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Brief summary 

Missing data is a common occurrence in clinical research. We briefly discuss common 

approaches to addressing missing data and highlight their limitations. We introduce multiple 

imputation (MI), a popular approach for addressing the presence of missing data. With MI, 

multiple plausible values of a given variable are imputed or filled-in for each subject who has 

missing data for that variable. We describe the steps that should be conducted when conducting 

an analysis using MI.  
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Abstract (word count: 242) 

Missing data is a common occurrence in clinical research. Missing data occurs when the value of 

the variables of interest are not measured or recorded for all subjects in the sample. Common 

approaches to addressing the presence of missing data include complete-case analyses, in which 

subjects with missing data are excluded, or mean-value imputation, where missing values are 

replaced with the mean value of that variable in those subjects for whom it is not missing. 

However, in many settings, these approaches can lead to biased estimates of statistics (e.g., of 

regression coefficients) and/or to confidence intervals that are artificially narrow. Multiple 

imputation (MI) is a popular approach for addressing the presence of missing data. With MI, 

multiple plausible values of a given variable are imputed or filled-in for each subject who has 

missing data for that variable. This results in the creation of multiple completed datasets. 

Identical statistical analyses are conducted in each of these complete datasets and the results are 

pooled across complete datasets. We provide an introduction to MI and discuss issues in its 

implementation, including developing the imputation model, how many imputed datasets to 

create, and addressing derived variables. We illustrate the application of MI through an analysis 

of data on patients hospitalized with heart failure. We focus on developing a model to estimate 

the probability of one-year mortality in the presence of missing data. Statistical software code for 

conducting multiple imputation in R, SAS, and Stata are provided. 

 

Keywords: Missing data, multiple imputation, tutorial.
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1. Introduction 

Missing data are a common occurrence in clinical research. Missing data occurs when the 

value of the variables of interest are not measured or recorded for all subjects in the sample.  

Data can be missing for several reasons, including: (i) patient refusal to respond to specific 

questions (e.g., patient does not report data on income); (ii) loss of patient to follow-up; (iii) 

investigator or mechanical error (e.g., sphygmomanometer failure); (iv) physicians not ordering 

certain investigations for some patients (e.g., cholesterol test not ordered for some patients). 

Before discussing different ways of addressing the presence of missing data, it is important 

to understand the conditions under which data are subject to being missing. Rubin developed a 

framework for addressing missing data and described three different missing-data mechanisms 1, 

2. Data are said to be ‘missing completely at random’ (MCAR) if the probability of a variable 

being missing for a given subject is independent of both the observed and unobserved variables 

for that subject 3 (a list of abbreviations is provided in Table 1). If data are MCAR, then the sub-

sample consisting of subjects with complete (or non-missing) data is a representative sub-sample 

of the overall sample. An example of MCAR is laboratory values that are missing because the 

sample was lost or damaged in the laboratory. The occurrence of such events in the laboratory is 

unlikely to be related to characteristics of the subject. Data are said to be ‘missing at random’ 

(MAR) if, after accounting for all the observed variables, the probability of a variable being 

missing is independent of the unobserved data. If physicians were less likely to order laboratory 

tests for older patients and that was the only factor influencing whether or not a test was ordered 

and recorded, then missing laboratory data would be MAR (assuming that age was recorded for 

all patients). Finally, data are said to be ‘missing not at random’ (MNAR) if they are neither 

MAR nor MCAR. Thus, data are MNAR if the probability of a variable being missing, even after 

Jo
urn

al 
Pre-

pro
of



6 
 

accounting for all the observed variables, is dependent on the value of missing variable. An 

example of data that are MNAR could be income, in which more affluent subjects, even after 

accounting for other characteristics, are less likely to report their income in surveys than are less 

affluent subjects. Unfortunately, one cannot test whether the data are MAR vs. MNAR, so one 

must judge what is plausible using clinical knowledge 4, 5. 

Historically, a popular approach when faced with missing data was to exclude all subjects 

with missing data on any necessary variables and to conduct subsequent statistical analyses using 

only those subjects who have complete data (accordingly, this approach is often referred to as a 

‘complete case’ analysis). When only the outcome variable is incomplete, this approach is valid 

under MAR and often appropriate 6. With incomplete covariates, there are disadvantages to this 

approach 2, 4, 7. First, unless data are MAR, the estimated statistics and regression coefficients 

may be biased 4. Second, even if data are MCAR, with the reduction in sample size there is a 

corresponding reduction in precision with which statistics and regression coefficients are 

estimated. Accordingly, estimated confidence intervals will be wider by using complete case 

analysis than if all the data were used. Moreover, different analyses may use different subsets of 

the overall sample, so that it is difficult to compare results even within the same paper. 

An approach to circumvent the limitations of a complete case analysis is to replace the 

missing values of variables with plausible values. Such an approach is called ‘imputation’, as one 

is imputing a value of the variable for those subjects with missing data on that variable. 

Historically, a common approach to imputation was ‘mean value imputation’, in which subjects 

for whom a given variable is missing have the missing value replaced with the mean value of 

that variable amongst all subjects for whom the variable is present. Thus, subjects who are 

missing blood pressure have the missing value replaced with the average value of blood pressure 
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amongst those subjects for whom blood pressure was measured and recorded. A limitation of 

mean value imputation is that it artificially reduces the variation in the dataset. For example, 

mean imputation will artificially lower the estimated standard deviation of the variable which 

was imputed 2. Furthermore, mean imputation ignores multivariate relations between different 

variables in the sample. For instance, older subjects may have, on average, higher blood pressure 

than younger subjects. This correlation between age and blood pressure is not taken into account 

by mean imputation.  

An alternative to mean value imputation is ‘conditional mean imputation’ in which a 

regression model is used to impute a single value for each missing value 2. From the fitted 

regression model, the mean or expected value, conditional on the observed covariates, is imputed 

for those subjects with missing data. Thus, assuming that the imputation model regressed blood 

pressure on age and sex, the same value of blood pressure would be imputed for all subjects of 

the same age and sex. A modification of conditional mean imputation draws the imputed value 

from a conditional distribution whose parameters are determined from the fitted regression 

model. However, both of these latter approaches artificially amplify the multivariate relations in 

the data. Another limitation is that the imputed values are treated as known with certainty and 

treated on an equal footing with the values for the same variable for other subjects for whom the 

variable was observed and recorded and not imputed. Mean imputation and conditional mean 

imputation are recommended for handling missing values of baseline covariates in randomized 

trials only 6, 8, 9. 

A popular approach for addressing the issue of missing data is multiple imputation (MI) 1, 

10. MI imputes multiple values for each missing value. This results in the creation of multiple 

complete data sets in which the missing values have been filled in with plausible values. The 
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analysis of scientific interest is then conducted separately in each of these complete datasets and 

the results are pooled across the imputed datasets. In this way, multiple imputation allows the 

user to explicitly incorporate the uncertainty about the true value of imputed variables. 

The current paper provides an introduction to MI and illustrates its application using a 

cardiovascular example. The paper is structured as follows. In Section 2 we introduce MI and 

discuss several issues related to its implementation. In Section 3 we illustrate its application 

using an example of logistic regression to model mortality in patients with heart failure. Finally, 

in Section 4 we summarize our brief tutorial and direct the interested reader to more detailed and 

comprehensive discussions of MI. 

 

2. Multiple imputation for missing data 

In this section we provide an introduction to MI and discuss issues related to its use. 

 

2.1 Multiple imputation using Multivariate Imputation by Chained Equations (MICE)  

Fully conditional specification (FCS) is a strategy for specifying multivariate models 

through conditional distributions. A specific implementation of this strategy in which every 

variable is imputed conditional on all other variables is now known as the Multivariate 

Imputation by Chained Equations (MICE) 10-13 algorithm. In our description of the algorithm we 

assume that there are p variables, of which k are subject to missing data and p-k that are 

complete. The algorithm is summarized in Table 2. The process described in Steps 3 and 4 is 

repeated for several cycles to create one imputed dataset. Standard software uses 5 to 20 cycles 

by default, and it is rarely necessary to increase these values 10, 11. The imputed values obtained 
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after the last cycle are used as the imputed values for the first imputed dataset. The entire process 

is then repeated M times in order to produce M imputed datasets. 

 

2.2 Multiple imputation for continuous variable using predictive mean matching  

The imputation process described above uses linear regression and takes the imputed 

values as random draws from a normal distribution. This has problems if the residuals from the 

regressions are not normally distributed (e.g. if data are skewed), or if relations are non-linear 

(e.g. height and age). For example, a variable that can have only positive values (e.g., counts) 

may have imputed values that are negative. One option to address such problems is to transform 

the variable prior to imputation so that the transformed variable is approximately normally-

distributed. For instance, the logarithmic transformation, when applied to a positively-skewed 

distribution, can result in a distribution that is more normally-distributed. As a last step, one may 

wish to back-transform imputations into the original scale. A second option to is to draw 

imputations from the observed values by a technique called predictive mean matching (PMM) 11. 

For a given subject with missing data on the variable in question, PMM identifies those subjects 

with no missing data on the variable in question whose linear predictors (created using the 

regression coefficients from the fitted imputation model) are close to the linear predictor of the 

given subject (created using the regression coefficients sampled from the appropriate posterior 

distribution, as described above). Of those subjects who are close, one subject is selected at 

random and the observed value of the given variable for that randomly-selected subject is used as 

the imputed value of the variable for the subject with missing data.  Morris et al. suggest that 

identifying the ten closest subjects without missing data performed well 14. Using the 

terminology of Morris et al., we refer to the method described in Section 2.2 as parametric 
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imputation, as the imputed variables are drawn from a parametric distribution 14. This is in 

contrast to PMM, where the imputed variables are drawn from an observed empirical 

distribution. 

 

2.3 Analyses in the M imputed datasets 

Once M complete datasets have been constructed using multiple imputation, the statistical 

analysis of scientific interest is conducted in each of the M complete datasets. That analysis 

would be the exact analysis that would be conducted in the absence of missing data. Thus, if the 

analysis model is a logistic regression model in which a binary outcome variable is regressed on 

a set of predictor variables, this model is fit in each of the M imputed datasets. The statistics of 

interest (e.g., estimated regression coefficients and their standard errors) are extracted from the 

analysis conducted in each of the M imputed datasets. 

 

2.4 Rubin’s Rules for combining estimates and standard errors across imputed datasets 

Once the statistics of interest have been estimated in the M imputed datasets, they are 

combined using Rubin’s Rules 1. Let ( )iθ  denote the estimated statistic of interest (e.g., a 

regression coefficient) obtained from the analysis in the ith imputed dataset (i = 1,…, M). The 

pooled estimated of the statistic of interest is 
M

( )

1

1

M
i

i

θ θ
=

= ∑  . The MI estimate of the statistic is 

simply the average value of the estimated statistic across the M imputed datasets. 

Computing the variance of the estimated statistic is more complex, as it requires accounting 

for the within-imputation uncertainty in the estimated statistic and the between-imputation 

variation in the estimated statistic. Let ( )iW denote the estimated variance (e.g., the square of the 
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estimated standard error) of ( )iθ . The average within-imputation variance is defined as 

M
( )

1

1

M
i

i

W W
=

= ∑ . This is simply the mean estimated variance of the estimated statistic across the 

M imputed datasets. The between-imputation variance of the estimated statistic is 

( ) 2

1

1
B ( )

1

M
i

iM
θ θ

=
= −

− ∑ . This quantity reflects the degree to which the estimated statistic varies 

across the M imputed datasets. The MI estimate of the variance of θ  obtained using Rubin’s 

Rules is 
1

var( ) W + 1 B
M

θ  = + 
 

. This quantity reflects both the average within-imputation 

variation in θ  as well as the between-imputation variation in θ . Note that when using single 

imputation, there is no estimate of B, so we are unable to estimate the true variation in the 

statistic. 

 

2.5 How many imputations: how large should M be? 

An important question is how many imputed datasets should be created. Early 

recommendations were that three to five imputed datasets were sufficient as long as the amount 

of missing information was not very high 1, 3, while others suggested that often 5-10 imputations 

were sufficient 7. These early recommendations were based on the accuracy with which the 

regression coefficient was estimated compared to its accuracy had it been estimated with an 

infinite number of imputed datasets. However, analysts are interested not only in estimated 

regression coefficients (e.g., log-odds ratios or log-hazard ratios), but also in their associated 

standard errors (which are used in deriving confidence intervals and significance tests). Thus, 

one wants to estimate not only regression coefficients accurately, but also standard errors.  
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Ideally, one would select M such that the pooled estimated regression coefficients and 

standard errors would not vary meaningfully across repeated applications of MI (i.e., if the entire 

process was repeated with M new imputed datasets, one would obtain estimates comparable to 

those obtained using the initial M imputed datasets). The term Monte Carlo error in a given 

statistic (e.g., a regression coefficient or a standard error) refers to the standard deviation of that 

statistic across repeated applications of MI. When focusing on a single statistic, the Monte Carlo 

error can be computed as B/M  11. White et al. suggested that, as a rule of thumb, the number 

of imputed datasets should be at least as large as the percentage of subjects with any missing data 

11. They suggest that this will result in estimates of regression coefficients, test statistics 

(regression coefficients divided by the standard error) and p-values with minor variability across 

repeated MI analyses (i.e., the Monte Carlo error will be low). A more advanced method for 

determining the number of imputations was developed by Von Hippel 15. Nowadays computation 

is cheap and the use of between 20 and 100 imputed datasets is common. 

 

2.6 Which variables to include in the imputation model? 

Investigators need to distinguish between two different statistical models: the imputation 

model and the analysis model. The imputation model is used for imputing missing data. It is not 

of direct interest and is only used to provide reasonable imputations. The analysis model holds 

the quantities that are ultimately of scientific interest and is the focus of the research question. 

The rules for building imputation and analysis models are very different. It is important to 

include in the imputation model all the variables that will be included in the analysis model. 

Failure to include these variables in the imputation model usually results in estimates in the 

analysis model being biased. The variables must also be included in the imputation model in the 
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right way: for example, Schafer noted that if interactions are omitted from the imputation model, 

then the estimated interactions in the analysis model will be biased towards the null 7.  

It is especially important to include in the imputation model the outcome variable for the 

analysis model 5, 11. Failure to do so usually results in estimated regression coefficients for the 

analysis model being biased toward the null. When the outcome in the analysis model is a 

survival or time-to-event outcome (e.g., the outcome model is a Cox proportional hazards model) 

then there are two components to the outcome: a time-to-event variable denoting the time to the 

occurrence of the event or the time to censoring, and a binary indicator variable denoting 

whether the subject experienced the event or was censored. The recommended approach is to 

include both in the imputation model, with the time-to-event variable transformed using the 

cumulative survivor function 16.  In addition, the imputation model is improved by including 

variables that are related to the missingness and variables that are correlated with variables of 

interest. In longitudinal data, when imputing a variable for a specific measurement occasion 

(e.g., on the second clinic visit), one also needs to include in the imputation model future values 

of that variable (e.g. the value of that variable at the third clinic visit). 

 

2.7 Imputing derived variables 

The analysis model may include variables that are derived from other variables. Examples 

include body mass index (BMI, which is derived from height and weight), quadratic terms for 

continuous variables (e.g., age2), and interactions between variables (i.e., products of variables). 

When the component variables required to create the derived variable are missing (and therefore 

the derived variable is also missing), there are two main options for imputing the derived 

variables. The first option imputes the missing component variables and creates the derived 
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variable after all variables have been imputed. Thus, if height was missing, height would first be 

imputed and then combined with weight to create BMI. Von Hippel refers to this approach as 

‘impute, then transform’. This approach is appealing as it leads to derived variables that are 

consistent with the derivation rule. The obvious problem with the approach is that the derived 

variable is not part of the imputation model, hence it may lead to bias, as explained in section 

2.6. The second option is to treat the derived variable as simply another variable and to impute 

this variable directly. Thus, if height were missing (and thus BMI were also missing), height and 

BMI would be imputed for those subjects for whom they were missing. This approach is known 

as ‘transform, then impute’ 17 or ‘just another variable’ (or JAV)11. Note that the JAV approach 

incorporates the components as well as the derived variable in the imputation model. This 

approach is appealing as it incorporates all necessary variables into the imputation model. 

However, it can lead to quadratic variables with negative values or BMI values that are 

inconsistent with the height and weight of the subject. It has been shown that in some settings the 

approach leads to accurate estimates of regression coefficients in the analysis model, though it 

can fail in others 18, 19. Van Buuren (Sec 6.4) describes some alternative strategies for specific 

types of dependencies 10. Since no strategy performs uniformly better, we may need some 

tailoring to the type of derived variable. 

 

2.8 Missing outcome variables 

Multiple imputation is blind to which variables are outcomes and which variables are 

predictors in the final analysis model. When developing the imputation models, the important 

issue is to include in the imputation models all the variables from the analysis model. This 

suggests that one can impute values of the outcome variable (for the analysis model) for those 
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subjects for whom it is missing. However, von Hippel provided evidence that excluding subjects 

who are missing the outcome variable (for the analysis model) when fitting the outcome model 

will tend to be a better strategy 20. He proposed a strategy that he referred to as ‘multiple 

imputation, then deletion’ (MID). Under MID, all subjects are used in the imputation process. 

Values are imputed for all missing data, including for those subjects who are missing the 

outcome variable. However, subjects for whom the outcome variable was imputed are then 

excluded when the analysis model is fit in each imputed dataset. The MID approach will tend to 

result in estimated regression coefficients for the analysis model that are more efficient (have 

smaller variability) than those obtained when fitting the analysis model in all subjects. In 

addition, the method is robust against bad imputation in the outcome. The MID procedure should 

not be used if there are auxiliary variables that are strongly related to the outcome (and not 

included in the analysis model), or if the scientific interest extends to parameters other than 

regression coefficients 11. 

 

3. Case study 

We use data on patients hospitalized with heart failure in the province of Ontario to provide 

a case study illustrating the application of MI. The analysis model of interest is a logistic 

regression model in which death within one year of hospital admission is regressed on ten patient 

characteristics. 

 

3.1 Data sources 

We used data from the Enhanced Feedback for Effective Cardiac Treatment (EFFECT) 

Study, which was an initiative to improve the quality of care for patients with cardiovascular 
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disease in Ontario 21. We used data on 8,338 patients hospitalized with congestive heart failure 

between April 1, 2004 and March 31, 2005 at 81 Ontario hospital corporations. Data on patient 

demographics, vital signs and physical examination at presentation, medical history, and results 

of laboratory tests were collected on these patients by retrospective chart review. Subjects were 

linked to administrative health care data to determine vital status. 

For the purposes of this case study, we considered ten baseline covariates: age, respiratory 

rate at admission, glucose level, urea level, low density lipoprotein (LDL) cholesterol level, sex, 

S3 (third heart sound) on admission, S4 (fourth heart sound) on admission, neck vein distension 

on admission, and cardiomegaly on chest X-ray. The first five were continuous while the last 

five were binary. The outcome was a binary outcome denoting whether the patient died within 

365 days of hospital admission. Logistic regression models for 30-day and 1-year mortality are 

often used in cardiovascular research 22-24. Our purpose in using these data was to illustrate the 

application of statistical methods and not to draw clinical conclusions. Accurate estimation of the 

association of variables with cardiovascular outcomes in current patients may require the use of 

more recent data and of a more comprehensive set of predictor variables. Furthermore, 

depending on the objective of the intended study, a different regression model may be more 

appropriate. 

 

3.2 Descriptive statistics 

Means and percentages are reported for the continuous and binary variables, respectively, 

in Table 3. We also report the percentage of subjects with missing data for each of the variables. 

The percentage of missing data ranged from a low of 0% (age and sex) to a high of 73% (LDL 

cholesterol). Overall, 78% of subjects had missing data on at least one variable. 
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3.3 Comparison of subjects with and without missing data 

We conducted univariate comparisons of those with and without missing data. There are at 

least two reasons for these comparisons. First, as noted above, the imputation model is improved 

by including variables that are related to the missingness. Thus, these comparisons will help 

identify variables that should be included in the imputation model. Second, these analyses 

provide evidence as to the plausibility of the MAR assumption. If those with and without missing 

data differ on many observed variables, then it is plausible that they may also differ on 

unobserved variables. Note that a lack of significant univariate associations does not provide 

proof that the data are MCAR or MAR. 

There were meaningful differences in age, sex and mortality (the three variables that were 

not subject to missingness) between those with complete data and those with missing data. The 

average age of those with complete data was 73.7 years while it was 77.5 years for those with 

missing data. Of those with complete data, 43.4% were female, while 53.0% of those with 

missing data were female. Of those with complete data, 23.7% died within one year of 

admission, while 33.9% of those with missing data died within one year of admission. Patients 

with missing data tended to be older, were more likely to be female, and more likely to die 

compared to those with complete data. 

 

3.4 Complete case analysis 

We conducted a complete case analysis that was restricted is to the 1,806 subjects with 

complete data. The reason for doing this is that complete case analysis is less prone to user error 

than MI (as it does not rely on an imputation model) and we should be able to explain any 

Jo
urn

al 
Pre-

pro
of



18 
 

differences between the complete case analysis and the MI analysis 5. We used logistic 

regression to regress death within one year of hospital admission on the 10 baseline covariates. 

The logarithm of the estimated odds ratios and associated 95% confidence intervals are reported 

in Figure 1 (log-odds ratios are reported so that the confidence intervals are symmetric). 

Increasing age and urea were associated with an increased odds of death within one year and had 

95% confidence intervals that excluded the null value. None of the binary variables had odds 

ratios whose associated 95% confidence interval excluded the null value. Note that the odds 

ratios for the five continuous variables are not directly comparable with one another as they are 

measured on different scales. 

 

3.5 Multiple imputation 

Imputation was conducted using the MICE algorithm using PROC MI in SAS (SAS/STAT 

version 14.1). Logistic regression models were used as the imputation models for the binary 

variables, while linear regression models were used as the imputation models for the continuous 

variables. All variables (including the binary outcome variable) were included in each imputation 

model (with the obvious exception of the variable that was being imputed). Using the rule of 

thumb suggested by White et al., we created 78 imputed datasets since 78% of subjects had any 

missing data. For comparative purposes, we used von Hippell’s two-stage algorithm with 10 

imputed datasets in the first stage with the criterion that the standard errors of the estimated 

regression coefficients be estimated accurately to two decimal places. The algorithm suggested 

80 imputed datasets were necessary to estimate the standard error of the intercept term with the 

desired precision and that at most 15 imputed datasets were necessary to estimate the standard 

errors of the 10 covariates with the desired precision. 
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As a sensitivity analysis we used predictive mean matching when imputing missing values 

for the continuous variables. Software code for conducting these analyses are provided in 

Supplementary Appendix S1 (SAS code), Supplementary Appendix S2 (R code), and 

Supplementary Appendix S3 (Stata code). 

 

3.6 Descriptive statistics in the imputed datasets 

Non-parametric density plots were used to describe the distribution of the four continuous 

variables that were subject to missing data in the complete cases and in those subjects who were 

missing data for the given continuous variable. The latter was done separately in each of the 

imputed datasets. These are described in Figure 2 (parametric imputation) and Figure 3 

(predictive mean matching). The density function in the complete cases is described using a solid 

black line, while the density function of the imputed variable in each of the imputed datasets is 

described using a dashed red line. When using parametric imputation, the distribution of imputed 

respiratory rate, glucose, and urea failed to display the skewness seen in subjects for whom the 

variable was observed. However, the distribution of imputed values of LDL was comparable to 

the empirical distribution in subjects for whom LDL was measured. When using predictive mean 

matching, the distribution of the imputed values tended to be very similar to that of the observed 

values of the variable. 

 

3.7 Logistic regression in the imputed datasets 

In each imputed dataset, we regressed the binary outcome denoting death within one year 

of hospital admission on the 10 covariates described in Table 3. The regression coefficients and 

their standard errors were pooled using Rubin’s Rules. The estimate of the Monte Carlo error for 
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the ten estimated regression coefficients ranged from 0.000042 for age to 0.005502 for LDL 

cholesterol. Thus, if we repeated the entire imputation process multiple times, we would expect 

to see only minor variation in the estimated regression coefficients. 

The log-odds ratios and their associated 95% confidence intervals obtained using 

parametric imputation are reported in Figure 1. Three continuous variables (age, respiratory rate, 

and urea) had a positive association with 1-year mortality, while females had a lower risk of 

death than males. The odds ratios and associated 95% confidence intervals obtained using 

predictive mean matching imputation are also reported in Figure 1. The estimated odds ratios and 

associated confidence intervals obtained using predictive mean matching imputation were 

essentially identical to those obtained using parametric imputation. In comparing the results of 

the three regression analyses, one observes that the confidence intervals obtained from the 

imputation-based analyses were narrower than those obtained in the complete case analysis. For 

some variables (e.g., age, S3 and S4), the confidence intervals obtained using the complete case 

analysis were substantially wider than those obtained using multiple imputation. 

 

4. Discussion 

Missing data occurs frequently in clinical research. MI is a statistical tool that allows the 

researcher to replace missing values with multiple plausible values of the variable in question. 

The use of MI allows the researcher to analyze complete datasets while incorporating the 

uncertainty in the imputed values of the variable. We provided a brief introduction to MI and 

provided guidance regarding its implementation. We illustrated the application of MI through the 

analysis of data on patients hospitalized with heart failure. 
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When applying MI, researchers should explore differences between the observed and 

imputed distributions and between the complete case analyses and the MI analyses. We refer 

readers to previously-published guidelines for reporting analyses affected by missing data 5, 25. 

The current introduction to MI was not intended to be exhaustive. We refer the interested 

reader to several excellent texts on MI 1-3, 10 as well as to more detailed overview articles 7, 11. We 

have focused our attention on multiple imputation in observational studies in which clustering of 

subjects or a multilevel structure is absent. Other works describe methods for using multiple 

imputation with multilevel data 10, 26-29. Similarly, we have focused on the use of parametric 

models (e.g., logistic regression models or linear regression models) for the imputation models. 

An area of current research is on the use of machine learning methods for multiple imputation 30. 

We have focused on the use of MI when data are either MCAR or MAR. The described methods 

must be modified if it is thought that the data are MNAR. Van Buuren summarizes different 

methods to address data that are MNAR 10. The simplest approach is to assume that the 

distribution of a variable in those with missing is shifted compared to the distribution in those 

with complete data. Sensitivity analyses can be conducted in which the magnitude of the shift 

parameter is allowed to vary. 

We have focused on the MICE algorithm for multiple imputation, along with a 

modification, predictive mean matching. This is not the only method to impute missing data. An 

earlier method has been described as ‘joint modeling’ 10, of which MI under a normal model is a 

specific implementation 4. This approach assumes that the set of variables follow a joint 

multivariate distribution. The multivariate normal distribution is widely used in applications 10. 

Under this implementation, the variables are assumed to follow a multivariate normal 

distribution. Once the parameters of this distribution have been estimated, missing values can be 
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imputed by random draws from this multivariate distribution. In theory, this approach requires 

that all the variables be continuous. In practice, binary or categorical variables occur frequently 

(e.g., presence or absence of diabetes). Schafer and Graham suggest that despite this theoretical 

limitation, they have found the multivariate normal distribution to be useful in a wide range of 

settings 4. Furthermore, they provide suggestions for incorporating binary and categorical 

variables as well as non-normally distributed continuous variables. However, others have 

suggested that these methods of incorporating non-continuous variables may not perform as 

desired 10. Given the flexibility of the MICE algorithm and its ability to explicitly incorporate 

different types of variables, its use may be attractive to researchers in biomedical research. 

In our case study, we obtained similar parameter estimates when using parametric 

imputation as when using predictive mean matching imputation. This is to be expected for 

estimates that depend on the middle of the distribution, such as means or regression coefficients. 

In practice, it may be difficult to provide examples where PMM imputation beats a well-crafted 

parametric imputation model. However, in practice, analysts often prefer PMM imputation 

because it preserves typical features in the raw data. For example, it accounts for discreteness of 

data, avoids impossible values, preserves location of quantiles, and is highly robust to imputation 

model misspecification. All this costs no additional work on the part of the analyst. If the 

complete-data model depends on such features, then the inference will also be better when using 

PMM imputation. 

In this tutorial article we have focused on the use of multiple imputation in observational 

studies. In randomized controlled trials (RCTs), multiple imputation is not always the optimal 

approach 6. When a univariate outcome is MAR, a complete case analysis using an adjusted 

analysis is unbiased and efficient 6. With a multivariate outcome (e.g., an outcome measured at 
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multiple occasions over the course of follow-up), the use of a linear mixed model with missing 

data in the outcome only will tend to result in estimates with smaller standard errors compared to 

the use of multiple imputation 6. If multiple imputation is used, it is suggested that imputation be 

conducted separately in the different arms of the trial 6. 

In summary, MI replaces missing values with plausible values. By creating multiple 

imputed datasets, the analyst can explicitly account for the uncertainty inherent in the imputed 

values. Historical approaches such as complete case analysis, mean imputation or single 

imputation potentially result in bias, incorrect estimates of standard errors, and consequently 

incorrect tests of statistical significance. Researchers are encouraged to consider MI as an 

important tool to address the problems associated with missing data in clinical research. 
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Table 1. List of abbreviations 

Abbreviation Full term 
MI Multiple imputation 
MCAR Missing completely at random 
MAR Missing at random 
MNAR Missing not at random 
FCS Fully conditional specification 
MICE Multivariate Imputation by Chained 

Equations 
PMM Predictive mean matching 
JAV Just another variable 
MID Multiple imputation, then deletion 
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Table 2. Multivariate Imputation by Chained Equations (MICE) algorithm for multiple 

imputation 

 

  

1. Specify an imputation model for each of the k variables that are subject to missing data. 
2. For each of the k variables that are subject to missing data, fill in the missing values with 

random draws from those subjects with observed values for the variable in question. Note that 
these initial imputed values do not respect the multivariate relations in the data and will be 
overwritten by better imputed values in later stages of the algorithm. 

3. For the first variable that is subject to missing data: 
a. Regress this first variable on all the other variables using those subjects with complete 

data on the first variable and observed or currently imputed values of the other variables.  
b. The estimated regression coefficients and their variance-covariance matrix (and the 

estimated variance of the residual distribution if a linear regression model was fit for a 
continuous variable) are extracted from the regression model estimated in (a). 

c. Using the quantities obtained in (b), randomly perturb the estimated regression 
coefficients in a way that reflects the degree of uncertainty arising from the data. 

d. Using the set of perturbed regression coefficients obtained in (c), the conditional 
distribution of the first variable is determined for each subject with missing data on that 
variable. 

e. A value of the variable is drawn from this conditional distribution for each subject with 
missing data on the first variable. 

4. Repeat Step 3 for each of the variables that is subject to missing data. Step 3 and Step 4 form 
one cycle of the imputation process for creating one imputed dataset. 

5. Repeat Steps 3 and 4 the desired number of times (suggested values: 5 to 20 cycles). The final 
imputed values are used as the imputed values in first imputed dataset. 

6. Repeat Steps 2 to 5 M times to produce M imputed datasets (the choice of M, the number of 
imputed datasets, is discussed in Section 2.5). 
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Table 3. Descriptive statistics of case study data 

Variable Mean (SD)/ 

Percentage 

Number of 

subjects with 

observed data 

Number 

of 

subjects 

with 

missing 

data 

Percentage 

of subjects 

with 

missing 

data 

Continuous variables 

Age (years) 76.7 (11.6) 8338 0 0% 

Respiratory rate at admission 

(breaths per minute) 

24.5 (7.0) 8138 200 2.4% 

Glucose (initial lab test) (mmol/L) 8.6 (4.1) 8051 287 3.4% 

Urea (initial lab test) (mmol/L) 10.3 (6.6) 8028 310 3.7% 

LDL cholesterol (mmol/L) 2.2 (0.9) 2272 6066 72.8% 

Binary variables 

Female 50.9% 8338 0 0% 

S3 6.2% 8126 212 2.5% 

S4 2.7% 8135 203 2.4% 

Neck vein distension 66.1% 7586 752 9.0% 

Cardiomegaly on chest X-ray 47.7% 7711 627 7.5% 

Outcome 

Death within one year 31.7% 8338 0 0% 

Note: SD: standard deviation 
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Figure legends 

Figure 1:  

Title: Distribution of continuous variables in complete cases and in those with imputed data 

when using parametric imputation. 

Caption: The solid black line denotes the distribution of the given continuous variable in those 

subjects for whom that variable was not missing. The red lines denote the distribution of the 

imputed value for that variable in those subjects for whom the variable was missing. There is one 

red line for each of the imputed datasets. 

Figure 2:  

Title: Distribution of continuous variables in complete cases and in those with imputed data 

when using predictive mean matching (PMM). 

Caption: The solid black line denotes the distribution of the given continuous variable in those 

subjects for whom that variable was not missing. The red lines denote the distribution of the 

imputed value for that variable in those subjects for whom the variable was missing. There is one 

red line for each of the imputed datasets. 

Figure 3. 

Title: Estimated odds ratios and 95% confidence intervals for variables in the logistic regression 

model fit in the case study. 
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Caption: There are three estimates/confidence intervals for each of the ten variables: (i) using 

complete cases; (ii) multiple imputation analyses when using parametric imputation; (iii) 

multiple imputation analyses when using predictive mean matching (PMM).  
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Supplementary Appendix S1. SAS code for multiple imputation 

* This code is provided for illustrative purposes and comes 
  with absolutely no warranty; 
* The dataset used for these analyses cannot be pub licly  
  Distributed. Please do not contact the authors re questing 
  the dataset; 
 
* MI using the default parametric imputation for th e continuous 
variables; 
 
* In the dataset are the following variables: 
   age: patient age (years) 
   resp: Respiratory rate 
   glucose: Glucose 
   urea: Urea 
   ldl: LDL cholesterol level 
   female: Binary variable (female=1/male=0) 
   s3: S3 (third heart sound) 
   s4: S4 (fourth heart sound) 
   neckvdis: Neck vein distension 
   cmg: Cardiomegaly on chest X-ray 
   mort1yr: Binary variable denoting death within o ne year; 
     
proc mi data=cohort seed=2122019 nimpute=pctmissing  (max=99) 
  out=tutorial_mi; 
  class female s3 s4 neckvdis cmg mort1yr; 
  fcs plots=trace nbiter=20 logistic(mort1yr female  s3 s4 neckvdis 
cmg); 
  var mort1yr age female resp s4 s3 glucose urea cm g neckvdis ldl; 
run; 
 
* MI using PMM for the continuous variables; 
 
proc mi data=cohort seed=2122019 nimpute=pctmissing  (max=99) 
  out=tutorial_mi_pmm; 
  class female s3 s4 neckvdis cmg mort1yr; 
  fcs plots=trace nbiter=20 logistic(mort1yr female  s3 s4 neckvdis 
cmg); 
  fcs regpmm(age resp glucose urea ldl); 
  var mort1yr age female resp s4 s3 glucose urea cm g neckvdis ldl; 
run; 
 
 
* Analyses in the imputed datasets; 
 
Proc sort data=tutorial_mi; by _imputation_; run; 
 
Proc logistic data=tutorial_mi descending; 
   Model mort1yr = age resp glucose urea ldl female  s3 s4 neckvdis cmg  
   /covb; 
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   By _imputation_; 
   Ods output ParameterEstimates=lgsparms covB=lgsc ovb; 
Run; 
 
* Pooling results using Rubin’s Rules; 
 
Proc mianalyze parms=lgsparms covb(effectvar=stacki ng)=lgscovb; 
  Modeleffects Intercept age resp glucose urea ldl female s3 s4  
    neckvdis cmg; 
  ods output ParameterEstimates=MI; 
run; 
 
proc print data=MI; 
run; 
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Supplementary Appendix S2. R code for multiple imputation 

# This code is provided for illustrative purposes and comes 
  with absolutely no warranty; 
 
################################################### ############################# 
# Read in data. 
################################################### ############################# 
 
zlist<- list(age=0,resp=0,glucose=0,urea=0,ldl=0,fe male=0,s3=0,s4=0,neckvdis=0, 
  cmg=0,mort1yr=0) 
 
cohort <- data.frame(scan("mi_tutorial.txt",zlist))  
 
data <- cohort[,c("mort1yr","age","female","resp"," s4","s3", 
                  "glucose","urea","cmg","neckvdis" ,"ldl")] 
 
################################################### ############################# 
# MI using the parametric imputation for the contin uous variables 
################################################### ############################# 
 
meth <- make.method(data) 
meth[meth == "pmm"] <- "norm" 
nimp <- 100 * nic(data) / nrow(data) 
 
imp.parm <- mice(data,m=nimp,method=meth,maxit=20,s eed=2122019) 
plot(imp.parm) 
 
# Analyses in the imputed datasets 
fit.parm <- with(imp.parm,glm(mort1yr ~ age + resp + glucose +  
  urea + ldl + female + s3 + s4 + neckvdis + cmg,fa mily = "binomial")) 
 
# Pooling results using Rubin's Rules 
summary(pool(fit.parm), confint = TRUE, exponentiat e = TRUE) 
 
################################################### ############################# 
# MI using the default PMM for the continuous varia bles 
################################################### ############################# 
 
imp.pmm <- mice(data,m=nimp,maxit=20,seed=2122019) 
plot(imp.pmm) 
 
# Analyses in the imputed datasets 
fit.pmm <- with(imp.pmm,glm(mort1yr ~ age + resp + glucose +  
  urea + ldl + female + s3 + s4 + neckvdis + cmg,fa mily = "binomial")) 
 
# Pooling results using Rubin's Rules 
summary(pool(fit.pmm), confint = TRUE, exponentiate  = TRUE) 
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Supplementary Appendix S3. Stata code for multiple imputation 

* This code is provided for illustrative purposes and comes 
  with absolutely no warranty; 
 
infile age resp glucose urea ldl female s3 s4 neckv dis cmg mort1yr 
using "mi_tutorial.txt" 
 
set seed 2122019  
mi set flong 
mi register imputed resp glucose urea ldl // contin uous and incomplete 
mi register imputed s3 s4 neckvdis cmg // binary an d incomplete 
mi register regular mort1yr age female // complete 
 
* MI using parametric imputation for the continuous  variables; 
*mi impute chained (logit) s3 s4 neckvdis cmg (regr ess) resp glucose 
urea ldl = mort1yr age female, add(20) 
 
* alternative MI using PMM for the continuous varia bles; 
mi impute chained (logit) s3 s4 neckvdis cmg (pmm, knn(10)) resp 
glucose urea ldl = mort1yr age female, add(20) 
 
mi estimate: logistic mort1yr age resp glucose urea  ldl female s3 s4 
neckvdis cmg 
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Figure 1. Estimated log−odds ratios and 95% confidence intervals
Complete case analysis Parametric imputation PMM
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Figure 2. Distribution of continuous variables in complete cases and in those with imputed data
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Figure 3. Distribution of continuous variables in complete cases and in those with imputed data (PMM)
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