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Brief summary

Missing data is a common occurrence in clinicataesh. We briefly discuss common
approaches to addressing missing data and higtthgftlimitations. We introduce multiple
imputation (Ml), a popular approach for addresshmgpresence of missing data. With MI,
multiple plausible values of a given variable anpited or filled-in for each subject who has
missing data for that variable. We describe thpssteat should be conducted when conducting

an analysis using M.



Abstract (word count: 242)

Missing data is a common occurrence in clinicakaesh. Missing data occurs when the value of
the variables of interest are not measured or decbfor all subjects in the sample. Common
approaches to addressing the presence of missiagndéude complete-case analyses, in which
subjects with missing data are excluded, or me&mevianputation, where missing values are
replaced with the mean value of that variable os¢hsubjects for whom it is not missing.
However, in many settings, these approaches cdrddaiased estimates of statistics (e.g., of
regression coefficients) and/or to confidence irdkx that are artificially narrow. Multiple
imputation (MI) is a popular approach for addregghmre presence of missing data. With M,
multiple plausible values of a given variable anpited or filled-in for each subject who has
missing data for that variable. This results in¢heation of multiple completed datasets.
Identical statistical analyses are conducted ith @h¢hese complete datasets and the results are
pooled across complete datasets. We provide avdunttion to MI and discuss issues in its
implementation, including developing the imputatrandel, how many imputed datasets to
create, and addressing derived variables. Weridltesthe application of MI through an analysis
of data on patients hospitalized with heart fallée focus on developing a model to estimate
the probability of one-year mortality in the presemf missing data. Statistical software code for

conducting multiple imputation in R, SAS, and Stata provided.

Keywords: Missing data, multiple imputation, tutorial.



1. Introduction

Missing data are a common occurrence in clinice¢éaech. Missing data occurs when the
value of the variables of interest are not measaredcorded for all subjects in the sample.
Data can be missing for several reasons, includipgatient refusal to respond to specific
guestions (e.g., patient does not report data conie); (ii) loss of patient to follow-up; (iii)
investigator or mechanical error (e.g., sphygmomagter failure); (iv) physicians not ordering
certain investigations for some patients (e.g.Jesterol test not ordered for some patients).

Before discussing different ways of addressingpitesence of missing data, it is important
to understand the conditions under which data abgest to being missing. Rubin developed a
framework for addressing missing data and desctitves different missing-data mechanisms
2, Data are said to be ‘missing completely at rand®MCAR) if the probability of a variable
being missing for a given subject is independeritath the observed and unobserved variables
for that subject (a list of abbreviations is provided in Table If data are MCAR, then the sub-
sample consisting of subjects with complete (or-nmossing) data is a representative sub-sample
of the overall sample. An example of MCAR is laliorg values that are missing because the
sample was lost or damaged in the laboratory. Tlearoence of such events in the laboratory is
unlikely to be related to characteristics of thbjeat. Data are said to be ‘missing at random’
(MAR) if, after accounting for all the observed iadnles, the probability of a variable being
missing is independent of the unobserved datéhy$igians were less likely to order laboratory
tests for older patients and that was the onlyofaicifluencing whether or not a test was ordered
and recorded, then missing laboratory data woultlA& (assuming that age was recorded for
all patients). Finally, data are said to be ‘migsnot at random’ (MNAR) if they are neither

MAR nor MCAR. Thus, data are MNAR if the probahjlf a variable being missing, even after



accounting for all the observed variables, is ddpahon the value of missing variable. An
example of data that are MNAR could be income, liclv more affluent subjects, even after
accounting for other characteristics, are lesgylikereport their income in surveys than are less
affluent subjects. Unfortunately, one cannot tdsttiver the data are MAR vs. MNAR, so one
must judge what is plausible using clinical knovged °.

Historically, a popular approach when faced witlssitig data was to exclude all subjects
with missing data on any necessary variables aesdriduct subsequent statistical analyses using
only those subjects who have complete data (agugisdithis approach is often referred to as a
‘complete case’ analysis). When only the outcom@ée is incomplete, this approach is valid
under MAR and often appropriateWith incomplete covariates, there are disadvarsag this
approactt'* . First, unless data are MAR, the estimated siggisind regression coefficients
may be biasell Second, even if data are MCAR, with the reduciipsample size there is a
corresponding reduction in precision with whichtistecs and regression coefficients are
estimated. Accordingly, estimated confidence irdéswill be wider by using complete case
analysis than if all the data were used. Moreodiierent analyses may use different subsets of
the overall sample, so that it is difficult to coang results even within the same paper.

An approach to circumvent the limitations of a céetg case analysis is to replace the
missing values of variables with plausible valu®sch an approach is called ‘imputation’, as one
is imputing a value of the variable for those satgevith missing data on that variable.
Historically, a common approach to imputation wagan value imputation’, in which subjects
for whom a given variable is missing have the migsialue replaced with the mean value of
that variable amongst all subjects for whom théalde is present. Thus, subjects who are

missing blood pressure have the missing value cedlavith the average value of blood pressure



amongst those subjects for whom blood pressureweasured and recorded. A limitation of
mean value imputation is that it artificially reciscthe variation in the dataset. For example,
mean imputation will artificially lower the estingat standard deviation of the variable which
was imputed. Furthermore, mean imputation ignores multivariatations between different
variables in the sample. For instance, older stbj@ay have, on average, higher blood pressure
than younger subjects. This correlation betweenaagieblood pressure is not taken into account
by mean imputation.

An alternative to mean value imputation is ‘corahtil mean imputation’ in which a
regression model is used to impute a single valuedch missing valufe From the fitted
regression model, the mean or expected value, ttondi on the observed covariates, is imputed
for those subjects with missing data. Thus, assgrthiat the imputation model regressed blood
pressure on age and sex, the same value of blesdye would be imputed for all subjects of
the same age and sex. A modification of conditionehn imputation draws the imputed value
from a conditional distribution whose parameteesdatermined from the fitted regression
model. However, both of these latter approachéiscaally amplify the multivariate relations in
the data. Another limitation is that the imputedlres are treated as known with certainty and
treated on an equal footing with the values fordame variable for other subjects for whom the
variable was observed and recorded and not impMedn imputation and conditional mean
imputation are recommended for handling missingeslof baseline covariates in randomized
trials only® &2

A popular approach for addressing the issue ofinjssata is multiple imputation (Mf)

10 MI imputes multiple values for each missing vallikis results in the creation of multiple

complete data sets in which the missing values bawea filled in with plausible values. The



analysis of scientific interest is then conductegasately in each of these complete datasets and
the results are pooled across the imputed datdsetss way, multiple imputation allows the
user to explicitly incorporate the uncertainty atbihe true value of imputed variables.

The current paper provides an introduction to Ml dlustrates its application using a
cardiovascular example. The paper is structurddlisvs. In Section 2 we introduce Ml and
discuss several issues related to its implememtatioSection 3 we illustrate its application
using an example of logistic regression to modettahity in patients with heart failure. Finally,
in Section 4 we summarize our brief tutorial anedi the interested reader to more detailed and

comprehensive discussions of MI.

2. Multiple imputation for missing data

In this section we provide an introduction to Mbagiscuss issues related to its use.

2.1 Multiple imputation using Multivariate Imputati by Chained Equations (MICE)

Fully conditional specification (FCS) is a stratdgy specifying multivariate models
through conditional distributions. A specific implentation of this strategy in which every
variable is imputed conditional on all other vateshis now known as the Multivariate
Imputation by Chained Equations (MICE)*algorithm. In our description of the algorithm we
assume that there gpevariables, of whiclk are subject to missing data gnt that are
complete. The algorithm is summarized in Tablef process described in Steps 3 and 4 is
repeated for several cycles to create one imputtakdt. Standard software uses 5 to 20 cycles

by default, and it is rarely necessary to increhese value¥” ' The imputed values obtained



after the last cycle are used as the imputed vdtudke first imputed dataset. The entire process

is then repeated M times in order to produce M iregulatasets.

2.2 Multiple imputation for continuous variable ngipredictive mean matching

The imputation process described above uses lnegagssion and takes the imputed
values as random draws from a normal distribufidmns has problems if the residuals from the
regressions are not normally distributed (e.gaifcare skewed), or if relations are non-linear
(e.g. height and age). For example, a variablediathave only positive values (e.g., counts)
may have imputed values that are negative. Onempti address such problems is to transform
the variable prior to imputation so that the transfed variable is approximately normally-
distributed. For instance, the logarithmic transfation, when applied to a positively-skewed
distribution, can result in a distribution thanm®re normally-distributed. As a last step, one may
wish to back-transform imputations into the origiseale. A second option to is to draw
imputations from the observed values by a techniglied predictive mean matching (PMR)
For a given subject with missing data on the vaeiab question, PMM identifies those subjects
with no missing data on the variable in questiomséhlinear predictors (created using the
regression coefficients from the fitted imputationdel) are close to the linear predictor of the
given subject (created using the regression coeffis sampled from the appropriate posterior
distribution, as described above). Of those subjetto are close, one subject is selected at
random and the observed value of the given vari@blthat randomly-selected subject is used as
the imputed value of the variable for the subjeithwnissing data. Morris et al. suggest that
identifying the ten closest subjects without migsitata performed wetf. Using the

terminology of Morris et al., we refer to the medhaescribed in Section 2.2 as parametric



imputation, as the imputed variables are drawn feoparametric distributiotf. This is in
contrast to PMM, where the imputed variables assvdrfrom an observed empirical

distribution.

2.3 Analyses in the M imputed datasets

Once M complete datasets have been constructed nmsittiple imputation, the statistical
analysis of scientific interest is conducted infeatthe M complete datasets. That analysis
would be the exact analysis that would be conduictélde absence of missing data. Thus, if the
analysis model is a logistic regression model ifcvla binary outcome variable is regressed on
a set of predictor variables, this model is fieach of the M imputed datasets. The statistics of
interest (e.g., estimated regression coefficientstheir standard errors) are extracted from the

analysis conducted in each of the M imputed dataset

2.4 Rubin’s Rules for combining estimates and stethdrrors across imputed datasets

Once the statistics of interest have been estimatdee M imputed datasets, they are

combined using Rubin’s RulésLet 8” denote the estimated statistic of interest (e.g.,

regression coefficient) obtained from the analysigeith imputed dataset£ 1,..., M). The

M .
pooled estimated of the statistic of interes&’isﬁz 6" . The Ml estimate of the statistic is
i=1

simply the average value of the estimated sta&tioss the M imputed datasets.
Computing the variance of the estimated statistimore complex, as it requires accounting

for the within-imputation uncertainty in the estit®a statistic and the between-imputation

variation in the estimated statistic. \t" denote the estimated variance (e.qg., the squateof
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estimated standard error) 8f’. The average within-imputation variance is defiasd

13 L . . . .
W :—ZV\/") . This is simply the mean estimated variance oestenated statistic across the
i=1

M imputed datasets. The between-imputation variafitke estimated statistic is

M .
B= ﬁZ(Q") -8)? . This quantity reflects the degree to which thémested statistic varies
!

across the M imputed datasets. The MI estimatheotariance of obtained using Rubin’s

Rules isvar(@)=W + (1+ %} B. This quantity reflects both the average withirputation

variation in @ as well as the between-imputation variatior@inNote that when using single
imputation, there is no estimate of B, so we am@blmto estimate the true variation in the

statistic.

2.5  How many imputations: how large should M be?

An important question is how many imputed datasktild be created. Early
recommendations were that three to five imputeds#ds were sufficient as long as the amount
of missing information was not very higtf, while others suggested that often 5-10 imputation
were sufficient. These early recommendations were based on thiesagowith which the
regression coefficient was estimated comparedtadturacy had it been estimated with an
infinite number of imputed datasets. However, asialare interested not only in estimated
regression coefficients (e.g., log-odds ratiosogrthazard ratios), but also in their associated
standard errors (which are used in deriving comitgeintervals and significance tests). Thus,

one wants to estimate not only regression coefftsiaccurately, but also standard errors.
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Ideally, one would select M such that the pooldtdresed regression coefficients and
standard errors would not vary meaningfully acregeated applications of Ml (i.e., if the entire
process was repeated with M new imputed datase¢swould obtain estimates comparable to
those obtained using the initial M imputed datgsdise term Monte Carlo error in a given
statistic (e.g., a regression coefficient or adéad error) refers to the standard deviation of tha

statistic across repeated applications of MI. Wloenising on a single statistic, the Monte Carlo

error can be computed a®8/M . White et al. suggested that, as a rule of thut@bnumber

of imputed datasets should be at least as larjeegsercentage of subjects with any missing data
. They suggest that this will result in estimatégegression coefficients, test statistics
(regression coefficients divided by the standardrgand p-values with minor variability across
repeated MI analyses (i.e., the Monte Carlo eritio® low). A more advanced method for
determining the number of imputations was develdpetfon Hippel*>. Nowadays computation

is cheap and the use of between 20 and 100 implattedets is common.

2.6 Which variables to include in the imputationdei®

Investigators need to distinguish between two difiié statistical models: the imputation
model and the analysis model. The imputation madesed for imputing missing data. It is not
of direct interest and is only used to provide oeable imputations. The analysis model holds
the quantities that are ultimately of scientifitairest and is the focus of the research question.
The rules for building imputation and analysis medee very differentit is important to
include in the imputation model all the variableattwill be included in the analysis model.
Failure to include these variables in the imputatitodel usually results in estimates in the

analysis model being biased. The variables mustlasncluded in the imputation model in the
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right way: for example, Schafer noted that if iat#rons are omitted from the imputation model,
then the estimated interactions in the analysisahwil be biased towards the ndll

It is especially important to include in the impiida model the outcome variable for the
analysis model %, Failure to do so usually results in estimatedassjon coefficients for the
analysis model being biased toward the null. Wihenoutcome in the analysis model is a
survival or time-to-event outcome (e.g., the outeanodel is a Cox proportional hazards model)
then there are two components to the outcome: extiinevent variable denoting the time to the
occurrence of the event or the time to censoringd,abinary indicator variable denoting
whether the subject experienced the event or wasoced. The recommended approach is to
include both in the imputation model, with the titoeevent variable transformed using the
cumulative survivor functio®®. In addition, the imputation model is improvedibgluding
variables that are related to the missingness aridbles that are correlated with variables of
interest. In longitudinal data, when imputing aiahle for a specific measurement occasion
(e.g., on the second clinic visit), one also ndedaclude in the imputation model future values

of that variable (e.g. the value of that varialiléha third clinic visit).

2.7 Imputing derived variables

The analysis model may include variables that areveld from other variables. Examples
include body mass index (BMI, which is derived froeight and weight), quadratic terms for
continuous variables (e.g., &yeand interactions between variables (i.e., preslatvariables).
When the component variables required to creatdehged variable are missing (and therefore
the derived variable is also missing), there aie mvain options for imputing the derived

variables. The first option imputes the missing ponent variables and creates the derived
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variable after all variables have been imputed.sTiftheight was missing, height would first be
imputed and then combined with weight to create B¥tin Hippel refers to this approach as
‘impute, then transform’. This approach is appeghs it leads to derived variables that are
consistent with the derivation rule. The obviouslppem with the approach is that the derived
variable is not part of the imputation model, heiteeay lead to bias, as explained in section
2.6. The second option is to treat the derivedakdei as simply another variable and to impute
this variable directly. Thus, if height were miggifand thus BMI were also missing), height and
BMI would be imputed for those subjects for whoraythwere missing. This approach is known
as ‘transform, then imputé’ or ‘just another variable’ (or JAV) Note that the JAV approach
incorporates the components as well as the deuagdble in the imputation model. This
approach is appealing as it incorporates all necgs&riables into the imputation model.
However, it can lead to quadratic variables witgateve values or BMI values that are
inconsistent with the height and weight of the sabjlt has been shown that in some settings the
approach leads to accurate estimates of regressedficients in the analysis model, though it
can fail in others® *° van Buuren (Sec 6.4) describes some alternatiategies for specific
types of dependencié® Since no strategy performs uniformly better, waymeed some

tailoring to the type of derived variable.

2.8  Missing outcome variables

Multiple imputation is blind to which variables avatcomes and which variables are
predictors in the final analysis model. When dep#lg the imputation models, the important
issue is to include in the imputation models adl variables from the analysis model. This

suggests that one can impute values of the outeanigble (for the analysis model) for those
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subjects for whom it is missing. However, von Hippevided evidence that excluding subjects
who are missing the outcome variable (for the aislynodel) when fitting the outcome model
will tend to be a better strated} He proposed a strategy that he referred to akifiteu
imputation, then deletion’ (MID). Under MID, all bjects are used in the imputation process.
Values are imputed for all missing data, includiogthose subjects who are missing the
outcome variable. However, subjects for whom the@ue variable was imputed are then
excluded when the analysis model is fit in eachutegd dataset. The MID approach will tend to
result in estimated regression coefficients forahalysis model that are more efficient (have
smaller variability) than those obtained whenrtithe analysis model in all subjects. In
addition, the method is robust against bad impaotaiti the outcome. The MID procedure should
not be used if there are auxiliary variables thatstarongly related to the outcome (and not
included in the analysis model), or if the sciaatifiterest extends to parameters other than

regression coefficients.

3. Case study

We use data on patients hospitalized with hedrr&in the province of Ontario to provide
a case study illustrating the application of Ml.eTdnalysis model of interest is a logistic
regression model in which death within one yednagpital admission is regressed on ten patient

characteristics.

3.1 Data sources
We used data from the Enhanced Feedback for BfteCtardiac Treatment (EFFECT)

Study, which was an initiative to improve the gtyatif care for patients with cardiovascular
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disease in Ontarith. We used data on 8,338 patients hospitalized edtigestive heart failure
between April 1, 2004 and March 31, 2005 at 81 @mtaospital corporations. Data on patient
demographics, vital signs and physical examinagiooresentation, medical history, and results
of laboratory tests were collected on these patibptretrospective chart review. Subjects were
linked to administrative health care data to deteemwital status.

For the purposes of this case study, we consideretiaseline covariates: age, respiratory
rate at admission, glucose level, urea level, lewsity lipoprotein (LDL) cholesterol level, sex,
S3 (third heart sound) on admission, S4 (fourththeaund) on admission, neck vein distension
on admission, and cardiomegaly on chest X-ray.fifeefive were continuous while the last
five were binary. The outcome was a binary outcder@oting whether the patient died within
365 days of hospital admission. Logistic regressnmalels for 30-day and 1-year mortality are
often used in cardiovascular reseaf©f. Our purpose in using these data was to illusttate
application of statistical methods and not to dddinical conclusions. Accurate estimation of the
association of variables with cardiovascular outesim current patients may require the use of
more recent data and of a more comprehensive ggedictor variables. Furthermore,
depending on the objective of the intended studlffarent regression model may be more

appropriate.

3.2 Descriptive statistics

Means and percentages are reported for the connaiad binary variables, respectively,
in Table 3. We also report the percentage of stbjeith missing data for each of the variables.
The percentage of missing data ranged from a lo@%@{age and sex) to a high of 73% (LDL

cholesterol). Overall, 78% of subjects had missiata on at least one variable.
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3.3 Comparison of subjects with and without missiata

We conducted univariate comparisons of those withwithout missing data. There are at
least two reasons for these comparisons. Firstptesl above, the imputation model is improved
by including variables that are related to the migsess. Thus, these comparisons will help
identify variables that should be included in thgputation model. Second, these analyses
provide evidence as to the plausibility of the MASsumption. If those with and without missing
data differ on many observed variables, thenplasisible that they may also differ on
unobserved variables. Note that a lack of significanivariate associations does not provide
proof that the data are MCAR or MAR.

There were meaningful differences in age, sex aodaiity (the three variables that were
not subject to missingness) between those with éetmpata and those with missing data. The
average age of those with complete data was 7&r& yehile it was 77.5 years for those with
missing data. Of those with complete data, 43.4%eemale, while 53.0% of those with
missing data were female. Of those with completa,d28.7% died within one year of
admission, while 33.9% of those with missing da&al dvithin one year of admission. Patients
with missing data tended to be older, were mormyiko be female, and more likely to die

compared to those with complete data.

3.4  Complete case analysis
We conducted a complete case analysis that wagtedtis to the 1,806 subjects with
complete data. The reason for doing this is thatplete case analysis is less prone to user error

than Ml (as it does not rely on an imputation mpadeld we should be able to explain any
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differences between the complete case analysishend! analysis. We used logistic

regression to regress death within one year ofitedsgmimission on the 10 baseline covariates.
The logarithm of the estimated odds ratios andaatam 95% confidence intervals are reported
in Figure 1 (log-odds ratios are reported so thatdonfidence intervals are symmetric).
Increasing age and urea were associated with agased odds of death within one year and had
95% confidence intervals that excluded the nullgaNone of the binary variables had odds
ratios whose associated 95% confidence intervduded the null value. Note that the odds
ratios for the five continuous variables are no¢éclly comparable with one another as they are

measured on different scales.

3.5 Multiple imputation

Imputation was conducted using the MICE algoritrsing PROC Ml in SAS (SAS/STAT
version 14.1). Logistic regression models were @sethe imputation models for the binary
variables, while linear regression models were asetthe imputation models for the continuous
variables. All variables (including the binary ooiee variable) were included in each imputation
model (with the obvious exception of the varialblattwas being imputed). Using the rule of
thumb suggested by White et al., we created 78 tetpdatasets since 78% of subjects had any
missing data. For comparative purposes, we usedHympell’'s two-stage algorithm with 10
imputed datasets in the first stage with the ddtethat the standard errors of the estimated
regression coefficients be estimated accuratelywoodecimal places. The algorithm suggested
80 imputed datasets were necessary to estimastahdard error of the intercept term with the
desired precision and that at most 15 imputed dttagere necessary to estimate the standard

errors of the 10 covariates with the desired precis
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As a sensitivity analysis we used predictive meatching when imputing missing values
for the continuous variables. Software code fordemting these analyses are provided in
Supplementary Appendix S1 (SAS code), Supplemeitppendix S2 (R code), and

Supplementary Appendix S3 (Stata code).

3.6  Descriptive statistics in the imputed datasets

Non-parametric density plots were used to des¢hbalistribution of the four continuous
variables that were subject to missing data irctivaplete cases and in those subjects who were
missing data for the given continuous variable. THiter was done separately in each of the
imputed datasets. These are described in Figypsararfietric imputation) and Figure 3
(predictive mean matching). The density functiothie complete cases is described using a solid
black line, while the density function of the impdtvariable in each of the imputed datasets is
described using a dashed red line. When using mranmputation, the distribution of imputed
respiratory rate, glucose, and urea failed to disfthe skewness seen in subjects for whom the
variable was observed. However, the distributiomygfuted values of LDL was comparable to
the empirical distribution in subjects for whom L®las measured. When using predictive mean
matching, the distribution of the imputed valuesdied to be very similar to that of the observed

values of the variable.

3.7 Logistic regression in the imputed datasets
In each imputed dataset, we regressed the binacpme denoting death within one year
of hospital admission on the 10 covariates desgdribd able 3. The regression coefficients and

their standard errors were pooled using Rubin’®€Rurlhe estimate of the Monte Carlo error for

19



the ten estimated regression coefficients rangad .000042 for age to 0.005502 for LDL
cholesterol. Thus, if we repeated the entire imiangprocess multiple times, we would expect
to see only minor variation in the estimated regjmscoefficients.

The log-odds ratios and their associated 95% cenéd intervals obtained using
parametric imputation are reported in Figure 1.eEhrontinuous variables (age, respiratory rate,
and urea) had a positive association with 1-yeatatity, while females had a lower risk of
death than males. The odds ratios and associatéd:8bfidence intervals obtained using
predictive mean matching imputation are also regbih Figure 1. The estimated odds ratios and
associated confidence intervals obtained usingigiree mean matching imputation were
essentially identical to those obtained using patamimputation. In comparing the results of
the three regression analyses, one observes thebttiidence intervals obtained from the
imputation-based analyses were narrower than thioisgned in the complete case analysis. For
some variables (e.g., age, S3 and S4), the comidiertervals obtained using the complete case

analysis were substantially wider than those obtaumsing multiple imputation.

4. Discussion

Missing data occurs frequently in clinical reseabdhis a statistical tool that allows the
researcher to replace missing values with multitdeisible values of the variable in question.
The use of Ml allows the researcher to analyze d¢etmplatasets while incorporating the
uncertainty in the imputed values of the varialdle provided a brief introduction to Ml and
provided guidance regarding its implementation.iletrated the application of Ml through the

analysis of data on patients hospitalized with thizglure.
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When applying MI, researchers should explore diffees between the observed and
imputed distributions and between the complete aasty/ses and the MI analyses. We refer
readers to previously-published guidelines for répg analyses affected by missing data

The current introduction to Ml was not intended®exhaustive. We refer the interested

1°as well as to more detailed overview articlés We

reader to several excellent texts on'V
have focused our attention on multiple imputatioobservational studies in which clustering of
subjects or a multilevel structure is absent. Otinarks describe methods for using multiple
imputation with multilevel dat&” 2°2° Similarly, we have focused on the use of parametr
models (e.g., logistic regression models or limegression models) for the imputation models.
An area of current research is on the use of madeirning methods for multiple imputatith
We have focused on the use of Ml when data arerdMiICAR or MAR. The described methods
must be modified if it is thought that the data BfeAR. Van Buuren summarizes different
methods to address data that are MNAR he simplest approach is to assume that the
distribution of a variable in those with missingslsfted compared to the distribution in those
with complete data. Sensitivity analyses can belaoted in which the magnitude of the shift
parameter is allowed to vary.

We have focused on the MICE algorithm for multiplgutation, along with a
modification, predictive mean matching. This is tia only method to impute missing data. An
earlier method has been described as ‘joint mogetfh of which M1 under a normal model is a
specific implementatioft This approach assumes that the set of variablesifa joint
multivariate distribution. The multivariate nornsistribution is widely used in applicatioh

Under this implementation, the variables are assuiméollow a multivariate normal

distribution. Once the parameters of this distitoubave been estimated, missing values can be
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imputed by random draws from this multivariate alition. In theory, this approach requires
that all the variables be continuous. In practiteary or categorical variables occur frequently
(e.g., presence or absence of diabetes). Schalgbaham suggest that despite this theoretical
limitation, they have found the multivariate norrdatribution to be useful in a wide range of
settings’. Furthermore, they provide suggestions for incoapog binary and categorical
variables as well as non-normally distributed cmmbius variables. However, others have
suggested that these methods of incorporating patirtious variables may not perform as
desired'’. Given the flexibility of the MICE algorithm antsiability to explicitly incorporate
different types of variables, its use may be ativado researchers in biomedical research.

In our case study, we obtained similar parametamates when using parametric
imputation as when using predictive mean matchmmguitation. This is to be expected for
estimates that depend on the middle of the didtabusuch as means or regression coefficients.
In practice, it may be difficult to provide examplhere PMM imputation beats a well-crafted
parametric imputation model. However, in practaeglysts often prefer PMM imputation
because it preserves typical features in the raea. @r example, it accounts for discreteness of
data, avoids impossible values, preserves locafiguantiles, and is highly robust to imputation
model misspecification. All this costs no additibmark on the part of the analyst. If the
complete-data model depends on such featuresthienference will also be better when using
PMM imputation.

In this tutorial article we have focused on the asmultiple imputation in observational
studies. In randomized controlled trials (RCTs)/tiple imputation is not always the optimal
approact’. When a univariate outcome is MAR, a complete easgysis using an adjusted

analysis is unbiased and effici@nwith a multivariate outcome (e.g., an outcome sneed at
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multiple occasions over the course of follow-upg tise of a linear mixed model with missing
data in the outcome only will tend to result inresttes with smaller standard errors compared to
the use of multiple imputatich If multiple imputation is used, it is suggesthdttimputation be
conducted separately in the different arms of tiae

In summary, Ml replaces missing values with plalesialues. By creating multiple
imputed datasets, the analyst can explicitly act@amthe uncertainty inherent in the imputed
values. Historical approaches such as completearegsis, mean imputation or single
imputation potentially result in bias, incorrectiemtes of standard errors, and consequently
incorrect tests of statistical significance. Reslars are encouraged to consider Ml as an

important tool to address the problems associatddmissing data in clinical research.
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Table 1. List of abbreviations

Abbreviation

Full term

MI Multiple imputation

MCAR Missing completely at random

MAR Missing at random

MNAR Missing not at random

FCS Fully conditional specification

MICE Multivariate Imputation by Chained
Equations

PMM Predictive mean matching

JAV Just another variable

MID Multiple imputation, then deletion
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Table 2. Multivariate Imputation by Chained EquaidMICE) algorithm for multiple

imputation

5.

1. Specify an imputation model for each of kwariables that are subject to missing data.

2. For each of thk variables that are subject to missing data,Hilhe missing values with
random draws from those subjects with observedegafor the variable in question. Note that
these initial imputed values do not respect thetiwariate relations in the data and will be
overwritten by better imputed values in later ssagkthe algorithm.

3. For the first variable that is subject to missilaga:

a.

b.

4. Repeat Step 3 for each of the variables thatbgest to missing data. Step 3 and Step 4 form
one cycle of the imputation process for creating mmputed dataset.
Repeat Steps 3 and 4 the desired number of {snggested values: 5 to 20 cycles). The fing
imputed values are used as the imputed valuessinimputed dataset.

Repeat Steps 2 to 5 M times to produce M impdagdsets (the choice of M, the number of
imputed datasets, is discussed in Section 2.5).

Regress this first variable on all the otheralags using those subjects with complete
data on the first variable and observed or curyantputed values of the other variablgs.
The estimated regression coefficients and treiance-covariance matrix (and the
estimated variance of the residual distributioa linear regression model was fit for a
continuous variable) are extracted from the regoessiodel estimated in (a).

Using the quantities obtained in (b), randomlstyn® the estimated regression
coefficients in a way that reflects the degreerafartainty arising from the data.
Using the set of perturbed regression coeffisi@htained in (c), the conditional
distribution of the first variable is determined &ach subject with missing data on that
variable.

A value of the variable is drawn from this cormitil distribution for each subject with
missing data on the first variable.
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Table 3. Descriptive statistics of case study data

Variable Mean (SD)/ | Number of Number | Percentage
Percentage | subjects with | of of subjects
observed data| subjects | with
with missing
missing data
data
Continuous variables
Age (years) 76.7 (11.6) 8338 0 0%
Respiratory rate at admission 24.5 (7.0) 8138 200 2.4%
(breaths per minute)
Glucose (initial lab test) (mmol/L) 8.6 (4.1) 8051 287 3.4%
Urea (initial lab test) (mmol/L) 10.3 (6.6) 8028 (B1 3.7%
LDL cholesterol (mmol/L) 2.2 (0.9) 2272 6066 72.8%
Binary variables
Female 50.9% 8338 0 0%
S3 6.2% 8126 212 2.5%
S4 2.7% 8135 203 2.4%
Neck vein distension 66.1% 7586 752 9.0%
Cardiomegaly on chest X-ray 47.7% 7711 627 7.5%
Outcome
Death within one year 31.7% 8338 0 0%

Note: SD: standard deviation
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Figurelegends

Figure 1:

Title: Distribution of continuous variables in colefe cases and in those with imputed data

when using parametric imputation.

Caption: The solid black line denotes the distitnubf the given continuous variable in those
subjects for whom that variable was not missinge féd lines denote the distribution of the
imputed value for that variable in those subjectsifhom the variable was missing. There is one

red line for each of the imputed datasets.

Figure 2:

Title: Distribution of continuous variables in colefe cases and in those with imputed data

when using predictive mean matching (PMM).

Caption: The solid black line denotes the distitoubf the given continuous variable in those
subjects for whom that variable was not missinge fiéd lines denote the distribution of the
imputed value for that variable in those subjectsifhom the variable was missing. There is one

red line for each of the imputed datasets.

Figure 3.

Title: Estimated odds ratios and 95% confidencerils for variables in the logistic regression

model fit in the case study.
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Caption: There are three estimates/confidenceval®for each of the ten variables: (i) using
complete cases; (ii) multiple imputation analysé®mwusing parametric imputation; (iii)

multiple imputation analyses when using predictiean matching (PMM).
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Supplementary Appendix S1. SAS code for multipleimputation

* This code is provided for illustrative purposes and cones

with absolutely no warranty;
* The dataset used for these analyses cannot be pub
Distributed. Please do not contact the authors re
the dataset;

* MI using the default parametric imputation for th
variables;

* In the dataset are the following variables:
age: patient age (years)
resp: Respiratory rate
glucose: Glucose
urea: Urea
Idl: LDL cholesterol level
female: Binary variable (female=1/male=0)
s3: S3 (third heart sound)
s4: S4 (fourth heart sound)
neckvdis: Neck vein distension
cmg: Cardiomegaly on chest X-ray
mortlyr: Binary variable denoting death within o

proc mi data=cohort seed=2122019 nimpute=pctmissing
out=tutorial_mi;
class female s3 s4 neckvdis cmg mortlyr;
fcs plots=trace nbiter=20 logistic(mortlyr female
cmg);
var mortlyr age female resp s4 s3 glucose urea cm
run;

* Ml using PMM for the continuous variables;

proc mi data=cohort seed=2122019 nimpute=pctmissing
out=tutorial_mi_pmm;
class female s3 s4 neckvdis cmg mortlyr;
fcs plots=trace nbiter=20 logistic(mortlyr female
cmg);
fcs regpmm(age resp glucose urea Ildl);
var mortlyr age female resp s4 s3 glucose urea cm
run;

* Analyses in the imputed datasets;
Proc sort data=tutorial_mi; by _imputation_; run;
Proc logistic data=tutorial_mi descending;

Model mortlyr = age resp glucose urea Idl female
/covb;
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By _imputation_;
Ods output ParameterEstimates=Igsparms covB=Igsc
Run;

* Pooling results using Rubin’s Rules;

Proc mianalyze parms=lgsparms covb(effectvar=stacki
Modeleffects Intercept age resp glucose urea IdI
neckvdis cmg;
ods output ParameterEstimates=MI,
run;

proc print data=MI;
run;
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Supplementary Appendix S2. R code for multiple imputation

# This code is provided for illustrative purposes and cones

with absolutely no warranty;

BHHH R R R
# Read in data.
BHHH R R

zlist<- list(age=0,resp=0,glucose=0,urea=0,|dI=0,fe
cmg=0,mortlyr=0)

cohort <- data.frame(scan("mi_tutorial.txt",zlist))
data <- cohort[,c("mortlyr","age","female","resp","
"glucose","urea","cmg","neckvdis"

HEHHHEH R
# MI using the parametric imputation for the contin
HEHHHE R

meth <- make.method(data)
meth[meth == "pmm"] <- "norm"
nimp <- 100 * nic(data) / nrow(data)

imp.parm <- mice(data,m=nimp,method=meth,maxit=20,s
plot(imp.parm)

# Analyses in the imputed datasets
fit.parm <- with(imp.parm,glm(mortlyr ~ age + resp
urea + ldl + female + s3 + s4 + neckvdis + cmg,fa

# Pooling results using Rubin's Rules
summary(pool(fit.parm), confint = TRUE, exponentiat

HEHHHEH R
# MI using the default PMM for the continuous varia
HEHHHEH R

imp.pmm <- mice(data,m=nimp,maxit=20,seed=2122019)
plot(imp.pmm)

# Analyses in the imputed datasets
fit.pmm <- with(imp.pmm,gim(mortlyr ~ age + resp +
urea + Idl + female + s3 + s4 + neckvdis + cmg,fa

# Pooling results using Rubin's Rules
summary(pool(fit.pmm), confint = TRUE, exponentiate
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BHARHHBHA R R R
BHARHHBHA R R R

male=0,s3=0,s4=0,neckvdis=0,

s4","s3",
)]
BHARHHRHA R R R

uous variables
BHHH

eed=2122019)

+ glucose +

mily = "binomial))

e = TRUE)
SRR R R B R

bles
BHHH

glucose +
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= TRUE)



Supplementary Appendix S3. Stata code for multiple imputation

* This code is provided for illustrative purposes and cones
with absolutely no warranty;

infile age resp glucose urea Idl female s3 s4 neckv dis cmg mortlyr
using "mi_tutorial.txt"

set seed 2122019

mi set flong
mi register imputed resp glucose urea Idl // contin uous and incomplete
mi register imputed s3 s4 neckvdis cmg // binary an d incomplete

mi register regular mortlyr age female // complete

* Ml using parametric imputation for the continuous variables;
*mi impute chained (logit) s3 s4 neckvdis cmg (regr ess) resp glucose
urea Idl = mortlyr age female, add(20)

* alternative MI using PMM for the continuous varia bles;
mi impute chained (logit) s3 s4 neckvdis cmg (pmm, knn(10)) resp
glucose urea Idl = mortlyr age female, add(20)

mi estimate: logistic mortlyr age resp glucose urea Idl female s3 s4
neckvdis cmg
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Figure 2. Distribution of continuous variables in complete cases and in those with imputed data
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Figure 3. Distribution of continuous variables in complete cases and in those with imputed data (PMM)
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