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Abstract

To increase trust in artificial intelligence sys-
tems, a promising research direction consists
of designing neural models capable of generat-
ing natural language explanations for their pre-
dictions. In this work, we show that such mod-
els are nonetheless prone to generating mu-
tually inconsistent explanations, such as “Be-
cause there is a dog in the image.” and “Be-
cause there is no dog in the [same] image.”,
exposing flaws in either the decision-making
process of the model or in the generation of
the explanations. We introduce a simple yet ef-
fective adversarial framework for sanity check-
ing models against the generation of incon-
sistent natural language explanations. More-
over, as part of the framework, we address
the problem of adversarial attacks with full
target sequences, a scenario that was not pre-
viously addressed in sequence-to-sequence at-
tacks. Finally, we apply our framework on a
state-of-the-art neural natural language infer-
ence model that provides natural language ex-
planations for its predictions. Our framework
shows that this model is capable of generating
a significant number of inconsistent explana-
tions.

1 Introduction

In order to explain the predictions produced by
accurate yet black-box neural models, a growing
number of works propose extending these models
with natural language explanation generation mod-
ules, thus obtaining models that explain themselves
in human language (Hendricks et al., 2016; Cam-
buru et al., 2018; Park et al., 2018; Kim et al., 2018;
Ling et al., 2017).

In this work, we first draw attention to the fact
that such models, while appealing, are nonethe-
less prone to generating inconsistent explanations.
We define two explanations to be inconsistent if

they provide contradictory arguments about the in-
stances and predictions that they aim to explain.
For example, consider a visual question answering
(VQA) task (Park et al., 2018) and two instances
where the image is the same but the questions are
different, say “Is there an animal in the image?”
and “Can you see a Husky in the image?”. If for
the first instance a model predicts “Yes.” and gen-
erates the explanation “Because there is a dog in
the image.”, while for the second instance the same
model predicts “No.” and generates the explanation
“Because there is no dog in the image.”, then the
model is producing inconsistent explanations.

Inconsistent explanations reveal at least one of
the following undesired behaviors: (i) at least one
of the explanations is not faithfully describing the
decision mechanism of the model, or (ii) the model
relied on a faulty decision mechanism for at least
one of the instances. Note that, for a pair of incon-
sistent explanations, further investigation would be
needed to conclude which of these two behaviors
is the actual one (and might vary for each instance).
Indeed, a pair of inconsistent explanations does not
necessarily imply at least one unfaithful explana-
tion. In our previous example, if the image contains
a dog, it is possible that the model identifies the
dog when it processes the image together with the
first question, and that the model does not iden-
tify the dog when it processes the image together
with the second question, hence both explanations
would faithfully reflect the decision mechanism
of the model even if they are inconsistent. Simi-
larly, a pair of inconsistent explanations does not
necessarily imply that the model relies on a faulty
decision mechanism, because the explanations may
not faithfully describe the decision mechanism of
the model. We here will not investigate the problem
of identifying which of the two undesired behaviors
is true for a pair of inconsistent explanations.

In this work, we introduce a framework for
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PREMISE: A guy in a red jacket is snowboarding in midair.
ORIGINAL HYPOTHESIS: A guy is outside in the snow.
PREDICTED LABEL: entailment
ORIGINAL EXPLANATION: Snowboarding is done outside.

REVERSE HYPOTHESIS: The guy is outside.
PREDICTED LABEL: contradiction
REVERSE EXPLANATION: Snowboarding is not done outside.

PREMISE: A man talks to two guards as he holds a drink.
ORIGINAL HYPOTHESIS: The prisoner is talking to two guards in the
prison cafeteria.
PREDICTED LABEL: neutral
ORIGINAL EXPLANATION: The man is not necessarily a prisoner.

REVERSE HYPOTHESIS: A prisoner talks to two guards.
PREDICTED LABEL: entailment
REVERSE EXPLANATION: A man is a prisoner.

PREMISE: Two women and a man are sitting down eating and drinking various items.
ORIGINAL HYPOTHESIS: Three women are shopping at the mall.
PREDICTED LABEL: contradiction
ORIGINAL EXPLANATION: There are either two women and a man or
three women.

REVERSE HYPOTHESIS: Three women are sitting down eating.
PREDICTED LABEL: neutral
REVERSE EXPLANATION: Two women and a man are three women.

Table 1: Examples of detected inconsistent explanations – the reverse hypotheses generated by our method (right)
are realistic.

checking if models are robust against generating
inconsistent natural language explanations. Given
a model m that produces natural language expla-
nations for its predictions, and an instance x, our
framework aims to generate inputs x̂ that cause the
model to produce explanations that are inconsistent
with the explanation produced for x. Thus, our
framework falls under the category of adversar-
ial methods, i.e., searching for inputs that cause a
model to produce undesired answers (Biggio et al.,
2013; Szegedy et al., 2014).

As part of our framework, we address the prob-
lem of adversarial attacks with full target sequences,
a scenario that has not been previously addressed
in sequence-to-sequence attacks, and which can
be useful for other areas, such as dialog systems.
Finally, we apply our framework on a state-of-the-
art neural natural language inference model that
generates natural language explanations for its de-
cisions (Camburu et al., 2018). We show that this
model can generate a significant number of incon-
sistent explanations.

2 Method

Given a model m that can jointly produce predic-
tions and natural language explanations, we pro-
pose a framework that, for any given instance x,
attempts to generate new instances for which the
model produces explanations that are inconsistent
with the explanation produced for x; we refer to
the latter as em(x).

We approach the problem in two high-level steps.
Given an instance x, (A) we create a list of expla-
nations that are inconsistent with the explanation
generated by the model on x, and (B) given an in-
consistent explanation from the list created in A,
we find an input that causes the model to generate

this precise inconsistent explanation.

Setup. Our setup has three desired properties that
make it different from commonly researched adver-
sarial settings in natural language processing:

• At step (B), the model has to generate a full
target sequence: the goal is to generate the ex-
act explanation that was identified at step (A)
as inconsistent with the explanation em(x).

• Adversarial inputs do not have to be a para-
phrase or a small perturbation of the original
input, since our objective is to generate in-
consistent explanations rather than incorrect
predictions — these can eventually happen as
a byproduct.

• Adversarial inputs have to be realistic to the
task at hand.

To our knowledge, this work is the first to tackle
this problem setting, especially due to the challeng-
ing requirement of generating a full target sequence
— see Section 4 for comparison with existing works.

Context-dependent inconsistencies. In certain
tasks, instances consist of a context (such as an
image or a paragraph), and some assessment to be
made about the context (such as a question or a
hypothesis). Since explanations may refer (some-
times implicitly) to the context, the assessment of
whether two explanations are inconsistent may also
depend on it. For example, in VQA, the inconsis-
tency of the two explanations “Because there is a
dog in the image.” and “Because there is no dog in
the image.” depends on the image. However, if the
image is the same, the two explanations are incon-
sistent regardless of which questions were asked
on that image.
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For such a reason, given an instance x, we dif-
ferentiate between parts of the instance that will
remain fixed in our method (referred to as context
parts and denoted as xc) and parts of the instance
that our method will vary in order to obtain incon-
sistencies (referred to as variable parts and denoted
as xv). Hence, x = (xc,xv). In our VQA example,
xc is the image, and xv is the question.

Stand-alone inconsistencies. Furthermore, we
note that there are cases for which explanations
are inconsistent regardless of the input. For ex-
ample, explanations formed purely of background
knowledge such as “A woman is a person.” and
“A woman is not a person.”1 are always inconsis-
tent (and sometimes outrageous), regardless of the
instances that lead to them. For these cases, our
method can treat the whole input as variable, i.e.,
xc = ∅ and x̂v = x.

Steps. Our adversarial framework consists of the
following steps:

1. Reverse the explanation generator module of
model m by training a REVEXPL model to map
from the generated explanation and the context part
of the input to the variable part of the input, i.e.,
REVEXPL(xc, em(x)) = xv.

2. For each explanation e = em(x):

(a) Create a list of statements that are inconsistent
with e, we call it Ie.

(b) Query REVEXPL on each ê ∈ Ie and the
context xc. Get the new variable part x̂v =
REVEXPL(xc, ê) of a reverse input x̂ =
(xc, x̂v), which may cause the m to produce
inconsistent explanations.

(c) Query m on each reverse input to get a reverse
explanation em(x̂).

(d) Check if each reverse explanation em(x̂) is
indeed inconsistent with e by checking if
em(x̂) ∈ Ie.

To execute step (2a), note that explanations are by
nature logical sentences. Hence, for any task, one
may define a set of logical rules to transform an
explanation into an inconsistent counterpart, such
as negation or replacement of task-essential tokens
with task-specific antonyms. For example, in expla-
nations for self-driving cars (Kim et al., 2018), one
can replace “green light” with “red light”, or “the

1Which was generated by the model in our experiments.

road is empty” with “the road is crowded” (which
are task-specific antonyms), to get inconsistent (and
hazardous) explanations such as “The car acceler-
ates because there is a red light.”.

Another strategy to obtain inconsistent expla-
nations consists of swapping explanations from
mutually exclusive labels. For example, assume a
recommender system predicts that movie X is a bad
recommendation for user Y “because X is a horror
movie.”, implying that user Y does not like horror
movies. If it also predicts that movie Z is a good
recommendation to the same user Y “because Z is
a horror movie.”, then we have an inconsistency,
as the latter would imply that user Y likes horror
movies.

While this step requires a degree of specific ad-
justment to the task at hand, we consider it a small
price to pay to ensure that the deployed system is
coherent. Also, note that this step can eventually
be automated, for example, by training a neural
network to generate task-specific inconsistencies
after crowd-sourcing a dataset of inconsistent ex-
planations for a task at hand — we leave this as
future work.

Finally, to execute step (2d), our framework cur-
rently checks for an exact string match between
a reverse explanation and any of the inconsistent
explanations created at step (2a). Alternatively, one
can train a model to identify if a pair of explana-
tions forms an inconsistency, which we also leave
as future work.

3 Experiments

We consider the task of natural language inference
(NLI) (Bowman et al., 2015), which consists of de-
tecting whether a pair of sentences, called premise
and hypothesis, are in a relation of: entailment, if
the premise entails the hypothesis; contradiction, if
the premise contradicts the hypothesis; or neutral,
if neither entailment nor contradiction holds. For
example, a pair with premise “Two doctors perform
surgery on patient.” and hypothesis “Two doctors
are performing surgery on a man.” constitutes a
neutral pair.

The SNLI corpus (Bowman et al., 2015) of
∼570K such human-written instances enabled a
plethora of works on this task (Rocktäschel et al.,
2015; Munkhdalai and Yu, 2016; Liu et al., 2016).
Recently, Camburu et al. (2018) augmented SNLI
with crowd-sourced free-form explanations of the
ground-truth label, called e-SNLI. An explanation
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from e-SNLI for the neutral pair above is “Not
every patient is a man.”.

Their best model for generating explanations,
called EXPLAINTHENPREDICTATTENTION (here-
after called ETPA), is a sequence-to-sequence at-
tention model that uses two bidirectional LSTM
networks (Hochreiter and Schmidhuber, 1997)
for encoding the premise and hypothesis, and
an LSTM decoder for generating the explanation
while separately attending over the tokens of the
premise and hypothesis. Subsequently, they predict
the label solely based on the explanation via a sepa-
rately trained network, which maps an explanation
to a label.

We show that our framework is able to make
ETPA2 generate a significant number of inconsis-
tent explanations. We highlight that our final goal is
not a label attack, even if, for this particular model
in which the label is predicted solely from the ex-
planation, we implicitly also have a label attack
with high probability.3

In our experiments, we set xc as the premise (as
this represents the given context in this task) and xv

as the hypothesis. However, note that due to the na-
ture of SNLI for which decisions are based mostly
on commonsense knowledge, the explanations are
most of the time independent of the premise, such
as “A dog is an animal.” — hence, it would be
possible to also reverse the premise and not just the
hypothesis; we leave this as future work.

For the REVEXPL model, we use the same neural
architecture and hyperparameters used by Camburu
et al. (2018) for ETPA. REVEXPL takes as input a
premise-explanation pair, and produce a hypothesis.
Our trained REVEXPL model is able to reconstruct
exactly the same (according to string matching)
hypothesis with 32.78% test accuracy.

Creating Ie. To execute step (2a), we employ
negation and swapping explanations. For negation,
we simply remove the tokens “not” and “n’t” if
they are present. If these tokens appear more than
once in an explanation, we create multiple inconsis-
tencies by removing only one occurrence at a time.
We do not attempt to add negation tokens, as this
may result in grammatically incorrect sentences.

For swapping explanations, we note that the ex-
planations in e-SNLI largely follow a set of label-

2We use the pretrained model from https://github.
com/OanaMariaCamburu/e-SNLI.

3Their Explanation-to-Label component had 96.83% test
accuracy.

specific templates. This is a natural consequence
of the task and the SNLI dataset and not a require-
ment in the collection of the e-SNLI. For example,
annotators often used “One cannot X and Y simulta-
neously.” to explain a contradiction, “Just because
X, doesn’t mean Y.” for neutral, or “X implies Y.”
for entailment. Since any two labels are mutually
exclusive, transforming an explanation from one
template to a template of another label should auto-
matically create an inconsistency. For example, for
the explanation of the contradiction “One cannot
eat and sleep simultaneously.”, we match X to “eat”
and Y to “sleep”, and create the inconsistent expla-
nation “Eat implies sleep.” using the entailment
template “X implies Y.”. Thus, for each label, we
created a list of the most used templates that we
manually identified among e-SNLI, which can be
found in Appendix A. A running example of creat-
ing inconsistent explanations by swapping is given
in Appendix A.1.

If there is no negation and no template match,
we discarded the instance. In our experiments, we
only discarded 2.6% of the SNLI test set.

We note that this procedure may result in gram-
matically or semantically incorrect inconsistent ex-
planations. However, as we will see below, our
REVEXPL performed well in generating correct
and relevant reverse hypotheses even when its input
explanations were not correct. This is not surpris-
ing, because REVEXPL has been trained to output
ground-truth hypotheses.

The rest of the steps follow as described in (2b) -
(2d).

Results and discussion. We identified a total of
1044 pairs of inconsistent explanations starting
from the SNLI test set, which contains 9824 in-
stances. First, we noticed that there are, on average,
1.93± 1.77 distinct reverse hypotheses giving rise
to a pair of inconsistent explanation. Since the
hypotheses are distinct, each of these instances is
a separate valid adversarial inputs. However, if
one is strictly interested in the number of distinct
pairs of inconsistent explanations, then, after elim-
inating duplications, we obtain 540 pairs of such
inconsistencies.

Secondly, since the generation of natural lan-
guage is always best evaluated by humans, we
manually annotated 100 random distinct pairs. We
found that 82% of the reverse hypotheses form re-
alistic instances together with the premise. We also
found that the majority of the unrealistic instances

https://github.com/OanaMariaCamburu/e-SNLI
https://github.com/OanaMariaCamburu/e-SNLI
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are due to a repetition of a token in the hypothesis.
For example, “A kid is riding a helmet with a hel-
met on training.” is a generated reverse hypothesis
which is just one token away from a perfectly valid
hypothesis.

Given our estimation of 82% to be inconsisten-
cies caused by realistic reverse hypotheses, we ob-
tained a total of ∼443 distinct pairs of inconsistent
explanations. While this means that our procedure
only has a success rate of∼4.51%, it is nonetheless
alarming that this very simple and under-optimized
adversarial framework detects a significant number
of inconsistencies on a model trained on ∼570K
examples. In Table 1, we see three examples of
detected inconsistencies. More examples can be
found in Appendix B.

Manual scanning. We were curious to what ex-
tent one can find inconsistencies via a brute-force
manual scanning. We performed three such experi-
ments, with no success. On the contrary, we noticed
a good level of robustness against inconsistencies
when scanning through the generic adversarial hy-
potheses introduced by Carmona et al. (2018). The
details are in Appendix C.

4 Related Work

An increasing amount of work focuses on providing
natural language, free-form explanations (Camburu
et al., 2018; Kim et al., 2018; Park et al., 2018; Hen-
dricks et al., 2016) as a more comprehensive and
user-friendly alternative to other forms of explain-
ability, such as feature-based explanations (Ribeiro
et al., 2016; Lundberg and Lee, 2017). In this work,
we bring awareness to the risk of generating in-
consistent explanations. Similarly, Hendricks et al.
(2017) identify the risk of mentioning attributes
from a strong class prior without any evidence be-
ing present in the input.

Generating adversarial examples. Generating
adversarial examples is an active research area in
natural language processing (Zhang et al., 2019;
Wang et al., 2019). However, most works build on
the requirement that the adversarial input should
be a small perturbation of an original input (Be-
linkov and Bisk, 2017; Hosseini et al., 2017; Cheng
et al., 2018), or should be preserving the seman-
tics of the original input (Iyyer et al., 2018). Our
setup does not have this requirement, and any pair
of task-realistic inputs that causes the model to
produce inconsistent explanations suffices. Most

importantly, to our knowledge, no previous adver-
sarial attack for sequence-to-sequence models gen-
erates full target sequences. For instance, Cheng
et al. (2018) require the presence of pre-defined
tokens anywhere in the target sequence: they only
test with up to 3 required tokens, and their success
rate dramatically drops from 99% for 1 token to
37% for 3 tokens for the task of summarization.
Similarly, Zhao et al. (2018) proposed an adversar-
ial framework for adding and removing tokens in
the target sequence for the task of machine transla-
tion. Our scenario would require as many tokens
as the desired adversarial explanation, and we also
additionally need them to be in a given order, thus
tackling a much challenging task. Finally, Min-
ervini and Riedel (2018) attempted to find inputs
where a model trained on SNLI violates a set of
logical constraints. However, their method needs
to enumerate and evaluate a potentially very large
set of perturbations of the inputs. Besides the com-
putational overhead, it also may easily generating
ungrammatical inputs. Moreover, their scenario
does not address the question of automatically pro-
ducing undesired (inconsistent) sequences.

5 Summary and Outlook

We drew attention that models generating natural
language explanations are prone to producing in-
consistent explanations. This concern is general
and can have a large practical impact. For example,
users would likely not accept a self-driving car if
its explanation module is prone to state that “The
car accelerates because there are people cross-
ing the intersection.”. We introduced a generic
framework for identifying such inconsistencies and
showed that the best existing model on e-SNLI
can generate a significant number of inconsisten-
cies. Future work will focus on developing more
advanced procedures for detecting inconsistencies,
and on building robust models that do not generate
inconsistencies.
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Hermann, Tomás Kociský, and Phil Blunsom. 2015.
Reasoning about entailment with neural attention.
CoRR, abs/1509.06664.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever,
Joan Bruna, Dumitru Erhan, Ian J. Goodfellow, and
Rob Fergus. 2014. Intriguing properties of neural
networks. In ICLR (Poster).

Wenqi Wang, Benxiao Tang, Run Wang, Lina Wang,
and Aoshuang Ye. 2019. A survey on adversarial
attacks and defenses in text. CoRR, abs/1902.07285.

Wei Emma Zhang, Quan Z. Sheng, Ahoud Alhazmi,
and Chenliang Li. 2019. Adversarial attacks on deep
learning models in natural language processing: A
survey.

Zhengli Zhao, Dheeru Dua, and Sameer Singh. 2018.
Generating natural adversarial examples. In ICLR
(Poster). OpenReview.net.

http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1508.05326
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1803.01128
http://arxiv.org/abs/1711.06465
http://arxiv.org/abs/1711.06465
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1705.04146
http://arxiv.org/abs/1605.09090
http://arxiv.org/abs/1605.09090
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf
http://arxiv.org/abs/1607.04315
http://arxiv.org/abs/1607.04315
http://arxiv.org/abs/1802.08129
http://arxiv.org/abs/1802.08129
http://arxiv.org/abs/1509.06664
http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1901.06796
http://arxiv.org/abs/1901.06796


4163

A e-SNLI Explanations Templates

Below we present the list of templates that we
manually found to match most of the e-SNLI ex-
planations (Camburu et al., 2018). We recall that
during the collection of the dataset Camburu et al.
(2018) did not impose any template, they were a
natural consequence of the task and SNLI dataset.

Here, “subphrase1/subphrase2/...” means that
a separate template is to be considered for each
of the subphrases. X and Y are the key elements
that we want to identify and use in the other tem-
plates in order to create inconsistencies. “[...]” is
a placeholder for any string, and its value is not
relevant. Subphrases placed between round paren-
thesis (for example, “(the)” or “(if)”) are optional,
and two distinct templates are formed one with and
one without that subphrase.

Entailment Templates

• X is/are a type of Y

• X implies Y

• X is/are the same as Y

• X is a rephrasing of Y

• X is a another form of Y

• X is synonymous with Y

• X and Y are synonyms/synonymous

• X and Y is/are the same thing

• (if) X , then Y

• X so Y

• X must be Y

• X has/have to be Y

• X is/are Y

Neutral Templates

• not all X are Y

• not every X is Y

• just because X does not/n’t mean/imply Y

• X is/are not necessarily Y

• X does not/n’t have to be Y

• X does not/n’t imply/mean Y

Contradiction Templates

• ([...]) cannot/can not/ca n’t (be) X and Y at
the same time/simultaneously

• ([...]) cannot/can not/ca n’t (be) X and at the
same time Y

• X is/are not (the) same as Y

• ([...]) is/are either X or Y

• X is/are not Y

• X is/are the opposite of Y

• ([...]) cannot/can not/ca n’t (be) X if (is/are) Y

• X is/are different than Y

• X and Y are different ([...])

A.1 Running Example for Creating
Inconsistencies by Swapping between
Templates of Explanations

Consider the explanation e =“Dog is a type of an-
imal.” which may arise from a model explaining
the instance x = (premise: “A dog is in the park.”,
hypothesis: “An animal is in the park.”). We iden-
tify that e matches the template “X is/are a type of
Y” with X = “dog” (we convert to lowercase) and
Y = “animal”. We generate the list Ie by replacing
X and Y in each of the neutral and contradictory
templates listed above with the exception of those
that contain “[...]” in order to avoid guessing the
placeholder. We obtain Ie as:

• not all dog are animal

• not every dog is animal

• just because dog does not/n’t mean/imply
animal

• dog is/are not necessarily animal

• dog does not/n’t have to be animal

• dog does not/n’t imply/mean animal

• cannot/can not/ca n’t (be) dog and animal at
the same time/simultaneously

• cannot/can not/ca n’t (be) dog and at the same
time animal

• dog is/are not (the) same as animal
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• is/are either dog or animal

• dog is/are not animal

• dog is/are the opposite of animal

• cannot/can not/ca n’t (be) dog if (is/are) ani-
mal

• dog is/are different than animal

• dog and animal are different

B More Examples of Detected
Inconsistencies

In Table 2, we provide more examples of inconsis-
tent explanations detected with our method.

C Manual Scanning

We performed three experiments of manually scan-
ning. First, we manually analyzed the first 50 in-
stances in the test set without finding any incon-
sistency. However, these examples were involving
different concepts, thus decreasing the likelihood of
finding inconsistencies. To account for this, in our
second experiment, we constructed three groups
around the concepts of woman, prisoner, and snow-
boarding, by simply selecting the explanations in
the test set containing these words. We selected
these concepts, because our framework detected
inconsistencies about them — examples are listed
in Table 1 and Table 2.

For woman, we obtained 1150 examples in the
test set, and we looked at a random sample of 20,
among which we did not find any inconsistency.
For snowboarding, we found 16 examples in the
test set and again no inconsistency among them.
For prisoner, we only found one instance in the test
set, so we had no way to find out that the model is
inconsistent with respect to this concept simply by
scanning the test set.

We only looked at the test set for a fair compari-
son with our method that was only applied on this
set.

However, we highlight that, even if the manual
scanning would have been successful, it should not
be regarded as a proper baseline, since it does not
bring the same benefits as our framework. Indeed,
manual scanning requires considerable human ef-
fort to look over a large set of explanations in order
to find if any two are inconsistent. Even a group of
only 50 explanations required us a non-negligible

amount of time. Moreover, restricting ourselves to
the instances in the original dataset would clearly
be less effective than being able to generate new in-
stances from the dataset’s distribution. Our frame-
work addresses these issues and directly provides
pairs of inconsistent explanations. Nonetheless,
we considered this experiment useful for illustrat-
ing that the explanation module does not provide
inconsistent explanations in a frequent manner.

In our third experiment of manual scanning, we
experimented with a few manually created hypothe-
ses from Carmona et al. (2018), which had been
shown to induce confusion at the label level. We
were pleased to notice a good level of robustness
against inconsistencies. For example, for the neu-
tral pair (premise: “A bird is above water.”, hypoth-
esis: “A swan is above water.”), we get the explana-
tion “Not all birds are a swan.”, while when inter-
changing bird with swan, i.e., for the pair (premise:
“A swan is above water.”, hypothesis: “A bird is
above water.”), ETPA generates the explanation
“A swan is a bird.”, showing a good understand-
ing of the relationship between the entities “swan”
and “bird”. Similarly, interchanging “child” with
“toddler” in (premise: “A small child watches the
outside world through a window.”, hypothesis: “A
small toddler watches the outside world through
a window.”) does not confuse the model, which
outputs “Not every child is a toddler.” and “A tod-
dler is a small child.”, respectively. Further inves-
tigation on whether the model can be tricked on
concepts where it seems to exhibit robustness, such
as toddler or swan, are left for future work.
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PREMISE: Biker riding through the forest.
ORIGINAL HYPOTHESIS: Man riding motorcycle on highway.
PREDICTED LABEL: contradiction
ORIGINAL EXPLANATION: Biker and man are different.

REVERSE HYPOTHESIS: A man rides his bike through the forest.
PREDICTED LABEL: entailment
REVERSE EXPLANATION: A biker is a man.

PREMISE: A hockey player in helmet.

ORIGINAL HYPOTHESIS: They are playing hockey
PREDICTED LABEL: entailment
ORIGINAL EXPLANATION: A hockey player in helmet is playing hockey.

REVERSE HYPOTHESIS: A man is playing hockey.
PREDICTED LABEL: neutral
REVERSE EXPLANATION: A hockey player in helmet doesn’t imply playing
hockey.

PREMISE: A blond woman speaks with a group of young dark-haired female students carrying pieces of paper.
ORIGINAL HYPOTHESIS: A blond speaks with a group of young
dark-haired woman students carrying pieces of paper.
PREDICTED LABEL: entailment
ORIGINAL EXPLANATION: A woman is a female.

REVERSE HYPOTHESIS:The students are all female.
PREDICTED LABEL: neutral
REVERSE EXPLANATION: The woman is not necessarily female.

PREMISE: The sun breaks through the trees as a child rides a swing.
ORIGINAL HYPOTHESIS: A child rides a swing in the daytime.
PREDICTED LABEL: entailment
ORIGINAL EXPLANATION: The sun is in the daytime.

REVERSE HYPOTHESIS: The sun is in the daytime.
PREDICTED LABEL: neutral
REVERSE EXPLANATION: The sun is not necessarily in the daytime.

PREMISE: A family walking with a soldier.
ORIGINAL HYPOTHESIS: A group of people strolling.
PREDICTED LABEL: entailment
ORIGINAL EXPLANATION: A family is a group of people.

REVERSE HYPOTHESIS: A group of people walking down a street.
PREDICTED LABEL: contradiction
REVERSE EXPLANATION: A family is not a group of people.

Table 2: More examples of inconsistent explanations detected with our method.


