



| 2  |                                                                                                                                                           |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3  | Recent flood hazards in Kashmir put into context with millennium-long                                                                                     |
| 4  | historical and tree-ring records                                                                                                                          |
| 5  |                                                                                                                                                           |
| 6  | Juan Antonio Ballesteros Canovas <sup>1,2,*</sup> , Tasaduq Koul <sup>3</sup> , Ahmad Bashir <sup>4</sup> , Jose Maria                                    |
| 7  | Bodoque del Pozo <sup>5</sup> , Simon Allen <sup>2</sup> , Sebastien Guillet <sup>2</sup> , Irfan Rashid <sup>4</sup> , Shabeer H. Alamgir <sup>3</sup> ; |
| 8  | Mutayib Shah <sup>3</sup> ; M. Sultan Bhat <sup>4</sup> , Akhtar Alam <sup>6</sup> , Markus Stoffel <sup>1,2,7</sup>                                      |
| 9  |                                                                                                                                                           |
| 10 | 1 Department of Earth Sciences, University of Geneva, Switzerland                                                                                         |
| 11 | 2 Institute for Environmental Sciences, University of Geneva, Switzerland                                                                                 |
| 12 | 3. Irrigation and Flood Control Department, Kashmir, India                                                                                                |
| 13 | 4. University of Kashmir, Kashmir, India                                                                                                                  |
| 14 | 5. Castilla La Mancha- University, Toledo, Spain                                                                                                          |
| 15 | 6. Institute for Risk and Disaster Reduction, University College London, UK.                                                                              |
| 16 | 7. Department FA. Forel for Environmental and Aquatic Sciences, University of Geneva,                                                                     |
| 17 | Switzerland                                                                                                                                               |
| 18 |                                                                                                                                                           |
| 19 | * Corresponding author: juan.ballesteros@unige.ch                                                                                                         |
| 20 |                                                                                                                                                           |
| 21 | Highlights                                                                                                                                                |
| 22 |                                                                                                                                                           |

| 23 |                                                                                                 |
|----|-------------------------------------------------------------------------------------------------|
| 24 | • Kashmir has recently suffered unprecedented flood disasters within the context of             |
| 25 | existing measurements                                                                           |
| 26 | • These events have resulted in significant economic losses and fatalities                      |
| 27 | • Millennium-long historical and tree-ring flood records suggest that such extreme flood        |
| 28 | events are rather recurrent at centennial scale.                                                |
| 29 | • The gained records contribute to a better flood-hazard assessment.                            |
| 30 | • The gained flood information is relevant given the special watershed management               |
| 31 | status encapsulated into the Indus Water Treaty.                                                |
| 32 |                                                                                                 |
| 33 |                                                                                                 |
| 34 | ABSTRACT                                                                                        |
| 35 |                                                                                                 |
| 36 | In September 2014, the Kashmir valley (north-west India) experienced a massive flood            |
| 37 | causing significant economic losses and fatalities. This disaster underlined the high           |
| 38 | vulnerability of the local population and raised questions regarding the resilience of          |
| 39 | Kashmiris to future floods. Although the magnitude of the 2014 flood has been considered        |
| 40 | unprecedented within the context of existing measurements, we argue that the short flow         |
| 41 | series may lead to spurious misinterpretation of the probability of such extreme events. Here   |
| 42 | we use a millennium-long record of past floods in Kashmir based on historical and tree-ring     |
| 43 | records to assess the probability of 2014-like flood events in the region. Our flood chronology |
| 44 | (635 CE -nowadays) provides key insights into the recurrence of flood disasters and propels     |
| 45 | understanding of flood variability in this region over the last millennium, showing enhanced    |
| 46 | activity during the Little Ice Age. We find that high-impact floods have frequently disrupted   |

47 the Kashmir valley in the past. Thus, the inclusion of historical records reveals large flood

| 48 | hazard levels in the region. The newly gained information also underlines the critical need to           |
|----|----------------------------------------------------------------------------------------------------------|
| 49 | take immediate action in the region, so as to reduce the exposure of local populations and to            |
| 50 | increase their resilience, despite existing constraints in watershed management related to the           |
| 51 | Indus Water Treaty.                                                                                      |
| 52 |                                                                                                          |
| 53 | Keywords: flood, historical records, tree rings, Kashmir, Jhelum River, Indus Water Treaty               |
| 54 |                                                                                                          |
| 55 |                                                                                                          |
| 56 | 1. Introduction                                                                                          |
| 57 |                                                                                                          |
| 51 |                                                                                                          |
| 58 | In September 2014, the north-west of India and northeast Pakistan experienced incessant                  |
| 59 | rains, which were particularly intense in the mountain region of Jammu and Kashmir (India).              |
| 60 | Massive floods and debris flows caused catastrophic damage in populated areas located along              |
| 61 | the main watercourses (Kumar and Acharya, 2016). The situation was especially dramatic in                |
| 62 | the Kashmir valley, where the Jhelum River flooded most of the inhabited land and crop                   |
| 63 | fields, covering a surface of almost 853 km <sup>2</sup> (Romshoo et al., 2018). As a result of the 2014 |
| 64 | flood, thousands of structures – mostly residential houses – in the main cities of the Kashmir           |
| 65 | valley were damaged (Farooq 2014). Key infrastructures such as hospitals, water and energy               |
| 66 | supply systems, communication lines, government establishments and cultural heritage sites               |
| 67 | were seriously affected. The situation resulted in an emergency with more than one hundred               |
| 68 | fatalities and thousands of families affected, as well as economic losses in the order of US\$ 16        |
| 69 | billion (Venugopal and Yasir, 2017). This extreme flood event required military rescue efforts           |
| 70 | (Tabish and Nabiac, 2015) and resulted in enhanced geopolitical tensions in the region that              |
| 71 | continue to the present day (Venugopal and Yasir, 2017).                                                 |
|    |                                                                                                          |

73 The causes of this extreme event were attributed to the advection of moisture from the 74 Arabian Sea as a result of the interaction between the westward-moving monsoon and the eastward-moving deep trough at mid-latitudes (Ray et al., 2015). In addition, the specific 75 76 catchment characteristics of the Jhelum River – in particular the bowl-shaped topography of 77 the valley – and land degradation over the last decades played an important role in the 78 evolution of the flood event (Meraj et al., 2015; Figure 1). The magnitude of the flood was 79 considered unprecedented, because it represented the largest discharge contained in 80 systematic records (Farooq, 2014). Understanding the occurrence of such extreme floods is 81 crucial when it comes to the implementation of Disaster Risk Reduction (DRR) strategies, as 82 they can contribute to better preparedness and coping capacities, and as they can increase 83 resilience of inhabitants against future flood disaster. The design and implementation of DRR 84 activities seem highly relevant in Kashmir due to the extremely high vulnerability of the ever-85 growing population on the floodplains (population increase: 26% between 2001 and 2011 (Census of India, 2011), and multiplied by 10 since late 19<sup>th</sup> century (Digby 1890). This 86 87 strong demographic increase has also resulted in increased exposure of infrastructures on the 88 floodplains (Malik and Bhat, 2014).

89

90 Furthermore, the Kashmir valley represents a paradigmatic case in terms of water governance 91 because watershed management is constrained by the Indus Water Treaty (IWT), signed in 92 1960 between India and Pakistan. The IWT states that the management of the Jhelum River 93 belongs to Pakistan, even in the case of its tributaries within Indian territory. Although the 94 IWT was a success in terms of solving legal issues related to water sharing between two 95 countries, this special status also renders flood risk management highly challenging. Indeed, 96 the implementation of structural measures (such as flood storage structures) requires the 97 approval of both countries (IWT, 1960). The situation in the region may be aggravated in the

| 98  | near future given that climate change may result in increased precipitation through changes in |
|-----|------------------------------------------------------------------------------------------------|
| 99  | monsoon activity (Gosain et al., 2006, Attri and Tyagi, 2010) and/or the advection of moisture |
| 100 | from the Arabian Sea (Murakami et al., 2017).                                                  |
| 101 |                                                                                                |
| 102 | Catastrophic floods such as the one that hit Kashmir in September 2014 are rare, i.e. are      |
| 103 | characterized by long recurrence intervals, which means that instrumental series are often too |
|     |                                                                                                |

short to record several extreme events (Baker, 2008; Benito et al., 2015; Wilhelm et al.,

105 2019). To study patterns of occurrence and to credibly estimate flood risk for the Jhelum

106 River, it is critical to use information gathered over centennial and even millennial time

107 scales. Here, we draw on a database of systematic records starting in 635 CE, tree-ring

108 records of floods and historical archives, with the aim to develop a millennium-long record of

109 extreme floods in the Kashmir valley. This unique record allows us to place the 2014 flood

110 into context, and to provide a robust basis for the design and provision of more effective

111 protective measures against future flood events in Kashmir.

112

113

# 114 **2. METHODS**

115

# 116 **2.1. Study site description**

117

The Kashmir valley is located in the north-west of the Indian Himalayan arc at the border with Pakistan (Figure 1). The valley is drained by the axial Jhelum River and has a length of 150 km from southeast to northwest, and a width of ~40 km from southwest to northeast, with an area of ~13,530 km<sup>2</sup>. The length of the Jhelum up to the natural outlet of the Kashmir valley located at Baramulla is about 240 km, defining an average slope of 0.0001 m/m. The

123 mild slope of the main river favours the formation of a meandering floodplain, where the 124 population has established historically. The typical geomorphic setup of the Jhelum basin 125 (Kashmir Valley) with its heterogeneous lithology, complex topography and varying 126 hydrological conditions makes the basin susceptible to floods. The Jhelum basin is an inter-127 montane basin lying between the Pirpanjal mountain range along the W-E flank and the Great 128 Himalayan mountain ranges along the N-E flank. Geologically, the Kashmir valley hosts two 129 geological formations, the Panjal Volcanic Complex and Triassic limestones overlying 130 Archean sediments. The rise of the Pir Panjal Range impounded the primeval drainage 131 resulting in the formation of a huge lake inundating most of the plains of the Kashmir valley 132 (Rashid et al., 2007; Rather et al., 2016). Changes in drainage were triggered by the uplift of 133 the Pir Panjal Range, which sparked a sequence of interrelated tectonic, climatic and erosional 134 processes that shaped the present geomorphic setup of the Jhelum River basin (Burbank and 135 Johnson et al., 1983). Wular Lake is located in the northwest of the Kashmir valley, and is 136 considered one of the largest freshwater lakes in India, with an important role in laminating 137 floods (Romshoo et al., 2018). The Kashmir valley is affected by the southwest monsoon and 138 extratropical disturbances (Das et al., 2002; Kalsi, 1980) originating from the Mediterranean 139 and Caspian Seas. In winter, extratropical disturbances result in abundant snowfall, whereas 140 monsoonal rains normally occur in summer. Average annual air temperature in Srinagar is 141 13.6 °C, with July (24.6 °C on average) being the hottest month and January (1.5 °C on 142 average) the coldest month of the year. Annual rainfall averages 693 mm at Srinagar. Kashmir 143 has a temperate climate according to Köppen's classification (Köppen 1936). Over the last 144 decades, the Kashmir valley has suffered intense forest degradation and has lost ~0.45% of its 145 forest cover every year between 1930 and 2013 (Wani et al., 2016; Rather et al., 2016; Reddy 146 et al., 2016). Most of the forest degradation has taken place in the Pir Panjal mountain range 147 lying towards the W-E flank of the Kashmir valley (Figure S7). During the same period,

settlements increased by ~400%, not only contributing towards further forest degradation but
also encroaching upon wetland areas within the floodplain of the Jhelum River.



150

Figure 1. The Kashmir valley is located in the northwestern part of India, in the state of
Jammu and Kashmir. Historical sources refers to the flood activity of the Jhelum river, while
the tree-ring flood reconstruction is based in the mountain tributary located at Gumarg.

154

# 155 2.2. Analysis of historical sources

To reconstruct the floods of the Jhelum River over the past millennium, we investigated more than thirty historical sources. Our analysis relied mostly on contemporary records (see Figure S1). We also complemented our survey with secondary sources. Thus, seventeen records investigated in this study are primary sources, whereas eleven are secondary sources (Figure S1). Most of the sources surveyed are chronicles and travel accounts. These sources were mostly written in Persian (most of them were, however, translated to English), Sanskrit or, in

162 the case of travellers' accounts, English. For the most recent period (1956-nowdays), we used 163 the systemic record of the Irrigation and Flood Control Department (IFCD) 164 (www.ifckashmir.com). The reliability of each account was assessed with a rating scale 165 following the methodology described in Barriendos et al. (2003), where: A are eyewitness or 166 contemporary chronicles with a reliable chronology; B: eyewitness or contemporary sources, 167 but with some chronological uncertainty or neither eyewitness nor contemporary but has a 168 reliable chronology and/or accurately conveys the information from earlier works; C: 169 eyewitness or contemporary but with evidence of errors or fabrications, or neither eyewitness 170 nor contemporary and with an unreliable chronology; and where D: are neither eyewitness nor 171 contemporary and with evidence of errors or fabrication. To assess the magnitude of past flood 172 events, we followed the approach defined by Barriendos et al. (2003). Each flood event was 173 classified as ordinary, extraordinary, and catastrophic based on the descriptions found in 174 historical accounts (i.e. flood effect on the river bed and surrounding areas, water level, damage 175 to infrastructure). For each category, flood discharge was modelled using calibrated hydraulic 176 models based on the thresholds described in the hydraulic modelling section (see below).

- 177
- 178

### *2.3. Tree-ring-based flood reconstruction*

179 Tree-ring records were used to reconstruct past flood events in the study area. Trees presenting 180 obvious evidence of flood events (i.e. scars oriented according to the flow direction, tilted trees) 181 were preferentially targeted. Samples from 58 disturbed trees were prepared following standard 182 dendrochronological procedures (Ballesteros-Canovas et al., 2015). Cores were mounted on 183 wooden sticks and then polished with sandpaper. Tree rings were counted and analyzed using 184 a LINTAB-5 positioning table connected to a Leica stereomicroscope. Individual tree-ring 185 series were cross-dated using a local reference chronology – obtained after sampling 15 186 undisturbed trees near the study site - so as to correct our series for possibly missing rings. In a 187 second step, all cores were visually inspected under a stereomicroscope to identify growth 188 disturbances (GDs) induced by floods such as: (i) injuries and callus tissues; (ii) tangential rows 189 of traumatic resin ducts (TRDs); (iii) reaction wood; (iv) abrupt growth. Finally we developed 190 the flood reconstruction using the weighted index factor (W<sub>it</sub>) described in Ballesteros-Canovas 191 et al. (2015, see also Figure S8). The W<sub>it</sub> gives a weight to each GDs based on its intensity and 192 based on the number of trees impacted for a given year.

- 193
- 194 2.4. Hydraulic modelling
- We used the HEC RAS hydraulic model to estimate the magnitude of historical floods. To this
  end, we used the bathymetry information obtained during field survey by the IFCD. Floodplains
  were then added based on the 8-m resolution DEM retrieved from the High Mountain Asia
  Dataset available at the NASA National Snow and Ice Data Center Distributed Active Archive
  Center (NSIDC DAAC) <a href="https://nsidc.org/data/highmountainasia">https://nsidc.org/data/highmountainasia</a>. In total, the model was set up
- 1// Conter (1.512 C Dri 10) <u>integrand de organization de la dela de la dela de</u>
- with 43 cross section in the surrounding of the Munshibagh flow gauge station (34,07°; 74,82°).
- 201 For each cross-section, we used contraction and expansion coefficients according to a gradual
- 202 transition flow (0,1 and 0,3, respectively). The rating curve of the gauge station was used to
- 203 calibrate the roughness parameter in the model (Figure S9). The calibration process reported
- 204 Manning's values ranked from 0,1 to 0,5 in floodplains and 0,03 to 0,065 in the channels for
- 205 low-to-intense recorded flood magnitudes, respectively (Figure S4). The model was run
- 206 considering steady flow condition.
- 207 Once the model was set up, we considering the roughness-magnitude relation from the
- 208 calibration process to estimate the 2014 flood magnitude based on the maximum height
- 209 recorded at Munshibagh (Figure S6). Moreover, we used the model to estimate the flood
- 210 magnitude associated to thresholds of past events according to the following categories (Figure
- 211 S5): (i) ordinary floods, i.e. events slightly over the bankfull flooding level; (ii) extraordinary

floods, i.e. events over flooding the bankfull capacity with moderate capacity to impact populations, but mostly agriculture lands (<1.5 m water depth); and (ii) catastrophic floods, i.e. floods with the capacity to cause severe damage or complete destruction to the infrastructures or close to the river (> 1.5 water depth; Figure S5).

216 **2.5.** Flood return period estimation

217 Before conducting the flood-frequency analysis (FFA), an initial exploratory data analysis was 218 undertaken. The degree of linear dependence among successive observations was tested using 219 a correlogram as a visual approach to detect the existence of serial correlation (Salas, 1993). 220 Statistical methods were used to merge the reconstructed flood discharges with the systematic 221 records. In a first step, stationarity of the reconstruction was checked using Lang's test (Lang 222 et al., 1999). This test assumes flood records are distributed following a homogenous Poisson 223 process at the 95% tolerance interval. Stationary flood series are defined as those remaining 224 within the 95% tolerance interval (Naulet et al., 2005).

225

Here, we employ the FFA approach proposed by the U.S. National Flood Frequency Guidelines Bulletin 17C (England et al., 2018). These guidelines are based on the Pearson type III distribution with logarithmic transformation of flow data (England et al., 2003). For the estimation of the Pearson type III distribution parameters, EMA, a generalized method of moments procedure was implemented (Cohn et al., 2001, 1997). Further, we used Multiple Grubbs-Beck statistic to identify multiple potentially influential low flows, or PILFs (Cohn et al., 2013).

233

Moments estimation of the log-Pearson III distribution was based on the representation of flow data by intervals (i.e. for a particular year Y, the flow Q was represented as  $Q_{Y,lower}$  and  $Q_{Y,upper}$ ) and perception thresholds (Table 1). In the case of systematic data, we assumed that flow is

237 known accurately, so  $Q_{Y,lower} = Q_{Y,upper} = QY$ . By contrast, PILFs were handled as censored data (Cohen, 1991), i.e.,  $Q_{Y,lower} = 0$ ;  $Q_{Y,upper} = Q_{l}$ . For non-systematic data, three different 238 239 approaches were used for data representation, namely (i) interval (Cohn et al., 1997), i.e., floods 240 of known magnitude within a range or interval; (ii) binomial-censored (Stedinger and Cohn, 241 1986), i.e., floods in which there is certainty that a given flow was exceeded, but its real 242 magnitude is unknown; and (iii) points, i.e.,  $Q_{Y,lower} = Q_{Y,upper} = QY$ . EMA also required the 243 determination of perception thresholds to estimate confidence intervals. They were calculated 244 on the basis of both the historical and tree-ring based flood reconstructions. Prior to the period 245 of systematic data, perception thresholds represent the potential range of flows (T<sub>Y,lower</sub>, T<sub>Y,upper</sub>) that would have left their footprint in case that flooding occurred. For non-systematic 246 data, the T<sub>Y,lower</sub> was defined as the lowest flow estimated from historical records, whereas 247 248 T<sub>Y,upper</sub> was equalled infinity. For systematic data, T<sub>Y,lower</sub> was preliminarily represented as the 249 smallest flood flow recorded and characterized by baseflow measurement, whereas T<sub>Y,upper</sub> was 250 assumed to be infinite. In the case of gaps in the records (i.e. broken records), both thresholds 251 were set to infinity. Maximum annual peak discharge and water stages were used to determine 252 a rating curve at this site (Figure S9). 253 254 255 3. Results and discussion 256 3.1. Historical and tree-ring based flood reconstruction in Kashmir 257

258

We complemented the existing systematic flow measurements with historical and tree-ringbased flood records covering the past millennium in the Kashmir valley. The historical flood

reconstruction in Kashmir benefits from the existence of twenty-eight primary and secondary
sources, as well as documents from the local authorities (Table S1; Figure S1).

263



635 CE), and later during the reign of Lalitadatiya (724-761 CE). Similarly, historical

accounts describe a flood in 879 CE affecting large parts of the Kashmir valley. This event

was apparently induced by a co-seismic landslide and the subsequent blocking of the river,

thus also pointing to the co-existence of complex triggering mechanisms and compoundedevents in the region.

279

280 Until the 16<sup>th</sup> century, historical records describe the existence of recurrent, yet intense floods
281 with dissimilar impacts upon the Kashmiri society (i.e. 917-918; 1013; 1063-1089; 1099;

282 1128; 1135; 1342-1354; 1354-1373; and 1462 CE, see supplementary data). Specifically, the

283 1462 flood largely affected the Kashmiri population, as described in the *Rajatarangini of* 

284 Jonaraja (1587): "a dust rain descending on tooth from the sky, and indicating a famine. Not

285 long after, heavy clouds with the rainbow, and peals of loud thunder, terrified the people,

286 even like enemies with their arrows. Bubbles appeared on the water, beaten by the rain, and 287 seemed like the heads of snake's intent on destroying the crops; and the clouds, which raised the bubbles threatened to destroy all that would grow". Between the 16<sup>th</sup> and 18<sup>th</sup> centuries, 288 the number of historical accounts increases, as are reports on recurrent flood occurrences in 289 290 1514-1516; 1541; 1569; 1576; 1577; 1585-1589; 1604; 1640-42; 1643; 1651; 1662; 1678; 291 1683; 1706; 1711; 1723-4; 1729-1731; 1733-4; 1735; 1745; 1747; 1770 and 1787-8 CE, always with similar impacts on the society. In the 19<sup>th</sup> century, 14 floods have been 292 293 documented that affected crops and infrastructures causing famines and the outburst of 294 diseases like cholera (see Table S1). The flood in 1893 was described in detail in the travel 295 accounts of Walter Lawrence in 1895, stressing the combined role of long-lasting rainfall and snowmelt processes in triggering the floods. During the 20<sup>th</sup> century, several floods have been 296 297 recorded in different sources, and have even been represented in artistic work. In 1903, a large 298 flood affected the main cities of the valley, as is reflected in the traditional song Sailab Nama 299 composed by Hakim Habibullah, and also in the poem entitled "The Flaving Cranes" by 300 Rabindranath Tagore in 1915. Moderate floods occurred then in the first half of the past 301 century, namely in 1900; 1902; 1903; 1905, 1909, 1912, 1928, 1950, and 1957 CE. The flood 302 registered in 1959 (1302 m<sup>3</sup>/s) by the gauge station located at Srinagar was disastrous, with 303 more than one million people and a thousand villages affected. Since then, major floods (>90<sup>th</sup> 304 percentile) were recorded at Munshibagh (Jhelum river) in 1966 (1003 m<sup>3</sup>/s), 1973 (1223 305  $m^{3}/s$ ), and 1976 (970  $m^{3}/s$ ). In 2014, the gauge station was overflooded; however, the 306 maximum height allowed estimation of the flow gauge based on a calibrated hydraulic model 307 to 2200 m<sup>3</sup>/s. Later, minor flood-like situations arose in June 2015 as well as in June 2018 but 308 did not cause significant damage in the valley. Likewise, tree-ring records points to the 309 existence of 11 torrential floods in 1881, 1893, 1925, 1961, 1962, 1966, 1973, 1985, 1988,

310 2000, 2002 and 2010 CE. Some of these events (i.e. 1966, 1973, 1988 and 2010) were

311 recorded downstream by the flow gauge station at Feroz pora river.

312

313 The sources we investigated also reveal strong socio-economic impacts induced by major past 314 floods. Archives report in detail how excessive rainfall and long-lasting inundations of the 315 Jhelum floodplain not only resulted in loss of human lives and damage to property, but also in 316 the inundation of agricultural fields and the destruction of crops (Figure 2-C; Table S1). The 317 subsequent harvest failures often led to severe price inflation and, in the most critical 318 instances, to severe food crises and famines as evidenced in the *Rajatarangini* (River of Kings) chronicle written by Kalhanas in the 12<sup>th</sup> century: In 917-918 CE, human skeletons 319 320 and bones were spread in all directions in the Valley making it seems like a great burial-321 ground due to famines periods. In this year, rice crops were destroyed due to a flood causing 322 famines as well. Out of the 48 major floods identified, 26 have caused famines (see Table S1). 323 However, it would be inaccurate to assume that communities were helpless in the face of 324 environmental hazards. For instance, the Rajatarangini of Kalhana reports that in the 8th 325 century, King Lalitadatiya (782-794 CE) decided to move the capital city to safer ground after 326 a catastrophic flood that severely affected the main city: During the reign of King 327 Lalitadativa, the main city was submerged. The King shifted the capital to Letapore, 22 km to 328 the south. Most of the houses in the town were also destroyed. Besides these accounts, we also 329 exhumed reports enumerating the multiple measures that were implemented over the past 330 centuries to mitigate and prevent flood hazards in the valley. This includes the digging of a 331 channel near Khadanyar to increase the flow capacity of Jhelum River at the valley outlet 332 after the occurrence of a major flood in 879 CE (Rajatarangini of Kalhanas, 1149). Repeat 333 hydraulic works included the artificial canalization of the river and the construction of flood channels and continued from the 9<sup>th</sup> to the early 20<sup>th</sup> century (after the 1903 flood event, but 334

also include measures taken after the 2014 flood (Table S1). However, the efficiency of
protection works and mitigation appears to have been rather limited as they did not prevent
the floods of Jhelum river from causing death and destruction on the floodplains. Yet, they
illustrate that attitudes of communities and authorities toward risk were neither passive nor
static, even in the distant past (Table S1).

340

341 The investigated sources also provide a picture of the evolution of the wetlands in Kashmir 342 over the centuries (Figure 2-E; Table S2; Figure S2). According to historical accounts, the size of Wular lake reached its maximum extension during the 18<sup>th</sup> and 19<sup>th</sup> centuries (up to 343 ~200 km<sup>2</sup>). By contrast, the minimum extension of the lake occurred during the  $6-7^{th}$ 344 centuries, 16-17th centuries, and nowadays during the late 20th century (lake extension 345 between 55 and 90 km<sup>2</sup>). Thus, the freshwater surface of Wular lake has been reduced 346 significantly over the last century due to siltation processes, from 89 km<sup>2</sup> in 1911 to 9.5 km<sup>2</sup> 347 348 nowadays (Romshoo et al., 2018). The siltation process has contributed to reduce the capacity 349 of the lake to laminate flood discharge and increase the effect of backwater effects during 350 extreme events (Romshoo et al., 2018). 351





353 *Figure 2. Compilation of the historical flood information provided in this study. Fig2-A)* 

354 Chronology of historical flood records for the Jhelum River detected based on primary and

355 secondary sources (Table S1) in Kashmir, showing the different warm/cold periods of the

- 356 Medieval Climate anomaly MCA, the Little Ice Age LIA (Kaul, 1990; Rowan, 2017) and
- 357 the ongoing warming. Fig 2-B) Tree-ring flood records identified at the tributary of the
- 358 Jhelum River at Gulmag. Fig2-C) Years with historical records linking famines due to
- 359 flooding. Fig 2-D) Flood accumulation at Jhelum River. Fig 2-E) Evolution of the Wular lake
- 360 size based on historical accounts (Table S2) and recent remote sensing (2); Fig 2-F)

- *Historical floods in different Indian rivers (Kale, 1997a); Fig 2-G-L) Dissimilar high (blue)*
- *and low (white) flood phases in different locations, including Atlantic and Mediterranean*
- 363 regions (F: Wasson et al., 2013; G: Kale et al., 2000; H: Kale, 1997; I: Thmas et al., 2007; J

*and K: Benito et al.*, 2015).



Figure 3. Picture of the bridges over Jhelum River at Srinagar under non-flood conditions
(Fig.3-A) and during the flood of 1893 (Fig.3-B). Fig.3-C traditional song "Sailab Nama"
composed by Hakim Habibullah and picture of the flood in 1903. Sailab Nama: "Slowly,
slowly horrible waters came from Khanabal to Khadenyaar, it was a sheet of water and
everything got destroyed".

# **3.2. Contextualizing floods and climate variability**

Comparison of the Jhelum River records is in line with existing paleoflood information from the northwestern Himalayas (Wasson et al., 2013) over the last five centuries. Our flood records also agree with reconstructed periods with wetter climatic conditions in the region, based on tree-ring records (Treydte et al., 2006). The Jhelum River flood chronology also resembles flood activity in the Mediterranean region over the last centuries (Benito et al., 2015), with an increase in flood activity at the end of the Spörer (~ 1460–1550; Eddy, 1976) and Maunder (~1645-1715; Eddy, 1976; Shindell et al., 2001) Minima (see Figure 2). We also observe increased flood activity between the end of the Little Ice Age (LIA) and the late 19th 

383 century. However, our flood reconstruction differs from others developed in the Indian 384 Peninsula where authors suggest an increase of extreme floods over the last decades in 385 comparison to paleoflood records (Ely et al, 1996), especially during the LIA (Kale and 386 Baker, 2006; Kale and Hire, 2007). The increase in flood records in our reconstruction during the 18<sup>th</sup> century and late 19<sup>th</sup> century is in line with those observed in the upper Ganga 387 388 catchment (central Indian Himalayas; Wasson et al., 2013), and has been explained as the 389 result of enhanced wind speeds over the Arabian Sea. Such an increase in wind speed over the 390 Arabian Sea is known to favour the advection of moist air masses over northwest India, 391 causing intense rainfall (Murakami et al., 2017). Noteworthy, this mechanism was also 392 involved in the triggering of the 2014 flood event in Kashmir (Ray et al., 2015), and likewise 393 at the origin of the 2010 Pakistan floods (Webster et al., 2011).

394

395

#### **3.3. Revisiting the likelihood of extreme floods in Kashmir**

396

Lang's test provides evidence for the presence of stationarity in historical flood records between 397 1500 CE and today; and from 1880 CE and today for torrential floods reconstructed from tree-398 399 ring data (Figure 4-A; Figure S3). The Mann-Kendall test ( $\tau = 0,016$ ; p-value = 0,857 and Theil 400 slope =  $0,288 \text{ m}^3 \text{sec}^{-1}$ ) is also supporting the assumption that the systematic time series does 401 neither contain an increasing or decreasing trend over time. Consequently, the flood frequency 402 analysis for the Jhelum River and historical accounts was restricted to this period. Based on the 403 calibrated hydraulic model (Figure S4, S5 and S6), we estimated the magnitude of 39 past 404 floods, which were include as censored values, upper and lower thresholds and a range of values 405 in Figure 4-B. Hydraulic model results reported ordinary floods (i.e. slightly over the bankfull 406 level) with an estimated peak discharge of up to 600  $\text{m}^3/\text{s}$ ; extraordinary floods (i.e. (<1,5 m 407 water depth) with an estimated peak discharge between 600 and 1200 m<sup>3</sup>/s; and catastrophic

408 floods (> 1,5 water depth) with a peak discharge exceeding 1200 m<sup>3</sup>/s. In addition, we estimated 409 peak discharge of the 2014 as being ~2200 m<sup>3</sup>/s for the reach under investigation (Figure S6; 410 for details see Methods).

411

412 Peak annual flows were not significantly autocorrelated, indicating that the estimated p-value 413 is appropriate and not impacted by autocorrelation. The flood frequency assessment was carried 414 out using Moments estimation (EMA) with the Multiple Grubbs-Beck statistic for the detection 415 of PILFs. As shown in Fig. 4-C, there are 3 floods in the systematic record that exceed the historical threshold (1200 m<sup>3</sup>s<sup>-1</sup>), namely in 1957 (1299 m<sup>3</sup> s<sup>-1</sup>), 1959 (1266 m<sup>3</sup> s<sup>-1</sup>) and 1962 416 (1973 m<sup>3</sup> s<sup>-1</sup>). The implementation of the Multiple Grubbs-Beck statistic allowed the 417 identification of 8 PILFs, with a threshold of 333 m<sup>3</sup> s<sup>-1</sup> and with p-values comprised between 418 0,3869 and 0,0004. As a result, the 8 peak flows smaller than 333  $m^3 s^{-1}$  were treated as censored 419 data, so they were recoded to define flow intervals of  $(Q_{Y,lower} = 0; Q_{Y,upper} = 333 \text{ m}^3 \text{ s}^{-1})$ . PILFs 420 421 also had the impact of altering the lower bound of the perception threshold for the systematic 422 data period from 1955 to 2015. Thus, the perception threshold shifted from (T<sub>Y,lower</sub> =0) to 423 (T<sub>Y,lower</sub> =333). For historical binomial-censored data, the lower limit of the perception threshold was set at  $T_{Y,lower} = 1200 \text{ m}^3 \text{ s}^{-1}$ , whereas for interval (historical) data,  $T_{Y,lower}$  was 424 fixed at 600 m<sup>3</sup> s<sup>-1</sup>. The flood frequency results (Fig. 4-C; Table 2) indicate that the log-Pearson 425 type III model fits most data reasonably well, including the bulk of large floods, but 426 underestimates the magnitude of the biggest flood (2014 -2200 m<sup>3</sup> s<sup>-1</sup>). As such, the annual 427 428 exceedance probability of a possible future flood similar to the one in 2014 will rank between  $\sim 0.01$  and 0.005, depending on whether or not with regional skew in the dataset is considered 429 in the assessment (Table 2). 430



Figure 4. A) Lang's test for flood accumulation since beginning of 16<sup>th</sup> century. B) Composite
of reconstructed (historical) and systematic peak discharge values for past floods in the
Jhelum River at Srinagar. C) Flood frequency assessment with and without historical
records.

Table 1. Generalized data representation of peak-flows interval and perception thresholds (England et al., 2018)

| Data source | Data type | Flow interval                   | Perception threshold           |
|-------------|-----------|---------------------------------|--------------------------------|
| Gaga        | Doint     | $Q_{\rm Y,\ lower} = Q_{\rm Y}$ | $T_{Y,\ lower}=0$              |
| Gage        | Folin     | $Q_{Y,upper} = Q_Y$             | $T_{Y,upper}=\infty$           |
| Historical  | Internal  | $Q_{Y, \ lower} > Q_h$          | $T_{Y,\ lower}=Q_h$            |
| Historical  | intervar  | Q <sub>Y</sub> , upper          | $T_{\text{Y, upper}} = \infty$ |
| <b>TT 1</b> | D' ' I    | $Q_{Y, \ lower} \geq Q_h$       | $T_{Y,\ lower}=Q_h$            |
| Historical  | Binomial  | $Q_{Y,\;upper}{=}\infty$        | $T_{\text{Y, upper}} = \infty$ |
| Historial   | Deint     | $Q_{\rm Y,\ lower} = Q_{\rm Y}$ | $T_{Y,\ lower} = Q_h$          |
| Historical  | Point     | $Q_{Y,upper} = Q_Y$             | $T_{Y,upper}=\infty$           |
| DII Es      | Censored  | $Q_{\rm Y,\ lower}=0$           | $T_{Y, \ lower} = Q_l$         |
| 1 11.1 5    | Censored  | $Q_{Y,upper} = Q_l$             | $T_{Y,upper}=\infty$           |
|             |           |                                 |                                |
|             |           |                                 |                                |
|             |           |                                 |                                |

453 Table 2. Peak flow quantiles in cubic meters per second based on FFA using EMA and Multiple Grubbs-Beck test.

- 454 Variance of estimates are shown in log space

| Annual<br>exceedance<br>probability | EMA estimate<br>(m <sup>3</sup> s <sup>-1</sup> ), with<br>regional Skew | EMA estimate<br>(m <sup>3</sup> s <sup>-1</sup> ) without<br>regional Skew | Variance of estimate | Lower 2,5%<br>confidence limit<br>(m <sup>3</sup> s <sup>-1</sup> ) | Upper 97,5%<br>confidence limit<br>(m <sup>3</sup> s <sup>-1</sup> ) |
|-------------------------------------|--------------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------|----------------------------------------------------------------------|
| 0,5                                 | 404,8                                                                    | 421,9                                                                      | 0,0011               | 309,7                                                               | 450,3                                                                |
| 0,2                                 | 706                                                                      | 684,5                                                                      | 0,0005               | 637,8                                                               | 772,1                                                                |
| 0,1                                 | 940,6                                                                    | 914,6                                                                      | 0,0005               | 851,2                                                               | 1041                                                                 |
| 0,04                                | 1274                                                                     | 1283                                                                       | 0,0008               | 1140                                                                | 1458                                                                 |
| 0,02                                | 1547                                                                     | 1622                                                                       | 0,001                | 1367                                                                | 1824                                                                 |
| 0,01                                | 1840                                                                     | 2026                                                                       | 0,0014               | 1600                                                                | 2235                                                                 |
| 0,005                               | 2155                                                                     | 2507                                                                       | 0,0019               | 1839                                                                | 2699                                                                 |
| 0,002                               | 2607                                                                     | 3285                                                                       | 0,0028               | 2162                                                                | 3415                                                                 |

**4. Implications for flood risk management in Kashmir** 

- 460 Results from the combined analysis of instrumental data with multi-proxy records support that
- 461 Kashmir region is highly susceptible to extreme flood events. Thus, intense floods at Jhelum
- 462 river occurred roughly four times per century (0,038 floods  $yr^{-1}$ ) over the last millennium,
- 463 while the torrential activity in tributaries mountains stream has been reported even higher
- 464  $(0,08 \text{ floods yr}^{-1})$  over the last century. Our assessment also suggests that the annual
- 465 exceedance probability of 2014-like flood events may rank between ~ 0,01 and 0,005. In the
- 466 next decades, the ever-increasing demographic pressure in Kashmir could increase the
- 467 negative impacts of floods (Meraj et al., 2015). Thus, the likely strengthening of convergence
- 468 in the western Himalayas of the moisture carrying wind from the Arabian Sea may favour
- 469 deep convection phenomena and an intensification of monsoon activity over the Kashmir
- 470 region (Murakami et al., 2017). Besides, climate models also point to a possible increase in
- 471 extreme precipitation over the region (Turner and Annamalai, 2012; Jie et al., 2017 Rao et al.,
- 472 2014; Palazzi et al., 2013), which could occur early in the spring season as a result of
- 473 elevation-dependent warming (Pepin et al 2015), enhancing the possibility of rain-on-snow
- 474 floods, similar to the extreme flood reported in 1893 (i.e. Lawrence 1895). Besides, the
- 475 intensification of runoff is furthermore enhanced by progressing forest degradation in region
- 476 (Wanni et al., 2016; Rather et al., 2016; Rashid et al., 2017), which has a clearly negative
- 477 impact on the siltation of the lakes (wetlands) in the valley (Figure S 7 and Table S2), and
- 478 consequently in their lamination capacity. Last, but not least, the new formed glacial lakes due
- 479 to shrinking of glacier mass may increase the probability of glacier lake outburst floods
- 480 (GLOFs) with disastrous consequences in the region (Govindha Raj et al., 2010).
- 481
- 482 The results of this study call for an immediate and very carefully thought implementation of
- 483 proper management mechanisms in the region so as to limit further, and unbalanced, increases
- 484 in exposure and vulnerability, but also to reduce future flood impacts in Kashmir. We argue

- 485 that the information provided here is highly relevant, not only to raise awareness at
- 486 institutional levels, but above all also for the design of new strategies aimed at improving the
- 487 resilience of Kashmiris against extreme flood events. Given the complexity of Kashmir water
- 488 management, as it is encapsulated in the Indus Water Treaty (IWT) (Rao, 2018), and the
- 489 political sensitivity of the region, the impact of future extreme floods or the occurrence of
- 490 more frequent, yet moderate floods will not only result in human disasters, but could also fuel
- 491 geopolitical crises between both countries (Rao, 2018). A proper definition and
- 492 implementation of solutions that can minimize the negative impacts of future floods in
- 493 Kashmir in a sustainable and constructive manner by both countries is thus not only desirable,
- 494 but a clear need for the immediate future.
- 495
- 496 Acknowledgment: This research has been funded through The State Secretariat for
- 497 Education, Research and Innovation (SERI) and ZHAW as Leading House for the bilateral
- 498 research collaboration between India and Switzerland.
- 499
- 500 Author contributions: JABC, TK, SHA, MShah, MS designed research. JABC, AB, GS,
- 501 TK, IR, MSB, AA, SA contributed new reagents/analytic tools. JABC, AB analysed data.
- 502 JABC lead writing. All contributed to write and review the paper.
- 503
- 504 Additional information: The authors declare no conflict of interest
- 505
- 506
- 507 **REFERENCES**
- 508

| 509 | Allen, S.K., Ballesteros-Canovas, J., Randhawa, S.S., Singha, A.K., Huggel, C., Stoffel,    |
|-----|---------------------------------------------------------------------------------------------|
| 510 | M. 2018. Translating the concept of climate risk into an assessment framework to inform     |
| 511 | adaptation planning: Insights from a pilot study of flood risk in Himachal Pradesh,         |
| 512 | Northern India. Environ Sci Poli 87: 1–10.                                                  |
| 513 |                                                                                             |
| 514 | Attri, S.D., Tyagi, A 2010. Climate profile of India. Environment Monitoring and            |
| 515 | Research Center, India Meteorology Department: New Delhi, India.                            |
| 516 |                                                                                             |
| 517 | Baker, V.R. 2008. Paleoflood hydrology: Origin, progress, prospects. Geomorphology,         |
| 518 | <b>101(1-2)</b> : 1-13.                                                                     |
| 519 | Ballesteros-Cánovas, J.A., Stoffel, M., St George, S., Hirschboeck, K. 2015. A review of    |
| 520 | flood records from tree rings. Prog. Phys. Geogr, 39(6): 794-816.                           |
| 521 |                                                                                             |
| 522 | Barriendos, M., Cœur, D., Lang, M., Llasat, M.C., Naulet, R., Lemaître, D., Barrera, A      |
| 523 | 2003. Stationarity analysis of historical flood series in France and Spain (14th–20th       |
| 524 | centuries). Nat. Hazards Earth Sys Sci, 3(6): 583-592.                                      |
| 525 |                                                                                             |
| 526 | Benito, G., Brázdil, R., Herget, J., Machado, M.J. 2015. Quantitative historical hydrology  |
| 527 | in Europe. Hydrol Earth Syst Sci. 12(4).                                                    |
| 528 |                                                                                             |
| 529 | Benito, G., Macklin, M.G., Panin, A., Rossato, S., Fontana A., et al., 2015. Recurring      |
| 530 | flood distribution patterns related to short-term Holocene climatic variability. Sci Rep 5: |
| 531 | 16398.                                                                                      |
| 532 |                                                                                             |

| 533 | Burbank, D.W., Johnson, G.D. 1983. The late Cenozoic chronologic and stratigraphic      |
|-----|-----------------------------------------------------------------------------------------|
| 534 | development of the Kashmir intermontane basin, northwestern Himalaya. PPP. 1983         |
| 535 | <b>43(3-4):</b> 205-35.                                                                 |
| 536 |                                                                                         |
| 537 | Census of India 2011 Provisional Population Totals. Web : http://censusindia.gov.in/    |
| 538 | Cohen, A.C., 1991, Truncated and censored samples-theory and application: New York,     |
| 539 | Marcel-Dekker, 312 p.                                                                   |
| 540 |                                                                                         |
| 541 | Cohn, T.A., England, J.F., Berenbrock, C.E., Mason, R.R., Stedinger, J.R., Lamontagne,  |
| 542 | J.R., 2013. A generalized Grubbs-Beck test statistic for detecting multiple potentially |
| 543 | influential low outliers in flood series. Water Resour. Res. 49, 5047-5058.             |
| 544 | doi:10.1002/wrcr.20392                                                                  |
| 545 |                                                                                         |
| 546 | Cohn, T.A., Lane, W.L., Baier, W.G., 1997. An algorithm for computing moments-based     |
| 547 | flood quantile estimates when historical flood information is available. Water Resour.  |
| 548 | Res. 33, 2089–2096.                                                                     |
| 549 |                                                                                         |
| 550 | Cohn, T.A., Lane, W.L., Stedinger, J.R., 2001. Confidence intervals for Expected        |
| 551 | Moments Agorithm flood quantiles estimates. Water Resour. Res. 37, 1695–1706.           |
| 552 |                                                                                         |
| 553 | Cunderlik, J.M., Burn, D.H., 2003. Non-stationary pooled flood frequency analysis. J.   |
| 554 | Hydrol. 276, 210-223. doi:10.1016/S0022-1694(03)00062-3                                 |
| 555 |                                                                                         |

| 556 | Das, M.R., Mukhopadhyay, R.K., Dandekar, M.M., Kshirsagar, S.R. 2002. Pre-monsoon        |
|-----|------------------------------------------------------------------------------------------|
| 557 | western disturbance in relation to monsoon rainfall, its advancement over NW India and   |
| 558 | their trends. Current Sci. 82(11), 1320–1321.                                            |
| 559 |                                                                                          |
| 560 | Digby, W. 1890. Condemned Unheard, India and Kashmir. London.                            |
| 561 |                                                                                          |
| 562 | Eddy, J.A. 1976. The maunder minimum. Science, 192(4245):1189-1202.                      |
| 563 |                                                                                          |
| 564 | Ely, L.L., Enzel, Y., Baker, V.R., Kale, V.S., Mishra, S. 1996. Changes in the magnitude |
| 565 | and frequency of late Holocene monsoon floods on the Narmada River, central India. Geol  |
| 566 | Soc Am Bull, <b>108(9):</b> 1134-1148.                                                   |
| 567 |                                                                                          |
| 568 | England, J.F., Cohn, T.A., Faber, B.A., Stedinger, J.R., Thomas, W.O., Veilleux, A.G.,   |
| 569 | Kiang, J.E., Mason, R.R., 2018. Guidelines for Determining Flood Flow                    |
| 570 | Frequency-Bulletin 17C (ver. 1.1, May 2019). U.S. Geological Survey Techniques and       |
| 571 | Methods, book 4, chap. B5, Reston, Virginia. doi:10.3133/tm4B5                           |
| 572 |                                                                                          |
| 573 | England, J.F., Salas, J.D., Jarrett, R.D., 2003. Comparisons of two moments-based        |
| 574 | estimators that utilize historical and paleoflood data for the log Pearson type III      |
| 575 | distribution. Water Resour. Res. 39. doi:10.1029/2002WR001791                            |
| 576 |                                                                                          |
| 577 | Farooq, M. 2014 A Satellite based rapid assessment on flood in Jammu and Kashmir –       |
| 578 | September 2014 (Department of Environment and Remote Sensing. Govt. of Jammu and         |
| 579 | Kashmir, Srinagar)                                                                       |
| 580 |                                                                                          |

| 581 | Govindha Raj, K. B. 2010) Remote sensing based hazard assessment of glacial lakes: a        |
|-----|---------------------------------------------------------------------------------------------|
| 582 | case study in Zanskar basin, Jammu and Kashmir, India. Geomat Nat Haz Risk 1(4): 339-       |
| 583 | 347.                                                                                        |
| 584 |                                                                                             |
| 585 | Gosain, A.K., Rao, S., Basuray, D. 2006. Climate change impact assessment on hydrology      |
| 586 | of Indian river basins. Curr sci 90(3): 346-353                                             |
| 587 |                                                                                             |
| 588 | IWT 1960. Indus Waters Treaty between the Government of India and the Government of         |
| 589 | Pakistan, signed at Karachi, on 19 September 1960 (entered into force 1 April 1960).        |
| 590 |                                                                                             |
| 591 | Jie, W., Vitart. F., Wu, T., Liu, X. 2017. Simulations of the Asian summer monsoon in the   |
| 592 | sub-seasonal to seasonal prediction project (S2S) database. Q J Roy Met, 143(706): 2282-    |
| 593 | 2295.                                                                                       |
| 594 |                                                                                             |
| 595 | Kale, V.S. 1997. Flood studies in India: A brief review. J. Geo. Soc. India 49(4): 359-370. |
| 596 |                                                                                             |
| 597 | Kale, V.S., Baker, V.R. 2006. An extraordinary period of low-magnitude floods               |
| 598 | coinciding with the Little Ice Age: palaeoflood evidence from Central and Western India.    |
| 599 | J. Geol. Soc. India, 68(3): 477.                                                            |
| 600 |                                                                                             |
| 601 | Kale, V.S., Hire, P., Baker, V.R. 1997a Flood hydrology and geomorphology of monsoon-       |
| 602 | dominated rivers: the Indian Peninsula. Water Int. 1; 22(4):259-65.                         |
| 603 |                                                                                             |

| 604 | Kale, V.S., Hire, PS. 2007. Temporal variations in the specific stream power and total                |
|-----|-------------------------------------------------------------------------------------------------------|
| 605 | energy expenditure of a monsoonal river: The Tapi River, India. <i>Geomorphology</i> <b>92(3-4)</b> : |
| 606 | 134-146.                                                                                              |
| 607 |                                                                                                       |
| 608 | Kale, V.S., Singhvi, A.K., Mishra, P.K., Banerjee, D. 2000. Sedimentary records and                   |
| 609 | luminescence chronology of Late Holocene palaeofloods in the Luni River, Thar Desert,                 |
| 610 | northwest India. Catena 40(4): 337-358.                                                               |
| 611 |                                                                                                       |
| 612 | Kalsi, S.R. 1980 On some aspects of interaction between middle latitude westerlies and                |
| 613 | monsoon circulation. <i>Mausam</i> <b>38(2)</b> : 305–308.                                            |
| 614 |                                                                                                       |
| 615 | Kaul, M.N. 1990. Glacial and Fluvial Geomorphology of Western Himalaya: Liddar                        |
| 616 | Valley. Concept Publishing Company.                                                                   |
| 617 |                                                                                                       |
| 618 | Koppen, W. 1936 Das geographisca System der Klimate, Borntraeger, 1-44.                               |
| 619 |                                                                                                       |
| 620 | Kumar, R., Acharya, P. 2016 Flood hazard and risk assessment of 2014 floods in Kashmir                |
| 621 | Valley: a space-based multisensor approach. Nat. Hazards 84: 437-464.                                 |
| 622 | Kundzewicz, Z.W., Graczyk, D., Maurer, T., Pińskwar, I., Radziejewski, M., Svensson,                  |
| 623 | C., Szwed, M., 2005. Trend detection in river flow series: 1. Annual maximum flow.                    |
| 624 | Hydrol. Sci. J. 50, 797-810. doi:10.1623/hysj.2005.50.5.797                                           |
| 625 |                                                                                                       |
| 626 | Lang, M., Ouarda, T.B.M.J., Bobée, B. 1999. Towards operational guidelines for over-                  |
| 627 | threshold modeling. J Hydro 225: 103–117                                                              |
| 628 |                                                                                                       |

| 629 | Lawrence, W.R. 1895. The Valley of Kashmir (Reprinted). Srinagar: Chinar Publishing        |
|-----|--------------------------------------------------------------------------------------------|
| 630 | House.                                                                                     |
| 631 |                                                                                            |
| 632 | Malik, M.I., Bhat, M.S. 2014. Integrated approach for prioritizing watersheds for          |
| 633 | management: A study of lidder catchment of kashmir himalayas. Environ Manag. 54(6):        |
| 634 | 1267-1287.                                                                                 |
| 635 |                                                                                            |
| 636 | Meraj, G., Romshoo, S.A., Yousuf, A.R., Altaf, S., Altaf, F. 2015. Assessing the influence |
| 637 | of watershed characteristics on the flood vulnerability of Jhelum basin in Kashmir         |
| 638 | Himalaya. Nat Hazards 77(1): 153-175.                                                      |
| 639 |                                                                                            |
| 640 | Murakami, H., Vecchi, G.A., Underwood, S. 2017. Increasing frequency of extremel           |
| 641 | severe cyclonic storms over the Arabian Sea. Nat Clim Change 7(12): 885                    |
| 642 |                                                                                            |
| 643 | Naulet, R., Lang, M., Ouarda, T.B., Coeur, D., Bobée, B., Recking, A., Moussay, D. 2005.   |
| 644 | Flood frequency analysis on the Ardèche river using French documentary sources from        |
| 645 | the last two centuries. J Hydro, <b>313(1-2)</b> : 58-78.                                  |
| 646 |                                                                                            |
| 647 | Palazzi, E., Von Hardenberg, J., Provenzale, A. 2013. Precipitation in the Hindu-Kush      |
| 648 | Karakoram Himalaya: observations and future scenarios. J Geophys Res Atmos, 118(1):        |
| 649 | 85-100.                                                                                    |
| 650 |                                                                                            |
| 651 | Pepin, N., Bradley, R.S., Diaz, H.F., Baraër, M., et al., 2015 Elevation-dependent         |
| 652 | warming in mountain regions of the world. Nat Clim Change 5(5): 424.                       |
| 653 |                                                                                            |

| 654 | Rajatarangini Kalhanas, 1149. Translated by Dutt (1879) Kings of Káshmír: Being a      |
|-----|----------------------------------------------------------------------------------------|
| 655 | Translation of the Sanskrita Work Rájatarangginí of Kahlana Pandita.                   |
| 656 |                                                                                        |
| 657 | Rao, F.A. 2018. Water, polity and Kashmir. Institute of Public Policy, Research and    |
| 658 | Development. Gulshan, Srinagar.                                                        |
| 659 |                                                                                        |
| 660 | Rao, K.K., Patwardhan, S.K., Kulkarni, A., Kamala, K., Sabade, S.S., Kumar, K.K. 2014. |
| 661 | Projected changes in mean and extreme precipitation indices over India using PRECIS.   |
| 662 | Glob Planet Change 113: 77-90.                                                         |
| 663 |                                                                                        |
| 664 | Rashid, I., Bhat, M.A., Romshoo, S.A. 2017. Assessing changes in the above ground      |
| 665 | biomass and carbon stocks of Lidder valley, Kashmir Himalaya, India. Geocarto int.     |
| 666 | <b>32(7)</b> : 717-734.                                                                |
| 667 |                                                                                        |
| 668 | Rashid, I., Romshoo, S.A., Chaturvedi, R.K., Ravindranath, N.H., Sukumar, R., et al.,  |
| 669 | 2015. Projected climate change impacts on vegetation distribution over Kashmir         |
| 670 | Himalayas. Clim. Change 132(4): 601-613.                                               |
| 671 | Rather, M.I., Rashid, I., Shahi, N., Murtaza, K.O., et al., 2016 Massive land system   |
| 672 | changes impact water quality of the Jhelum River in Kashmir Himalaya. Environ Monit    |
| 673 | Assess 188(3): 185.                                                                    |
| 674 |                                                                                        |
| 675 | Ray, K., Bhan, S.C., Bandopadhyay, B.K. 2015 The catastrophe over Jammu and Kashmir    |
| 676 | in September 2014: a meteorological observational analysis. Curr Sci. 580-591.         |
| 677 |                                                                                        |

| 678 | Reddy, C.S., Jha, C.S., Dadhwal, V.K., et al., 2016 Quantification and monitoring of            |
|-----|-------------------------------------------------------------------------------------------------|
| 679 | deforestation in India over eight decades (1930–2013). Bio Cons 25(1): 93-116.                  |
| 680 |                                                                                                 |
| 681 | Romshoo, S.A., Altaf, S., Rashid, I., Dar, R.A. 2018 Climatic, geomorphic and                   |
| 682 | anthropogenic drivers of the 2014 extreme flooding in the Jhelum basin of Kashmir, India.       |
| 683 | Geo. Nat. Hazards & Risk 9(1): 224-248.                                                         |
| 684 |                                                                                                 |
| 685 | Rowan, A.V., 2017. The 'Little Ice Age'in the Himalaya: A review of glacier advance             |
| 686 | driven by Northern Hemisphere temperature change. <i>The Holocene</i> , <b>27(2)</b> : 292-308. |
| 687 |                                                                                                 |
| 688 | Salas, J.D., 1993. Analysis and modeling of hydrologic time series, in: Maidment, D.R.          |
| 689 | (Ed.), Handbook of Hydrology. McGraw-Hill, New York, pp. 19.1-19.72.                            |
| 690 |                                                                                                 |
| 691 | Shindell, D.T., Schmidt, G.A., Mann, M.E., Rind, D., Waple, A. 2001. Solar forcing of           |
| 692 | regional climate change during the Maunder Minimum. Science, <b>294(5549)</b> : 2149-2152.      |
| 693 |                                                                                                 |
| 694 | Stedinger, J.R., Cohn, T., 1986. Flood frequency analysis with historical and paleoflood        |
| 695 | information. Water Resour. Res. 22 (5), 785-793.                                                |
| 696 |                                                                                                 |
| 697 | Tabish, S.A., Nabia, S. 2015. Epic tragedy: Jammu & Kashmir floods: a clarion call.             |
| 698 | Emerg. Med. 5(233): 2                                                                           |
| 699 |                                                                                                 |
| 700 | Thomas, P.J., Juyal, N., Kale, V.S., Singhvi, A.K. 2007. Luminescence chronology of late        |
| 701 | Holocene extreme hydrological events in the upper Penner River basin, South India. $J$          |
| 702 | Quat Sci. 22(8): 747-753.                                                                       |

| 703 |                                                                                                |
|-----|------------------------------------------------------------------------------------------------|
| 704 | Treydte, K.S., Schleser, G.H., Helle, G., Frank, D.C., Winiger, M., Haug, G.H., Esper, J.      |
| 705 | (2006) The twentieth century was the wettest period in northern Pakistan over the past         |
| 706 | millennium. Nature. 440(7088):1179.                                                            |
| 707 |                                                                                                |
| 708 | Turner, A.G. Annamalai, H. 2012. Climate change and the South Asian summer                     |
| 709 | monsoon. Nat. Clim. Chan. 2(8): 587.                                                           |
| 710 |                                                                                                |
| 711 | Venugopal, R., Yasir, S., 2017. The politics of natural disasters in protracted conflict : the |
| 712 | 2014 flood in Kashmir. Oxford Dev. Stud. 45.4: 424-442.                                        |
| 713 |                                                                                                |
| 714 | Wani, A.A., Joshi, P.K., Singh, O., Shafi, S. 2016. Multi-temporal forest cover dynamics       |
| 715 | in Kashmir Himalayan region for assessing deforestation and forest degradation in the          |
| 716 | context of REDD+ policy. J Mt Sci 13(8): 1431-1441.                                            |
| 717 |                                                                                                |
| 718 | Wasson, R.J., Sundriyal, Y.P., Chaudhary, S., Jaiswal, M.K., Morthekai, P., Sati, S.P.,        |
| 719 | Juyal, N. 2013. A 1000-year history of large floods in the Upper Ganga catchment, central      |
| 720 | Himalaya, India. Quaternary Sci Rev 77: 156-166.                                               |
| 721 | Webster, P.J., Toma, V.E., Kim, H.M. 2011. Were the 2010 Pakistan floods predictable?.         |
| 722 | Geophys. Res. Lett., 38(4).                                                                    |
| 723 |                                                                                                |
| 724 | Wilhelm, B., Ballesteros Cánovas, J.A., Macdonald, N., Toonen, W.H., et al., (2019).           |
| 725 | Interpreting historical, botanical, and geological evidence to aid preparations for future     |
| 726 | floods. <i>Water</i> <b>6</b> (1): e1318                                                       |
| 727 |                                                                                                |

| 728 |  |  |  |
|-----|--|--|--|
| 729 |  |  |  |
| 730 |  |  |  |
| 731 |  |  |  |
| 732 |  |  |  |
| 733 |  |  |  |
| 734 |  |  |  |
| 735 |  |  |  |
| 736 |  |  |  |
| 737 |  |  |  |
| 738 |  |  |  |
| 739 |  |  |  |
| 740 |  |  |  |
| 741 |  |  |  |