Seam-hiding for Looping Videos

James Durrant
james.durrant.13@ucl.ac.uk
University College London

ABSTRACT

The proposed algorithm creates a seamless looping video clip from
a real world video of an almost-cyclic motion. For a video that has
repeating motion, such as a person on a trampoline, the first and last
video frames may not precisely line up, even though the content
is very similar. Playing back the video in a looping fashion can
cause the re-start transition to jump out and appear discontinuous,
both spatially and in terms of object velocity. Most work on video
looping has sought to find the best re-set point in a longer video’s
timeline, but we start there, and modify the frames to hide the jump
point.

Our approach essentially fits a curve to the (x, y) and RGB coor-
dinates of points in the scene, and then smooths those curves using
gradient domain optimisation. We address important qualitative
factors, balancing smoothness against preservation of the original
trajectories/curves. Our modular system also incorporates video
stabilisation and inpainting, to cope with more dynamic videos.

For most videos within our scope, we found that automatic seam-
hiding is succesful. For the cases in which the proposed system
cannot satisfactorily produce a seamless loop, we hope our frame-
work can be modified with improved components to achieve better
results in the future.

CCS CONCEPTS

« Computing methodologies — Motion processing;

KEYWORDS

Video Looping, Animated gifs, Video Manipulation, Motion Com-
pensation

ACM Reference Format:

James Durrant and Gabriel Brostow. 2017. Seam-hiding for Looping Videos.
In CVMP 2017: 14th European Conference on Visual Media Production (CVMP
2017), December 11-13, 2017, London, United Kingdom. ACM, New York, NY,
USA, 10 pages. https:/doi.org/10.1145/3150165.3152766

1 INTRODUCTION

Our aim is to automatically convert a video clip that almost loops
into one that appears to loop seamlessly. The point in time where
the video repeats should be indistinguishable from any other point.
After modification, such an image sequence can play endlessly, as
sometimes seen in animated gif’s.

Previous work on creating looping videos has focused on finding
a transition point in time that allows the video to jump backwards
and then continue playing without a noticeable cut. This requires
that the frames at that transition could plausibly be adjacent frames,
limiting these methods to videos in which near-identical frames

CVMP 2017, December 11-13, 2017, London, United Kingdom
2017. ACM ISBN 978-1-4503-5329-8/17/12...$15.00
https://doi.org/10.1145/3150165.3152766

Gabriel Brostow
g.brostow@cs.ucl.ac.uk
University College London

reoccur. Our work extends this to a much wider class of videos by
also adjusting the motion either side of this transition, allowing
these seam frames to differ. The only assumption we make is that
the content is similar enough that correspondences between these
frames can be automatically detected.

Videos within this scope face two inherent difficulties. First, we
are trying to remove or reduce jarring changes at the seam as much
as possible, so we must also be careful not to introduce noticeable
changes. Second, correcting for motion means manipulating the
image to rearrange parts of the content. Whenever part of an image
is moved, it leaves behind a region of undefined pixels. Therefore,
an important aspect of the project is to handle these disoccluded
regions effectively.

2 RELATED WORK
2.1 Loop detection

Previous work on looping videos has generally focused on the
problem of analysing a long sequence of footage and finding subse-
quences that lend themselves to looping, with a minimally visible
seam. There have been a number of different approaches in this
area, each with their own set of assumptions and limitations.

Video textures [16] assumed that there exists a re-ordering of
input frames, such that motion would be generally preserved but
without large differences between adjacent frames. Video textures
were proposed to probabilistically switch between frames during
playback, with fixed length loops also being possible. Due to their
choice of distance metric and subsequent synthesis, the class of
videos that could be handled by this method is relatively small.

Liao et al.[11, 12] make the assumption that every pixel in the
video has a defined looping period. This means that at some point,
the same pixel value will occur again at the same spatial location,
and so looping the video is a matter of having these looping periods
synchronise. They extend this to have the level of dynamism in the
clip be adjustable by the user.

Rather than looking at the problem of looping in isolation, meth-
ods such as those by Bai et al.[2] and Joshi et al.[8] focus on creating
a wider class of videos, including non-linear videos. They make use
of semantic information as well as user interaction [8] to control
the output. Probably closest to our own, Sevilla-Lara et al.[17] also
focuses on unconstrained video, but with the caveat that they ex-
pect the video to have a single, dominant foreground object. They
argue that provided this foreground object loops smoothly, it is pos-
sible to have a less smooth blending or warping in the background
without it being too jarring to the user. A subset of their dataset is
compared against in Section 10.3.

2.2 Loop synthesis

Although there isn’t much work on loop synthesis itself, it is still
a component in all of the work described so far. Video textures

https://doi.org/10.1145/3150165.3152766
https://doi.org/10.1145/3150165.3152766

CVMP 2017, December 11-13, 2017, London, United Kingdom

make use of blending and morphing when making transitions to
cover the seam. This is similar to the goal of this project, however,
their original frames are generally more closely aligned, and the
results they get still have a noticeable seam. Tompkin et al[18] use
user input to only allow movement in particular parts of the frame.
For the parts that are still moving they linearly interpolate new
frames at the end of the loops using optical flow. Liao et al.[11] use
Poisson blending after finding looping periods to again try to hide
the transition. In their case, they also anticipate this during the loop
detection phase. By knowing that particular types of transitions
can be adequately masked by the Poisson blending, they can afford
to make loops that might not seem advisable otherwise.

Kwatra et al.[9] show how loop synthesis can be seen as an
application of their Graphcut Textures. They assume that a video
can be overlapped with itself in time to create a loop. By finding
a point in time where the transition between these two clips is
minimised, they therefore have a continuous smooth loop. Since
the requirement is that the two ends of the clip must be aligned, this
is generally most suited for videos that include stochastic effects
such as fire and waves. In these cases, content that is perceptually
similar is likely to repeat even in fairly short sequences.

2.3 Video stabilisation

Video stabilisation is often framed as a generic problem of removing
as much camera motion as possible, thereby rendering the video
stable. Since this is not a restriction for our project, we look more at
instances of guided stabilisation approaches. Grundmann et al.[4]
show how giving prior knowledge of the camera path as having
either constant location, constant velocity, or constant accelera-
tion, can make handheld videos appear to have been filmed using
practical stabilisation techniques.

Bai et al[1] use a form of guided stabilisation that stabilises
different parts of the frame differently. They use a mixture of com-
pletely static sections as well as regions that have had their large
scale motion removed (but still have local movement) to create
‘cinemagraph’-like videos. There is no requirement in their case
that these videos should loop, however.

3 PIPELINE

Figure 1 shows our pipeline, highlighting the most important as-
pects: the optimisation to obtain smoothly looped pixel displace-
ments, and the rendering stage to produce new frames using these
displacements. These also represent our main contributions.

3.1 Optimisation

This step takes as input a sequence of frames along with sets of
optical flow-based correspondences between them. Its aim is to
produce a set of displacements for every frame. When pixels are
projected along these displacements, the resulting image should
produce smooth motion between the two frames at the seam, and
preserve the motion as much as possible in the rest of the sequence.
Details of this stage are described in Sections 5 and 6. These cor-
rective motion models, as well as the frames and their original
correspondences, are then passed on to the rendering stage.

For frames close to the seam we used dense correspondences, and
for frames further from the seam we use sparse correspondences.

James Durrant and Gabriel Brostow

We use sparse correspondences since the corrective motion required
for those frames is generally low frequency, and can be captured
by a coarse motion model.

3.2 Rendering

The goal of this stage is to exploit the information from the previous
step, and enhance the footage to produce a final output sequence
of the same length and dimensions as the input. Details are given
in Section 7, but the three main steps are:

(1) Warping: using the original frames, the pixel values are pro-
jected according to the displacements to produce a new im-
age.

(2) Inpainting: due to the nature of the warping step, there are
likely to be pixels in the new image that have not been as-
signed a colour. This step fills in these regions with plausible
values that are consistent with the rest of the sequence.

(3) Colour consistency: finally, this step ensures that colours
change smoothly across the seam. This accounts for two
cases: first, the case where two corresponding pixels repre-
sent the same real world location that has changed appear-
ance either due to differences in lighting or actually changing
colour. Second, the case when the system has not managed
to align the content in the seam frames completely, and so
regions that are adjacent in time actually represent different
objects.

4 LOOPING IN ONE DIMENSION
4.1 Problem definition

We first illustrate the situation in one dimension, before proceeding
with our solution for video. We assume that the input is a time series
with a visible seam, where the last point should connect to the first
point. If this sequence was manipulated such that the two points
were very close or even coincided, we would have a sequence that
is continuous but does not necessarily appear consistent in terms
of motion smoothness. Therefore, we also target C; continuity, as
shown in Figure 2.

We can think about the problem as being made up of an original,
perfectly looping signal that has been affected in some way that
causes the seam to appear; an example can be seen in Figure 3.
We do not intend to model this perturbation explicitly, instead we
only aim to reduce the disparity between the two ends of the data.
We make the underlying assumption, however, that the shape of
the signal remains perceptually similar despite the perturbation. In
Figure 3, even though the original signal has been changed such
that there is a disparity in the middle, it still appears to have roughly
the same shape.

Doing this operation in reverse - manipulating the signal such
that the boundaries are at new locations but the shape remains
perceptually similar - is the idea behind Poisson Image Editing [15];
this approach is also a good fit for our space-time problem [3].

By itself, this problem is under-determined and so we must
provide boundary constraints. This can be done by specifying fixed
points on the curve that effectively "anchor’ the solution. Given
that we seek alignment between the two ends of a curve, it makes
sense to specify these boundary points as having the same location.
We could choose this location to be either of the original points, or

Seam-hiding for Looping Videos CVMP 2017, December 11-13, 2017, London, United Kingdom

Optimisation Rendering

Global

Colour
Consistency

Local

Stabilisation Stabilisation

Figure 1: The full pipeline of our system. Unlike many video-looping algorithms, ours focuses just on concealing the re-set
point in the timeline of a looped video. The optimisation stage modifies the actual content of many frames, to make the start
and end of the input sequence compatible with each other. The overall method works on many videos precisley because the
components were selected for their simplicity and reliability.

Figure 2: Intersections with different levels of continuity: (a)
Discontinuous, (b) Cy continuous, and (c) C; continuous.

Figure 3: A one dimensional function with a seam, shown

twice to show the disparity. It is formed from a periodic func-
tion (top) and an unwanted perturbation function (middle).

even their midpoint. For our system, we choose to instead imagine
our curve as being shifted in time so the seam is now directly
in the middle frame, away from both ends. This is equivalent in
terms of what we can achieve, but we now do not have to choose
a location for the boundaries, since they already have the same,
known location due to coming from the same part of the sequence.

4.2 1D Solution

As demonstrated by the dotted line in Figure 4, naively solving
the Poisson equation such that the signal becomes C; continuous
at the seam produces undesirable results. In this case the solution
has the endpoints that we wanted, and appears to have a similar
shape. However, in making the seam boundary smooth it has also

“~y ===~ poisson unconstrained
\ . N

! \ —— poisson regularised

\

. \—— original
N

Figure 4: A naive, unconstrained solution using only Pois-
son’s equation to correct the sequence shown produces a
new sequence that is smooth and respects the shape of the
original, but deviates massively. In contrast, a regularised so-
lution as produced by optimising Equation 1 balances conti-
nuity with displacement from the original data.

deviated dramatically from the original curve. We therefore impose
the restriction that we want the looped curve to stay close to the
observed curve, which is shown by the solid line in Figure 4; this
serves to regularise the solution.

Combining this together we state our objective function as:

E = [|Ah - (f - Ay)|[} + Al[hI3, (1)

where A is a matrix that computes a finite difference approxi-
mation to the Laplacian and f, y, and h are vectors representing
the desired Laplacian, the observed data, and the displacements,
respectively. The parameter A is the regularisation parameter that
constrains the displacements to be small.

Constraining that f should stay the same as much as possible,
it is set to take the value of Ay for all points in time except at the
seam. The resultant vector f* = f — Ay is therefore zero almost
everywhere and can divided up into two vectors,

= fl'el + fz,ez, (2)
where 1 and 2 refer to the frames either side of the seam, and e; is a
vector whose it value is one, and is zero otherwise. From this, the
standard ridge regression solution for Equation 1 can be divided
into two equations,

hy = (ATA+ A2 1AT ey, 3)

CVMP 2017, December 11-13, 2017, London, United Kingdom

" oAt LA

Figure 5: Two frames from a video. The red dots show the
same location in both images, but represent different objects.
The yellow dots both represent the same object, but are at
different locations in their respective frames.

hy = (ATA+ 221 14T ey, (@)

where h = f/h; + f)h;. This means that every solution for this
form of the problem can be solved as a weighted combination of
two basis solutions h; and hy, given only the current Laplacian
at the seams Ay and an estimate f of what the Laplacian should
be. Therefore, rather than solving this problem from scratch for
every distinct curve, we can instead precompute the solution for a
fixed sequence length and cheaply get the solution for any number
of similar 1D problems. Additionally, since the solution depends
only on the values of f at the seam - and not for any other frames
- then in theory the displacement vectors can be computed for all
frames in parallel. In practice we propagate correspondences from
the seam to the other frames, making it a sequential process, but
these correspondences could also be implemented in the parallel
case for improved efficiency.

4.3 Extending looping to videos

We have seen how one dimensional time series can be seamlessly
looped, but this approach cannot be applied directly to videos as it
is. If a video is treated as a three dimensional volume then neigh-
bouring pixels in time will not correspond to the same real world
location, and it will not make sense to propagate information be-
tween them. This is illustrated in Figure 5, which shows equivalent
points with different coordinates, and unrelated points with the
same coordinates.

We can account for the disparity between frames by making
connections not between pixels with the same (x, y) locations but
instead by using their optical flow correspondences. In this way the
video volume is no longer a regular grid but instead a graph where
each frame is a grid, and edges that join these grids correspond
to the optical flow between those frames. This formulation has
previously been used by Bhat et al.[3] as a way to extend gradient
domain fusion to videos.

If we consider each point in world space individually, then we
have a collection of problems that can all be solved by the 1D
solution. Since it was shown in Section 4.2 that we can precompute
a general solution, we can solve all of these sub problems in O(n)
time. If we solved all of the problems separately we would lose
correlation between motion in the video. We propose to use a
hierarchical approach that consists of a global stabilisation step,
and a subsequent step solving the many sub-problems at the pixel
level whilst preserving motion correlation.

James Durrant and Gabriel Brostow

5 GLOBAL STABILISATION

Looking only at local neighbourhoods it is tricky to model global
movement such as camera motion, that affects all pixels in the
frame. Using a parametric transformation model not only allows
for capturing these global correlations but is also more robust than
trying to achieve the equivalent motion using dense displacements.
Unlike in [17] we are not making the assumption that our videos are
made up of a foreground and a background. Our global stabilisation
instead accounts for the case where a dominant motion affects the
frame as a whole. It does not matter whether this is due to movement
of the camera or the foreground, as we treat these situations equally.
The only assumption is that if there is a single dominant motion,
then it can be captured by the estimated transformation.

5.1 Using the 1D solution

Unlike traditional video stabilisation we are only stabilising with
respect to errors between two frames. We have seen from the 1D
looping solution that this can be expressed as a weighted sum of
the Laplacians at the seams, and hence does not require any other
information from throughout the sequence. This result means that
we can perform the stabilisation for long sequences with very little
overhead compared to shorter ones. The overall process is therefore
to find some notion of the Laplacians at the two seams and then
apply this to the 1D solution. These output transformations can
then be used to warp each frame accordingly.

5.2 Interpolating transformations

To compute the Laplacian, we devise a weighted combination of
transformations, ie.an interpolation between them. Given two
transformations, one can imagine what interpolating them may
look like, but it is not obvious what this means quantitatively.

We look at global transformations given by the form:

11 P12 P13 x u
A $a1 P22 P y[=|v ()
P31 P32 P33 1 1
where w = [u, v]T and x = [, y]” are the points before and after
the transformation respectively. The transformation is described by
the matrix ®. This form covers a number of transformations, includ-
ing the rigid transformation, affine transformation, and projective
transformation.

We tried multiple approaches for interpolation, to see which
produced the best results, illustrated in Figure 6. We found that
interpolating the transformation matrices or transformation param-
eters could work successfully, but only for specific cases.

Instead, we can take advantage of the fact that the set of trans-
formations we are looking at forms a Lie group. We can map trans-
formations to their corresponding Lie algebra vector space, linearly
interpolate them, and then map them back to the original space. The
result of this can be seen in Figure 6¢ and produces the most natural
looking transformations we have seen. This procedure only guar-
antees to hold for relatively small transformations, but as can be
seen in the example it is sufficient for the types of transformations
we are dealing with.

Putting this together with the 1D solution, the global stabilisation
is computed by mapping the transformations into their Lie algebra

Seam-hiding for Looping Videos

(c) Linearly interpolating in the Lie algebra.

Figure 6: Three methods for interpolating a transformation
from the far left image to the rotated image on the far right.
This shows how even a simple combination of rotation and
translation must be handled correctly to produce natural
looking motion.

vector space and then using the 1D optimisation on each parameter
individually. After applying the 1D optimisation the parameters are
recombined to produce a set of models that get passed on to the
next stage.

Different transformation types were experimented with and it
was found that in most videos an affine transformation was the best.
It is not as expressive as a full homography but tended to be more
robust. In cases where a less expressive transformation was needed,
such as a rigid transformation or even no transformation at all, the
affine transformation handled it well, whereas the flexibility of the
homography seemed to allow it to overfit the data. This introduced
warping unnecessarily. In cases that did require a homography,
the combination of an affine transformation and the pixel looping
seemed able to approximate this sufficiently.

6 PIXEL LEVEL ADJUSTMENT

This section covers per-pixel stabilisation of the algorithm. The
input to this stage is a video that has been globally stabilised, mean-
ing that any disparity at the seam should be resolvable using only
local changes.

6.1 Efficient computation

By tracking points through time, the video volume can be split into
a number of one dimensional sub problems. Solving all of these
sub-problems makes each individual track loop, but they will not
necessarily remain correlated. Using a smoothing operator in 2D
space should make the displacement at each pixel more similar to

CVMP 2017, December 11-13, 2017, London, United Kingdom

that of its neighbours. Therefore if the sub-problems have already
been solved and we have a discontinuous displacement field, we
can use a smoothing operator to average out these proposed dis-
placements. Nagel et al. [14] explore the idea of using ‘oriented
smoothness’ for optical flow field computation. This can be regarded
as anisotropic diffusion: smoothing in the direction of edges but not
across them. Given that the optical flow field should be piecewise
smooth, we can expect our displacement vector fields to have this
property also. Hence, it makes sense to use an edge preserving filter
during this stage of the pipeline. This approach was also used by
Lang et al. [10] when producing temporally consistent results for
various applications.

Rather than solving all of the 1D problems and then doing the
smoothing, these two steps are instead combined into a single up-
date per frame. Doing this, it is no longer necessary to find all the
tracks in advance. The looping solution for a point is already known,
given its computed Laplacian, estimated Laplacian, and point in
time. By assuming that each pixel is part of a track that includes its
neighbours forward and backward in time, we effectively smooth
along this virtual track. To do this, the values of f; and f, are
propagated through the volume. The actual displacement is then
recovered by h = f/'h; + fhj, as described in Section 4.2. This is
summarised in Algorithm 1. This algorithm is run in both directions
away from the seam, and the two cases can be computed indepen-
dently from each other. This approach makes the assumption that
for every pixel, the optical flow connects it to an equivalent pixel
before and after it in time. The rest of this section describes how
this is not always possible - even with a perfect flow field - and
how it can be addressed.

Algorithm 1: Per-pixel stabilisation
Input :Optical flow field F, 1D basis solutions hy, hy
Output:Displacement vector field D

1 Estimate Laplacians for first and last frames fi, f2;

2 Apply edge preserving filter on fi and f;

3 D(x,y,1) := fi(x,y, Dh1 + fa(x, y, 1ho;

4 for framet = 2...T do

5 file,y,t) := filx = Fx(x,y,1),y — Fy(x,y,t),t = 1);

6 | fole,y,t) = folx — Fx(x,y, 1),y — Fy(x,y, 1), — 1);

7 Apply edge preserving filter for all fi and f at time ¢;
8 | D(x,y.t):= filx,y,)k + fa(x,y, Hha;

9 end

6.2 Incorrect correspondences

There are a few ways in which a displacement in the optical flow
field may not be valid. A correspondence could be technically cor-
rect if it points to a pixel that is out of the frame of one of the images,
however the value that it points to is undefined. Likewise if the
location it points to is inside the frame - but has become occluded -
then it doesn’t matter if the flow is correct or not. If it is correct,
meaning that it represents the true motion, the location it points to
will have the value of the occluding object, which is not what we
expect. If it is not correct then it could have the value of some other
object. This is also the case for a flow vector that is completely

CVMP 2017, December 11-13, 2017, London, United Kingdom

(a) Original (b) Missing (c) Guidance (d) Ideal out-
data image put

Figure 7: A synthetic example showing guided image filter-
ing on an image with undefined data. This shows how infor-
mation of boundaries in the colour channels could be trans-
ferred to the flow channels by using it as a guidance image

incorrect, whether occluded or not. In these situations we choose
not to propagate any information and instead treat those regions
as being undefined. We expect to be able to make a reasonable
approximation to what the values should be in these regions based
on their local neighbourhood.

6.3 Handling missing data

The guided filter as described by He et al.[6] use a guidance image
to determine which parts of an image should be smoothed. This
is useful for our case since for regions of undefined flow, there is
still information in the colour image and we should expect that
those edges can still be preserved during filtering. Figure 7 shows
a synthetic example. We would expect anything inside the green
area of the guidance image to be smoothed, but with the outline
remaining sharp. Given that the overlap between the two boxes
is hidden in 7b we cannot expect to be able to recover the seam
exactly, but the outline should remain the same. The guided filter
has no built in method for handling missing data but since it is
computed using a series of mean filters then as long as we provide
a mechanism for mean filtering with missing data we should be
able to leverage the guided filter.

In practice we follow the standard implementation but compute
the local linear transforms using a mean filter that only has con-
tributions from valid pixels; the weights of these pixels are also
appropriately normalised. The coefficients of these linear trans-
forms are then determined for all pixels using the same mean filter
setup. Since the coeflicients are now given for all pixels, the final
image can be produced as for a normal guided image filter.

7 RENDERING

Once we have a transformation for each pixel, we still need to warp
them to get an output frame. The difficulty here is that although
the translation is defined for every pixel in the original frames,
there will not necessarily be a value defined for every pixel in the
new frames. This is because pixels may overlap or be mapped to
locations outside of the image window.

Martin et al.[13] give an overview of ways to interpolate between
images given a flow field. The assumption in that case is that there
is a bidirectional flow field and there are two images to interpolate
between; a typical case of this is when using stereoscopic images.
For our case we only have a single image and set of displacements.
In the stereo case, the basis of interpolation is that any point in the

James Durrant and Gabriel Brostow

,gooi‘—> o o ®
006

eael o o ®
MEA o o @

Figure 8: The effect of forward warping pixels with a change
in scale. Although the pixels are initially dense, gaps are pro-
duced when they spread out (centre). These can be covered
by projecting not just a single pixel but also a patch from
around each pixel (right)

interpolated image is also defined in at least one of the two stereo
images. This implies that missing information from one one can
be accounted for by using the other image. With only one frame
to use as reference, there will be missing data in the output image
that needs to be handled explicitly.

The rendering stage of the pipeline consists of two steps: a for-
ward warping step that uses the original colour data and the new
displacements to produce a warped output image, and an inpainting
step that fills in the missing data that results from the warping.

7.1 Forward warping

By projecting each pixel according to its displacement, a new image
is constructed. This is done such that for a pixel in the original
image (i, j) then (i + d;, j + d;) should have the same colour.

For any set of pixels that moves significantly, especially with
changes in scale, it is possible for pixels to spread out too much in
the output. This ends up with gaps between the pixels as shown in
Figure 8. This can be straightforwardly fixed by also considering a
small patch around each pixel. As shown in the figure, it only takes
a small patch size for all of the missing regions to become filled.

For any regions that have overlapping patches, the colour con-
tribution of each patch is averaged out. This can have the effect
of blurring the frame slightly. One way to circumvent this is to
use a detail preserving method such as taking the median of the
overlapping data or using only the data from the best patch. This is
effective, but it slows down the warping significantly. Since the out-
put of this step is only an intermediate step before the inpainting,
using the averaged values was found to be sufficient.

7.2 Inpainting missing data
The global stabilisation will necessarily leave areas of missing data

at the edges of the frame. Three methods were compared to see
which worked best to fix this:

o Cropping: This naturally removes any areas of missing data
but also reduces the resolution of the video and can crop out
parts of the image that may have been interesting.

o Full frame warping. This assumes that by warping another
frame such that is is aligned with the frame that has data
missing, we can then use the pixels from the warped frame
in those locations where values are not defined. This allows
the full image frame to be kept, but only works under certain
conditions.

Seam-hiding for Looping Videos

o Inpainting. Inpainting for images is a long studied problem
with a large number of different approaches. For videos it
is a computationally complex problem although in our case
we have extra information that can be taken utilised.

The actual approach used is somewhere between the full frame
warping and generic inpainting. As a byproduct of the forward
warping, it is possible to construct an inverse nearest neighbour
field that matches pixels in the output frame back to pixels in the
original frames. For areas of missing data these regions will be
undefined. By inpainting the nearest neighbour field instead of the
actual colour values, these regions can be rendered using inverse
warped frames such that they are consistent and preserve detail.

After this step on one frame, there will be no more missing data.
This inpainted frame then becomes the basis for the subsequent
frame. This allows information to propagate from across the seam.

Using these new nearest neighbours, an inverse warping is ap-
plied to produce the output frames. The output volume is then
run through the process from Section 6, but with colour instead of
motion. A simple linear blending is used during this step instead
of the 1D solution described previously. This is because it spreads
out the error more evenly, and the lack of C; continuity is not as
obvious in the domain of colour compared to motion.

8 IMPLEMENTATION

There are a number of places in the design in the system where
parameters must be specified. We have found that it is possible
to produce good results using a range of parameters on a single
example, and likewise to get good results out of using the same
parameters on a range of examples. Many of these parameters could
be adapted such that they are based on the data. There are a couple
of cases, however, where the parameters are left to the discretion
of the user since they affect the subjective appearance as well as
trading off time for improved results.

Firstly, the user can adjust the length of the stabilisation seg-
ment. The global stabilisation can be performed on the sequence
as a whole, and the regularisation term means that even on long
sequences it doesn’t have much effect once you get far from the
seam. However the user may still choose to use shorter segments
either to completely restrict the displacement to 0 outside these
segments, or to save on processing; it should be reiterated that the
stabilisation step itself takes very little overhead to process further
frames, but any stabilised frame is likely to need inpainting as well.

Secondly, they can adjust the length of the local stabilisation
segment. This is the same idea, but with the added motivation that
this is where the majority of the processing occurs. As with the
global stabilisation this can also be adjusted based on how the user
wants the output to look.

For all results shown in this paper, the optical flow was computed
using DeepFlow [19]. We found that we could get similar results
with improved performance by using a faster, but less accurate flow
method for the frames not directly at the seam. This was actually
done by still using DeepFlow but with a reduced search space on the
size of the displacements, and fewer iterations during optimisation.
This resulted in reducing the optical flow time for these frames by
around 70% on average, and produced comparable results.

CVMP 2017, December 11-13, 2017, London, United Kingdom

We also implemented the Fast Guided Filter [5] as an option to
make the filtering step quicker. Results proved comparable to the
original filter with downsampling scales of up to 4 times. Beyond
4, they begin to noticeably degrade, but still give a good option to
trade off accuracy for speed.

9 RESULTS

The nature of the problem we are addressing means there will be
some subjectivity to the results, and previous work on video loop-
ing has generally been evaluated on a qualitative basis [2, 8, 17]. We
present the outputs of our system but also apply some quantitative
measures. The results on a range of videos can be found in the sup-
plementary materials. These results include both successes and
failures, and illustrate the class of videos for which our method can
improve the jump at the seam, as well as where there is still room
for improvement. Synthetic data was created to test the system
under controlled conditions. Since modules such as optical flow are
not guaranteed, it was important to see how the system performed
when these were no longer a factor. A set of synthetic cases was
produced with the aim of targeting different components of the
system, as well as seeing how well those components perform when
integrated.

As with many looping videos found online, our real world data
was sourced from videos that had not been shot with the intention of
being looped afterward. We also compare against a dataset collated
by Sevilla-Lara et al.[17].

Figure 9 shows the effect of each of the primary features of the
system. Some of the effects are difficult to see in a still frame. The
per-pixel stabilisation in this case is difficult to see, but it is subtly
changing the shape of the man in the sequence. Since the main
objects in the sequence are at quite different depths then the global
stabilisation can only succeed in making a coarse approximation.
For this reason it introduces some skewing in Figure 9b that the
per-pixel then corrects since it is trying to stay close to the original
shapes; it is not sensitive to global translation however so this
correction has no effect on that aspect of the stabilisation. The
effect of the colour consistency is quite subtle in this sequence,
but it can be seen that the house in the background is changed to
match both the frames either side of the seam. Likewise there are
time dependent effects such as the man’s buckle reflecting light and
pieces of wood flying through the air. These were in only one of
the original frames but now have continuity across the seam.

10 EVALUATION

We show in this section quantitative methods that evaluate our
system against two criteria of the problem we are addressing: the
objective function - that aims to balance smoothness at the seam
with adherence to the original video - and the principle that trying
to loop a video that does not contain a visible seam should have no
effect.

10.1 Objective function

In one case of quantitative evaluation for video looping, Liao et
al.[11] compare using an objective function that is similar but sepa-
rate from the one they optimised on; this is due to difficulties with
implementing such an optimisation problem. In the same vein, we

CVMP 2017, December 11-13, 2017, London, United Kingdom

. . ¥

(a) The original images before (left) and after (right) the seam.

-Ad

(b) After running the system with global stabilisation only.

. Ad

(c) After runnmg the system with global and local stabilisation.

B, .

(d) After running the system with stabilisation and inpainting,.

(e) The result after running the images through the complete
pipeline. At this point they should now appear to be neighbouring
frames.

Figure 9: The effect of the different stages of the system.

Sequence Eoriginal | Egiobal | Elocal Epotn
chopping wood | 109.0069 | 10.8360 | 8.1377 9.0704
cats 3.8650 0.8965 | 0.7673 | 0.2795
parrot 732.7081 | 33.7682 | 87.0311 | 39.6415

Table 1: Error according to the objective function of the orig-
inal sequence, compared to using: only the global stabili-
sation, only the local stabilisation, and both together. The
qualitatively better result from using both types can some-
times have a higher error, and this highlights the difficulty
of evaluating solutions to this problem.

compare against the global objective function proposed in equation
1 to verify that using our approximated method does indeed reduce
the stated objective.

Although we cannot be sure whether the objective has actually
been minimised, the results shown in Table 1 indicate that the
optimisation is working. In most cases, this also verifies that using
either the global stabilisation or per-pixel stabilisation makes an
improvement, and the combination is better still.

There are two exceptions that come up. For the synthetic parrot
sequence it was generated from a single transformation model and
so can be captured by the global stabilisation step alone. In this case,

James Durrant and Gabriel Brostow

since the Laplacian estimate is only an approximation, the per-pixel
stabilisation is actually working against the overall objective and
increases the error slightly. This is still a huge improvement on the
original sequence, however, and the difference is relatively small.

Figure 10: Distortion produced by only using local, per-pixel
stabilisation with no global stabilisation beforehand.

For the chopping wood sequence, from the objective the per-pixel
stabilisation appears to be sufficient and in fact better than using
the global stabilisation as well. In actual fact not using the global
stabilisation here results in a distorted image that has reduced the
error but no longer matches the structure you would expect - this
can be seen in Figure 10. This could potentially be avoided by using
a far stronger smoothing, however the more generalisable global
stabilisation works well despite the sequence displaying a range
of depth with few good features to track. This indicates that the
global objective function should be improved to be able to reflect
these kind of cases.

10.2 Repeated application

Since the objective of the system is to remove the disparity between
a pair of given frames, we should expect that if there does not
exist any disparity between those frames then the result should be
that there is no difference; the output should be identical to the
input. The only inaccuracy in this case should come from errors
in the optical flow or the estimated Laplacian at the seam. We
can therefore use this to evaluate whether our system could be
introducing errors by running it on contiguous videos that do not
have a visible seam. We quantify this by looking at the magnitude
of the displacement vectors that the looping procedure generates.

Given that our objective is to remove the disparity at the seam, we
should also expect that running the full system again on a video that
has already been processed will produce no change. Table 2 shows
the mean displacement after running our system for three cases:
after a single run through the system, running the output through
the system again, running the system on the original sequence
where the ‘seam’ is a point in the middle of the sequence.

The results show that the repeated application produces displace-
ments an order of magnitude smaller than the first time, and for two
out of three sequences these were less than a pixel on average. We
can consider the sequences with no seam to be a lower bound, and
although repeating the process doesn’t lower the displacements
quite to that level, they are still relatively close compared to the
original disparity.

10.3 Comparison against an existing method

The closest existing method to ours is that described in [17]. Their
method has the key difference that they are also optimising for

Seam-hiding for Looping Videos

Mean displacement (pixels)

Sequence Looped | Repeated loop | No seam
chopping wood | 2.2545 0.2214 0.0287
cats 1.5478 0.2052 0.1404
parrot 22.4548 4.2282 0.7301

Table 2: Applying our system produces displacements in the
end frames in order to correct the discontinuity. The average
magnitude of this is shown in the left column. Applying our
system again on this looped footage (centre column) shows
that the displacements are now very small since there is no
longer a discontinuity to correct. As a baseline we compare
this to running the system on a contiguous segment from
the same sequence which should naturally have no discon-
tinuity (right column).

the part of the video that they use to create the loop from. For
this reason we compare against three videos from their dataset
using clips from the same segment found by their optimisation. The
videos we compared against were basketball, ski, and tango.

In general it was found that their method produced loops with
fewer artefacts that appear more consistent when looking frame
by frame. However, the overall motion when played back had a
much more obvious transition point between the ends and didn’t
appear as smooth as our method. Figure 11 shows an example of
typical artefacts produced by our system, which are not present in
the equivalent frame. The motion differences can be most clearly
seen in the videos in the supplementary material.

Figure 11: Equivalent frames from the basketball sequence
produced by [17] (left) and ours (right). Despite introduc-
ing an artefact on this frame, when viewed as a video our
method can be seen to produce smoother motion across the
seam, whereas the result from [17] appears to be only Cy con-
tinuous.

10.4 Failure cases

A few common failure modes were observed when processing clips
using the proposed system. For any clips where the optical flow
does not capture the scene well, the looping procedure is also likely
to fail, such as in Figure 12.

Even when the system has generally performed well there can
still be artefacts introduced. Figures 13a and 13b illustrate the case
where an incorrect displacement is used during the colour cor-
rection. This disparity has not been registered as not having an
incorrect alignment and so the system tries to blend it out and
propagate this through time. The result is that colours can seem to

CVMP 2017, December 11-13, 2017, London, United Kingdom

Figure 12: An output frame from the ‘skateboarder’ se-
quence where the system creates artefacts due to unreliable
optical flow data between the seam frames.

Figure 13: Some examples of where the system produces ren-
dering artefacts, even when smoothing the motion correctly.

smear across the video. This is still less jarring at the point where
the seam was, but the effect lasts longer since it covers more frames.
In Figure 13c, even though the new displacements are good
enough to produce a seamless output, there are artefacts due to
disocclusions. An occlusion detection process such as that made by
Humayun et al.[7] could help to eliminate this problem. Once these
regions have been identified, then inpainting should help to fill in
the missing data, although this process may require some tuning.

11 CONCLUSION

It has been shown that looping real world videos is a difficult prob-
lem and that even with a restricted class of videos there are still
difficulties. We have proposed an approach that in many cases pro-
duces results that are either seamless or significantly improved. It
was found that this problem is computationally very heavy and so
a number of methods were proposed to improve the performance
such that results good be produced in a reasonable time frame.

12 FUTURE WORK

For sequence data, Recurrent Neural Networks (RNNs) have be-
come the de facto standard in recent years. An RNN processes its
inputs sequentially, meaning that for data x; it is making use of
Xi—1,Xi-2,...X0. The setup of our system is conceptually similar,

CVMP 2017, December 11-13, 2017, London, United Kingdom

where we propagate away from the seam (xp) to find the appro-
priate displacements for each subsequent frame x;. Replacing this
stage of our system with an RNN could give additional power to
make use of more complex long term dependencies that do not
depend solely on the behaviour at the seam.

As seen in Section 2.1 there have been a number of approaches
that focus more on the problem of detecting looping sequences. In
many cases the underlying assumption is that if an appropriate
segment is found then little or no extra processing is needed to
make this appear consistent. For sequences that do not fit this
assumption, we can see our system as being a component that can
be added at that stage to produce a better synthesis. This should
improve current results as well as expanding the class of possible
loops that can be captured by those methods.

ACKNOWLEDGEMENTS
We are supported, in part, by NERC NE/P019013/1.

REFERENCES

[1] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. 2012.
Selectively de-animating video. ACM Transactions on Graphics 31, 4 (2012), 1-10.
https://doi.org/10.1145/2185520.2185562

[2] Jiamin Bai, Aseem Agarwala, Maneesh Agrawala, and Ravi Ramamoorthi. 2013.
Automatic cinemagraph portraits. Computer Graphics Forum 32, 4 (2013), 17-25.
https://doi.org/10.1111/cgf.12147

[3] Pravin Bhat, C. Lawrence Zitnick, Noah Snavely, Aseem Agarwala, Maneesh
Agrawala, Michael Cohen, Brian Curless, and Sing Bing Kang. 2007. Using pho-
tographs to enhance videos of a static scene. Proceedings of the 18th Eurographics
Conference on Rendering Techniques (2007), 327—-338. https://doi.org/10.2312/
EGWR/EGSR07/327-338

[4] Matthias Grundmann and Irfan Essa. [n. d.]. Auto-Directed Video Stabilization
with Robust L1 Optimal Camera Paths. 1 ([n. d.]).

[5] Kaiming He and Jian Sun. 2015. Fast Guided Filter. CoRR abs/1505.0 (2015), 2.
arXiv:1505.00996 http://arxiv.org/abs/1505.00996

[6] Kaiming He, Jian Sun, and Xiaoou Tang. 2010. Guided Image Filtering (ECCV).
European Confenrence on Computer Vision 35, 7 (2010), 1-14. https://doi.org/10.
1007/978-3-642-15549-9_1

[7] Ahmad Humayun and Gabriel J Brostow. 2011. Learning to Find Occlusion
Regions. CVPR 2011 (2011), 2161-2168.

[8] Neel Joshi, Sisil Mehta, Steven Drucker, Eric Stollnitz, Hugues Hoppe, Matt
Uyttendaele, and Michael Cohen. 2012. Cliplets: juxtaposing still and dynamic
imagery. Proceedings of the 25th annual ACM symposium on User interface soft-
ware and technology - UIST °12 (2012), 251-260. https://doi.org/10.1145/2380116.
2380149

[9] Vivek Kwatra, Arno Schodl, Irfan Essa, Greg Turk, and Aaron Bobick. 2003.
Graphcut textures: image and video synthesis using graph cuts. ACM Transactions
on Graphics, SIGGRAPH 2003 22, 3 (2003), 277-286.

[10] Manuel Lang, Oliver Wang, Tunc Aydin, Aljoscha Smolic, and Markus Gross.
2012. Practical Temporal Consistency for Image-based Graphics Applications.
ACM Trans. Graph. 31, 4, Article 34 (July 2012), 8 pages. https://doi.org/10.1145/
2185520.2185530

[11] Jing Liao, Mark Finch, and Hugues Hoppe. 2015. Fast computation of seamless
video loops. ACM Transactions on Graphics 34, 6 (2015), 1-10. https://doi.org/10.
1145/2816795.2818061

[12] Zicheng Liao, Neel Joshi, and Hugues Hoppe. 2013. Automated video looping
with progressive dynamism. ACM Transactions on Graphics 32, 4 (2013), 1. https:
//doi.org/10.1145/2461912.2461950

[13] N Martin and S Roy. 2008. Fast view interpolation from stereo: Simpler can be
better. Proceedings of 3DPVT’°2008-the Fourth ... (2008). http://www.cc.gatech.
edu/conferences/3DPVT08/Program/Papers/paper213.pdf

[14] H H Nagel and W Enkelmann. 1986. An investigation of smoothness constraints

for the estimation of displacement vector fields from image sequences. IEEE

transactions on pattern analysis and machine intelligence 8, 5 (1986), 565-593.

https://doi.org/10.1109/TPAMI.1986.4767833

Patrick Pérez, Michel Gangnet, and Andrew Blake. 2003. Poisson image editing.

ACM Transactions on Graphics 22, 3 (2003), 313. https://doi.org/10.1145/882262.

882269

[16] Arno Schédl, Richard Szeliski, David H Salesin, and Irfan Essa. 2000. Video
textures. Proceedings of the 27th annual conference on Computer graphics and

[15

James Durrant and Gabriel Brostow

interactive techniques SIGGRAPH 00 7, 5 (2000), 489-498. https://doi.org/10.1145/
344779.345012

[17] L. Sevilla-Lara, J. Wulff, K. Sunkavalli, and E. Shechtman. 2015. Smooth Loops
from Unconstrained Video. Computer Graphics Forum 34, 4 (2015), 99-107. https:
//doi.org/10.1111/cgf.12682

[18] James Tompkin, Fabrizio Pece, Kartic Subr, and Jan Kautz. 2011. Towards Moment
Images: Automatic Cinemagraphs. In Visual Media Production (CVMP), 2011
Conference for. 87-93. https://doi.org/10.1109/CVMP.2011.16

[19] Philippe Weinzaepfel, Zaid Harchaoui, Cordelia Schmid, Philippe Weinzaepfel,
Zaid Harchaoui, Cordelia Schmid, Zaid Harchaoui, and Cordelia Schmid. 2013.
DeepFlow : Large displacement optical flow with deep matching. (2013).

https://doi.org/10.1145/2185520.2185562
https://doi.org/10.1111/cgf.12147
https://doi.org/10.2312/EGWR/EGSR07/327-338
https://doi.org/10.2312/EGWR/EGSR07/327-338
http://arxiv.org/abs/1505.00996
http://arxiv.org/abs/1505.00996
https://doi.org/10.1007/978-3-642-15549-9_1
https://doi.org/10.1007/978-3-642-15549-9_1
https://doi.org/10.1145/2380116.2380149
https://doi.org/10.1145/2380116.2380149
https://doi.org/10.1145/2185520.2185530
https://doi.org/10.1145/2185520.2185530
https://doi.org/10.1145/2816795.2818061
https://doi.org/10.1145/2816795.2818061
https://doi.org/10.1145/2461912.2461950
https://doi.org/10.1145/2461912.2461950
http://www.cc.gatech.edu/conferences/3DPVT08/Program/Papers/paper213.pdf
http://www.cc.gatech.edu/conferences/3DPVT08/Program/Papers/paper213.pdf
https://doi.org/10.1109/TPAMI.1986.4767833
https://doi.org/10.1145/882262.882269
https://doi.org/10.1145/882262.882269
https://doi.org/10.1145/344779.345012
https://doi.org/10.1145/344779.345012
https://doi.org/10.1111/cgf.12682
https://doi.org/10.1111/cgf.12682
https://doi.org/10.1109/CVMP.2011.16

	Abstract
	1 Introduction
	2 Related work
	2.1 Loop detection
	2.2 Loop synthesis
	2.3 Video stabilisation

	3 Pipeline
	3.1 Optimisation
	3.2 Rendering

	4 Looping in one dimension
	4.1 Problem definition
	4.2 1D Solution
	4.3 Extending looping to videos

	5 Global Stabilisation
	5.1 Using the 1D solution
	5.2 Interpolating transformations

	6 Pixel level adjustment
	6.1 Efficient computation
	6.2 Incorrect correspondences
	6.3 Handling missing data

	7 Rendering
	7.1 Forward warping
	7.2 Inpainting missing data

	8 Implementation
	9 Results
	10 Evaluation
	10.1 Objective function
	10.2 Repeated application
	10.3 Comparison against an existing method
	10.4 Failure cases

	11 Conclusion
	12 Future work
	References

