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Abstract
Aim: Understanding broad-scale ecological patterns and processes is necessary if we 
are to mitigate the consequences of anthropogenically driven biodiversity degrada-
tion. However, such analyses require large datasets and current data collation meth-
ods can be slow, involving extensive human input. Given rapid and ever-increasing 
rates of scientific publication, manually identifying data sources among hundreds of 
thousands of articles is a significant challenge, which can create a bottleneck in the 
generation of ecological databases.
Innovation: Here, we demonstrate the use of general, text-classification approaches 
to identify relevant biodiversity articles. We apply this to two freely available example 
databases, the Living Planet Database and the database of the PREDICTS (Projecting 
Responses of Ecological Diversity in Changing Terrestrial Systems) project, both of 
which underpin important biodiversity indicators. We assess machine-learning classi-
fiers based on logistic regression (LR) and convolutional neural networks, and identify 
aspects of the text-processing workflow that influence classification performance.
Main conclusions: Our best classifiers can distinguish relevant from non-relevant ar-
ticles with over 90% accuracy. Using readily available abstracts and titles or abstracts 
alone produces significantly better results than using titles alone. LR and neural net-
work models performed similarly. Crucially, we show that deploying such models on 
real-world search results can significantly increase the rate at which potentially rel-
evant papers are recovered compared to a current manual protocol. Furthermore, 
our results indicate that, given a modest initial sample of 100 relevant papers, high-
performing classifiers could be generated quickly through iteratively updating the 
training texts based on targeted literature searches. These findings clearly demon-
strate the usefulness of text-mining methods for constructing and enhancing ecologi-
cal datasets, and wider application of these techniques has the potential to benefit 
large-scale analyses more broadly. We provide source code and examples that can be 
used to create new classifiers for other datasets.
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1  | INTRODUC TION

Substantial anthropogenic change is degrading the natural world, 
creating an urgent need to understand the drivers and consequences 
of biodiversity loss to inform mitigation strategies (IPBES, 2019; 
WWF, 2020). For example, monitoring progress towards interna-
tional conservation policy objectives, such as the Aichi Biodiversity 
Targets (CBD, 2010), requires the reliable, accurate and rapid track-
ing of changes in the state of nature (Collen & Nicholson,  2014; 
Walpole et al., 2009). Currently, collating data for such analyses is 
a time-consuming and largely manual process (Collen et  al.,  2009; 
Hudson et al., 2014), typically involving literature searches, manual 
screening of titles and abstracts for relevance, assessment of data 
quality, liaising with study authors to obtain data when necessary 
and entering usable data into the database. Estimates from other 
fields, such as medical systematic reviews, suggest that an experi-
enced reviewer may take between 30 s and several minutes to assess 
an abstract (O’Mara-Eves et al., 2015). The annual rate of publication 
of scientific papers is growing at 8–9% per year (Landhuis, 2016) and 
over 15,500 ecology-related papers were indexed in Web of Science 
in 2019. Manually creating and updating ecological databases will 
therefore become ever more laborious (Ananiadou et  al.,  2009; 
Cohen et  al.,  2012). If current data-collection techniques cannot 
keep pace, large portions of relevant, available data might not be in-
corporated, potentially leading to suboptimal and potentially biased 
outputs that could not only hinder scientific progress (Nunez-Mir 
et al., 2016) but may misinform policy makers.

Combining text-mining and machine-learning approaches has 
the potential to substantially increase the rate of data discovery 
and database growth. These techniques have so far had relatively 
limited use in the biological sciences (Nunez-Mir et  al.,  2016), but 
evaluations in the context of producing medical systematic reviews 
show that they can classify accurately and save time (O’Mara-Eves 
et  al.,  2015), and can even correct human error (Bannach-Brown 
et al., 2019). Within ecology, Roll et al.  (2018) recently used auto-
mated content analysis and artificial neural networks to accurately 
determine whether texts associated with the term ‘reintroduction’ 
were linked to conservation biology or another topic, and recom-
mended further use of text mining and machine learning in con-
servation to better inform policy and management practices (Roll 
et al., 2018).

In this paper, we demonstrate how text classifiers trained 
through supervised machine-learning can identify papers containing 
ecological data, applying the approach to two high-profile biodiver-
sity indicator databases as examples. The Living Planet Database 
(LPD: http://livin​gplan​etind​ex.org/data_portal) contains population 
time-series data on over 4,000 vertebrate species collected from 
over 25,000 populations and is used to produce the Living Planet 

Index (LPI: Collen et al., 2009; Loh et al., 2005; McRae et al., 2017), 
one of the most widely used indicators of biodiversity (Mace & 
Baillie, 2007). The database of the PREDICTS (Projecting Responses 
of Ecological Diversity in Changing Terrestrial Systems) project 
(Hudson et al., 2017) collates ecological assemblage data from ter-
restrial sites worldwide that face different pressures relating to 
land-use change. More than 50,000 taxa and over 32,000 sites are 
included and from this the global status of a range of indicators, in-
cluding the Biodiversity Intactness Index (BII: Scholes & Biggs, 2005), 
can be calculated (Newbold et al., 2016; Purvis et al., 2018). Both 
indicators have been used widely in high-profile reports, such as the 
IPBES (Intergovernmental Science-Policy Platform on Biodiversity 
and Ecosystem Services) Global Assessment (IPBES, 2019) and the 
Living Planet Report (WWF, 2020). By tuning our workflow on LPD 
data and then applying this to PREDICTS, we illustrate the generality 
of our approach, which can be applied to any (ecological) database 
created using data extracted from literature sources.

Given the variety of text classifiers available (Khan et al., 2010; 
Kotsiantis et  al.,  2007), we compare the performance of easy-to-
create logistic regression (LR) to ‘black-box’ neural networks, which 
can capture complex, nonlinear, non-additive relationships (LeCun 
et  al.,  2015). Furthermore, we identify aspects of text processing 
(e.g., ‘stop word’ removal) that influence the performance of classifi-
cation models—a facet of methodology that can significantly affect 
performance but is often overlooked (Ananiadou et al., 2009; Uysal 
& Gunal, 2014). Specifically, we address the following questions:

1.	 Can automated text-classifiers accurately identify papers that 
are relevant to ecological datasets?

2.	 Which aspects of text processing influence the performance of 
automated classifiers?

3.	 Are there trade-offs, in relation to performance and scrutability, 
when comparing state-of-the-art ‘black-box’ neural networks to 
simpler, more tractable LR classifiers?

4.	 Can the application of these models increase the rate at which 
relevant literature is identified?

2  | METHODS

2.1 | Data

The use of full-text articles can be preferable in terms of accuracy 
(Westergaard et al., 2018), but restricts the number of documents on 
which a classifier can be trained and subsequently applied. We there-
fore focus on the initial article-screening stage, and a method that 
uses only the titles and abstracts of scientific texts (see Supporting 
Information Appendix S1 for further details).

K E Y W O R D S

automated classification, biodiversity indicators, Biodiversity Intactness Index, ecological 
data, Living Planet Index, machine learning, text mining
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Using our two example databases (LPD and PREDICTS), we de-
fine relevant texts as articles that have an English abstract, and have 
contributed data to, or have been identified as likely to contain data 
for that database. We identified 633 such records linked with the 
LPD and 536 with the PREDICTS database. Using these databases 
allowed us to test and explore our methods, but they could be ap-
plied to any such database.

We downloaded the top 125,000 ‘ecology’ articles from the 
National Center for Biotechnology Information, using the Entrez 
Programming Utilities (Sayers,  2010); these served as irrelevant 
texts. For each database, we took a random sample of irrelevant 
records equal in size to the number of relevant records, with any 
papers known to contribute to the focal database being excluded 
from sampling (i.e., papers contributing data to the LPD could not 
be irrelevant for the LPD but could be for PREDICTS and vice versa). 
Combining relevant and irrelevant records yielded 1,266 titles and 
abstracts for the LPD and 1,072 for the PREDICTS database that 
were used to train and test the classifiers.

2.2 | Text classifiers: construction, training, 
testing and analysis

We compared two binary classification techniques: logistic regres-
sion (LR) representing a strong but easy-to-create baseline while a 
convolutional neural network (CNN) offers a leading-edge alterna-
tive (Zhang & Wallace,  2015). For each method, the specific text-
processing stages were varied to assess how these factors impacted 
the performance of the classifiers. Figure 1 summarizes the compu-
tational workflow, a detailed description of which can be found in 
Supporting Information Appendix S1.

To assess classifier performance, we used 10-fold cross valida-
tion and average area under the receiver operating characteristic 
curve (AUC) scores (LeDell et al., 2015). Generalized linear models 
(GLMs) were used to determine the influence of different workflow 
choices on classifier performance and we retained the best models 
for subsequent testing and application (see Supporting Information 
Appendix S1.3 for details).

Although improving data discovery for a single database has 
value, the broader potential of a text classifier depends on how well 
and how readily it can be transferred to other biodiversity data-
bases. We optimized our text-processing workflow using the LPD 
texts before applying the best procedures to the PREDICTS data, 
providing an example of how such techniques can be readily trans-
ferred to various databases.

2.3 | Comparing classifiers to search engines

To compare the data discovery rate of our workflow with a search 
engine, we conducted targeted literature searches for each of the 
two example databases (Supporting Information Appendix S1.5 and 
Table S1.3). Articles from each search were ordered separately ac-
cording to their relevance, as predicted by the search engine (Scopus 
for LPD, Web of Science for PREDICTS) or our best classifiers (see 
Results). For each ranked list, RC spent 15 min manually classifying 
papers as relevant or not based on the content of their titles and 
abstracts. Binomial mixed-effects models were then used to com-
pare the effect of ranking type (search engine or model) on the pro-
portion of relevant articles found for each database. Search topic 
(the queries used to conduct each literature search) was specified 
as a random intercept and equivalent models were also fitted to the 

F I G U R E  1   Graphical depiction of text-processing workflow and the classifier training. Orange boxes indicate stages of the workflow that 
were systematically varied; grey boxes represent processing that was constant across all indicated models. For details of the text-processing 
stages, see Supporting Information Appendix S1 and Table S1.1. Stemming reduces words to their root, for example, ‘ecological’ would be 
shortened to ‘ecolog’. tf = term frequency (the number of times a term occurs in the text being considered); tf-idf = term frequency-inverse 
document frequency whereby the term frequency is multiplied by the term's inverse document frequency (idf = log

(

D

d

)

, where D is the total 
number of documents in the training corpus and d the number of documents in which the term of interest occurs); LR = logistic regression; 
CNN = convolutional neural network
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manual classifications generated after the first 10 and 5 min. Ten per 
cent of the manually classified papers were sampled at random and 
double-checked by experienced members of the LPD and PREDICTS 
teams to determine the level of agreement between the manual cat-
egorizations. Mixed-effects models were re-fitted using the expert 
classifications to assess how any re-classifications affected the coef-
ficient estimates for ranking type.

2.4 | Potential for iterative improvement of 
classifiers

Performance is expected to improve with the size of the train-
ing set (Liu et al., 2019), and the speed of improvement is an 
important determinant of the general usefulness of an approach. 
To explore whether iteratively expanding the classifier train-
ing data has the potential to improve the classifiers, we used 

cross-validation and AUC scores to separately assess how the 
size of the training dataset and addition of new texts from litera-
ture searches influence the predictive performance of the mod-
els used in 2.3 (see Supporting Information Appendices S1.6 and 
S1.7 for details).

2.5 | Insight into classifier decision making

Within the LR models, each term in the training texts—for exam-
ple, an individual word or word stem—is associated with a learned 
weight (see Supporting Information Appendix S1.1.1 for details). 
To identify the terms having the most influence on predicted rel-
evance, term weights were extracted from the best-performing LR 
models. The 50 most positively and 50 most negatively weighted 
terms were inspected to see if they could cause biases in the 
classifications.

F I G U R E  2   Cross-validation and test AUC scores for selected models. All models display strong performance on both the LPD and 
PREDICTS texts. The LR A and CNN A models make use of abstracts and a number of text-processing stages. Foregoing the text-processing 
stages (B models) causes model performance to drop only slightly, or improve in the case of the PREDICTS-trained CNN B. However, not 
using abstracts (C models) leads to a larger performance decrease, especially for the LPD texts. Note truncated y axis starts at .90. Circles 
and error bars show the mean and 95% confidence intervals, respectively, of the AUC scores from 10-fold cross-validation. Diamonds 
represent the test AUC scores. AUC = area under receiver operating characteristic curve; LR = logistic regression; CNN = convolutional 
neural network; LPD = Living Planet Database; PREDICTS = Projecting Responses of Ecological Diversity In Changing Terrestrial Systems
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TA B L E  1   Summary of configurations for the models presented in Figure 2

LR A LR B LR C CNN A CNN B CNN C

Data type: Title + Abstract Title + Abstract Title Title + Abstract Title + Abstract Title

Stop words: df > .85 None df > .85 NLTK None NLTK

Stemmer: Lancaster None Lancaster

Feature: Word-based Word-based Word-based

Weighting: tf-idf tf tf-idf

Unknown words: Random Removed Random

Note: A = models identified as best using AUC (area under the receiver operating characteristic curve); B = models equivalent to A but using simpler 
text-processing; C = models equivalent to A but not using abstract text; LR and CNN = logistic regression and convolutional neural network models, 
respectively; NLTK = the Natural Language Toolkit stop word list; df = document frequency; tf = term frequency; tf-idf = term frequency-inverse 
document frequency.
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3  | RESULTS

Overall, AUC scores indicate that both the LR and neural network 
models performed very well, with little difference between the ap-
proaches. Among the text-processing choices tested (Figure 1), the 
type of text data is the most important factor influencing classifica-
tion performance, for both models (Figure 2, Supporting Information 
Figure S5.4 and Table S4.5). For example, when considering the LPD-
trained models, average AUC drops from .988 for the best logistic 
model (LR A: using titles and abstracts, see Table 1 for details) to 
.945, if abstracts are not considered (LR C: using only titles). The 
workflow developed using the LPD also performs as well or better 
on the PREDICTS texts.

Additional metrics calculated on the labelled test data, and thus 
likely representing the upper limits of model performance, indicate 
that if 100 relevant texts were present in a corpus, 95 would be la-
belled as such by the LR A model; and that for every 100 texts la-
belled as relevant, 98 actually would be, demonstrating high recall 
and precision, respectively (see Supporting Information Table S4.6 
for metrics associated with the selected models).

Ranking search results using the LR A classifier led to a signifi-
cantly higher proportion of potentially relevant papers being dis-
covered after 15, 10 and (for the LPD searches) even 5  min than 
if the search engine rankings were used (Figure  3 and Supporting 
Information Table S4.7). For example, when manually screening 
LPD-related searches for 10  min, use of the classifier increased 
the average proportion of relevant papers found from .48 to .65. 
Experienced database users (LPD and PREDICTS team members) 
agreed with RC’s manual classifications in 87% (47/54) and 95% 
(37/40) of cases, respectively. The positive effects of the classifier 
on discovery rate increased slightly when using the expert classi-
fications of the sampled texts in combination with the rest of RC’s 
classifications (Supporting Information Figure S5.5), suggesting that 

the benefits of using the LR A models are not driven by any initial 
classification errors.

Larger training datasets enhance predictive performance of 
LR A-style classifiers but with diminishing returns. Furthermore, 
even models trained with just 200 texts achieve average AUC ≥ .98 
(Figure 4a). Expanding the training data to include texts identified 
during the literature screening also substantially improves the per-
formance of the LR A-style classifiers on real-world search results. 
Up-weighting new negatives relative to the original negatives pro-
duces the best performance (Figure 4b).

Generally, the most positively weighted terms are associated 
with the respective indicator database; for example, ‘pop’ and ‘abund’ 
for the LPD and ‘specy’ (stemmed form of ‘species’) and ‘landscap’ 
for PREDICTS (Figure  5 and Supporting Information Table S4.8). 
The most negatively weighted terms for both datasets represent 
topics in ecology less connected to either the LPD or PREDICTS, 
such as ‘evolv’. The greater similarity of negative terms across the 
dataset-specific models is illustrated by the fact that whilst 21 terms 
are shared between the 50 most negatively weighted features for 
the LPD and PREDICTS models, only 9 are when considering the 50 
most positive terms. Interestingly, there are some terms that stand 
out as potential artefacts of biases in the training texts, for example, 
‘declin’ for the LPD and ‘forest’ for PREDICTS.

4  | DISCUSSION

Collating ecological data is essential for understanding the 
natural world and how it is affected by anthropogenic activity. 
Macroecological datasets in particular are critical for exploring the 
extent to which impacts of such activity can be generalized across 
space and taxa. We have shown that by using text mining and au-
tomated classifiers we can speed up the identification of newly 

F I G U R E  3   A comparison of the proportion of papers that are manually classified as relevant, when working through papers according to 
the search engine or our best logistic regression model. Using the automated classifiers is beneficial across all timespans (positive β values 
and most points above dashed grey line). β values represent the impact of using the classifiers compared to the search engine ranking. 
Significance is indicated (†p < .1, **p < .01, ***p < .001) from two-tailed tests. Residual degrees of freedom are 21 for LPD related models 
and 27 for PREDICTS. The 1:1 dashed grey line represents a scenario where the different rankings lead to the same proportion of relevant 
papers being found. LPD = Living Planet Database; PREDICTS = Projecting Responses of Ecological Diversity In Changing Terrestrial 
Systems. See Supporting Information Table S1.3 for a breakdown of search terms and the number of papers returned
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published data relevant to two example databases: the Living 
Planet Database and the PREDICTS database. The real-world per-
formance of the trained classifiers can also be further improved by 
incorporating new relevant and irrelevant texts identified during 
the manual screening of targeted literature searches. Combined 
with the fact that even models trained with just 100 relevant texts 
have high predictive power, our findings suggest that the demon-
strated techniques can assist in the creation and growth of other 
ecological datasets, such as BIOFRAG (Pfeifer et  al.,  2014) and 
BioTIME (Dornelas et  al.,  2018). We therefore encourage others 

to use and improve upon our work to collate urgently needed bio-
diversity data.

Biodiversity indicators represent an important output of eco-
logical datasets whose usefulness is maximized if they are de-
rived from up-to-date information (Collen et  al.,  2008; Walpole 
et  al.,  2009). The growing availability of dashboards and portals 
serving indicators and similar derived biodiversity data prod-
ucts—for example, The Biodiversity Indicators Dashboard (Han 
et  al.,  2014) and Map of Life (Powers & Jetz,  2019)—further at-
tests to the need for a dynamic view of the state of nature. Our 

F I G U R E  4   The impact of training set size and sample weighting on classifier performance. (a) When using LR A specified models, larger 
training sets improve predictive performance. However, a plateau is apparent indicating that beyond approx. 1,000 texts, little additional 
improvement is made. Crucially, even when using training sets of 200 texts (100 positives) average AUC scores exceed .98 for LPD classifiers 
and are around .99 for PREDICTS classifiers. (b) Incorporating new texts demonstrably boosts classifier performance when compared to 
the original (dashed lines). Up-weighting new negatives relative to original negatives confers benefits, with optimal relative weighting being 
around .6–.7. Note different axis limits in (a) and (b). In (a), the thick lines show the range of mean AUC values calculated over 10 replicates 
of 10-fold cross-validation, the associated thin lines show the range of the 95% confidence intervals. The circles and error bars show the 
mean and 95% confidence intervals, respectively, of the AUC scores from 10-fold cross-validation of the complete datasets, as reported in 
Figure 2. In (b), circles and error bars show the mean and 95% confidence intervals, respectively, of the AUC scores from cross-validation 
incorporating new texts from the literature searches. AUC = area under receiver operating characteristic curve; LPD = Living Planet 
Database; LR A = best logistic regression model; PREDICTS = Projecting Responses of Ecological Diversity In Changing Terrestrial Systems
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F I G U R E  5   Word clouds showing 
the 50 most positively and negatively 
weighted features from the best 
performing logistic regression models 
trained on LPD and PREDICTS texts. 
Larger, darker font is associated with 
higher absolute weighting and thus 
greater influence on a text's predicted 
relevance. Note: ‘specy’ is the result of 
applying a Lancaster stemmer to ‘species’. 
LPD = Living Planet Database; PREDICTS 
= Projecting Responses of Ecological 
Diversity In Changing Terrestrial 
Systems
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technique can potentially reduce the lag time between publica-
tion, discovery and incorporation of new data into such estab-
lished indicators.

4.1 | Overall performance of classifiers

Our best classifiers have accuracy, precision and recall that compare 
favourably with studies using automated text classification to iden-
tify papers relevant to medical reviews, which typically report similar 
(Adeva et al., 2014; Ananiadou et al., 2009; Bannach-Brown et al., 2019) 
or lower values (Cohen et al., 2012). Although one might naively expect 
the more complex neural network to outperform the simple logistic 
classifier (Joulin et al., 2017), we did not find that to be the case here. 
Researchers may therefore choose a classification technique based on 
other considerations, for example, bias assessment/mitigation where 
LR classifiers offer higher levels of transparency concerning model ‘de-
cision making’ than do ‘black-box’ neural networks (see 4.3).

Incorporating abstracts, rather than just using titles, sub-
stantially improves classifier performance. Adeva et  al.  (2014) 
found the same qualitative pattern, and Westergaard et al. (2018) 
demonstrated that text mining biomedical literature is signifi-
cantly better if using full-text articles rather than abstracts. These 
findings all suggest that text mining benefits from the greater in-
formation content of longer texts. While a classifier trained on full 
texts may display increased performance, the articles available 
for subsequent screening would be smaller due to current access 
limitations such as pay-walls and copyright issues, though the in-
creasing prevalence of open-access publishing means that these 
limitations may be transient.

By optimizing our workflow using the LPD texts and then 
transferring the identified procedure to the PREDICTS data, we 
demonstrate the general applicability of our methods. Given that 
PREDICTS-trained models perform at least as well as those trained 
on the LPD data (Figures 2 and 3), applying our approach to data-
bases like BioTIME (Dornelas et al., 2018) could quickly help identify 
additional relevant data sources.

4.2 | Limitations

Classifiers that we did not consider may perform differently and/
or be more sensitive to text-processing procedures. We have also 
not addressed how the architecture of deep-learning networks 
could influence model performance. While a thorough exploration 
of CNN hyperparameters would be expected to improve perfor-
mance (Zhang & Wallace, 2015), the principal aim of this paper has 
been to develop the use of text-mining techniques within ecological 
data collation workflows and demonstrate their potential benefits. 
Having assessed both a strong baseline (LR using bag-of-features) 
and a leading-edge option (deep learning with word vector represen-
tation) (Joulin et al., 2017), our work shows the usefulness of such 
techniques within ecology.

4.3 | Future development

Concerns have been raised recently that machine-learning models 
may contain bias, primarily due to being trained on imperfect data 
(Bolukbasi et al., 2016; Tramer et  al., 2017). Given the imbalances 
that exist within ecological datasets (Gonzalez et al., 2016; McRae 
et al., 2017), text classifiers like ours could propagate bias, as evi-
denced by the strong influence of certain terms in the logistic mod-
els, for example, ‘forest’ and ‘fish’. The accumulation of biases within 
biodiversity datasets is detrimental to their scientific goals (Gonzalez 
et al., 2016). Consequently, there is a clear need to assess classifiers 
carefully for bias prior to their widespread application and to check 
the representativeness of any subsequently acquired data to miti-
gate this risk. Further research into this area, especially with regard 
to biodiversity data coverage, could provide substantial insight into 
these issues and how best to combat them effectively.

One potential solution could involve technical developments of 
the text-mining process to ignore specified ‘bias terms’ and/or pref-
erentially return information associated with entities (e.g., taxa and 
locations) that are currently under-represented in the focal dataset. 
Text-mining techniques could therefore not only increase the rate at 
which data are incorporated into biodiversity assessments but might 
also contribute to making ecological databases more representative 
of reality, to better inform conservation and policy decisions.

Although the methods discussed here can help researchers col-
late available biodiversity data, in the longer term, it is also critical 
that published/collected ecological data are made more accessible 
for use in syntheses (McMahon et  al.,  2011; Poisot et  al.,  2019). 
Approaches to facilitate this include searchable, centralized reposi-
tories (similar to genetic sequence databases, e.g., GenBank; Benson 
et  al.,  2012), standardized data formats (Poisot et  al.,  2019), and/
or the use of a machine-readable mark-up language within articles 
(Bourne et al., 2008). Crucially, such changes require strong incen-
tives to ensure that the original data collectors receive appropriate 
recognition for their scientific contributions (Bourne, 2005; Ewers 
et al., 2019). Although a substantial challenge, these developments 
would enable the more complete and rapid synthesis of ecological 
data, which is essential for mitigating biodiversity loss and its asso-
ciated challenges.

5  | CONCLUSION

We have shown that combining text mining and simple machine-
learning classifiers is highly effective in identifying papers relevant 
to ecology datasets. We demonstrate this using two globally rec-
ognized biodiversity indicators, but our method is applicable to any 
dataset comprised of data from literature sources. Interestingly, 
even relatively simplistic models based on LR perform very well, 
on a par with more complex neural networks. The wider adoption 
of these techniques could therefore rapidly increase the rates of 
data discovery and collation across a wide range of ecological data-
sets. Removing the discovery bottleneck would substantially help 
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researchers to keep datasets up-to-date and representative of the 
natural world, both of which are critical for accurately monitoring 
conservation progress and informing policy. To facilitate further ap-
plication and development we provide code for building and using 
such classifiers.
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