(X ) → A(X )A, sending each state to a DNF formula over X . The only difference with the
usual definition of alternating automata is that A(X ) is not the full set PP(X ), which would not
give a monad in the desired way. However, for each formula in PP(X ) there is an equivalent one in
A(X ).

An adaptation of L⋆ for alternating automata was introduced by Angluin et al. [2015] and further
investigated by Berndt et al. [2017]. The former found that given a row r ∈ 2E and a set of rows
X ⊆ 2E , r is equal to a DNF combination of rows from X (where logical operators are applied
component-wise) if and only if it is equal to the combination defined by

Y = {{x ∈ X | x(e) = 1} | e ∈ E ∧ r (e) = 1}.
In our setting, we can reuse this idea to efficiently find closedness defects and to construct the
hypothesis. Notice that, even though the monad A formally requires the use of DNF formulae
representing upsets, in the actual implementation we can use smaller formulae, e.g., Y above
instead of its upward closure. In fact, it is easy to check that DNF combinations of rows are
invariant under upward closure. As with non-deterministic and universal automata, we do not
know of an efficient way to ensure consistency. As in the existing algorithms mentioned above, we
could drop it altogether.

Writer automata. The examples considered so far involve existing classes of automata. To further
demonstrate the generality of our approach, we introduce a new (as far as we know) type of
automaton, which we call writer automaton.

The writer monad Writer(X ) = M × X for a finite monoidM has a unit ηX : X → M × X given
by adding the unit e of the monoid, ηX (x) = (e,x), and a multiplication µX : M ×M × X → M × X
given by performing the monoid multiplication, µX (m1,m2,x) = (m1m2,x). In Haskell, the writer
monad is used for such tasks as collecting successive log messages, where the monoid is given by
the set of sets or lists of possible messages and the multiplication adds a message.
The algebras for this monad are sets Q equipped with anM-action. One may take the output

object to be the setM with the monoid multiplication as its action. Writer-automata with a free
state space can be represented as deterministic automata that have an element of M associated
with each transition. The semantics of these is that the encounteredM-elements multiply along
paths and finally multiply with the output of the last state to produce the actual output.
The basic learning algorithm is already of polynomial time complexity. In fact, to determine

whether a given row is a combination of rows in the table, i.e., whether it is given by a monoid
value applied to one of the rows in the table, one simply tries all of these values. This allows us
to check for closedness, to minimize the generators, and to construct the succinct hypothesis, in
polynominal time. Consistency involves comparing all ways of applying monoid values to rows
and, for each comparison, at most |A| further comparisons between one-letter extensions. The total
number of comparisons is clearly polynomial in |M|, |S | and |A|.

8 IMPLEMENTATION
We have implemented the general L⋆T algorithm in Haskell, taking full advantage of the monads
provided by its standard library. Apart from the high-level implementation, our library provides
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• a basic implementation for weighted automata over a finite semiring, with a polynomial time
variation for the case where the semiring is a field5;
• an implementation for non-deterministic automata that has polynomial time implementations
for ensuring closedness and constructing the hypothesis, but not for ensuring consistency;
• a variation on the previous algorithm that uses the notion of consistency defined by Bollig
et al. [2009];
• instantiations of the basic algorithm to the monad being (−)+E, for E a finite set of exceptions,
and Writer, both of which result in polynomial time algorithms;

In this section we describe the main structure and ingredients of our library. After recalling monads
in Haskell in Section 8.1, we start with the formalization of automata in Section 8.2. We then
introduce teachers in Section 8.3 before exploring the actual learning algorithm in Section 8.4. We
give details for the non-deterministic and weighted case, whose monads deserve a closer analysis.

8.1 Monads
We note that a monad in Haskell is specified as a Kleisli triple (T ,η, (−)♯), where T assigns to every
set X a set TX , η consists of a component ηX : X → TX for each set X , and (−)♯ provides for each
function f : X → TY an extension f ♯ : TX → TY . These need to satisfy

f ♯ ◦ η = f η♯ = id (д♯ ◦ f )♯ = д♯ ◦ f ♯ .

Kleisli triples are in a one-to-one correspondence with monads. On both sides of this correspondence
we have the same T and η, which for a Kleisli triple are turned into a functor with a natural
transformation by setting T f = (η ◦ f )♯ . Furthermore, (−)♯ and µ are obtained from each other
by f ♯ = µ ◦ T f and µ = id♯ . Indeed, under this correspondence the (−)♯ operation is a specific
instance of the extension operation defined for a monad, with the T -algebra codomain restricted
to free T -algebras. In Haskell, the η of the Kleisli triple is written return, and, given f : X → TY
and x ∈ TX , f ♯(x) is written x >>= f and referred to as the bind operation. Furthermore, for any
f : X → Y , T f is given by fmap f.
Some basic Set monads cannot directly be written down in Haskell because their definition

can only be given on types equipped with an equality check, or, for reasons of efficiency, a total
order. For example, the Set type provided by Data.Set comes with a union function that has the
following signature:
union :: Ord a => Set a -> Set a -> Set a

One will have to use unions in one way or another in defining the bind of the powerset monad.
However, since this bind needs to be of type
(>>=) :: Set a -> (a -> Set b) -> Set b

and does not assume an Ord instance on b, the powerset monad cannot be defined in this way.
One solution is to delay the monadic computations in a wrapper type whose constructors are

used to define a monad instance: the free monad. Specifically, we endow the freer monad of Kiselyov
and Ishii [2015] with a constraint parameter:
data CFree c m a where

Return :: a -> CFree c m a
Bind :: (c b) => m b -> (b -> CFree c m a) -> CFree c m a

5 Despite the assumption in the present paper that the monad preserves finite set, our implementation can learn weighted
automata over infinite fields and thus implements the general algorithm introduced by Bergadano and Varricchio [1996],
which was studied in a categorical context by Jacobs and Silva [2014] and van Heerdt et al. [2017].
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Such a constrained free monad was first defined by George Giorgidze, but only for the specific
case where m is Set and c is Ord.6 On the constrained free monad we can define a complete Monad
instance:
instance Monad (CFree c m) where

return = Return
f >>= g = case f of

Return a -> g a
Bind s h -> s `Bind` (h >=> g)

This is the same code as used by Kiselyov and Ishii [2015], but we note that on the last line, since
s is the first argument of Bind in f, we know that the appropriate constrained needed to invoke
Bind on the right-hand side, with again s as its first argument, is satisfied.

Finally, if there is a monad that is defined only on types satisfying a certain constraint, then we
can convert from our free monad type with that constraint back to the actual “monad”:
class ConstrainedMonad c m | m -> c where

constrainedReturn :: (c a) => a -> m a
constrainedBind :: (c a, c b) => m b -> (b -> m a) -> m a

unCFree :: (ConstrainedMonad c m, c a) => CFree c m a -> m a
unCFree f = case f of

Return a -> constrainedReturn a
Bind s g -> s `constrainedBind` (unCFree . g)

Note that operations such as equality checks for CFree c m use unCFree to delegate the operation
to whatever is defined for m. This means that in code that abstracts from the monad we seem to be
working with m as a monad.

As an example, the Set “monad” becomes
instance ConstrainedMonad Ord Set where

constrainedReturn = Set.singleton
s `constrainedBind` f = Set.unions [f a | a <- Set.toList s]

We may then use CFree Ord Set as the monad.
To implement the free semimodule monad in Haskell, we use the Map type from Data.Map. Note

that the monad will be defined in the first argument for that type, so we need to create an auxiliary
type to swap the arguments.
newtype Linear s k = Linear {fromLinear :: Map k s}

Defining the monad again requires Ord constraints.
instance (Semiring s, Eq s) => ConstrainedMonad Ord (Linear s) where

constrainedReturn a = Linear $ Map.singleton a mempty
l `constrainedBind` f = Linear .

foldl' (\m (k, s) -> ladd m . lscale s . fromLinear $ f k) Map.empty .
Map.toList . lminimize $ fromLinear l

The function lscale scales a map by an element from the semiring; ladd adds two maps together.
Both operations are pointwise. The monad we can use is CFree Ord (Linear s).

8.2 Automata
We model an automaton as a simple deterministic automaton.
6https://hackage.haskell.org/package/set-monad-0.2.0.0

https://hackage.haskell.org/package/set-monad-0.2.0.0
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data Aut a o q = Aut {
initial :: q,
delta :: q -> a -> q,
out :: q -> o }

For such automata, we can easily implement reachability and language functions, as well as
bisimulation. Bisimulation is used to realize exact equivalence queries for the teachers that hold an
automaton accepting the language to be learned. To optimize for the monad in the same way the
learning algorithm is optimized, we use bisimulation up to context [Rot et al. 2013; Sangiorgi 1998].
bisimT :: (Eq o) => ((t q, t r) -> [(t q, t r)] -> Bool) ->

[a] -> Aut a o (t q) -> Aut a o (t r) -> Maybe [a]

Here t represents the monad that we optimize for. Up to context means that, when considering a
pair p :: (t q, t r) of next states and the current relation b :: [(t q, t r)], the pair p does
not need to be added to the relation if it can be obtained as a combination of the elements of b,
using the free algebra structures of t q and t r. The first argument of bisimT is a function that
should determine this. Because of this abstraction, we do not actually need to constrain t to be a
monad here. For the Identity monad, one can simply use elem as the first argument. The second
argument is the alphabet.

Succinct automata optimized by a monad t enjoy a more concrete representation involving maps.
data SAut t a o q = SAut {

sinitial :: t q,
sdelta :: Map q (Map a (t q)),
sout :: Map q o }

This is the type of the automata that the L⋆T implementation learns. The concrete representation
allows the automaton to be displayed and exported. Of course, one can determinize a succinct
automaton using t-algebras for a -> t q and o.
det :: (Monad t, Ord q, Ord a) =>

Alg t (a -> t q) -> Alg t o -> SAut t a o q -> Aut a o (t q)

The type Alg t x is defined to be t x -> x. We allow an arbitrary algebra on a -> t q rather
than assuming the component t (a -> t q) -> a -> t (t q) of the distributive law used in
earlier sections because this allows us to run the delayed monadic computations discussed earlier,
which would otherwise pile up and cause serious performance issues.

8.3 Teaching
A teacher in our implementation is an object that comprises membership and equivalence functions.
It also records the alphabet.
data Teacher s a o q = Teacher {

membership :: [a] -> s o,
equivalence :: Aut a o q -> s (Maybe [a]),
alphabet :: [a] }

Teacher objects are parameterized by a monad s that serves a different purpose than optimizing
the learning algorithm: it is the monad of side-effects allowed by the implementation of queries.
Whereas the Identity monad suffices for a predefined automaton, one may have to use the IO
monad to interact with an actual black-box system. By allowing an arbitrary monad rather than
assuming the IO monad, we are able to build features such as query counters and a cache on top
of any teacher through the use of monad transformers. A monad transformer provides for any
monad a new monad into which the original one can be embedded. For example, the StateT x s
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monad adds a state with values in x to an existing monad s. This is the transformer that enables
the addition of query counters and a cache to a teacher:
countTeacher :: (Monad s) =>

Teacher s a o q -> Teacher (StateT (Int, Int) s) a o q
cacheTeacher :: (Monad s, Ord a) =>

Teacher s a o q -> Teacher (StateT (Map [a] o) s) a o q

Themost basic teacher holds an automaton that it uses to determine membership and equivalence,
the latter of which is implemented through bisimulation.
autTeacherT :: (Monad s, Eq o) => ((t q, t r) -> [(t q, t r)] -> Bool) ->

[a] -> Aut a o (t q) -> Teacher s a o (t r)

It implements a Teacher for any monad s because it does not have any side-effects.
We also provide a teacher that implements equivalence queries through random testing.

randomTeacher :: (Monad s, Eq o) => Int -> State StdGen [a] ->
[a] -> ([a] -> s o) -> Teacher (StateT StdGen s) a o q

Its first argument is the number of tests per equivalence query, while the second argument samples
test words: StdGen is a random number generator. Oncemorewe use the StateTmonad transformer,
in this case to add a random number generator state to the monad s that the membership query
function, which is the last argument, may use. This query function is used both for membership
queries and for generated test queries. Note that this particular teacher does not give any guarantees
on the validity of positive responses to equivalence queries. We do also provide the random sampling
teacher suggested by Angluin [1987], which guarantees that on a positive answer the hypothesis is
probably approximately correct, a notion introduced by Valiant [1984].
pacTeacher :: (Monad s, Eq o) => Double -> Double -> State StdGen [a] ->

[a] -> ([a] -> s o) -> Teacher (StateT (Int, StdGen) s) a o q

Here the first argument is the accuracy ϵ , while the second one is the confidence ∂. Both should
be values between 0 and 1. If d : A∗ → [0, 1] is the distribution represented by the third argu-
ment (converting between Haskell types and sets for convenience) and l1, l2 : A∗ → O are the
languages of the hypothesis and the target, the guarantee is that, with probability at least 1 − ∂,∑
u ∈A∗,l1(u),l2(u) d(u) ≤ ϵ . Compared to randomTeacher, an Int has been added to the state because

the number of tests depends on the number of equivalence queries that have already been asked.

8.4 Learning
We define a Learner type that allows us to switch between variations on L⋆T and to optimize certain
specific procedures.
data Learner t a o = Learner {

decomposeRow :: ObservationTable a o -> [[a]] -> [o] -> Maybe (t [a]),
consistencyDefect :: Maybe (ObservationTable a o -> Maybe [a]),
ceh :: CEHandler }

The function decomposeRow takes an observation table, a list of labels l, and a row r, and determines
whether r can be obtained as a combination of the rows with labels in l. If this is the case, it returns
the combination, which has type t [a]. This function is used to check closedness, to minimize the
labels used as states for the hypothesis, and to construct the hypothesis. If consistencyDefect
is set to Nothing, it indicates that consistency should be solved by solving closedness for what
we call the transpose of the table (swapping S and E and reversing their words while considering
the reverse of the target language as the target language); otherwise, it contains a function that
given an observation table produces a new column to fix one of its consistency defects, unless
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the table is already consistent. Solving closedness for the transpose of the table always ensures
consistency, but in general it may add more columns than necessary. Lastly, CEHandler is a type
that enumerates our adaptations of the three counterexample handling methods: the original one
by Angluin [1987], the one by Maler and Pnueli [1995], and the one by Rivest and Schapire [1993].

To enable basic implementations of decomposeRow and consistencyDefect that work for any
monad T (preserving finite sets), we need to be able to loop over the values of TS . In order to
facilitate this, there is a class Concrete f whose only member function turns a list of values of
any type into a list of values with type f applied to that type. It is intended to be the concrete
application of a functor to a set (represented as a list). We provide the functions lazyDecomposeRow
and lazyConsistencyDefect, both conditioned with a Concrete t constraint, which directly
enable a basic version of the learning algorithm.
To optimize the algorithm in a specific setting, a programmer only has to adjust these two

functions. We provide such optimized functions for the cases of non-deterministic and weighted au-
tomata (over a field). Regarding the former case, we provide crfsaDecompose and scrfsaDecompose,
which are essentially the right inverses corresponding to the canonical and simplified canonical
RFSA, respectively, as explained in Example 5.5. Our optimized weighted algorithm uses Gauss-
ian elimination in a function called gaussianDecomposeRow and solves consistency by solving
closedness for the transpose of the table, a method readily available regardless of the monad.
Enabling our adaptation of the counterexample handling method due to Rivest and Schapire

requires an additional condition. Recall that this method requires us to pose membership queries
for combinations of words, which can be done by extending the membership query function (the
language) of type [a] -> o to one of type t [a] -> o using the algebra structure defined on o.
However, our membership query function actually has type [a] -> s o, and there is no reason
to assume any interaction between s and t. As a workaround, we will assume an instance of
Supported for the monad t, where Supported is a class defined as follows:
class Supported f where

supp :: (Ord a) => f a -> [a]

Given any u :: f a and g :: a -> b, we require supp u to be such that the computation of
fmap g u only evaluates g on the elements of supp u. Naturally, we want supp u to be as small as
possible: it should contain exactly those elements of type a that are present in u. As an example,
recall that the free semimodule monad with values in a semiring s can be defined on a type a as
Map a s, where we identify a missing value for an element with that element being assigned zero.
Given u :: Map a s, supp u is given by the keys of the map u that are assigned a non-zero value.

Using the instance for a monad t, the membership query function can be extended by querying
the words in the support of a given element of t [a] sequentially, constructing a partial membership
query function defined only on that support, and evaluating the extension of that function. This
method works because we assume that the side-effects exhibited by s do not influence future
membership queries.

Finally, our general L⋆T implementation has the following signature:
lStarT :: (Monad s, Monad t, Supported t, Ord a, Eq o) =>

Alg t (a -> t [a]) -> Alg t o ->
Teacher s a o (t [a]) -> Learner t a o -> s (SAut t a o [a])

9 EXPERIMENTS
In this section we analyze the performance, in terms of number of queries, of several variations of
our algorithm by running them on randomly generated WFAs, NFAs, and plain Moore automata.
Our aim is to show the effect of exploiting the right monad and of using our adapted optimized
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Fig. 5. L⋆ variations on random DFAs.

counterexample handling method. The experiments are run using the implementation discussed
in Section 8. In all cases we use an alphabet of size 3. Random Moore automata are generated by
choosing for each state an output and further for each input symbol a next state using uniform
distributions. The WFAs are over the field of size 5. Here the outputs are chosen in the same way,
and for each pair of states and each input symbol, we create a transition symbol from the first to
the second state with a random weight chosen uniformly. We take the average of 100 iterations
for each of the sizes for which we generate automata. Membership query results in tables will
be rounded to whole numbers. We use bisimulation to find counterexamples in all experiments,
exploiting the fact that the target automaton will be known. We cache membership queries so that
the counts exclude duplicates.
For reference, Figure 5 compares L⋆ and the two counterexample handling variations by Maler

and Pnueli (denoted MP) and by Rivest and Schapire (denoted RS), on randomly generated DFAs of
size 20 through 200 with increments of 20. Compared to L⋆, both L⋆MP and L⋆RS remove the need for
consistency checks. Interestingly, whereas L⋆RS compared to L⋆ improves in membership queries
and worsens in equivalence queries, the situation is reversed for L⋆MP.

9.1 L⋆V
In Table 1 we compare the performance of L⋆ with that of L⋆V . (Recall thatV is the free vector space
monad.) Here L⋆ is the obvious generalization of the original L⋆ algorithm to learnMoore automata—
DFAs with outputs in an arbitrary set, which here is the field with five elements. Thus, as opposed
to L⋆V , L

⋆ ignores the vector space structure on the output set. In both cases we consider the three
different counterexample handling methods. The algorithms are run on randomly generated WFAs
of sizes 1 through 4. As expected, each L⋆V variation provides a massive gain over the corresponding
L⋆ variation in terms of membership queries, and a more modest one in terms of equivalence

MQs EQs
Size L⋆ L⋆V L⋆MP L⋆V

MP L⋆RS L⋆V
RS L⋆ L⋆V L⋆MP L⋆V

MP L⋆RS L⋆V
RS

1 10 4 10 4 10 4 1.00 1.00 1.00 1.00 1.00 1.00
2 105 15 154 15 104 11 1.86 1.73 1.86 1.73 1.86 1.73
3 845 27 1003 27 844 24 2.84 2.10 2.16 2.14 3.00 2.81
4 5570 50 7904 50 5567 40 3.71 2.88 2.90 2.83 3.97 3.78

Table 1. L⋆ variations and L⋆V variations on random WFAs.
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Fig. 6. L⋆V variations and L⋆ on random Moore automata.
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Fig. 7. L⋆V variations on random WFAs.

queries. Comparing the results of the L⋆ variations, we see that the membership query results
of L⋆ and L⋆RS are extremely close together. Other than that, the ordering of the counterexample
handling methods is the same as with the DFA experiments. The L⋆V variations will be compared in
more detail later.

Now we run L⋆ and variations of L⋆V on randomly generated Moore automata of sizes 5 through
50 with increments of 5. We chose to compare the L⋆V variations only to L⋆ because of its average
performance in between L⋆MP and L⋆RS as seen in Figure 5. The results are shown in Figure 6. We see
that, in terms of membership queries, both RS and MP counterexample handling methods improve
over the one by Angluin in this setting, and MP performs best in terms of either query type. In these
experiments, L⋆ performs much better than the algorithms that attempt to take advantage of the
non-existent vector space structure. Together with the results in Table 1, this is consistent with the
findings of Angluin et al. [2015]: they found that for DFAs and non-deterministic, universal, and
alternating automata, the adaptation of L⋆ that takes advantage of the exact type of structure of
the randomly generated target automata performs the best.
Figure 7 illustrates the performance of L⋆V variations on randomly generated WFAs. Here we

generated WFAs of sizes 5 through 30 with increments of 5. We emphasize that in Table 1 we could
not go beyond size 4, because of performance issues with L⋆. There is hardly any difference between
the use of Angluin’s counterexample handling method and MP, neither in terms of membership
queries, nor in terms of equivalence queries. Interestingly, while the RS method performs worse
than the other methods in terms of equivalence queries, as usual, it provides no significant gain in
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MQs EQs
Size L⋆ NL⋆MP NL⋆MP− NL⋆RS NL⋆RS− L⋆ NL⋆MP NL⋆MP− NL⋆RS NL⋆RS−

4 138 79 82 55 54 3.75 3.01 3.64 3.59 4.64
8 1792 666 729 389 381 10.38 6.52 8.83 9.37 14.10
12 11130 2467 2701 1331 1286 18.93 11.08 14.92 17.88 27.61
16 38256 5699 6240 3036 2999 28.81 15.75 22.59 27.29 45.53

Table 2. L⋆ and NL⋆ variations on random NFAs.

terms of membership queries. We ran these experiments also with the variations on the MP and RS
algorithms where we drop the consistency checks. In both cases the differences were negligible.

9.2 NL⋆

We now consider learning algorithms for NFAs. To generate random NFAs, we use the strategy
introduced by Tabakov and Vardi [2005] with a transition density of 1.25, meaning that for each
input symbol there are on average 1.25 transitions originating from each state. According to
Tabakov and Vardi, this density results in the largest equivalent minimal DFAs. Like Tabakov and
Vardi, we let half of the states be accepting. We ran several variations of L⋆ and NL⋆ on randomly
generated NFAs of sizes 4 through 16 with increments of 4. The results are shown in Table 2.
Here NL⋆MP refers to the original algorithm by Bollig et al. [2009], with their notion of consistency;
NL⋆RS is the same algorithm, but using the counterexample handling method that we adapted from
Rivest and Schapire’s. The variations NL⋆MP- and NL⋆RS- drop the consistency checks altogether.
Unfortunately, doing the full consistency check was not computationally feasible. As expected, the
NL⋆ algorithms yield a great improvement over L⋆ in terms of membership queries, and in most
cases they also improve in terms of equivalence queries. This was already observed by Bollig et
al. The exception is NL⋆RS-, which, despite having the best membership query results, requires by
far the most equivalence queries. As happened to L⋆ on DFAs, switching within NL⋆ from the MP
to the RS counterexample handling method improves the performance in terms of membership
queries and worsens it in terms of equivalence queries. Dropping consistency altogether turns out
to increase both query numbers.

10 CONCLUSION
We have presented L⋆T , a general adaptation of L⋆ that uses monads to learn an automaton with
algebraic structure, as well as a method for finding a succinct equivalent based on its generators.
Furthermore, we adapted the optimized counterexample handling method of Rivest and Schapire
[1993] to this setting and discussed instantiations to non-deterministic, universal, partial, weighted,
alternating, and writer automata. We have provided a prototype implementation in Haskell, using
which we obtained experimental results confirming that exploiting the algebraic structure reduces
the number of queries posed. The results also reveal that the best counterexample handling method
depends on the type of automata considered and the algebraic structure exploited by the algorithm.
We found that there is a significant gain in membership queries compared to the NL⋆ algorithm
by Bollig et al. [2009] when using our adapted optimized counterexample handling method.

Related Work. This paper builds on and extends the theoretical toolkit of van Heerdt [2016]; van
Heerdt et al. [2017], who are developing a categorical automata learning framework (CALF) in
which learning algorithms can be understood and developed in a structured way.
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An adaptation of L⋆ that produces NFAs was first developed by Bollig et al. [2009]. Their algorithm
learns a special subclass of NFAs consisting of RFSAs, which were introduced by Denis et al. [2002].
Angluin et al. [2015] unified algorithms for NFAs, universal automata, and alternating automata,
the latter of which was further improved by Berndt et al. [2017]. We are able to provide a more
general framework, which encompasses and goes beyond those classes of automata. Moreover, we
study optimized counterexample handling, which Angluin et al. [2015]; Berndt et al. [2017]; Bollig
et al. [2009] do not consider.

The algorithm for weighted automata over a (not necessarily finite) field was studied in a category
theoretical context by Jacobs and Silva [2014] and elaborated on by van Heerdt et al. [2017]. The
algorithm itself was introduced by Bergadano and Varricchio [1996]. The present paper provides
the first, correct-by-construction implementation of the algorithm. The theory of succinct automata
used for our hypotheses is based on the work of Arbib and Manes [1975], revamped to more recent
category theory.
Our library is currently a prototype, which is not intended to compete with a state-of-the-art

tool such as LearnLib [Isberner et al. 2015] or other automata learning libraries like libalf [Bollig
et al. 2010]. Our Haskell implementation does not provide the computational efficiency achieved
by LearnLib, which furthermore includes the TTT-algorithm with its optimized data structure that
replaces the observation table by a tree [Isberner et al. 2014]. Such optimization is ad-hoc for DFAs,
and an extension to other classes of automata is not trivial. First steps in this direction have been
done by [van Heerdt et al. 2017], who have studied the tree data structure in a more general setting.
We intend to further pursue investigation in this direction, in order to allow for optimized data
structures in a future version of our library. We note that, although libalf supports NFAs, none of
the existing tools and libraries offers the flexibility of our library, in terms of available optimizations
and classes of models that can be learned.

Future Work. Whereas our general algorithm effortlessly instantiates to monads that preserve
finite sets, a major challenge lies in investigating monads that do not enjoy this property. In fact,
although the algorithm for weighted automata generalizes to an infinite field [Jacobs and Silva 2014;
van Heerdt et al. 2017], for an infinite semiring in general we cannot guarantee termination. This is
because a finitely generated semimodule may have an infinite chain of strict submodules. Intuitively,
this means that while fixing closedness defects increases the size of the hypothesis state space
semimodule, an infinite number of steps may be needed to resolve all closedness defects. There are
however subclasses of semirings for which a generalization should be possible, e.g., Noetherian
or, more generally, proper semirings, which were recently studied by Milius [2017]. Moreover, we
expect that L⋆T can be generalized from the category of sets to locally finitely presentable categories.
As a result of the correspondence between learning and conformance testing [Berg et al. 2005;

van Heerdt et al. 2017], it should be possible to include in our framework the W-method [Chow
1978], which is often used in case studies deploying L⋆ [e.g., Chalupar et al. 2014; de Ruiter and
Poll 2015]. We defer a thorough investigation of conformance testing to future work.
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A OMITTED PROOFS
Proposition 3.11. The minimal Moore automaton accepting L is finite if and only if the minimal
T -automaton accepting L is finite.

Proof. The left to right implication is proved by freely generating aT -automaton from theMoore
one via the monad unit, and by recalling that T preserves finite sets. The resulting T -automaton
accepts L and is finite, therefore any of its quotients, including the minimalT -automaton accepting
L, is finite. Analogously, the right to left implication follows by forgetting the algebraic structure
of the T -automaton: this yields a finite Moore automaton accepting L. □

Proposition 5.3. Any succinct hypothesis ofH accepts the same language as H.

Proof. Assume a right inverse i : H → T (S ′) of e : T (S ′) → H . We first prove oH ◦ e = oS, by
induction on the length of words. For allU ∈ T (S ′), we have

oH(e(U ))(ε) = outH(e(U )) (definition of oH)

= outH(row♯
t (U )) (definition of e)

= row♯
t (U )(ε) (definition of outH)

= outS(U ) (definition of outS)
= oS(U )(ε) (definition of oS).

Now assume that for a given v ∈ A∗ and allU ∈ T (S ′) we have oH(e(U ))(v) = oS(U )(v). Then, for
allU ∈ T (S ′) and a ∈ A,

oH(e(U ))(av) = oH(δH(e(U ))(a))(v) (definition of oH)

= oH(δH(row♯
t (U ))(a))(v) (definition of e)

= oH(row♯
b(U )(a))(v) (definition of δH)

= (oH ◦ e ◦ i)(row♯
b(U )(a))(v) (e ◦ i = idH )

= (oS ◦ i)(row♯
b(U )(a))(v) (induction hypothesis)

= oS(δS(U )(a))(v) (definition of δS)
= oS(U )(av) (definition of oS).

From this we see that
oS(initS) = (oS ◦ i ◦ rowt)(ε) (definition of initS)

= (oH ◦ e ◦ i ◦ rowt)(ε) (oH ◦ e = oS)
= (oH ◦ rowt)(ε) (e ◦ i = idH )
= oH(initH) (definition of initH). □

Proposition 5.4. The following algorithm returns a minimal set of generators for the table:

S ′← S

while there are s ∈ S ′ andU ∈ T (S ′ \ {s}) s.t. row♯
t (U ) = rowt(s)

S ′← S ′ \ {s}
return S ′

Proof. Minimality is obvious, as S ′ not being minimal would make the loop guard true.
We prove that the returned set is a set of generators. For clarity, we denote by dS ′ : S → T (S ′) the

function associated with a set of generators S ′. The main idea is incrementally building dS ′ while
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building S ′. In the first line, S is a set of generators, with dS = ηS : S → T (S). For the loop, suppose
S ′ is a set of generators. If the loop guard is false, the algorithm returns the set of generators S ′.
Otherwise, suppose there are there are s ∈ S ′ and U ∈ T (S ′ \ {s}) such that row♯

t (U ) = rowt(s).
Then there is a function

f : S ′→ T (S ′ \ {s}) f (s ′) =
{
U if s ′ = s
η(s ′) if s ′ , s

that satisfies rowt(s ′) = row♯
t (f (s ′)) for all s ′ ∈ S ′, from which it follows that row♯

t (U ′) =
row♯

t (f ♯(U ′)) for all U ′ ∈ T (S ′). Then we can set dS ′\{s } to f ♯ ◦ dS ′ : S → T (S ′ \ {s}) because
rowt(s ′) = row♯

t (dS ′\{s }(s ′)) for all s ′ ∈ S . Therefore, S ′ \ {s} is a set of generators. □
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