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Abstract

We study old problems, connected to the theory of continued fractions, with a new

twist: changing the setting from the real numbers to the field of formal Laurent

series in 1/t.

In the classical theory, a famous by-product of the continued fraction expan-

sion of quadratic irrational numbers
√

D is the solution to Pell’s equation for D. It

is well-known that, once an integer solution to Pell’s equation exists, we can use it

to generate all other solutions (un,vn)n∈Z. Our object of interest is the polynomial

version of Pell’s equation, where the integers are replaced by polynomials with com-

plex coefficients. We then investigate the factors of vn(t). In particular, we show

that over the complex polynomials, there are only finitely many values of n for which

vn(t) has a repeated root. Restricting our analysis to Q[t], we give an upper bound

on the number of “new” factors of vn(t) of degree at most N. Furthermore, we show

that all “new” linear rational factors of vn(t) can be found when n≤ 3, and all “new”

quadratic rational factors when n≤ 6.

Another application of continued fractions arises from the theory of rational

approximations to real irrational numbers. There, if we truncate the continued frac-

tion expansion of α ∈R, the resulting rational number “best” approximates it. This

consequence remains true when we replace real numbers by formal Laurent series

in 1/t. In the framework of power series over the rational numbers, we define the

Lagrange spectrum, related to Diophantine approximation of irrationals, and the

Markov spectrum, related to elements represented by indefinite binary quadratic

forms. We compute both spectra, by showing they equal sets whose elements are

quantities attached to doubly infinite sequences of non-constant polynomials. More-

over, we prove that Lagrange and Markov spectra coincide and exhibit no gaps,

contrary to what happens over the real numbers.



Impact Statement

Continued fractions are special representations of numbers and, more generally,

power series with coefficients in a given field. They have long been of interest to the

mathematical community, but also have applications in areas such as cyber security,

cryptography and image processing.

This thesis primarily impacts the study of Pellian polynomials. In particu-

lar, through understanding the factorisation of the solutions to Pell’s equation for

such polynomials, we are able to give a method of constructing new polynomials for

which Pell’s equation is solvable. We also contribute to the areas of Diophantine

approximation and binary quadratic forms by explicitly describing the spectrum of

Markov, related to representations of indefinite binary quadratic forms with coef-

ficients formal Laurent series, and the spectrum of Lagrange, related to rational

approximations of irrational power series.

Outside of mathematics, results from number theory are often utilised to answer

questions on cyber security. A typical problem of interest is that of the breakability

of the crypto algorithm used when sending sensitive data. For example, for RSA,

Wiener showed that the theory of continued fractions can be employed to deter-

mine the private key generated by the algorithm and used for decryption, provided

that it is smaller than a certain bound, yielding a computationally efficient attack

on public-key cryptosystems. Furthermore, the continued fraction expansion for

Laurent series can be applied to the theory of stream ciphers. There, Niederreiter

showed that Laurent series with coefficients in a finite field, with bounded partial

quotients are directly connected to linear complexity profiles of sequences and pseu-

dorandom number generation. The results in this thesis do not have a particular

cryptography problem in mind; however the theory developed could be of use.
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Chapter 1

Introductory materials

1.1 Introduction
Pell’s equation is defined to be

x2−Dy2 = 1, (1.1)

and classically solved in positive integers x = u, y = v, for a given non-zero

positive integer D, which is not a square.

If we take the solution (u,v) in which v is the smallest positive integer,

then we can use it to generate all other solutions to (1.1) by

un± vn
√

D =±
(

u+ v
√

D
)n

. (1.2)

In this thesis we are interested in the polynomial analogue to the integers

case. Indeed, we study solutions u(t),v(t) ∈C[t], with v ̸= 0, to Pell’s equation

for a polynomial D(t) with coefficients in C. If (1.1) is solvable, we take its

fundamental solution, the one in which v has minimal degree, and obtain all

other solutions (un(t),vn(t))n∈Z in the same way as in the classical case, using

(1.2).

Our goal, in the first part of the thesis, is to better understand the poly-

nomials vn(t) that arise in the solutions of Pell’s equation when D(t) ∈ Q[t].

In the classical case, when D is a square-free, positive integer, it has been of
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great interest to factor vn ∈ Z, see [5]. Additionally, Lehmer [20] showed that

in certain cases vn ∈ Z factors into many parts. However, we will see that in

the polynomial case the factors over Q[t] of vn(t) are very controlled.

Similar to the integers case, we have that gcd(vn(t),vm(t)) = vgcd(m,n)(t).

In particular, if m | n then vm(t) | vn(t), and v1(t) | vn(t), for all n. Furthermore,

we will also show that gcd (vm(t), vn(t)/vm(t)) = 1, which is not always the case

over the integers: there, if a prime p | vn, but p2 ∤ vn, then p2 | vnp; in other

words p | gcd (vn, vnp/vn).

Over C[t], we can write vn(t) = vold
n (t)vnew

n (t), where vold
n (t) is a product of

the factors of vn(t) that also divide vm(t) for some m < n, and vnew
n (t) are the

remaining factors, including multiplicity. Then we obtain

vn(t) = ∏
m|n

vnew
m (t) and

vnew
n (t) = ∏

m|n
v

µ( n
m)

m (t),

where the latter follows from the product form of Möbius inversion. Further-

more, the vnew
n are pairwise co-prime, so we study their factors. Our first goal

is to understand whether vnew
n (t) ever has any repeated factors. It turns out

that for any fixed D(t) ∈ C[t], there are only finitely many n for which vnew
n (t)

has repeated factors. This comes out as a consequence of

Theorem 1.1.1. For any polynomial D(t) ∈ C[t], for which the associated

Pell’s equation has a fundamental solution (u(t),v(t)), we define

R(D) := {α ∈ C : (t−α)2 | vnew
n (t) for some n}.

Then #R(D)≤ degu−1.

The proof actually gives us a finite algorithm that yields all repeated roots

of vnew
n for all n. It turns out that they come from the factors of u′(t). Suppose

(t−α)k || u′(t), for k ≥ 1. We show that if u(α) = cos πr
n , for some r < n, with

(r,n) = 1, then (t−α)k+1 || vnew
n (t).
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If we then restrict ourselves to working over Q[t], the repeated root α must

come from a field extension of degree dα , satisfying φ(2n)/2 < dα < degu. So

using results on the growth order of the Euler totient function [40] we show that

if vnew
n (t) has a repeated root, we must have n≪ d log logd, where d = degu.

We then proceed to look at the degrees of the irreducible factors of vnew
n (t)

when u,v,D ∈Q[t], and obtain various Galois theoretic results.

Theorem 1.1.2. Let N be a positive integer, and define

I(N) := {P(t) ∈Q[t], irreducible : degP≤ N, P(t) | vnew
m (t) for some m}.

Then #I(N)≤ 10N degu, for N large enough.

If we want a result that holds for all N, we can get #I(N)≤ 4N2 degu.

Specialising to factors of certain degree, we show:

Theorem 1.1.3.

1. There are no linear polynomials with coefficients in Q that divide vnew
n (t),

for n≥ 4.

2. There are no quadratic polynomials with coefficients in Q that divide

vnew
n (t), for n≥ 7.

Both of these results are best possible. To see this, we present the following

example:

Example. Let D(t) = t2−1, then its Pell’s equation has a fundamental solu-

tion (t,1). The only linear factors of vn(t), are vnew
2 = 2t, vnew

3 = 2t± 1. For

n≥ 4, there are no linear factors over the rational numbers. Furthermore, the

only quadratic irreducible factors are vnew
4 = 2t2− 1, vnew

5 = 4t2± 2t − 1 and

vnew
6 = 4t2−3. For n≥ 7, vnew

n has no irreducible quadratic factors in Q[t]. We

will give examples for all possibilities in section 3.3.1.

Moreover, we show that for a repeated root of vnew
n (t) to be of a prime

degree p, then p lies in a subset of the primes that has density 0.



1.1. Introduction 12

Theorem 1.1.4. Suppose D(t) ∈ Q[t], which has Pell’s equation with funda-

mental solution (u,v). If the polynomials vnew
n (t) for n > 3 have a repeated root

α of an odd prime degree dα , then either n = 2dα +1 is also prime, or n = 9

in which case α is cubic.

Restricting our investigation to polynomials with integer coefficients:

Corollary 1.1.5. For u,v,D ∈ Z[t], the polynomials vnew
n (t) for n > 3 have no

repeated factors that are quadratic polynomials with integer coefficients.

Solving the polynomial Pell’s equation is not completely analogous to the

classical case: for instance, there are certain D(t) ∈ C[t] with corresponding

Pell’s equation that has no non-trivial solutions. This is obvious when D(t) has

odd degree, since the term of highest degree cannot be cancelled. Therefore,

we fix D(t) to be a polynomial of degree 2d and look for solutions to (1.1)

amongst polynomials with complex coefficients. However, there are examples

when D(t) has even degree, for instance D(t) = t4+t+1, where it is less obvious

why the corresponding Pell’s equation is not solvable. We will call polynomials

D(t) for which (1.1) has a non-trivial solution Pellian.

We can use our understanding of the factors of vn(t), for a given Pellian

polynomial D(t), together with the following lemma, to construct new Pellian

polynomials.

Lemma 1.1.6. The polynomial F2D(t) is Pellian if and only if D(t) is a

Pellian polynomial with solutions (un(t),vn(t))n∈Z, and F(t) | vn(t), for some n.

Furthermore, recall that if we restrict D(t), u(t) and v(t)∈Q[t], then there

are only finitely many factors F(t)∈Q[t] of vn(t), of a given degree. Therefore,

there are infinitely many families of infinitely many polynomials of the form

F2D(t) that are not Pellian. This contrasts with the situation over the integers,

where for any non-square positive integer of the form F2D, Pell’s equation is

solvable.

The discrepancy of there being solutions for every non-square, positive

integer D, but not for every polynomial D(t), arises from the underlying rela-
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tion with the theory of continued fraction expansions for quadratic irrationals.

In particular, Pell’s equation is solvable for all non-square, positive integers D

because the continued fraction of
√

D is always periodic.

Abel [1] was the first one to consider the continued fraction expansion

for
√

D(t) for monic, non-square polynomials D(t) ∈ Q[t] of even degree, and

thus he extended the theory to Q((1/t)). The field Q((1/t)) plays the role

of R, and is the completion of Q(t), under the valuation −∂eg , where for

an element α = ∑m
−∞ ait i ∈Q((1/t)), with am ̸= 0, we define ∂eg α := m. Any

formal Laurent series α ∈Q((1/t)) can be written as a continued fraction:

α = [a0,a1,a2, . . . ] = a0 +
1

a1 +
1

a2 +
. . .

,

where the partial quotients ai are polynomials with rational coefficients, and the

truncated continued fraction is a rational function of polynomials with rational

coefficients, called a convergent. Moreover, Abel showed that the connection

between solutions to Pell’s equation and continued fractions carries over to the

polynomial setting:

Theorem. (Abel) A monic polynomial D(t)∈Q[t] is Pellian if and only if the

continued fraction of
√

D(t) is periodic.

We have seen, however, that not every polynomial D(t) ∈ Q[t] is Pel-

lian, hence
√

D(t) is not always periodic, which highlights a major discrep-

ancy with the theory of continued fractions for real irrational numbers. How-

ever, if there are solutions to Pell’s equation for D(t), then they can be found

amongst the convergents of the continued fractions expansion of
√

D(t), simi-

larly to the classical case. Moreover, this method of finding solutions to Pell’s

equation arises from the fact that the convergents p(t)/q(t) best approximate

α ∈Q((1/t)).

To quantify the idea of good, in the classical case, we say that a rational

number p/q is a best approximation for r ∈R if for every other pair of integers
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P,Q, such that Q≤ q, then |r− p/q|< |r−P/Q|. Furthermore, we know that if

|r− p/q|< 1/2q2, then p/q must be a convergent of α , and that all convergents

of r satisfy |r− p/q| < 1/q2. Observe that as q grows, the distance from r to

the convergent can be arbitrarily reduced. So it is more natural to consider

the quantity q2|r− p/q| as a measure of accuracy.

A consequence of a theorem of Dirichlet then states:

Theorem. For every algebraic real number r, the inequality

q2
∣∣∣∣r− p

q

∣∣∣∣< 1

is satisfied by infinitely many pairs of integers p,q, with q ̸= 0.

In 1903 this was further improved by Borel when he proves that infinitely

many rational numbers p/q satisfy

q2
∣∣∣∣r− p

q

∣∣∣∣< 1√
5
.

A theorem of Hurwitz from 1891 asserts that
√

5 is the largest constant that

works for all real irrational numbers. That means that if we increase the con-

stant in the denominator further, the statement no longer holds, for example,

for r = (1+
√

5)/2. However, if we exclude
√

5 (and numbers ‘equivalent to

it’) we can reduce the upper bound further to 1/
√

8. This process, in some

sense, yields the ‘best’ constant of Diophantine approximation for a given real

number. That is, for r ∈ R/Q, we define the Lagrange constant, l(r) = supL,

where the supremum is taken over all real numbers L, for which the inequality

q2
∣∣∣∣r− p

q

∣∣∣∣< 1
L

(1.3)

is satisfied by infinitely many rational numbers p/q, q > 0. Running through

all real irrationals, we obtain the Lagrange spectrum:

L = {l(α) : α ∈ R/Q}.
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The results on approximating irrational numbers by rationals can be

translated to the setting of Q((1/t)), which is the focus of this thesis. Un-

surprisingly, we can also extend the definition of the Lagrange constant to

formal Laurent series. For α ∈ Q((1/t)), not a rational function, we let the

Lagrange constant, l(α), be the supremum over integers k such that

∂eg
(

α− p(t)
q(t)

)
≤−2∂eg q(t)− k

is satisfied by infinitely many polynomials p(t),q(t) ∈Q[t], with q(t) ̸= 0. Ob-

serve that taking logs of (1.3) and replacing the absolute value by ∂eg (·) shows

that the definition of l(α) is analogous to that of l(r). Moreover, the Lagrange

spectrum for formal Laurent series in 1/t is defined as

L := {l(α) : α a formal Laurent series in 1/t, not a rational function}.

Recently, some work has been done on the Lagrange spectrum in the setting of

formal Laurent series in 1/t, with coefficients in finite fields, by Parkkonen and

Paulin in [33] and Bugeaud in [6]. In particular, they give analogies to the well-

known results over the real numbers about the closedness and boundedness of

the spectrum, as well as computations of its maximum.

We, however, study the Lagrange spectrum for formal Laurent series in

1/t, with coefficients in Q and prove:

Theorem 1.1.7. The Lagrange spectrum L for Q((1/t)) is equal to N∪{∞}.

Furthermore, for each l ∈L , we construct an element α ∈Q((1/t)), such

that l = l(α).

Going back to the real case, Perron [35], using properties of the conver-

gents of r = [a0,a1, . . . ], showed that the Lagrange constant

l(r) = limsup
n→∞

(qn|qnr− pn|)−1
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can be re-written as

l(r) = limsup
n→∞

(an +[0,an−1, . . . ,a0]+ [0,an+1, . . . ]). (1.4)

Moreover, given a sequence of positive integers A = . . . ,a−1, a0, a1, . . . let

λn(A) = [an+1, an+2, . . . ]+ [0, an, an−1, . . . ].

In other words, using (1.4), we can prove that the set obtained from the

limsupn→∞ λn(A), as we run through all such sequences A, is equal to the La-

grange spectrum. Interestingly, if we just consider the supremum of λn(A) for

all integers n, then the set

M := {sup
n∈Z

λn(A) : A doubly infinite sequence of positive integers}

is in one-to-one correspondence with the Markov spectrum M, classically re-

lated to binary quadratic forms. Namely, given a real binary quadratic form

q = q(x,y) = ax2 +bxy+ cy2, of discriminant d(q) = b2−4ac > 0, we let

µ(q) := inf
x,y∈Z

(x,y)̸=(0,0)

|q(x,y)|

be its arithmetic minimum. Then

M :=

{√
d(q)

µ(q)
: q a real binary quadratic form with positive discriminant

}
.

Markov [26] exhaustively studied the part of the spectrum below 3, showing

that it is a discrete set. His methods involved proving that for each element

m ∈M we can find a doubly infinite sequence of positive integers A such that

supn∈Zλn(A) = m and that the converse is also true. Hurwitz [14] noted that

techniques of Markov can be used to show that L∩ [0,3] = M∩ [0,3]. However

if we consider the two spectra for numbers greater than 3, we have L ⊊ M,
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see [13] and [44]. In [44] and [10], Delone together with Fuks and Vinogradov

showed that there exists some µ > 3, such that

L∩ [µ,∞) = M∩ [µ,∞) = [µ,∞).

But the parts of the Markov and Lagrange spectra in the interval [3,µ] have a

more complex structure. Namely, they are closed sets with an infinite number

of adjoining intervals. That is, they exhibit gaps; for example in (
√

12,
√

13)

there are no points of either the Lagrange or Markov spectrum. For a more de-

tailed survey of results over the real numbers see [25]. Analogously to the case

over the real numbers, we define binary quadratic forms Q, with coefficients

in Q((1/t)). They are homogeneous expressions of degree 2 of the form

Q = Q(X ,Y ) = AX2 +BXY +CY 2,

with A,B,C∈Q((1/t)), of discriminant D(Q) =B2−4AC, and with correspond-

ing minima

m(Q) = inf
X ,Y∈Q((1/t))
(X ,Y )̸=(0,0)

∂eg Q(X ,Y ).

Moreover, the square root
√

D is well-defined in Q((1/t)), see Lemma 2.2.2.

Thus the Markov spectrum over Q((1/t)) is given by

M :=
{

∂eg
√

D(Q)−m(Q) : Q binary quadratic form
}
.

In order to describe M , we take an analogous approach to the one used by

Markov [26], first showing that both Markov and Lagrange spectra are equal to

sets of quantities attached to doubly infinite sequences of non-constant polyno-

mials. For the appropriate analogue, in the definition of A= . . . ,a−1, a0, a1, . . .

and λn(A), we replace positive integers ai, by positive degree polynomials

ai(t) ∈Q[t]. We thus prove

Theorem 1.1.8.
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1. The Lagrange spectrum L is equal to the set

L := {L(A) : A is a doubly infinite sequence of ai ∈Q[t], degai > 0} ,

where L(A) := limsupn∈Z ∂eg λn(A).

2. The Markov spectrum M is equal to the set

M := {M(A) : A is a doubly infinite sequence of ai ∈Q[t], degai > 0} ,

where M(A) := supn∈Z ∂eg λn(A).

We then use this result to explicitly compute the Markov spectrum, show-

ing that the two spectra coincide and exhibit no gaps.

Theorem 1.1.9. The Markov spectrum for Q((1/t)) is equal to the Lagrange

spectrum for Q((1/t)) and they are both equal to N∪{∞}.

1.2 Organisation of the thesis
In chapter 2 we introduce the setting of this thesis, Q((1/t)), the field of

formal Laurent series in 1/t with coefficients in the rational numbers. We then

discuss the theory of continued fractions of irrational elements α ∈ Q((1/t)),

stating and proving important properties of the convergents. Then we present

the theory of rational approximations in function fields, and survey the results

necessary to define and compute Lagrange spectrum, discussed in chapter 4.

Finally, we highlight the connection between ‘good’ rational approximations

to quadratic irrational elements
√

D(t) ∈ Q((1/t)) given by the convergents,

and solutions to the polynomial Pell’s equation for D(t) ∈Q[t].

In chapter 3, we focus completely on the polynomial Pell’s equation and

its solutions (un(t),vn(t))n∈Z. For D(t), u(t) and v(t) ∈ C[t] we investigate the

possibility of vn(t) ∈ C[t] having repeated factors, and give estimates on their

number. Restricting the polynomials D(t), u(t) and v(t)∈Q[t] we prove an up-

per bound on the number of polynomials in Q[t], of degree at most N ∈N, that
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divide vn(t). We conclude with Galois theoretic results on the degree of real

algebraic numbers that arise as factors of high multiplicity in the factorisation

of vn(t) ∈Q[t].

Chapter 4 is dedicated to the Lagrange spectrum of formal Laurent series

in 1/t. We survey results in the literature, concerned with the accuracy of

the approximation of irrational elements α ∈Q((1/t)) by rational functions of

polynomials with coefficients in Q. This leads to the definition of the Lagrange

(approximation) constant l(α). We prove that for a Pellian polynomial D(t)

of degree 2d, l(
√

D(t)) = d and also investigate l(
√

D(t)) when D(t) is non-

Pellian. The chapter culminates in the computation of the Lagrange spectrum

over Q((1/t)), and the proof that its elements are in one-to-one correspondence

with limsupn∈Zλn(A), attached to doubly infinite sequences of non-constant

polynomials A.

In the final chapter, we lay down the theory of binary quadratic forms with

coefficients in Q((1/t)), which we have been unable to find in the necessary

detail in the literature. We study the equivalence and representation of binary

quadratic forms, tools which we use to define the Markov spectrum M over

Q((1/t)). As part of the process of computing the spectrum, we prove that

it is equal to a set obtained from doubly infinite sequences of non-constant

polynomials. Finally, we prove M = N∪{∞}.

In the Appendix we give a short Mathematica code, written by the author

in order to compute the continued fraction expansion for rational functions and

square roots of polynomials with coefficients in the rational numbers.



Chapter 2

Preliminary definitions and

results

In this chapter we will describe the setting of our investigations, covering all

of the preliminary notions and results needed for the remainder of the thesis.

Firstly, we will set the scene by defining the set of formal Laurent series in

1/t. Even though our main object of study – continued fractions – can be

defined over any normed field, we will concentrate on the set up of formal

series with coefficients in the rational numbers. Secondly, we will describe

the continued fraction algorithm in this function field setting and any relevant

results. Finally, we will outline the connection with the study of solutions to

Pell’s equation, which is the other prominent player in this thesis. Throughout

we will draw parallels between the results in the function field case and the

well-known classical setting.

2.1 The field of formal Laurent series in 1/t

Let Q[t] be the ring of polynomials with coefficients in the rational numbers,

and Q(t) = {A/B : A,B ∈ Q[t], B ̸= 0} be its field of fractions. These will,

respectively, play the roles of the integers and rational numbers in the classical

case. Furthermore, the analogue of the real numbers is given by the set of

formal Laurent series in 1/t with coefficients in Q, denoted by
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Q((1/t)) =

{
m

∑
i=−∞

ait i : m ∈ Z,ai ∈Q,∀i, am ̸= 0

}
.

It is easy to see that Q((1/t)) forms a ring, where the sum and product are

defined as expected:

m

∑
i=−∞

ait i +
n

∑
i=−∞

bit i =
max(n,m)

∑
i=−∞

(ai +bi)t i,(
m

∑
i=−∞

ait i

)(
n

∑
j=−∞

b jt j

)
=

m+n

∑
k=−∞

(
∑
l≤m

albk−l

)
tk,

where for i > m or for j > n, we set ai = 0 or b j = 0, respectively. Notice that

this implies that Q[t] is a subring of Q((1/t)).

Furthermore, this formal set of Laurent series is also a field, where for a

non-zero α = ∑m
i=−∞ ait i, its inverse is given by β = ∑−m

j=−∞ b jt j, for which we

can explicitly describe the coefficients, by examining(
m

∑
i=−∞

ait i

)(
−m

∑
j=−∞

b jt j

)
=

0

∑
k=−∞

(
m

∑
l=m+k

albk−l

)
tk = 1.

Hence the coefficient for k = 0 must be equal to 1, yielding b−m = 1/am; and

for k < 0, the coefficients must satisfy ∑m
l=m+k albk−l = 0. This final expression

gives us the equations ambk−m =−∑m−1
l=m+k albk−l, or upon multiplying through

by a−1
m = b−m:

bk−m =− 1
am

m−1

∑
l=m+k

albk−l, for each k < 0.

After solving these equations inductively, we obtain an explicit expression for

the multiplicative inverse β . As a consequence, Q(t) is a subfield of Q((1/t)).

Lemma 2.1.1. The formal Laurent series α = ∑m
i=−∞ ait i ∈ Q((1/t)), repre-

sents a rational function if and only if there exist a finite sequence of rational

numbers b0, . . . ,bn not all 0, and an integer m0 ≤ m, such that for all k ≤ m0,
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we have

akb0 + · · ·+ak−nbn = 0.

Proof. The idea is that α ∈Q(t) if and only if there exists a polynomial b∈Q[t]

such that αb∈Q[t]. So if we take the bi, to be the coefficients of the polynomial

b, the result follows.

We can extend the usual definition of degree to Q((1/t)) in the following

way:

Definition 2.1.1. For α = ∑m
−∞ ait i, am ̸= 0, define

∂eg : Q((1/t))→ Z

α 7→ m,

with the convention ∂eg 0 =−∞.

This map is well defined on rational functions and it agrees with the usual

definition of degree on polynomials, i.e.

Lemma 2.1.2. For A,B ∈Q[t], with B ̸= 0, of degrees m and n, respectively

1. ∂eg A
B = degA−degB.

2. ∂eg A = degA.

Proof. Observe that the first implies the second, so it suffices to prove 1.

Consider A,B ∈Q[t], with B ̸= 0. Then

A =
m

∑
i=0

ait i = amtm

(
1+

m−1

∑
i=0

Ait i−m

)
,

B =
n

∑
i=0

bit i = bntn

(
1+

n−1

∑
i=0

Bit i−n

)
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and am,bn ̸= 0. Furthermore,

A
B
=

am

bn
tm−n (1+O(t−1)

)(
1+O(t−1)

)−1

=
am

bn
tm−n (1+O(t−1)

)
.

Here by O(t−1) we mean lower order terms in t−1. Hence, ∂eg A
B = m− n =

degA−degB, as required.

Remark 2.1.1. For α ∈Q((1/t)), we have that ord(α) :=−∂eg α is a valuation.

We can further regard Q((1/t)) as the completion of Q(t) under it. We can

also associate a norm ∥ ·∥, given by ∥α∥= c∂eg α , where c ∈R and c > 1. One

of the major differences in the study of continued fractions in this setting arises

precisely from the fact that this norm is non-Archimedean, namely ∥α +β∥ ≤

max(∥α∥,∥β∥), with equality when ∥α∥ ̸= ∥β∥.

Over the real numbers, we use the continued fraction algorithm as an easy

method to check if a real number is rational. Specifically, given a real number

r, we subtract its integral part ⌊r⌋, take the reciprocal and repeat the process.

If this algorithm terminates in a finite number of steps then r must be rational.

Since Q((1/t)) is a normed field, an analogous continued fraction expansion

can be defined; but as we have shown above, taking the integral part of a

real number is an essential part of the computation. To be able to define the

process over Q((1/t)), we should define an equivalent notion as follows.

Definition 2.1.2. The polynomial part of α = ∑m
−∞ ait i ∈Q((1/t)) is given by

⌊α⌋ :=

0, if ∂eg α < 0

∑m
i=0 ait i, if ∂eg α = m > 0.

The fractional part of α ∈Q((1/t)) is defined as {α} := α−⌊α⌋.

Observe that we can think of the polynomial part as the unique polynomial

a ∈Q[t], such that ∂eg (α−a)< 0.
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Furthermore, the polynomial part satisfies the following properties ⌊α⌋+

⌊β⌋ = ⌊α +β⌋ and ⌊rα⌋ = r⌊α⌋, where α,β ∈ Q((1/t)) and r ∈ Q. However,

⌊α⌋⌊β⌋= ⌊αβ⌋ does not always hold.

Moreover, this notion of polynomial part will have a central role in the

reduction algorithm of indefinite binary quadratic forms defined later in the

thesis.

2.2 Continued fraction algorithm over Q((1/t))

The continued fraction algorithm over function fields works in a completely

analogous way to the one over the real numbers. Nonetheless, for completeness,

we will describe it below.

Let α ∈Q((1/t)). First let α0(t)=α(t)∈Q((1/t)) and set a0(t) := ⌊α0(t)⌋.

Hence α0(t) = a0(t)+ {α0(t)}, with {α0(t)} ∈ Q((1/t)) of finite negative de-

gree. Here, we are using {.} and ⌊.⌋, with a non-traditional meaning given in

Definition 2.1.2. Therefore {α0(t)}−1, also an element of Q((1/t)), is well de-

fined and of positive degree. Next, set α1(t) := {α0(t)}−1, then α0 = a0+1/α1.

We proceed by recursion. Define

ai(t) : = ⌊αi(t)⌋,

αi+1(t) : = {αi(t)}−1

⇒ αi = ai +
1

αi+1
.

Hence

α = a0 +
1

a1 +
1

a2 +
. . .

1

αi+1

,
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equivalently,

α = [a0, a1, . . . , ai, αi+1].

The algorithm terminates if the fractional part {αi(t)} is ever 0. We will refer

to the αi as the complete quotients and to the polynomials ai ∈ Q[t] as the

partial quotients of α .

Remark 2.2.1. The polynomials ai(t), defined for i up to the point of termina-

tion, are all of positive degree, except perhaps for i = 0. In particular, a0(t)

can be a constant, however the others must have at least a linear term, since

∂eg ai(t) = ∂eg ⌊αi(t)⌋=−∂eg {αi(t)}> 0.

The continued fraction of α will be infinite for most α ∈ Q((1/t)). In

fact, we have the same correspondence between the finiteness of the algorithm

and α being rational.

Proposition 2.2.1. The continued fraction of α ∈Q((1/t)) has a finite num-

ber of terms if and only if α ∈Q(t).

Proof. If α has a finite continued fraction, then it is easy to see that the

resulting expression will be a rational function.

For the converse, suppose that α0 = p(t)/q(t) ∈ Q(t)\Q[t], with q(t) ̸=

0. Running the continued fraction algorithm we let a0 = ⌊α0⌋ = ⌊p/q⌋, a

polynomial with coefficients in Q, and therefore

α1 =
1

α0−a0
=

q
p−a0q

∈Q(t).

So set q = r0 and define r1 := r0/α1. Hence, the polynomial r1 = p− a0r0 is

such that degr1 < degr0, since ∂eg α1 > 0. This is equivalent to the first step

in the Euclidean division algorithm, where a0 is the quotient and r1 is the

remainder, in the division of p by q.

To show that this is not a coincidence, let’s look at the i th step in the

continued fraction algorithm in more detail. Let ri be defined recursively by
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i := ri−1/αi, ai = ⌊αi⌋ and ri+1 = ri/αi+1. Then

αi = ai +
1

αi+1
⇔ ri−1

ri
= ai +

ri+1

ri
⇔ ri−1 = airi + ri+1.

Hence, ri+1 ∈ Q[t], and since ∂eg αi+1 > 0, we have degri+1 < degri. There-

fore the continued fraction algorithm for α ∈ Q(t), is in correspondence with

the Euclidean division algorithm. Moreover, the latter is well-known to be

finite, i.e. eventually ri = 0. This corresponds to αi−1 ∈Q[t] and consequently

{αi−1} = 0, terminating the continued fraction algorithm for p/q in a finite

number of steps.

Example 2.2.1. Consider α = (t7 + t4 + t2)/(t5 + t +1), then this has a con-

tinued fraction expansion

[
t2, t +1, t−1, −t, − t

2
+

1
4
,

8t
3
+

4
3

]
.

Another central object in our investigation will be quadratic irrationals,

in particular, square roots of polynomials with coefficients in Q. To see when

they are well-defined elements of the field of formal Laurent series, consider

the following result.

Lemma 2.2.2. Let D(t) ∈ Q[t] be a monic polynomial of even degree. Then

the square root of D(t) is a well-defined element of Q((1/t)), i.e.,
√

α has a

unique Laurent series expansion in 1/t with rational coefficients.

Proof. Suppose we have D(t) as above,

D(t) = t2d +
2d−1

∑
i=0

ait i

= t2d

(
1+

2d−1

∑
i=0

ait i−2d

)
.
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Since ∂eg
(

∑2d−1
i=0 ait i−2d

)
< 0, then

(
1+

2d−1

∑
i=0

ait i−2d

)1/2

=
∞

∑
n=0

(
1/2
n

)(2d−1

∑
i=0

ait i−2d

)n

converges in Q((1/t)). Thus, we define

√
D(t) = td

(
1+

2d−1

∑
i=0

ait i−2d

)1/2

,

which is indeed an element of Q((1/t)).

Remark 2.2.2. Notice that we do not necessarily need D(t) to be monic. As

long as the leading coefficient of D(t) is a square in Q, lc(D(t)) = a2, the

above lemma still holds. Moreover,
(

1+∑2d−1
i=0 ait i−2d

)1/2
is unique up to

the choice of sign, that is up to the choice of the square root of lc(D(t)),
√

a2. We will accept the convention that
√

D = atd
(

1+∑2d−1
i=0 ait i−2d

)1/2
and

−
√

D =−atd
(

1+∑2d−1
i=0 ait i−2d

)1/2
.

Hence for D(t) ∈ Q[t] that are not square, but are of even degree, with

leading coefficient a rational square, we have
√

D(t) ∈Q((1/t)). Therefore we

can compute the continued fraction expansion of
√

D(t) using the algorithm

described in this section. Furthermore, since D(t) is not a perfect square,√
D(t) /∈Q(t) and its continued fraction is infinite.

Example 2.2.2. For D(t) = 9t8 +7t,

√
D(t) =

[
3t4, 6t3/7, 6t4, 6t3/7, 6t4, . . .

]
=
[
3t4, 6t3/7, 6t4

]
.

That is, the continued fraction expansion is periodic with period 2.

Furthermore, if D(t) is a quadratic polynomial we have an explicit expres-

sion for the continued fraction expansion.
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Example 2.2.3. Suppose D(t) ∈Q[t] is a quadratic polynomial, not a perfect

square. Say, D(t) = (at +b)2 + c, with a,b,c ∈Q and ac ̸= 0, then

√
D(t) =

√
(at +b)2 + c =

[
at +b,

2
c
(at +b), 2(at +b)

]
.

However, and here lies the first major difference with the case over the

real numbers, not every square root of a polynomial has a periodic continued

fraction expansion.

Example 2.2.4. For D(t) = t4 + t3, we have

√
D(t) =

[
t2 +

t
2
− 1

8
, 16t +10, −4t

3
− 13

18
,

27t
2

+
225
32

, −512t
405
− 1312

2025
, . . .

]
.

It certainly does not look like the terms in the expansion will start repeat-

ing, but in general it is quite hard to determine if
√

D is periodic or not. To

justify why this particular continued fraction is not periodic, we invoke two

theorems:

Theorem. (Dubickas & Steuding [12]) The equation x2−D(t)y2 = 1, for D(t)∈

C[t], has no non-trivial solutions over the complex polynomials if the number

of distinct roots n(D(t))≤ degD(t)/2.

And

Theorem. (Abel [1]) The continued fraction for
√

D(t) is periodic if and only

if the equation x2−D(t)y2 = 1 has non-trivial polynomial solutions in C((1/t)).

Therefore,
√

t4 + t3 has a non-periodic continued fraction. The theorem

of Dubickas and Steuding is an immediate consequence of the abc theorem

for polynomials and will be discussed further in section 3.4. We will also

pay closer attention to both periodic and non-periodic continued fractions for

square roots of polynomials in section 4.2.1.
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2.3 Convergents
Given an infinite continued fraction expansion, we can truncate at any point,

say [a0, a1, . . . , ah], and since this is a finite expansion, the resulting expression

will be a rational function of the form ph/qh(t). Similarly to the integers case,

we have the recursive relations

ph = ah ph−1 + ph−2,

qh = ahqh−1 +qh−2,

with the convention p−1 = 1, q−1 = 0. This provides a sequence of continuants

(ph)h≥0 and (qh)h≥0, and their quotient ph/qh, called convergents. A direct

computation using these recurrence relations gives the following identities.

Proposition 2.3.1. Given ph/qh = [a0, a1, . . . , ah] and ph−1/qh−1 = [a0, a1, . . . , ah−1],

we have

ph

ph−1
= [ah, ah−1, . . . , a0] and qh

qh−1
= [ah, ah−1, . . . , a1].

Proof. For ph we have

ph

ph−1
= ah +

ph−2

ph−1

= ah +
1

ah−1 +
ph−3
ph−2

· · ·

ending at a0 = p0/p−1.

The computation for q is almost identical to that for p, as the same

recurrence relation holds. The only difference comes from the final term, since

q0 = 0. This means that the continued fraction terminates at a1 = q1/q2.

An alternative representation of the continuants was given by Van der

Poorten and Shallit [37]. They showed that you can also compute the numer-
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ator and denominator of the convergents using matrices. Observe that

p1

q1
= [a0, a1]←→

a0 1

1 0

a1

1

=

p1

q1

 .

Similarly we have

p2

q2
= [a0, a1, a2]←→

a0 1

1 0

a1 1

1 0

a2

1

=

p2

q2

 .

Furthermore, we can iterate this process and obtain the following matrix iden-

tity a0 1

1 0

a1 1

1 0

 · · ·
ah 1

1 0

=

ph ph−1

qh qh−1

 .

Moreover, since we can write α = [a0, a1, . . . , ah, αh+1] we have the convergents

correspondence

α ←→

a0 1

1 0

 · · ·
ah 1

1 0

αh+1

1

=

ph ph−1

qh qh−1

αh+1

1



←→ phαh+1 + ph−1

qhαh+1 +qh−1
.

This leads to the identity

α =
phαh+1 + ph−1

qhαh+1 +qh−1
. (2.1)

Furthermore, if we take the determinants of the matrices above, we obtain

the following proposition.

Proposition 2.3.2. Given a continued fraction expansion of a formal Laurent
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series α = [a0, a1, . . . ], its continuants ph and qh satisfy

(−1)h−1 = phqh−1− ph−1qh.

Proposition 2.3.3. The continuants satisfy ∂eg ph < ∂eg ph+1 and

∂eg qh < ∂eg qh+1 for h≥ 0.

Proof. We prove the result by induction. First suppose a0 ̸= 0. Then, since

∂eg ai > 0 for all i > 0, we have

∂eg p1 = ∂eg (a1a0 +1) = ∂eg a1 +∂eg a0 > ∂eg a0 = ∂eg p0,

∂eg q1 = ∂eg (a1)> 0 = ∂eg q0.

If a0 = 0, then ∂eg p1 = ∂eg 1 = 0 > −∞ = ∂eg 0 = ∂eg p0 and

∂eg q1 = ∂eg a1 > 0 = ∂eg q0.

Next, we suppose ∂eg ph−1 < ∂eg ph and ∂eg qh−1 < ∂eg qh, then

∂eg ph+1 = ∂eg (ah+1 ph + ph−1) = ∂eg ah+1 +∂eg ph > ∂eg ph,

∂eg qh+1 = ∂eg (ah+1qh +qh−1) = ∂eg ah+1 +∂eg qh > ∂eg qh.

Here the latter inequality in the expressions for both degree of ph+1 and qh+1

are consequence of ∂eg ah+1 > 0.

We now showcase a property of the convergents as solutions to Diophan-

tine equations, which will be employed in chapter 5.

Proposition 2.3.4. The pair of continuants (qh−1, ph−1) gives the unique

solution to phx−qhy= 1, such that ∂eg x< ∂eg qh and ∂eg y< ∂eg ph, provided

h is an odd integer. And if h is even then (−qh−1,−ph−1) gives the unique

solution to phx−qhy = 1, such that ∂eg x < ∂eg qh and ∂eg y < ∂eg ph.

Proof. If h is even, then from Proposition 2.3.2 (qh−1, ph−1) certainly satisfies
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phx−qhy = 1. For the uniqueness observe that

phx−qhy = phqh−1− ph−1qh,

ph(x−qh−1) = qh(y− ph−1).

Since ph and qh have no common factors, we must have some polynomial f ∈

Q[t], such that

x−qh−1 = f qh,

y− ph−1 = f ph.

From Proposition 2.3.3 we know ∂eg ph−1 < ∂eg ph and ∂eg qh−1 < ∂eg qh,

then f = 0 and (qh−1, ph−1) is the unique solution to the Diophantine equation

phx− qhy = 1 such that ∂eg x < ∂eg qh and ∂eg y < ∂eg ph. The proof for h

even is analogous.

All the results up until now are well-known and analogous to those over

the real numbers and can be found in [32], for example. However, in the setting

of formal Laurent series, we can go further and give an exact expression for

the degree of qh.

Lemma 2.3.5. For α ∈ Q((1/t)) with continued fraction [a0, a1, . . . ], ai ̸= 0

for i≥ 1, and nth convergent ph/qh, h≥ 1, we have that

degqh =
h

∑
i=1

degai.

Proof. The proof is by induction on h. Since q1 = a1 and q2 = a1a2 + 1, the

statement follows easily for h = 1,2. Then suppose degqh = ∑h
i=1 degai. Con-

sider the recurrence relation

qh+1 = qhah+1 +qh−1.

Since degqh−1 < degqh, and degah+1 ≥ 1, the result follows.



2.3. Convergents 33

Proposition 2.3.6. Suppose α ∈Q((1/t)) has a continued fraction expansion

[a0, a1, · · · ] and convergents ph/qh. Then ∂eg α = ∂eg ph
qh

, and in particular

∂eg α =

 dega0, if ∂eg α ≥ 0

−dega1, otherwise.

Proof. We prove the result by induction once again, and we will just show

the case ∂eg α ≥ 0, the other case follows in a similar way. Suppose a0 ̸= 0,

then ∂eg p0 = dega0, and ∂eg q0 = 0, hence ∂eg (p0/q0) = dega0. Moreover,

∂eg α = ∂eg ⌊α⌋= dega0.

If a0 = 0, then deg p1 = 0 and degq1 = dega1, hence ∂eg (p1/q1)=−dega1.

Furthermore, observe that since a0 = 0, α = {α} and a1 = ⌊1/{α}⌋, and hence

∂eg a1 =−∂eg α .

From the recurrence relations for h > 1, deg ph = degah + deg ph−1 and

degqh = degah +degqh−1, we have

∂eg
ph

qh
= deg ph−degqh = deg ph−1−degqh−1 = dega0.

The last equality follows from the induction hypothesis.

Since the degree of α and its convergents are the same, it is interesting to

see what happens to their difference. We can give an explicit result on what

the degree of this difference is for any α ∈ Q((1/t)) and all h. The following

theorem does not have an equivalent over the real numbers, and it will be

instrumental in the computation of the Lagrange spectrum in chapter 4.

Theorem 2.3.7. Suppose α ∈Q((1/t)) and ph/qh is its hth convergent. Then

∂eg
(

α− ph

qh

)
=−2degqh−degah+1.

Proof. Let ph/qh be the hth convergent of α , then by (2.1) and Proposition
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2.3.2

α− ph

qh
=

(−1)h

qh(αh+1qh +qh−1)
.

Considering degree of both sides and using that ∂eg αh+1 = degah+1, by defi-

nition, we get

∂eg
(

α− ph

qh

)
=−2degqh−degah+1.

Corollary 2.3.8. For α ∈Q((1/t)) with convergents ph/qh,

1. ∂eg
(

α− ph
qh

)
=−degqh−degqh+1,

2. ∂eg
(

α− ph−1
qh−1

)
> ∂eg

(
α− ph

qh

)
.

Proof. For 1, we use the fact that degqh+1 = degah+1 +degqh in the equality

in Theorem 2.3.7. To show the second result we employ the equality in 1,

combined with the inequalities in Proposition 2.3.3.

Looking at the degree of this difference tells us how far down the formal

Laurent expansion we need to go until the terms no longer agree. Equivalently,

it judges how close α ∈Q((1/t)) is to a rational function.

2.4 Rational approximation
For a real number r its convergents ph/qh satisfy |r− ph/qh|< 1/q2

h. On the

other hand, if |r− p/q|< 1/2q2, then p/q must be a convergent for r. As the

size of the continuants grow, the convergents get closer and closer to r, mean-

ing that they are a good rational approximation for a real number. We can

translate this result in the setting of the thesis, and show a slightly simplified

result.
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Proposition 2.4.1. Suppose α ∈Q((1/t)) and p,q ∈Q[t], with q ̸= 0. Then

∂eg
(

α− p
q

)
<−2degq

if and only if p/q is a convergent for α.

Notice that p/q is a convergent of α = [a0, a1 . . . ] if and only if

p/q = [a0, a1, . . . , ai], for some i≥ 0. Then the proposition is a direct corollary

of the following.

Proposition 2.4.2. Suppose we have α,β ∈Q((1/t)), distinct. Then

∂eg (α−β )<−2degqi,

where qi is the denominator of the ith convergent of α, if and only if the first

i+1 partial quotients of their continued fraction expansions are the same.

Proof. Suppose α = [a0, a1, . . . , ai, αi+1], and β = [a0, a1, . . . , ai, βi+1], with

αi+1 ̸= βi+1. Without loss of generality, we can take ∂eg αi+1 ≤ ∂eg βi+1.

Then the first i convergents must be the same for both α and β . From the

convergents correspondence (2.1),

α =
αi+1 pi + pi−1

αi+1qi +qi−1
and β =

βi+1 pi + pi−1

βi+1qi +qi−1
.

Taking the difference and applying Proposition 2.3.2 yields

α−β =
(−1)i+1(αi+1−βi+1)

(αi+1qi +qi−1)(βi+1qi +qi−1)
. (2.2)

Considering the degree of both sides of the equality, and using that by defini-

tion ∂eg αi+1 = degai+1 and ∂eg βi+1 = degbi+1, we get

∂eg (α−β ) =−(degai+1 +degbi+1 +2degqi−deg(ai+1−bi+1))

≤−degai+1−2degqi

<−2degqi.
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For the inequalities we use that deg(ai+1−bi+1)≤ degbi+1, by assumption; and

degai+1 ≥ 1, by definition. This completes the proof in one direction. For the

converse, suppose that ∂eg (α−β ) < −2degqi, and a0 = b0, . . . , ah−1 = bh−1,

but ah ̸= bh for some h < i. Without loss of generality, we will assume that

degah ≤ degbh. If we do the computation (2.2) for h− 1 and consider the

degree of both sides of the equality, we get

∂eg (α−β ) =−(degah +degbh +2degqh−1−deg(ah−bh))

<−2degqi.

After rearranging and applying the result from Lemma 2.3.5, we have

degah +degbh−deg(ah−bh)> 2
i

∑
j=h

dega j.

Furthermore, by assumption, degah ≤ degbh, hence

2degah ≥ degah +degbh−deg(ah−bh).

Therefore, degah > ∑i
j=h dega j, yielding a contradiction.

It is a well-known property of the convergents p/q of a real number r

that they provide the ‘best rational approximation’. The notion of ‘best’ refers

to the distance between r and its convergent p/q being smaller for any other

fraction of denominator smaller than q. This motivates the following definition.

Definition 2.4.1. We call p/q ∈ Q(t) a best rational approximation for

α ∈Q((1/t)), if for every other pair of polynomials P,Q ∈ Q[t], such that

degP≤ deg p, degQ≤ degq and p/q ̸= P/Q, we have

∂eg
(

α− p
q

)
< ∂eg

(
α− P

Q

)
.

In the classical case the best approximation theorem states:

Theorem. For a real number r, all of its convergents pn/qn, n ≥ 2 are best
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rational approximations, but not every best rational approximation is a con-

vergent. Instead, if a reduced fraction P/Q satisfies Q|r−P/Q| < q|r− p/q|,

for any other integers p and q such that q≤Q, then P/Q is a convergent of r.

Unsurprisingly, an analogous result holds in the function fields setting as

well, but in a much simpler form.

Proposition 2.4.3. For α ∈Q((1/t)), and a pair of relatively prime polyno-

mials p and q∈Q[t], with q ̸= 0, we have p/q is the best rational approximation

to α if and only if p/q is amongst the convergents of α.

Proof. First, we show that the convergents indeed provide best rational ap-

proximations to α . In order to do so, we will show that for any polynomial q

such that degq≤ degqn, and any p, we have the inequality

∂eg
(

α− p
q

)
≥ ∂eg

(
α− pn−1

qn−1

)
. (2.3)

Given this, we use Corollary 2.3.8(2), namely ∂eg (α− pn/qn)< ∂eg (α− pn−1/qn−1),

to prove that the convergents are best approximations to α .

To show (2.3), first observe that from Corollary 2.3.8(2) the convergents

ph/qh, with h≤ n−1, satisfy ∂eg (α− ph/qh)≥ ∂eg (α− pn−1/qn−1). So sup-

pose that p/q is not a convergent, and is given by p/q = [a0,a1, . . . ,ai−1,βi],

where α = [a0,a1, . . . ,ai−1,αi], and i≤ n−1 with αi ̸= βi. Using (2.2), we get

α− p
q
=

(−1)i(αi−βi)

(αiqi−1−qi−2)q
.

Taking degrees of both sides, we use the fact that αi ̸= βi both of which have

non-negative degree, together with ∂eg (αiqi−1−qi−2) = ∂eg qi which we can
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deduce from Lemma 2.3.5, which yields

∂eg
(

α− p
q

)
≥−degq−degqi

≥−degqn−degqn−1

= ∂eg
(

α− pn−1

qn−1

)
.

The final equality is simply Corollary 2.3.8(1). For the converse, suppose p/q

is a best approximation to α , but is not a convergent. Furthermore, we can as-

sume there exists an n such that degqn−1 < degq≤ degqn. Then from the best

approximation property for p/q we have ∂eg (α− p/q)< ∂eg (α− pn−1/qn−1).

But from (2.3) the converse inequality holds, yielding the desired contradic-

tion.

We will study rational approximations of formal Laurent series further in

chapter 4.

Let us now restrict out attention to quadratic irrationals. In particular,

let D ∈ Q[t] be of degree 2d, but not a square, and with leading coefficient a

rational square, then Lemma 2.2.2 and Remark 2.2.2 imply
√

D ∈ Q((1/t)).

For α =
√

D, the approximation theorems take the following form:

Proposition 2.4.4. Suppose D∈Q[t] has a leading coefficient a rational square

and of degree 2d, but which is not a perfect square, and let p,q ∈ Q[t] be co-

prime. Then, up to a sign, p/q is a convergent of
√

D if and only if

deg
(

p2−Dq2)≤ d−1. (2.4)

Proof. By Proposition 2.4.1, p/q is a convergent for
√

D if and only

if ∂eg
(√

D− p/q
)
≤ −2degq − 1. Moreover, we can assume that

∂eg
(√

D+ p/q
)
̸= ∂eg

(√
D− p/q

)
. This is because if ∂eg

(√
D+ p/q

)
=

∂eg
(√

D− p/q
)
, then it must be at least d, but this yields a contradictions

in both directions. Firstly, if p/q is a convergent then Proposition 2.4.1 is
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contradicted, and secondly if (2.4) holds,

d−1≥ deg
(

p2−Dq2)= ∂eg
(√

D− p
q

)
+∂eg

(√
D+

p
q

)
+2degq

≥ 2d +2degq

⇒−1≥ d +degq

Hence we can assume wlog that ∂eg
(√

D+ p/q
)
> ∂eg

(√
D− p/q

)
, because

for the reverse inequality the argument below will hold for −p/q.

This inequality also implies that ∂eg
(√

D+ p/q
)
= ∂eg

√
D = ∂eg p/q =

d. Then

deg
(

p2−Dq2)= ∂eg
(√

D− p
q

)
+∂eg

(√
D+

p
q

)
+2degq

≤ d−1.

Moreover, observe that if ph/qh is a convergent of
√

D, we can use the

result of Theorem 2.3.7 to show that deg
(

p2
h−Dq2

h

)
= d − degah+1. Now,

since ph, qh and D are all polynomials with coefficients in Q, we must have

degah+1 ≤ d. Moreover, degah+1 = d if and only if p2
h−Dq2

h = c ∈Q×. In that

case,
(
(p2

h +Dq2
h)

2/c,2phqh/c
)

solves the Diophantine equation x2−Dy2 = 1,

better known as Pell’s equation.

Suppose
√

D = [a0, a1, . . . , αh+1] has a periodic continued fraction with

period starting at a1 of length h+1. It can be shown, using methods analogous

to those of Olds [32], that if
√

D has a periodic continued fraction, then
√

D =

[a0, a1, . . . , 2a0]. In particular, this implies h is the smallest positive integers,

such that ah+1 = 2a0 and degah+1 = d and consequently αh+1 = a0 +
√

D. We

then use the convergents correspondence (2.1) to obtain

√
D =

(a0 +
√

D)ph + ph−1

(a0 +
√

D)qh +qh−1
.

After simplifying the fraction and equating coefficients of
√

D(t) from the
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resulting equality, we get the simultaneous equations:

a0qh +qh−1 = ph

a0 ph + ph−1 = qhD.

Eliminating a0 gives p2
h−Dq2

h = (−1)h, and if h is even then (ph, qh) solves

Pell’s equation. Therefore the discussion presented above yields a special case

of Abel’s theorem in one direction. Additionally, observe that if h | n, then the

same argument yields that any pair (pn, qn) is a solution to x2−Dy2 = (−1)n.

These multiple solutions and their properties will be the focus of the next

chapter.



Chapter 3

Solutions to the polynomial

Pell’s equation

For a polynomial D(t) ∈ C[t], the quadratic Diophantine equation in indeter-

minants x and y, given by

x2−Dy2 = 1, (3.1)

is called Pell’s equation. Observe that (±1,0) always satisfies (3.1), and is

called the trivial solution. In this chapter we study the non-trivial solutions,

pairs (u(t),v(t)), with v(t) ̸= 0, satisfying (3.1). If we are satisfied with solu-

tions in C((1/t)), then for any D ∈ C[t], there exists v ∈ C((1/t)) such that
√

1+Dv2 ∈ C((1/t)), and the pair
(√

1+Dv2,v
)

satisfies (3.1). However, we

restrict our interest to solutions in polynomials with coefficients in C or Q

– in analogy to the thoroughly studied theory of integer solutions to Pell’s

equation, for a non-negative integer D.

Observe that (3.1) does not have non-trivial polynomial solutions for every

polynomial D(t). This is obvious when D(t) is of an odd degree (if D(t) ∈Q[t]

we must also impose that its leading coefficient is a square in Q), since the

term of highest degree cannot be cancelled. Therefore, we fix D(t) to be a

polynomial of degree 2d. However, this is not a sufficient condition for (3.1)

to have a solution. We have seen in section 2.2 that (3.1), Pell’s equation for
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D(t) = t4 + t3, has no non-trivial solutions over C[t].

Definition 3.0.1. A polynomial D(t)∈C[t] is called Pellian if its correspond-

ing Pell’s equation (3.1) has a non-trivial solution (u(t),v(t)) ∈ C[t]2.

If, however, a non-trivial solution exists, infinitely many more can be

obtained by taking powers of the solution with smallest degree (u(t),v(t)). We

denote the nth generated solution by (un(t),vn(t)), and we study the factors of

vn(t) as n ranges in the integers. We prove that v(t) | vn(t) for all n, and write

vn(t)/v(t) as a product of expressions written in u(t), which turn out to be

polynomials with integer coefficients, denoted by vnew
n (t), and which become

the focus of our investigation.

Firstly, if D(t), v(t) and u(t) ∈ C[t], we show that there are finitely many

repeated factors of vnew
n (t) for some n, giving an explicit upper bound on their

number. Moreover if we restrict the polynomials D(t),v(t),u(t) to have coef-

ficients in the rational numbers, then vnew
n (t) has at most 2degu(t) factors.

Moreover, in this setting vnew
n (t) has repeated roots only for “small” (relative

to degu(t)) values of n, which we quantify further. This will be followed by an

extensive discussion on which algebraic complex numbers α can be repeated

roots of vnew
n (t).

Finally, we show how the grasp of the factorisation of the solutions to (3.1)

for a Pellian polynomial D(t) can be used to obtain more Pellian polynomials.

3.1 Factorisation properties of vn(t)

Let D ∈ C[t] be a Pellian polynomial with fundamental solution (u,v), with

v ̸= 0 of smallest degree. Then, for each integer n greater than 1, we obtain a

new pair of polynomials (un,vn) satisfying the same Pell’s equation, by

un + vn
√

D = (u+ v
√

D)n.
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Furthermore, we can extend this definition to the negative integers by applying

the identity (u+ v
√

D)−1 = u− v
√

D. This equivalence also gives

un− vn
√

D = (u− v
√

D)n,

so that

vn =
(u+ v

√
D)n− (u− v

√
D)n

2
√

D
.

By definition, v1 = v and, as an−bn = ∏ξ : ξ n=1(a−bξ ), we have

vn = v1 ∏
ξ : ξ n=1,

ξ ̸=1

(
(u+ v

√
D)−ξ (u− v

√
D)
)
.

Note that ξ is a root of tn− 1, which can be written as a product of irre-

ducible factors as ∏d|n ϕd(t), where ϕd(t) denotes the cyclotomic polynomials.

Therefore

vn = v1 ∏
m|n,m>1

ψm, (3.2)

where

ψm := ∏
ξ : ϕm(ξ )=0

(
(u+ v

√
D)−ξ (u− v

√
D)
)
. (3.3)

We can exploit the fact that the product in (3.3) is taken over the roots

of the cyclotomic polynomials to show that ψm does not depend on v or
√

D.

Lemma 3.1.1. For all integers m greater than 1, ψm ∈ Z[2u].

Proof. Firstly, note that ϕ2(t) = t+1 and so ψ2 = 2u. Now assume that m > 2,

then ϕm is always of even degree and the ξ ’s come in conjugate pairs. We will

study ψm by pairing up the terms for ξ and ξ . Together we have

(
(u+ v

√
D)−ξ (u− v

√
D)
)(

(u+ v
√

D)−ξ (u− v
√

D)
)
= (2u)2− (ξ +2+ξ ).
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This implies that the product in ψm is a product over conjugates and therefore

belongs to Z[2u].

To better understand the factors of vn it suffices to factorise ψm over C[u].

Lemma 3.1.2. The polynomials ψm(u) have roots cos rπ
m , for 1 ≤ r < m and

(r,m) = 1. Namely,

ψm(u) = 2φ(m) ∏
1≤r<m
(r,m)=1

(
u− cos

rπ
m

)
.

Proof. Let e(a) := e2aπi. Then, the roots of ϕm are e( r
m) for 1 ≤ r < m with

(r,m) = 1, and for each conjugate pair we take ξ = e( r
m) with 1 ≤ r < m/2.

Using Euler’s formula e(a) = cos2a+ isin2a, we have

ξ +2+ξ = e
( r

m

)
+2+ e

(
− r

m

)
= 2cos

2rπ
m

+2 = 4cos2 rπ
m
.

The final equality comes from the double angle formula. Consequently,

ψm = ∏
1≤r<m/2
(r,m)=1

(
(2u)2−

(
2cos

rπ
m

)2
)
.

Now cos rπ
m =−cos (m−r)π

m , thus

ψm = ∏
1≤r<m/2
(r,m)=1

(
2u−2cos

rπ
m

)(
2u−2cos

(m− r)π
m

)
.

Observe that m/2 < s < m, with (s,m) = 1, if and only if s = m− r, where

0 < r ≤ m/2, with (r,m) = 1. Thus the above becomes

ψm = ∏
1≤r<m
(r,m)=1

(
2u−2cos

rπ
m

)
= 2φ(m) ∏

1≤r<m
(r,m)=1

(
u− cos

rπ
m

)
.

Furthermore, since the cosines are distinct, as m ranges in the natural
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numbers and r in the given interval, we get the following.

Lemma 3.1.3. The polynomials ψm for m > 1, have no common roots.

If now we restrict ourselves to working over polynomials in u, with coef-

ficients in Q, we obtain:

Theorem 3.1.4. The polynomials ψm are irreducible over Q[u] for m even;

and split into two irreducible factors of degree φ(m)/2, if m is odd. Namely,

for odd integers m > 1

ψm(u) = (−1)φ(m)/2ψ∗m(u)ψ∗m(−u),

where

ψ∗m(u) = 2φ(m) ∏
1≤q<m/2
(q,m)=1

(
u− cos

2qπ
m

)
.

Proof. To see this, recall from Lemma 3.1.2 that ψm(u) have roots αr = e( r
2m)+

e(−r
2m), where 1 < r < m and (r,m) = 1. The field Q(αr) is the real subfield of

Q
(
e( r

2m)
)

of relative degree 2. Then we have the following tower of extensions.

Q
(
e( r

2m)
)

2

φ(2m) Q(αr)

Q

Therefore Q(αr) has degree φ(2m)/2 over the rational numbers, and if m

is even, this equals φ(m), implying that ψm is irreducible. However, if m is

odd, then Q(αr) has degree φ(m)/2 over the rational numbers. Hence ψm must

be a product of two irreducible polynomials of degree φ(m)/2. In particular,

if r = 2q, then e( r
2m) = e( q

m); and if r is odd, then write r = m− 2q and so
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e( r
2m) = e(m−2q

2m ) =−e(−q
m ). We deduce that

ψm = ∏
1≤q<m/2
(q,m)=1

(
2u−

(
e
( q

m

)
+ e
(
−q
m

)))(
2u+

(
e
( q

m

)
+ e
(
−q
m

)))
.

That is, ψm(u) = (−1)φ(m)/2ψ∗m(u)ψ∗m(−u), where

ψ∗m(u) : = ∏
1≤q≤m/2
(q,m)=1

(
2u−

(
e
( q

m

)
+ e
(
−q
m

)))

= 2φ(m) ∏
1≤q≤m/2
(q,m)=1

(
u− cos

(
2qπ
m

))

is irreducible.

In summary, we have vn = v∏ m|n
m>1

ψm(u), with ψm integral polynomials

only depending on u. Observe further that, if α = cos(rπ/n) with (r,n) =

1, then ψn(α) = 0, but ψm(α) ̸= 0 for all integers m smaller than n. That

is ψn picks out the “new roots” of vn. Therefore, over C[t], we can write

vn(t) = vnew
n (t)vold

n (t), where vnew
n (t) = ψn(u(t)).

3.2 Bounding the number of factors of vnew
n (t)

We use the observation that vnew
n (t) = ψn(u(t)), together with the factorisation

results in section 3.1, to study the factors and repeated factors of vnew
n (t) as

polynomials in t. Whenever necessary, we will adopt the notation degx( f ) to

indicate the degree of f as a polynomial in x.

3.2.1 Bounds on the number of factors
Lemma 3.2.1. Let π(u) ∈ Q[u] be a product of k irreducible factors in Q[u].

Then P(t) := π(u(t)) ∈ Q[t] has no more than k degu irreducible factors over

Q[t].

Proof. We prove this when π(u) is irreducible over Q[u], and whenever it is

reducible, we multiply the result by the number of irreducible factors of π.
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Suppose π(u) is irreducible over Q[u]. Let A be a root of π(u) over C.

Then π(A) = 0, so there exists α ∈C, such that P(α) = π(A) = 0. In particular,

α is a root of u(t)−A and we have the tower of extensions

Q(α)

1≤

≥degu πQ(A)

degu π

Q

yielding that the minimal polynomial of α over the rationals must be of degree

at least degu π. Now all roots of P(t) arise as described above, and degt P =

degu π degu, therefore P(t) has at most degu irreducible factors over Q[t].

Proposition 3.2.2.

Proof. In the introduction to this chapter, we observed that vnew
n (t) =ψn(u(t)).

Furthermore, from Theorem 3.1.4, the polynomials ψn(u) split into two irre-

ducible factors over Q[u] if n is odd and are irreducible if n is even. The result

is then a consequence of Lemma 3.2.1, for ψn(u) and u = u(t) ∈Q[t].

We now turn our attention to the repeated factors of vn(t).

3.2.2 Bounds on the number of repeated factors
Suppose α ∈ C is a repeated root of some vn(t). That is (t−α)2 | vn(t), and

since the vnew
n have no common roots, we must have (t−α)2 | vnew

m (t), for some

m | n. Hence, to understand the repeated factors of vn(t), it suffices to consider

the repeated factors of vnew
n (t). In this section we study their existence and its

dependence on n.

Theorem 3.2.3. For any Pellian polynomial D(t) ∈ C[t], with fundamental

solution (u(t),v(t)), we define

R(D) := {α ∈ C : (t−α)2 | vn(t) for some n}.
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Then #R(D)≤ degu−1.

Proof. By the discussion in the introduction to subsection 3.2.2, it suffices

to consider repeated factors of vnew
n (t). We first study vnew

1 (t) = v(t), as

it cannot be expressed as a polynomial in u. Suppose (t −α)2 | v(t), then

(t−α)4 | D(t)v2(t). Since (u(t),v(t)) is a solution to Pell’s equation, we must

have

(t−α)4 | u2(t)−1

⇒ (t−α)3 | u(t)u′(t).

Observe that this implies that (t−α)3 is a factor of u′(t), since u(α) = ±1.

Next suppose that (t−α) is a repeated factor of vnew
n (t), for n > 1. Therefore

we must have (t−α)2 | u(t)−cosπr/n, for some positive integer r < n, co-prime

to n. Then (t−α) must be a factor of u′(t). In both cases, the repeated factors

of vnew
n (t) over C[t] arise from roots of u′(t), and there are at most degu−1 of

them.

Corollary 3.2.4. For any Pellian D(t) ∈ C[t], there are only finitely many n,

for which vnew
n (t) has repeated factors.

Proof. In the proof of Theorem 3.2.3 we showed that if α is a repeated root of

vnew
n (t) for any n, then (t−α) | u′(t). Since u(t) is a polynomial, it has finitely

many roots over C. Since the polynomials vnew
n (t) have no common factors,

there are only finitely many n for which vnew
n (t) has repeated factors.

The proof of Theorem 3.2.3 gives us a method of explicitly finding all

repeated roots of vnew
n (t). Namely, suppose (t − α)k || u′(t), and if further

u(α) = cos(πr/n), for some r < n, co-prime to n, then (t−α)k+1 || vnew
n (t). To

see why this works, recall vnew
n (t) = ∏r(u(t)− cos(πr/n)), where the product

ranges over positive integers r < n, co-prime to n. Then the repeated factors

of vnew
n (t) must arise from repeated roots α ∈ C of u(t)− cos(πr/n).

We now focus our attention to repeated factors of vnew
n (t) over the rational

numbers. Restricting the factors to Q[t] implies that the repeated root α must
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come from a field extension of degree dα , satisfying:

Q(α)

dα Q
(
cos
(πr

n

))
φ(2n)/2

Q

Theorem 3.2.5. For any Pellian D(t) ∈ Q[t], with fundamental solution

(u(t),v(t)), if vnew
n (t) has a repeated root, then n≪ d log logd, with d = degu.

Proof. Let α ∈ C algebraic of degree dα be a repeated root of multiplicity

k > 1 of vnew
n (t). Then from the discussion preceding the statement of the the-

orem we have that d = degu > dα , because u ∈ Q[t] and (t −α)k−1 || u′(t).

Moreover, from the Tower Law extension above dα > φ(2n)/2. Combin-

ing the two inequalities yields φ(2n) < 2d. Furthermore, the Euler totient

function satisfies the bound φ(n)≫ n/ log logn, see [40]. Taking logs of the

right hand side log(n/ log logn) = logn− log loglogn≫ logn, since for n large

enough, log loglogn < (logn)/2. Then log logd ≫ log logn and multiplying

through by n/ log logn, yields n≪ d log logd.

3.3 The degrees of the factors of vnew
n (t)

In this section we let D(t) ∈ Q[t] be a Pellian polynomial with fundamental

solution (u,v) and we study the degrees of the rational irreducible factors of

vnew
n (t).

3.3.1 Factors of given degree
We once again exploit the fact that vnew

n (t) can also be written as the compo-

sition of two polynomials. This time we invoke the following technical lemma.

Lemma 3.3.1. Let P,Q ∈ Q[X ]. Any rational factor of P(Q(X)) is of degree

at least that of the degree of the smallest rational factor of P(X).
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Proof. Let α ∈ C be a root of P(X) of smallest degree and let β ∈ C be an

arbitrary root of P(Q(X)). Therefore Q(β ) will be a root of P(X), and by

the minimality of α , we will have degQ(β ) ≥ degα . A final observation that

degβ ≥ degQ(β ) completes the proof.

Recall that vnew
n (t) = ψn(u(t)), where ψn is polynomial with coefficients

in Q and of degree φ(2n)/2. We use Lemma 3.3.1, together with an asymp-

totic bound on the number of solutions to the equation φ(n) = m, to get the

following.

Theorem 3.3.2. Let N be a positive integer and define

I(N) := {P(t) ∈Q[t], irreducible : degP(t)≤ N, P(t) | vnew
n (t) for some n}.

For N sufficiently large, #I(N)≤ 10N degu.

Proof. Suppose that P(t) is a factor of vnew
n (t). By Lemma 3.3.1,

φ(2n)/2≤ degP, since any rational factor of vnew
n (t) = ψn(u(t)) must be at

least the degree of the smallest rational factor of ψn(t). Fix the degree of P to

be at most some positive integer N. To estimate the number of elements of

I(N) it suffices to compute the number of integers n that satisfy the inequality

φ(2n)/2≤ N and multiply it by degu or 2degu depending on the parity of n.

Observe that

#{n : φ(2n)≤ 2N}= #{n even : φ(n)≤ N}+#{n odd : φ(n)≤ 2N}.

From [40] p.22 we have that #{m : φ(m) ≤ x} = ζ (2)ζ (3)/ζ (6)x+R(x), with

R(x) of order at most x/(logx)l, for any positive l. Thus the number of elements

in the set id at most 2x for x sufficiently large. Hence #I(N)≤ 2N degu+8N degu

for N sufficiently large.

If we wish to find an inequality that holds for all positive integers of N,

we simply use a bound on the Euler totient function. However that makes our

bound much worse for large values of N.
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Proposition 3.3.3. With the definition as in Theorem 3.3.2 we have that for

all positive values of N, #I(N)≤ 4N2 degu.

Proof. Similar to the proof of Theorem 3.3.2, if P(t) is a factor of vnew
n (t),

then φ(2n)/2≤ degP, since the smallest factor of vnew
n (t) is of degree φ(2n)/2.

Hence any irreducible rational factor of vnew
n (t), of degree up to N, satisfies

φ(2n)< 2N. Using the lower bound of the Euler totient function, φ(n)≥
√

n,

and simplifying we obtain n≤ 2N2. Now from Lemma 3.3.1, vnew
n has at most

degu irreducible factors for each n even, and 2degu irreducible factors for each

n odd. Hence #I(N)≤ 4N2 degu.

Corollary 3.3.4. Let D(t) ∈Q[t] be a square-free Pellian polynomial and N a

positive integer. We define

J(N) := {P(t) ∈Q[t], irreducible : degP(t) = N, P(t) | vnew
n (t) for some n}.

Then #J(N)< ∞.

Observe that J(N) = I(N)− I(N−1), both of which are bounded quanti-

ties. Furthermore, we can obtain more explicit results, by considering factors

of specific degree.

Theorem 3.3.5. Suppose D(t)∈Q[t] is a Pellian polynomial with fundamental

solution (u,v). Then:

1. There are no linear polynomials with coefficients in Q that divide vnew
n (t),

for n≥ 4.

2. There are no quadratic polynomials with coefficients in Q that divide

vnew
n (t), for n≥ 7.

Proof. We once again use the fact that the smallest factor of vnew
n (t) is of degree

φ(2n)/2.

1. Therefore if φ(2n)/2 > 1, there cannot be a rational factor of vnew
n (t).

This corresponds to φ(n) > 1 and n even, or φ(n) > 2 and n odd. For

n≥ 4, both of those inequalities are satisfied.
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2. For no quadratic rational factors of vnew
n (t), we need n to satisfy

φ(2n)/2 > 2. In particular, we must have φ(n) > 2 and n even and

φ(n)> 4 and n odd. For n≥ 7 both inequalities hold.

Both of these results are the best possible. To see this, consider the

following example.

Example 3.3.1. Let D(t) = t2− 1, then (t,1) is the smallest solution to the

corresponding Pell’s equation and thus it generates all the others. The only

linear factors of vn(t) are vnew
2 = 2t and the factors of vnew

3 , i.e. 2t±1. Further-

more, the only quadratic irreducible factors are vnew
4 = 2t2−1, vnew

6 = 4t2−3

and the factors of vnew
5 , namely 4t2±2t−1. For D(t) = t4+ t2, with fundamen-

tal solution (2t2+1, 2), we have vnew
2 = 2(2t2+1) and vnew

3 = (4t2+1)(4t2+3),

having quadratic irreducible factors. Suppose D(t)= t8+4t6+6t4+5t2+2, this

has fundamental solution
(
2t6 +6t4 +6t2 +3, 2(t2 +1)

)
, then vnew

1 = 2(t2 +1)

is a quadratic irreducible.

3.3.2 Repeated factors of given degree
Suppose that α ∈ C is algebraic with minimal polynomial pα(t) of degree

dα over the rational numbers. As discussed in subsection 3.2.2, if α is a

repeated root of vnew
n (t), then (t−α)k || u(t)− cos(πr/n), for some r < n, co-

prime to n and k≥ 2. We restrict D,u,v∈Q[t], and define w(t)∈Q[t] to be the

remainder when dividing u(t) by pk
α(t). That is, w(t) = u(t)− pk

α(t)q(t) ∈Q[t],

with degw(t) < kdα . If degw(t) ̸= 0, we can reduce the problem to looking

at repeated factors (t −α)k || w(t)− cos(πr/n), instead. Differentiating this

divisibility condition gives (t−α)k−1 || w′(t), and since w(t) ∈ Q[t] we deduce

that pk−1
α || w′(t). This yields a lower bound on the degree of w(t), degw(t)≥

(k−1)dα +1.

But let us first examine the case when w(t) is a constant.

Lemma 3.3.6. Let D(t) ∈ Q[t] be a Pellian polynomial, with fundamental

solution (u,v). Suppose α ∈C, algebraic of degree dα with minimal polynomial



3.3. The degrees of the factors of vnew
n (t) 53

pα(t), is a repeated root of vnew
n (t) of multiplicity k > 1. Then the remainder,

when dividing u(t) by pk
α(t), is a constant if and only if n = 1, 2, or 3.

Proof. Since α is a repeated root of vnew
n (t), of multiplicity k > 1, we have

(t−α)k || u(t)− cos(πr/n), for some r < n, (r,n) = 1. From the division algo-

rithm, there exists a polynomial w(t)∈Q[t], given by w(t) = u(t)− pk
α(t)q(t) of

degree less than kdα . Suppose degw(t) = 0, then we must have w(t) = w ∈Q.

Furthermore, cos(πr/n) = u(α) = w must be a rational number, which is only

true for n = 1, 2, or 3. Conversely, suppose that n = 1, then vnew
1 (t) = v(t). For

a repeated root α of v(t), we must have pk
α || v(t). Hence p2k

α || u2(t)− 1, and

therefore p2k
α || u(t)±1, and w(t) =±1 for all t. For n = 2, 3, vnew

2 (t) = u(t) and

vnew
3 (t) = 1±2u(t) are both polynomials with coefficients in Q, and therefore

pk
α || u(t) or pk

α || 1±2u(t). Hence w(t) = 0 or w(t) =±1/2, respectively, for all

t.

Corollary 3.3.7. The polynomials vnew
2 (t), vnew

3 (t) have a repeated complex

root α if and only if u(t) = q(t)pk
α(t) or u(t) = q(t)pk

α(t)±1/2, respectively.

We can use this corollary to construct, for any δ ≥ 1 and k > 1, a rational

Pellian polynomial D(t), such that v2(t) has a repeated factor p(t) ∈ Q[t] of

degree δ and multiplicity k. Pick α ∈ C, algebraic with minimal polynomial

p(t) of degree δ ≥ 1 over the rational numbers, and an integer k > 1. Let

u(t) = pk(t), then D(t) = u2− 1 ∈ Q[t] is Pellian, with fundamental solution

(pk(t),1). Furthermore, vnew
2 (t) = 2pk(t), and it clearly has a repeated factor

of degree δ and multiplicity k. We can do the same for vnew
3 (t), but instead

D(t) = u2−1 ∈Q[t], where u(t) = qk(t)+1/2, and q(t) is the minimal polyno-

mial of some β ∈ C of degree 3.

We have dealt with the case when w(t) is a constant, and simultaneously

understood the repeated factors of vnew
n (t) for small values of n. Therefore, for

our investigation into the degree of repeated roots α ∈C of vnew
n (t), we assume

n > 3, equivalently degw(t)> 0, and proceed by case analysis.
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3.3.2.1 The case of an odd degree α
Suppose α ∈ C is an algebraic number of degree dα > 1, an odd „inte-

ger. Furthermore, let α be a repeated root of vnew
n (t) for n > 3, then

(t−α)k || u(t)− cos(πr/n), for some r < n, co-prime to n and k ≥ 2. Then

we have the following tower of extensions:

Q(α)

dα Q
(
cos
(πr

n

))
φ(2n)

2 >1

Q

From the Tower Law, dα must be divisible by φ(2n)/2. Furthermore,

φ(2n)
2

=

φ(n), if n is even

φ(n)/2, if n is odd.

Since dα is odd and φ(n) is even for all integers n > 3, the only possibility is

for φ(n)/2 with n odd, to divide dα .

Theorem 3.3.8. Let D(t) ∈ Q[t] be Pellian with fundamental solution (u,v).

Suppose that for n > 3, the polynomial vnew
n (t) has a repeated root α of odd

degree dα , then n = qs, where q≡ 3 mod 4 is prime and s is a positive integer.

Moreover, dα must be a multiple of φ(n)/2.

Proof. From the introduction to this section, we know that since dα is odd, we

must have n and φ(n)/2 both odd. Lemma 3.3.10, to follow, states that φ(n)

is twice an odd number, if and only if n = qs for a prime q≡ 3 mod 4, and in

that case φ(n)/2 = (q−1)qs−1/2, which must divide dα .

Furthermore, if we only consider odd prime degree, we can say more.

Theorem 3.3.9. Suppose D(t) ∈ Q[t] is Pellian with fundamental solution

(u,v). If for any n > 3, the polynomial vnew
n (t) has a repeated root α of a prime
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odd degree dα , then n = 2dα + 1 is also prime or n = 9, in which case α is

cubic.

Proof. Suppose dα is an odd prime and n > 3, then we must have

[Q(cos rπ
n ) : Q]> 1 and thus dα = φ(n)/2, with n odd. We employ the property

of the Euler totient function described in Lemma 3.3.11, showing that a prime

dα = φ(n)/2 if and only if n = 2dα +1 or n = 9 and dα = 3.

We now state and prove the technical lemmas on the properties of the

Euler totient function needed in the proofs of Theorem 3.3.8 and Theorem

3.3.9.

Lemma 3.3.10. Suppose m > 3 is an odd integer. Then φ(m)/2 is odd if and

only if m = qs with q≡ 3 mod 4 prime and s≥ 1 an integer.

Proof. Since m is an odd integer, it can be represented as ∏k
i=1 qsi

i , where

qi are distinct odd primes and si are positive integers. For each i, we have

qi−1 | φ(m). Now if qi ≡ 1 mod 4, for some i, then φ(m)/2 is even. Hence

qi ≡ 3 mod 4 for all i. Furthermore, if we have two distinct primes qi and q j,

both dividing m, then (qi−1)(q j−1) | φ(m), and once again φ(m)/2 is even.

Therefore, the only possibility is that m is a power of a prime q≡ 3 mod 4.

Lemma 3.3.11. Suppose m is an odd integer greater than 3, and p is an odd

prime. Then φ(m)/2 = p if and only if m = 2p+1 is prime or m = 9 and p = 3.

Proof. From Lemma 3.3.10, since p is odd we must have m = qs, where

q≡ 3 mod 4 prime, and s a positive integer. Therefore φ(m)/2 = (q−

1)qs−1/2. For this expression to be equal to the prime p, we have two possi-

bilities. Either q = 2p+1 and s = 1, yielding m = 2p+1, or q = p = 3, s = 2,

giving m = 9 and 2p+1 = 7. In both cases, 2p+1 is prime.

Conversely, if 2p + 1 is prime, then φ(2p + 1) = 2p and φ(9) = 2× 3.

Hence, for both m = 2p+1 and m = 9, φ(m)/2 is prime.

Remark 3.3.1. We can use Theorem 3.3.9 to discount complex numbers α of

odd prime degree dα , as repeated roots of vnew
n (t) for n > 3. Namely, if 2dα +1
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is not a prime, then vnew
n (t) for n > 3 has no repeated root of degree dα . For

example, we cannot have α of degree 7, 13, 17, 19, etc. Furthermore prime

numbers p, such that 2p+1 is prime are called Sophie Germain primes and are

quite rare. In particular, they are a density 0 subset of the primes. Therefore,

for most primes p, there are never repeated roots of vnew
n (t) of degree p.

3.3.2.2 The case of α quadratic

Proposition 3.3.12. Suppose D(t)∈Q[t] is Pellian with fundamental solution

(u,v). Let α ∈ C lie in a quadratic extension over the rational numbers. If α

is a repeated root of vnew
n (t) for n > 3, then n = 4, 5 or 6 and α ∈Q(

√
l), for

l = 2, 5 or 3, respectively.

Proof. Since n is greater than 3, 1 < [Q
(
cos
( rπ

n

))
: Q], and, by the Tower Law,

is a factor of [Q(α) : Q] = 2. In particular, Q(α) = Q
(
cos
(πr

n

))
and we have

the following tower of extensions:

Q(
√

l) =Q
(
cos
(πr

n

))
φ(2n)

2 >12

Q

Therefore, φ(n) = 2 with n even, i.e. n = 4, 6 or φ(n) = 4 with n odd,

i.e. n = 5. Consequently, Q(α) = Q(
√

2) or Q(
√

3), in the former case since

the cosines are either ±
√

2/2 or ±
√

3/2, respectively. In the latter case,

Q(α) =Q(
√

5), since cos πr
5 =±(1±

√
5)/4.
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Proposition 3.3.13. Suppose D(t)∈Q[t] is Pellian with fundamental solution

(u,v). Let α ∈ C be an algebraic integer with minimal polynomial pα , lying

in a quadratic extension over the rational numbers. If α is a repeated root of

vnew
n (t) for n > 3, of multiplicity k > 1, then u(t) = g(t)pk

α(t)+w(t), where

w(t) =
∫ t

α
ak pk−1

α (x)dx+ cos
πr
n
,

and

ak =
(2k−1)!g

(−4l)k−1s2k−1((k−1)!)2 ,

with g =±1/2, when l = 2, 3 and g =±1/4, when l = 5. And s is a quantity

which can be determined from the computation in the proof.

Proof. Let α be as in the statement of the theorem, with minimal polyno-

mial pα(t) of degree dα = 2. From the discussion at the beginning of sub-

section 3.3.2, we know (k− 1)dα + 1 ≤ degw(t) < kdα . Therefore, for α a

quadratic irrational, degw(t) = 2k− 1. In addition, since w′(t) ∈ Q[t] and

(t−α)k is a factor of w(t)− cos(πr/n), we must have pk−1
α || w′(t), and thus

deg pk−1
α (t) = 2k−2 = degw′(t). Hence

w′(t) = ak pk−1
α (t), for ak ∈Q∗, and

w(α) = cos
πr
n
.

Equivalently,

w(t) =
∫ t

α
ak pk−1

α (t)dx+ cos
πr
n
.

To completely determine w(t), it remains to compute the coefficient ak.

Suppose that α has minimal polynomial pα(t) = t2+2bt +c ∈Q[t]. Then

using T = t +b, we can rewrite it as Pα(T ) = T 2−A, where A = b2− c. From

Proposition 3.3.12 we know that Q(α) = Q(
√

l), for l = 2, 3 or 5. Hence
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A = s2l, for some rational number s, and

w(t) =
∫ t

α
ak pk−1

α (x)dx+ cos
rπ
n

=
∫ t+b

α+b
ak(X2−A)k−1dX + cos

πr
n

= ak

∫ t+b
√

A

k−1

∑
j=0

(
k−1

j

)
X2 j(−A)k−1− jdX + cos

rπ
n

= ak

∫ t+b

s
√

l

k−1

∑
j=0

(
k−1

j

)
X2 j(−s2l)k−1− jdX + cos

πr
n

= ak

k−1

∑
j=0

(
k−1

j

)
(−s2l)k−1− j

[
X2 j+1

2 j+1

]t+b

s
√

l
+ cos

rπ
n

= ak

k−1

∑
j=0

(
k−1

j

)
(−s2l)k−1− j

[
(t +b)2 j+1

2 j+1
− s2 j+1l j

√
l

2 j+1

]
+ cos

πr
n
.

Furthermore, cos πr
n is also in a quadratic extension of the rational numbers,

so let it be of the form h+g
√

l, with h,g ∈Q. Now, w(t) is a polynomial with

coefficients in the rational numbers, and thus the value of g will be such that

it cancels the coefficient of
√

l in the sum above. Namely,

g = ak

k−1

∑
j=0

(
k−1

j

)
(−s2l)k−1− j s2 j+1l j

2 j+1

⇒ g = aks2k−1lk−1
k−1

∑
j=0

(
k−1

j

)
(−1)k−1− j

2 j+1
.

In a lemma given after the proof, we show that the sum in the expression for

g evaluates to
(−4)k−1(k−1)!

(2k−1)!
.

After rearranging appropriately, we obtain the required form for ak.

Lemma 3.3.14. For a positive integer n, we have the following combinatorial

identity
n

∑
j=0

(
n
j

)
(−1)n− j

2 j+1
=

(−4)n(n!)2

(2n+1)!
.
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Proof. Let f (n) =
∫ 1

0 (x
2−1)ndx. After expanding, we get

f (n) =
∫ 1

0
(x2−1)ndx =

∫ 1

0

n

∑
j=0

(
n
j

)
(−1)n− jx2 jdx

=
n

∑
j=0

(
n
j

)
(−1)n− j

2 j+1
.

Integrating f (n) by parts, we obtain a recursive relation

f (n) = [x(x2−1)n]10−
∫ 1

0
2nx2(x2−1)n−1dx

=−2n
∫ 1

0
x2(x2−1)n−1dx

=−2n( f (n)+ f (n−1)) .

Therefore

f (n) =
−2n

2n+1
f (n−1) = f (0)

n

∏
i=1

(−1)i2i
2i+1

=
(−4)n(n!)2

(2n+1)!
.

The final equality follows since f (0) = 1.

Corollary 3.3.15. The polynomials vnew
n (t) for n > 3 and u(t) ∈ Z[t] have no

quadratic irrationals as repeated roots of multiplicity k > 1.

Proof. If α is as in the statement and u(t) ∈ Z[t], then w(t) ∈ Z[t], since it is

the remainder in the division of u(t) by the minimal polynomial pα(t) ∈ Z[t].

This implies that ak ∈ Z. However, for k > 1, the power of 2 dividing

(2k−1)!
4k−1((k−1)!)2

is smaller than 0. To see this, we rearrange the expression to get

2k−1
22k−2

(
2k−2
k−1

)
.

We apply Kummer’s theorem [18], which says that for a prime p, pl |
(n

m

)
only if pl ≤ n. And 22k−2 > 2k−2 for k > 1, hence ak is not an integer for any
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integer k greater than 1.

3.4 Non square-free Pellian polynomials
It is well-known that for every positive integer D, x2−Dy2 = 1 has non-trivial

solutions, but this no longer holds true for every polynomial D(t) ∈ C[t]. In

general, it is fairly difficult to determine whether a given complex polynomial

is Pellian or not. However, for a polynomial with roots of high multiplicity, as

a consequence of the ABC theorem [27][42], there is an easy criterion that we

can check. To see this, recall that the ABC theorem for complex polynomials

says that if a+ b = c has a non-trivial solution with a,b,c ∈ C[t] having no

common roots, then the number of distinct roots of abc, denoted by n(abc),

is greater than the maximum of their degrees. We apply this result to Pell’s

equation for D(t) ∈ C[t] with non-trivial solution (u(t),v(t)) to obtain

n(u2Dv2) = n(uDv)> max{degu2,degDv2}.

Furthermore

n(uDv)≤ degu+n(D)+degv.

Hence

n(D)> degD+degv−degu

n(D)>
1
2

degD.

This is precisely what Dubickas and Steuding [12] showed.

Theorem 3.4.1. (Dubickas & Steuding) If the number n(D) of distinct zeros

of D ∈ C[t] is less than or equal to 1
2 degD, then the polynomial Pell equation

has no non-trivial solutions in C[t].

Observe that given a separable polynomial F(t) ∈ C[t], and a square-free

polynomial D(t) ∈ C[t], both of positive degree, and relatively prime, then
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n(F2D(t)) = degF(t)+ degD(t) > 1
2 degF2D(t). Hence, for polynomials with

coefficients in C, and a single square factor, Theorem 3.4.1 cannot be used to

determine whether they are Pellian or not. We thus focus our attention on

polynomials of that form.

Suppose that F2D(t) is a Pellian with complex coefficients. Then there

exist polynomials X(t),Y (t) ∈ C[t] solving the corresponding Pell’s equation.

Moreover, (X(t),FY (t)) solves Pell’s equation for D(t). On the other hand we

have the following.

Lemma 3.4.2. If D(t) ∈ C[t] is Pellian with solutions (un(t),vn(t)) then

∆(t) = F2D(t) is also Pellian, whenever F(t) | vn(t) for some n.

Proof. If vn(t) = FV (t) for some n, then (un(t),V (t)) is a solution to Pell for

∆(t), and thus ∆(t) is Pellian.

Therefore, all Pellian polynomials of the form F2D(t) arise from square-

free Pellian polynomials D(t) and a factor F of vnew
n (t). This lemma gives a

simple method for checking whether a polynomial F2D∈Q[t] is Pellian or not.

Restricting our investigation to polynomials D(t) with rational coefficients,

yields the following result.

Proposition 3.4.3. Let D(t) ∈ Q[t] be square-free and Pellian. Then for a

given positive integer f , there exist only finitely many irreducible F ∈Q[t], of

degree f , such that F2D is also Pellian.

Proof. From Lemma 3.4.2, F must be a factor of vn(t). Furthermore, any such

factor arises from a factor of vnew
m (t), for m a factor of n. By corollary 3.3.4,

there are only finitely many such factors of a fixed degree.

This proposition comes in contrast to the classical case, where for any

positive integer d, Pell’s equation for g2d has non-trivial solutions for infinitely

many g. For details, see chapter 8 of [22].

Example 3.4.1. Consider D(t) = t2−1. We wish to find all quadratic poly-

nomials F ∈ Q[t] such that F2(t2− 1) is Pellian. These polynomials must be
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factors of vnew
n (t) for some n. By Theorem 3.3.5, we should only look at factors

of vnew
n (t) for n ≤ 6. Therefore, the only quadratic polynomials F for which

F2(t2− 1) is Pellian are vnew
4 (t), vnew

6 (t), and the factors of vnew
5 (t). Respec-

tively, these are given by

2t2−1, 4t2−3, and 4t2±2t−1.

Even though not all polynomials D ∈Q[t] are Pellian, we have seen that

the connection with the continued fraction expansion of
√

D(t) is preserved in

the polynomial setting. We next turn our attention to studying the continued

fraction expansion for quadratic irrationals of polynomials and other algebraic

functions over the field of formal Laurent series.



Chapter 4

Diophantine approximation and

the Lagrange spectrum

For an irrational number r ∈ R, we know that its convergents p/q satisfy

|r− p/q| < 1/q2. Moreover, as discussed in section 2.4, the best rational ap-

proximations to α ∈Q((1/t)) are also given by its convergents p(t)/q(t), and

an analogous inequality is satisfied, where we replace the absolute values by

∂eg (·). We then measure the accuracy of the approximation by studying

∂eg (α− p(t)/q(t)) as a function of the degree of the denominator q. For real

numbers, these questions are part of Diophantine approximation, and their

power series analogue will be the topic of this chapter. The first section con-

sists of a brief discussion of the results of Mahler [23] and Uchiyama [43], the

function field equivalents to Liouville’s theorem and Roth’s theorem, respec-

tively. For these, the accuracy is studied in terms of multiples of degq, and is

related to the analogue of the problem of approximation exponents over the

real numbers. For Laurent series with coefficients in Q the approximation ex-

ponent is known; however for coefficients in finite fields it is still an ongoing

area of research, see [19] and [41].

We dedicate the remainder of the chapter to studying a different quan-

tity, measuring the accuracy of the approximation of α by its convergents, the

Lagrange constant, l(α). We use the connection with the periodicity of
√

D(t)

to show that for Pellian polynomials D(t) of degree 2d, l(
√

D(t)) = d. More-
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over, we give some insight into the value of l(
√

∆(t)), for a class of non-Pellian

polynomials ∆(t). Finally, we define the Lagrange spectrum and show that it

is equal to a different set related to doubly infinite sequences of non-constant

polynomials.

4.1 Diophantine approximation
Recall from Proposition 2.4.1 that for α ∈ Q((1/t)) and p(t) and q(t) ∈ Q[t]

with q ̸= 0, we have that

∂eg
(

α− p(t)
q(t)

)
<−2degq(t)

if and only if p(t)/q(t) is a convergent for α .

Proposition 4.1.1. Given α ∈Q((1/t)), not a rational function, there exist

infinitely many pairs of polynomials p(t),q(t) ∈Q[t], with q(t) ̸= 0 such that

∂eg
(

α− p(t)
q(t)

)
<−2degq(t).

Proof. We know that the convergents of α satisfy the inequality of the propo-

sition. Furthermore, since α is not a rational function, it has an infinite con-

tinued fraction, resulting in infinitely many convergents.

The first quantity that we will discuss, measuring the accuracy of the

approximation to α by its convergents, is given by Schmidt in [41].

Definition 4.1.1. Let ch := c(ph(t)/qh(t)), be such that

∂eg
(

α− ph(t)
qh(t)

)
=−(1+ ch)degqh(t).

We define the approximation spectrum of α , denoted by S(α), to be the set of

limit points of ch as h runs through the non-negative integers.

From Proposition 4.1.1, S(α) is a closed subset of [1,∞].
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Remark 4.1.1. Moreover, the maximum r(α) (possibly ∞) of S(α) is called the

approximation exponent. In particular, when r(α)< ∞, given ε > 0, there are

infinitely many rational elements p(t)/q(t) ∈Q(t) satisfying

∂eg
(√

D(t)− p(t)
q(t)

)
< (−1− r(α)+ ε)degq(t),

but only finitely many satisfying

∂eg
(√

D(t)− p(t)
q(t)

)
< (−1− r(α)− ε)degq(t).

For a quadratic irrational α =
√

D(t) ∈Q((1/t)), where D(t) is a polyno-

mial of degree 2d with rational coefficients, we have:

Proposition 4.1.2. Any polynomial D(t) ∈ Q[t] of even degree 2d and with

leading coefficient a square in Q, and any p and q ∈Q[t], satisfy the following

inequality

∂eg
(√

D(t)− p(t)
q(t)

)
≥−2degq(t)−d. (4.1)

Proof. Recall from Proposition 2.4.3 that the convergents of α give the best

rational approximation of it. Hence it suffices to show the inequality holds

when p(t)/q(t) is a convergent of α . Further recall Theorem 2.3.7, which

states that

∂eg
(

α− ph(t)
qh(t)

)
=−2degqh(t)−degah+1(t),

where ah+1 is a partial quotient of
√

D(t) and ph(t)/qh(t) its convergent. The

proof is then an immediate consequence of the fact that 1≤ degah(t)≤ d.

Hence, we have that S(
√

D(t)) = 1.

A direct generalisation of this proposition to algebraic power series of

any degree and the function field equivalent of Liouville’s theorem is given by

Mahler in [23]. We say α ∈Q((1/t)) is algebraic if it is algebraic over the field
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of rational functions Q(t). Furthermore, the degree of an algebraic element

α ∈Q((1/t)) is defined to be [Q(t)(α) : Q(t)], the degree of the field extension

generated by α . We now state and prove a slightly different form of Mahler’s

result, giving an explicit form for the right-hand side of the inequality for the

degree of α− p(t)/q(t).

Theorem 4.1.3. Suppose α ∈Q((1/t)) is algebraic of degree M ≥ 2 over Q[t].

Then all polynomials p(t),q(t) ∈Q[t] satisfy

∂eg
(

α− p(t)
q(t)

)
≥−M degq(t)− (M−1)∂eg α−F,

where F denotes the maximum degree of the coefficients of the minimal poly-

nomial of α over Q[t].

Proof. Suppose for a contradiction, that there exists some α ∈Q((1/t)) with

minimal polynomial f = ∑M
i=0 fiX i ∈Q[t][X ] over Q[t], such that there exists a

pair of polynomials p,q ∈Q[t], satisfying

∂eg
(

α− p(t)
q(t)

)
<−M degq(t)− (M−1)∂eg α−F,

where F = maxi∈[0,M] deg fi. Then, there exists B = B(α) of degree less than

−(M−1)∂eg α−F such that

α− p(t)
q(t)

=
B

qM(t)
. (4.2)

Then

qM(t)
(

f
(

α− B
qM(t)

)
− f (α)

)
= qM(t) f

(
p(t)
q(t)

)
.

Observe that ∂eg RHS ≥ 0. The degree of the LHS requires some further
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computation:

LHS = qM(t)
M

∑
i=0

fi

((
α− B

qM(t)

)i

−α i

)

= qm
M

∑
i=0

i

∑
j=1

fi

(
i
j

)(
− B

qM(t)

) j

α i− j

= qM
M−1

∑
k=0

(
M−k

∑
j=1

fk+ j

(
k+ j

j

)(
− B

qM(t)

) j
)

αk.

We can then bound the degree of the LHS, by maximising the degree of the

above expression. That is

∂eg LHS≤ max
0≤k≤M−1
1≤ j≤M−k

M degq(t)+deg( fk+ j)+ j∂eg B−M j degq(t)+ k∂eg α

≤ ∂eg B+(M−1)∂eg α +F < 0.

To get from the first to the second line we use the fact that ∂eg B≤M∂eg q(t),

which is a consequence of (4.2), together with ∂eg (α− p(t)/q(t)) ≤ 0. And

the final inequality follows from the definition of B and yields the desired

contradiction.

As a consequence, we have that for α ∈ Q((1/t)) algebraic of degree M,

S(α)⊂ [1, M−1].

Furthermore, we have S(α) = 1, precisely when an equivalent of Roth’s

theorem holds. For fields of power series with coefficients in Q, Uchiyama [43]

proved the following.

Theorem. (Uchiyama) For α ∈Q((1/t)) algebraic of finite degree, there exist

only finitely many polynomials p,q ∈Q[t] satisfying

∂eg
(

α− p
q

)
<−(2+ ε)degq,

for a given ε > 0.

The proof, given by Uchiyama, uses methods analogous to those over
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number fields, and is in a sense ineffective. Both Wang in [45] and Ru in [39]

provide an effective Roth’s theorem.

Moreover, the approximation exponent problem for α ∈Q((1/t)) is there-

fore resolved. For fields of formal Laurent series with coefficients in finite fields,

it is ongoing, studied by Lasjaunias in [19] and Schmidt in [41].

We now proceed with our investigation into the accuracy of the rational

approximations of α ∈Q((1/t)), by studying the analogue of the approxima-

tion constant and its corresponding spectrum.

4.2 Lagrange constant and its spectrum
If we consider all non-rational α ∈Q((1/t)) collectively, then the inequality

∂eg
(

α− p
q

)
≤−2degq−1,

satisfied by infinitely many polynomials p and q ∈ Q[t], cannot be improved.

However, given a specific non-rational Laurent series α , we can sometimes

sharpen the bound. This motivates the following definition.

4.2.1 Lagrange constant

Definition 4.2.1. Given α ∈ Q((1/t)), we define the approximation (La-

grange) constant, l(α) to be the supremum over all integers k such that

∂eg
(

α− p
q

)
≤−2degq− k

is satisfied by infinitely many polynomials p and q with coefficients in Q.

Remark 4.2.1. From corollary 2.4.1, the inequality ∂eg (α− p/q) < −2∂eg q

is satisfied only by the convergents of α , say ph/qh. By Theorem 2.3.7, the left

hand-side is simply equal to −2∂eg qh−∂eg ah+1, where ah+1 is a partial quo-

tient of α . Thus we can substantially simplify the calculation of the Lagrange
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constant, by using the formula

l(α) = limsup
h→∞

∂eg ah.

Example 4.2.1. Recall example 2.2.3. For D = (at +b)2 + c, with a,b,c ∈Q

and ac ̸= 0

√
D =

√
(at +b)2 + c =

[
at +b,

2
c
(at +b), 2(at +b)

]
.

Notice that all partial quotients have degree 1. Therefore l(
√

D) = 1 for D a

square-free quadratic polynomial with rational coefficients.

For more interesting examples of Lagrange constants we need to find

α ∈Q((1/t)), such that degah = d > 1, for infinitely many h.

Theorem 4.2.1. For a,b,c ∈Q[t], we have

1.
√

a2 +1 = [a, 2a];

2.
√

a2 + c = [a, 2b, 2a], if a = bc.

Proof. Observe that 1. is a consequence of 2., if we take b = a. Hence it

suffices to prove the second result. Suppose we are given the continued fraction

expansion [a, 2b, 2a] = α ∈Q((1/t)). This is equivalent to the expression

α = a+
1
β
, where

β = 2b+
1

2a+
1

β

.

After rearranging and simplifying the above, we get the following quadratic

equation in β :

aβ 2−2abβ −b = 0,



4.2. Lagrange constant and its spectrum 70

therefore

β =
ab+

√
a2b2 +ab
a

.

Observe that here we pick β to be the solution which has the highest degree,

by convention, mimicking what happens in the number fields case where we

always pick the positive root. Therefore

α = a+
a

ab+
√

a2b2 +ab
× ab−

√
a2b2 +ab

ab−
√

a2b2 +ab

=

√
a2 +

a
b

=
√

a2 + c, where a = bc.

Moreover, if we had picked the other root of the equation then α =−
√

a2 + c.

Example 4.2.2. Let d be a positive integer. Then Theorem 4.2.1 gives us the

following examples

1.
√

t2d + t l = [td,2td−k,2td], for 0≤ k < d;

2.
√

t2d + td = [td,2td].

Theorem 4.2.2. Let d be a positive integer, then

1. for D = t2d + tk, where 0≤ k < d, the continued fraction expansion of
√

D

has partial quotients ah with

degah =

d, if h is even

d− k, if h is odd.

2. for D = t2d + td, the continued fraction expansion of
√

D has partial

quotients ah of degree d for all h≥ 0.

Furthermore, l(
√

D)= d for any of the polynomials D described in the statement

of the theorem.
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Proof. Since D ∈ Q[t] has even degree,
√

D ∈ Q((1/t)), and hence it has an

infinite continued fraction expansion. From part 2 of example 4.2.2, we see

that degah = d, for all h, and part 1 of example 4.2.2 gives

degah =

d, if h is even

d− k, if h is odd.

Finally, remark 4.2.1 says l(α) = limsuph→∞ ∂eg ah, and since d− k < d, we

conclude l(
√

D) = d for both parts.

We have seen that for periodic continued fractions, computing Lagrange

constants is quite easy. However, most non-rational α ∈ Q((1/t)) have non-

periodic continued fraction expansions. As a matter of fact, Zannier and

Masser showed in [28] that for most 1-dimensional families of polynomials

D(t) of degree 2d > 6, there are only finitely many such that
√

D(t) has a

periodic continued fraction expansion. So it is of interest to us to compute

l(
√

D), for
√

D with non-periodic continued fraction. Equivalently, it suffices

to understand the degrees of the partial quotients an for all n. For a general

algebraic function, not much is known, since this question is closely related to

a strong version of Roth’s theorem over function fields. However, if we restrict

α to be a quadratic irrational, we have results of Zannier and his students.

Below we present a short survey of what is known, together with what the

implications for the Lagrange constant are.

Proposition 4.2.3. (Zannier) If D(t) is a rational non-Pellian polynomial (not

necessarily square-free) of even degree 2d, with d ≤ 3, or such that y2 = D(t)

has genus 0, then either
√

D(t) has a periodic continued fraction or there are

only finitely many partial quotients with degan > 1.

However, already for d = 4 there is an example due to Merkert [29] for

which we have infinitely many partial quotients of degree 2.
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Example 4.2.3. The polynomial

D(t) = t8− t7− 3
4

t6 +
7
2

t5− 21
4

t4 +
7
2

t3− 3
4

t2− t +1

is such that
√

D has a non-periodic continued fraction expansion, with infinitely

many partial quotients of degree 2. In particular, the degrees of the quotients

follow the pattern 4,1,1,2,1,1,1,1,1,1,1,1,2. Hence l(
√

D) = 2.

Furthermore, the fact that Merkert’s example exhibits a periodic pattern

is not a coincidence. In fact Zannier [47] proved:

Theorem 4.2.4. (Zannier) For a polynomial D(t) ∈ C[t], non-square and of

even degree, the sequence of the degrees of the partial quotients of
√

D(t) is

eventually periodic.

The most common case is for all degrees to be eventually 1 (or eventually

constant). For example, if we concentrate on polynomials that have a square

factor, say of the form ∆(t) = F2D(t), where D(t) is not a square and of even

degree, then Theorem 5 of Malagoli in [24] states the following:

Theorem 4.2.5. (Malagoli) For a non-square polynomial D(t) ∈ k[t] of even

degree, with leading coefficient a square in k, there exist F(t) ∈ k[t] such that

all but finitely many of the partial quotients of F
√

D(t) have degree 1.

Furthermore, it is a theorem of Zannier in [47], that for D(t)∈C[t], square-

free and non-Pellian of degree 2d, then all partial quotients of
√

D(t) are of

degree bounded above by d/2.

However, for non-Pellian polynomials with a square factor, this is no

longer true. Using a remark of Zannier in [47], together with the result in

section 3.4, we showcase a method of constructing polynomials of the form

∆(t) = F2D(t) with l(
√

∆(t)) being at least deg∆(t)/4.

Theorem 4.2.6. Suppose D(t) ∈ Q[t] is of degree 2d, and its corresponding

Pell’s equation has non-trivial polynomial solutions (un(t),vn(t))n∈Z. Moreover,



4.2. Lagrange constant and its spectrum 73

let F(t) ∈ Q[t] of degree f < d/3, such that F(t) ∤ vn(t) for any n ∈ Z. Then

l(F
√

D)> ( f +d)/2.

Remark 4.2.2. It is worth noting that for a fixed D(t) ∈ Q[t], a square in

Q((1/t)), there are only finitely many polynomials of fixed degree, that divide

vn(t), for some n, therefore such polynomials F exist.

Proof. Suppose D is a Pellian polynomial of degree 2d, with (un(t),vn(t))n∈Z

solving its corresponding Pell’s equation. We have seen that there are only

finitely many polynomials F of a fixed degree f , that divide vn(t) for some

n. Furthermore, if we can pick F , not a factor of vn(t), then the polynomial

∆(t) = F2D(t) ∈ Q[t] of degree 2δ is not Pellian, and therefore by Lemma

3.4.2 and Abel’s theorem F
√

D(t) has a non-periodic continued fraction. We

further impose the condition d > 3 f on the degrees of D(t) and F(t). Since

D(t) is Pellian, its continued fraction is periodic, and it has infinitely many

convergents p/q with corresponding partial quotient of degree d. That is

∂eg (p2−Dq2) = d−degan = 0.

Moreover, observe that

deg
(
(F p)2−F2Dq2)= degF2 +deg(p2−Dq2) = 2 f < d ≤ δ −1.

Therefore, by Proposition 2.4.4 F p(t)/q(t) is a convergent for
√

∆(t). Thus its

corresponding partial quotient, ai(t), satisfies:

degai(t) = δ −deg
(
(F p)2−F2Dq2)= δ −2 f = d− f >

δ
2
.

Observe that there are infinitely many convergents p/q of
√

D(t), with cor-

responding partial quotients of degree d, hence there will be infinitely many

convergents F p/q of
√

∆(t), with corresponding partial quotients of degree

bigger than δ/2. Consequently for these examples l(
√

∆(t))> δ/2.
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4.2.2 The Lagrange spectrum and its realisations
Over the real numbers, the collection of Lagrange constants for all real but not

rational numbers describes the so-called Lagrange spectrum. Analogously, in

the setting of formal Laurent series we make the following definition.

Definition 4.2.2. The Lagrange spectrum over Q((1/t)) is defined to be

L := {l(α) : α ∈Q((1/t)) , not rational}.

As an easy consequence of Theorem 2.3.7 we can compute the spectrum,

and the polynomials described in theorem 4.2.2 provide an example for each

l ∈L .

Corollary 4.2.7. The Lagrange spectrum of Q((1/t)) is equal to N∪{∞}.

Remark 4.2.3. For us, the natural numbers N do not include 0.

Proof. For each positive integer n, there exists α ∈Q((1/t)) such that l(α)= n.

Just take α to be one of the square roots described in Theorem 4.2.2.

Observe that α ∈ Q((1/t)), not a rational function, with a continued

fraction expansion [a0, a1, · · · , αh+1], then from (2.1) and Proposition 2.3.2 it

follows the identity

α− ph

qh
=

(−1)h

q2
h

(
αh+1 +

qh−1
qh

) .
Hence ∂eg (α− ph/qh)+2∂eg qh =−∂eg (αh+1 +qh−1/qh), and Lagrange con-

stant is given by l(α) = limsuph→∞ ∂eg (αh+1 +qh−1/qh). Furthermore

αh+1 = [ah+1, ah+2, · · · ] and qh−1

qh
= [0, ah, ah−1, · · · , a1],

where each ai ∈Q[t] has positive degree. This observation, in a similar fashion

to what happens over the real numbers, prompts an alternative realisation of

Lagrange constant:
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Definition 4.2.3. Given a doubly infinite sequence of polynomials with coef-

ficients in Q of positive degree G = · · · , g−1, g0, g1, · · · , we define

λi(G) := [gi, gi+1, · · · ]+ [0, gi−1, gi−2, · · · ].

Furthermore, let

L(G) := limsup
i∈Z

∂eg λi(G).

We now show that the two definitions indeed coincide.

Theorem 4.2.8. The Lagrange spectrum L is equal to

L := {L(G) : G is a doubly infinite sequence of non-constant polynomials} .

Proof. For α ∈Q((1/t))/Q(t), with a continued fraction expansion [a0, a1, · · · ],

let

G = · · · ,a1, a0, a1, · · ·

then L(G) = limsupi→∞ ∂eg λi(G) = limsupi→∞ degai. Furthermore, from

Theorem 2.3.7, we know that l(α) = limsupi→∞ degai. Therefore, l(α) ∈

{L(G) : G as above}.

For the converse, let G be a doubly infinite sequence as in the definition.

Then L(G) is either limsupi→+∞ ∂eg λi(G) or limsupi→−∞ ∂eg λi(G). In the first

case we take α = [g0, g1, · · · ] and in the latter case we take α = [g0, g−1, · · · ].

Then L(G) ∈ L.

Over the real numbers, the role of G is played by doubly infinite sequences

of positive integers, which were first introduced by Markov in [26]. He defined

these objects to show that the Lagrange spectrum is contained in another

famous spectrum, called the Markov spectrum, consisting of numbers repre-

sented by binary quadratic forms. Furthermore, using techniques of Markov it
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has been shown that for numbers below 3 the two spectra coincide. We there-

fore proceed by investigating the analogy of Markov spectrum in the setting

of formal Laurent series.



Chapter 5

Binary quadratic forms and the

Markov spectrum

Binary quadratic forms are homogeneous polynomials of degree 2, in two vari-

ables whose general theory, for coefficients in the real numbers, was developed

by Lagrange, Legendre, and Gauss. A famous example is q(x,y) = x2−Dy2,

where asking whether 1 is representable by q, is equivalent to looking for in-

teger solutions of Pell’s equation for D. The question of representations by

binary quadratic forms is thus of great importance, and, is fundamental for

the definition of the Markov spectrum.

In the first part of this chapter, we lay down the general theory of indefinite

binary quadratic forms with coefficients in Q((1/t)). Since we could not find

them in the literature, we spend some time proving relevant properties. We

discuss the equivalence of binary quadratic forms, in particular showing that

every such form is equivalent to a reduced one, and that equivalent forms can

be put in a chain.

The latter part concentrates on the representation of elements of Q((1/t))

by binary quadratic forms. We obtain results analogous to those over the real

numbers, for example that two equivalent forms represent the same elements.

This leads us to the classical definition of the Markov spectrum, M . In order

to describe M fully, we prove it is equivalent to a different set connected to

doubly infinite sequences of non-constant polynomials. The pay off comes in
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the form of M = N∪ {∞}, and is in complete contrast to the complicated

structure of the Markov spectrum for real numbers.

5.1 Binary quadratic forms over Q((1/t))
To set the scene for the definition of the Markov spectrum we need to first

develop the theory of binary quadratic forms in the setting of formal Laurent

series in 1/t.

Definition 5.1.1. A binary quadratic form over Q((1/t)) is defined to be an

expression

Q = Q(X ,Y ) = (A,B,C) := AX2 +BXY +CY 2,

where A,B,C ∈Q((1/t)), not all rational functions in t. We define the discrim-

inant to be D = B2−4AC, which is also an element of Q((1/t)).

Definition 5.1.2. We call a binary quadratic form (A,B,C) indefinite, if the

discriminant D is a square in Q((1/t)). From Lemma 2.2.2, this is precisely

when D is a polynomial of even degree and with leading coefficient a rational

square.

For an indefinite binary quadratic form Q(X ,Y ), X−ωY is a factor, where

ω is a root of

Aω2 +Bω +C = 0.

We define the first and second roots to be

f :=

√
D−B
2A

s :=
−
√

D−B
2A

, (5.1)

respectively. Furthermore, assuming A ̸= 0 and f ,s /∈Q(t), the Laurent series

for f ,s and
√

D uniquely determine A,B,C. Observe that f and s are both in

Q(t) if and only if A,B and C are all rational functions in t and D is a perfect

square.
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Suppose we substitute

x = αX +βY y = γX +δY, (5.2)

with α, β , γ, δ ∈Q[t] not all 0, into q(x,y). This takes the binary quadratic

form q(x,y) to the binary quadratic form Q(X ,Y ). We can also use the matrix

form

H =

α β

γ δ

 ,

with the convention that applying the matrix to a binary quadratic form is

the same as applying the linear transformation (5.2) to it.

Definition 5.1.3. We say that two forms q and Q are equivalent if such a

matrix H exists and det(H) =±1.

Furthermore, we say that q and Q are properly equivalent if detH = 1, and

improperly equivalent if detH =−1.

Remark 5.1.1. Observe that equivalence (proper equivalence) is an equivalence

relation. However improper equivalence fails the transitive property.

Proposition 5.1.1. The form q = (a,b,c) is transformed into the form Q =

(A,B,C) via H =

α β

γ δ

 ∈GL2 (Q[t]), if and only if their first roots f and F

and their second roots s and S, are connected by the relations

f =
αF +β
γF +δ

and s =
αS+β
γS+δ

.

The proof consists of a computation analogous to the one over the real

numbers, see [11].



5.1. Binary quadratic forms over Q((1/t)) 80

5.1.1 Reduced indefinite binary quadratic forms
Definition 5.1.4. The indefinite binary quadratic form Q = (A,B,C) is called

reduced if

∂eg f < 0 < ∂eg s, and f ̸= 0.

From (5.1), this is equivalent to

∂eg (
√

D−B)< ∂eg (A)< ∂eg (
√

D+B), and
√

D ̸= B.

Proposition 5.1.2. If q = (A,B,C) is reduced, then so is Q = (C,B,A).

Proof. Consider the transformation

0 1

1 0

 taking q to Q, and in particular

the roots ( f ,s) to (F,S) =
(

1
s ,

1
f

)
. Since q is reduced, then ∂eg f < 0 < ∂eg s.

Hence ∂eg F =−∂eg s < 0, and ∂eg S =−∂eg f > 0.

Analogously to the real case, every binary quadratic form q is equivalent

to a reduced one. However the reduction algorithm for q with coefficients in

Q((1/t)) is different.

Theorem 5.1.3. An indefinite binary quadratic form is properly equivalent to

a reduced one.

Proof. Let q= (a,b,c) = ax2+bxy+cy2, with a,b,c∈Q((1/t)), be an indefinite

binary quadratic form of discriminant D ̸= 0. It has first and second root

f = (
√

D−b)/2a and s = (−
√

D−b)/2a, respectively. We will first show that

q is either a reduced form or is properly equivalent to a binary quadratic

form with a first root of non-negative degree. Suppose that the degree of f is

negative, then either q is already reduced or ∂eg s≤ 0. If we are in the latter

case, apply the transformation

 0 1

−1 0

. Then, q is properly equivalent to an

indefinite binary quadratic form with roots −1/ f and −1/s, both of positive

degree. Hence q is properly equivalent to a binary quadratic form with roots

(φ,σ), such that ∂eg φ ≥ 0.
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We next apply the transformation

1 h

0 1

 with h = ⌊φ⌋ ∈ Q[t]. This

takes the roots (φ,σ) to (F,S), where F = {φ} and S = σ −h.

Now if ⌊φ⌋ ̸= ⌊σ⌋, then ∂eg F < 0 and ∂eg S > 0, and hence q is properly

equivalent to a reduced form.

If ⌊φ⌋ = ⌊σ⌋, then consider the continued fraction expansion φ =

[a0, a1, · · · ] and σ = [b0, b1, · · · ]. Pick the smallest m such that am ̸= bm,

m > 0, then we have

φ = [a0, a1, · · · , am−1, fm] and σ = [a0, a1, · · · , am−1, sm].

Since am ̸= bm, then fm ̸= sm, and in particular ⌊ fm⌋ ̸= ⌊sm⌋. Observe that

the convergents for φ and σ are the same up to and including the (m− 1)st

term. Then the transformation

pm−1 pm−2

qm−1 qm−2

 takes (φ,σ) to ( fm,sm). Fur-

thermore, this matrix has polynomial entries and is of determinant (−1)m−2,

i.e. 1 or −1 depending on the parity of m. Apply(−1)m h

0 1

 with h = ⌊ fm⌋.

This takes ( fm,sm) to (F,S), where F = (−1)m{ fm} has negative degree

and S = (−1)m(sm− h) has non-negative degree. Since ⌊sm⌋ ̸= ⌊ fm⌋, ∂eg S is

positive, and the new quadratic form is reduced and properly equivalent to

q.

5.1.2 Chain of reduced forms
All of the results in this section are the direct analogue to the case over the real

numbers and can be found in [11]. We follow the same approach as Dickson,

however the proofs differ in some details - in particular in the need of lemma

5.1.7.

Definition 5.1.5. Two reduced binary quadratic forms with coefficients in
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Q((1/t)), Q = (A,B,C) and q = (C,b,c), are called neighbours if they are prop-

erly equivalent and B+ b = 2PA, for some polynomial P ∈ Q[t]. Further, we

call the form q right neighbouring form for Q; and Q a left neighbouring form

for q.

Theorem 5.1.4. Every reduced indefinite binary quadratic form has a unique

right neighbouring form.

Proof. Let Q = (A,B,A1) be an indefinite reduced binary quadratic form of

discriminant D. The transformation ∆ =

 0 1

−1 δ

, with δ ∈ Q[t] to be de-

termined later, takes Q to the equivalent form Q1 = (A1,B1,A2), such that

B1 =−B−2δA1 and A2 is such that D = B2
1−4A1A2. Furthermore,

f ∆−→ F = δ − 1
f

s ∆−→ S = δ − 1
s
.

Since Q is reduced, ∂eg f < 0< ∂eg s. Take δ = ⌊1/ f ⌋ ∈Q[t], which has positive

degree. Then ∂eg F = ∂eg {1/ f} < 0 and ∂eg S = ∂eg δ −1/s = ∂eg δ > 0,

i.e. Q1 is reduced. Observe that if δ ̸= ⌊1/ f ⌋, then ∂eg F > 0. Hence Q1 is

reduced only if δ is chosen to be ⌊1/ f ⌋.

Corollary 5.1.5. Every reduced form has one and only one reduced left neigh-

bouring form.

Proof. If (A,B,A1) is reduced, then (A1,B,A) is reduced as well by Proposition

5.1.2. From the theorem above, there is a unique reduced right neighbour-

ing form (A,B1,A2). Then by Proposition 5.1.2, (A2,B1,A) is also reduced.

Moreover, it has (A,B,A1) as its unique right neighbouring form.

Therefore, given a reduced indefinite binary quadratic form Q of discrim-

inant D ̸= 0, we can construct a chain of equivalent reduced indefinite binary
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quadratic forms of the same discriminant, say

· · · ,Φ−1,Φ0,Φ1, · · · ,

where Φi =
(
(−1)iAi, Bi, (−1)i+1Ai+1

)
and Φ0 = Q. The transformation ∆i = 0 1

−1 δi

 takes Φi to Φi+1. Furthermore, we have the relation Bi +Bi+1 =

2giAi+1, where gi = (−1)iδi.

Let

fi =

√
D−Bi

(−1)i2Ai
and si =

√
D+Bi

(−1)i+12Ai

be the first and second roots of Φi, and define Fi := (−1)i/ fi and Si :=

(−1)i+1/si. Then

Fi =

√
D+Bi

2Ai+1
and Si =

√
D−Bi

2Ai+1
,

with ∂eg Fi > 0 > ∂eg Si, since the Φi are reduced. From the fact that ∆i takes

Φi to Φi+1, we know that their roots are related by

fi+1 = δi−
1
fi

and si+1 = δi−
1
si
. (5.3)

Multiplying both by (−1)i+1 and using the definition of Fi, Si and gi, we

get

Fi = gi +
1

Fi+1
and Si+1 =

1
gi +Si

.

Hence

Fi = [gi, gi+1, · · · ] and Si = [0, gi−1, gi−2, · · · ].
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Using properties of continued fractions, we obtain

1
f0

= F0 = [g0, g1, . . . , gi, Fi+1] (5.4)

(−1)i+1si =
1
Si

=

[
gi−1, gi−2, · · · , g0,

1
S0

]
. (5.5)

Observe that

Fi +Si =

√
D

Ai+1
= [gi, gi+1, · · · ]+ [0, gi−1, gi−2, · · · ]. (5.6)

Theorem 5.1.6. Two properly equivalent reduced indefinite binary quadratic

forms belong to the same chain.

Proof. Let q and Q be reduced indefinite binary quadratic forms with co-

efficients in Q((1/t)) and discriminant D ̸= 0. Suppose the transformation

H =

α β

γ δ

 ∈ SL2(Q[t]) makes them properly equivalent. Furthermore,

the entries of the transformation H satisfy degα < degβ , degγ < degδ and

degβ < degδ which will be shown in Lemma 5.1.7, after the proof.

Now consider the continued fraction expansion of δ/β = [a0, a1, · · · , ai],

and its (i−1)st convergent pi−1/qi−1 = [a0, a1, · · · , ai−1]. Since degβ < degδ ,

the polynomials ai have positive degree for all i. Moreover if i is odd, Propo-

sition 2.3.4 implies that the pair (qi−1, pi−1) is the unique non-zero solution

over Q[t] to δx−βy = 1, such that ∂eg x < ∂eg β and ∂eg y < ∂eg δ . How-

ever, from the determinant of H, αδ − βγ = 1, and from Lemma 5.1.7 we

have degα < degβ , degγ < degδ . Hence (α,γ) is also a solution and thus

γ/α = [a0, a1, · · · , ai−1].

Let F ∈Q((1/t)) be the first root of Q, and consider the continued fraction

expansion

[
a0, a1, · · · , ai,

1
F

]
.

Using the convergents correspondence (2.1), together with the fact that δ/β =
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[a0, a1, · · · , ai], we get

[
a0, a1, · · · , ai,

1
F

]
=

δ
F + γ
β
F +α

.

Furthermore, since H sends q to Q, by Proposition 5.1.1 it also connects their

corresponding first roots f and F in the following way

1
f
=

δ
F + γ
β
F +α

=

[
a0, a1, · · · , ai,

1
F

]
. (5.7)

Observe that since Q is reduced, we know that ∂eg F < 0, and in particular

∂eg 1/F > 0, and all other partial quotients a j are of positive degree. Thus

(5.7) uniquely describes 1/ f up to the ith partial quotient in its continued

fraction expansion.

On the other hand for any chain of reduced forms (Φ j) j∈Z, we have shown

(5.4):

1/ f0 = F0 = [g0, g1, · · · , gi, Fi+1],

where f0 is the first root of the form Φ0, and Fi = (−1)i+1/ fi+1, where fi+1 is

the first root of the form Φi+1. So consider the chain of forms, where q is Φ0.

This implies that f = f0, and from the uniqueness of the expansion of 1/ f , we

must have g j = a j for all 0≤ j ≤ i and F = 1/Fi+1 = (−1)i+1 fi+1 = fi+1, since

i is odd. In particular this proves that F , the first root of Q, is also the first

root of the form Φi+1 in the chain where Φ0 = q.

It remains to show that the second root si+1 of Φi+1 is equal to S (the

second root of Q), given the second root s0 of Φ0 is equal to s (the second root

of q). The relations for the second roots si+1 of the chain forms given in (5.12)

state

(−1)i+2si+1 =
1

Si+1
=

[
gi, gi−1, · · · , g0,

1
S0

]
⇒−si+1 = [ai, ai−1, · · · , a0,−s] ,
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since i is odd, s = s0 and g j = a j for all 0≤ j≤ i. Now, ∂eg s is positive, so this

expansion is unique up to the term a0. Furthermore, from Proposition 2.3.1

applied to the continued fraction of δ/β , we know that

δ
γ
= [ai, ai−1, · · · , a0] and β

α
= [ai, ai−1, · · · , a1] .

Hence from the convergents correspondence, we have

−si+1 = [ai, ai−1, · · · , a0,−s] =
−sδ +β
−sγ +α

=−S.

The final equality follows from s and S being connected via H. Therefore, S is

equal to the second root of the form Φi+1 in the chain with Φ0 = q. Namely, q

and Q are in the same chain. The case when i is even is identical, but instead

we use the fact that (−qi−1,−pi−1) = (α,γ) provides the unique solution to

the equation δx−βy = 1.

Lemma 5.1.7. If two distinct reduced indefinite binary quadratic forms of

the same discriminant D ̸= 0 are properly equivalent via the transformationα β

γ δ

, then

degα ≤ degβ , degγ < degδ , and degβ < degδ . (5.8)

Proof. Since q and Q are properly equivalent, αδ = βγ + 1. We proceed by

case analysis:

Case i. Suppose degαδ < 0. Since α, δ ∈Q[t], H is one of the following

 0 ±1

∓1 δ

 or

 α ±1

∓1 0

 .
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If we are in the latter case, consider H−1 =

 0 ±1

∓1 α

, taking Q

to q. The matrix H connects the roots by −δ = 1
f + F , hence

degδ = ∂eg 1/ f > 0; and since degα < 0 and degβ = degγ = 0, the con-

ditions are satisfied. If H =

 α ±1

∓1 0

, the conditions are thus satisfied

for H−1.

If βγ = 0, then H is one of the following±1 β

0 ±1

 or

±1 0

γ ±1

 .

The first transformation connects the first roots f and F , by f −F = β ,

and since the degrees of both f and F are negative, β = 0, i.e. H is the

identity. For the latter matrix, consider the second roots s and S. Then
1
s = γ + 1

S , and since s and S are of positive degree, we must have γ = 0,

and H is the identity matrix. However, q ̸= Q, so we can assume that

βγ ̸= 0.

Case ii. If degαδ ≥ 0 and βγ ̸=±1. Then deg(βγ +1) = degβγ ≥ 0. Hence

degβ +degγ = degα +degδ (5.9)

and

degα < degβ ⇔ degγ < degδ (5.10)

(a) Suppose degα < degδ , then (5.9) implies degβ +degγ < 2degδ .

• if degβ = degγ , then degβ < degδ and degγ < degδ . Then

from (5.10) degα < degβ .

• if degγ < degβ , then (5.10) implies that degγ < degδ and
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degα < degβ . Furthermore, under H, the first roots satisfy

1
f
=

γ +δ/F
α +β/F

and since ∂eg f < 0, we must have ∂eg (γ +δ/F)> ∂eg (α +β/F).

Moreover, degγ < degδ +∂eg 1/F , since ∂eg 1/F > 0. Hence

∂eg (γ +δ/F) = degδ +∂eg
1
F

> ∂eg (α +β/F)≥ ∂eg
β
F
.

The latter inequality follows from ∂eg β
F > degβ > degα .

Therefore degδ > degβ .

• if degβ < degγ , then (5.9) implies degβ < degδ and degα <

degγ . We use the relation of the second roots under the trans-

formation H, namely

1
s
=

γ +δ/S
α +β/S

⇒ 1 =
(α

s
− γ
)
(αS+β ).

Hence ∂eg
(α

s − γ
)
=−∂eg (αS+β ). In addition, ∂eg 1/s < 0

so

∂eg
(α

s
− γ
)
= degγ =−∂eg (αS+β ).

Furthermore, degγ > degα ≥ 0, i.e. ∂eg (αS + β ) < 0.

Since α,β ∈ Q[t] and ∂eg S > 0, this can only happen if

∂eg αS = degβ . Hence degα < degβ .

(b) if degδ < degα . Consider H−1, taking Q to q. Then

H−1 =

A B

Γ ∆

=

 δ −β

−γ α


hence degA < deg∆, and the same analysis as in the above cases
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works.

(c) if degα = degδ , then 2degα = 2degδ = degβ +degγ .

• if degβ = degγ , then degα = degβ = degγ = degδ . Moreover,

consider

1 =

(
α
f
− γ
)
(αF +β ). (5.11)

Since ∂eg 1/ f > 0 and ∂eg F < 0, we have that

−degβ =−∂eg (αF +β ) = ∂eg
(

α
f
− γ
)
> degα

a contradiction.

• if degβ > degγ , then degα < degβ and degδ < degβ . From

(5.10), we have degγ < degδ and degγ < degα . Furthermore,

taking the degree of (5.11) we get

∂eg (αF +β ) =−∂eg
(

α
f
− γ
)

and since ∂eg 1/ f > 0 and ∂eg F < 0 we have

−degβ =−∂eg (αF +β ) = ∂eg
(

α
f
− γ
)
> degα.

But also, degβ > degα , hence degα < 0, i.e, α = 0 = δ , and

β =±1 = γ , but by assumption degβ > degγ , a contradiction.

• if degβ < degγ , then degβ < degα < degγ and degβ < degδ < degγ .

We next consider

1 =
(α

s
− γ
)
(αS+β ). (5.12)
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Taking degree and using ∂eg 1/s < 0 < ∂eg S, we have

degα < degγ =−∂eg
(α

s
− γ
)
=−degα−∂eg S,

i.e ∂eg S <−2degα and degα < 0. Thus α = 0, and the same

analysis as above, gives us a contradiction.

5.1.3 Representation by indefinite binary quadratic

forms
Definition 5.1.6. We say that A ∈ Q((1/t)) is represented by an indefinite

binary quadratic form Q with coefficients in Q((1/t)), if there exist polynomials

X and Y ∈ Q[t], not both zero, such that A = Q(X ,Y ). We say A is properly

represented by Q, if there exist co-prime polynomials X and Y ∈Q[t] such that

A = Q(X ,Y ).

Proposition 5.1.8. Properly equivalent binary quadratic forms represent the

same elements of Q((1/t)).

Proof. Let q and Q be two binary quadratic forms which are properly equiva-

lent via the transformation H =

α β

γ δ

 ∈ SL(Q[t]), and let M ∈Q((1/t)) be

represented by q. That is, there are some polynomials with coefficients in Q, x

and y, not both 0, such that q(x,y) = M. Then X = δx−βy and Y =−γx+αy

are both in Q[t], and Q(X ,Y ) = M. Finally, X and Y cannot both be zero, since

x and y are not both zero and the determinant of H is equal to 1. Therefore

M is also represented by Q.

Theorem 5.1.9. If the forms
(
(−1)iAi,Bi,(−1)i+1Ai+1

)
, for i ranging over

the integers, are a chain of reduced forms of discriminant D ̸= 0, a square in

Q((1/t)), then the Ai’s include all elements of Q((1/t)) of degree less than the

degree of
√

D which are properly represented by a form in the chain.
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Proof. Let M ∈ Q((1/t)) with ∂eg M < ∂eg
√

D be represented by such a

reduced form Q =
(
(−1)iAi,Bi,(−1)i+1Ai+1

)
of discriminant D in a chain.

That is, there exist polynomials x and y ∈ Q[t] not both zero, such that

(−1)iAix2 +Bixy+(−1)i+1Ai+1y2 = M. If we take α = x and γ = y, where

x and y are co-prime, then there exist β ,δ ∈ Q[t], such that αδ − γβ = 1.

Then the transformation H =

α β

γ δ

 takes Q to a properly equiva-

lent form (M,B,C) of the same discriminant D, which also represents M.

However, this form is not necessarily reduced. Consider its first and

second roots f = (
√

D− B)/2M and s = (−
√

D− B)/2M. Observe that

∂eg ( f − s) = ∂eg
√

D−∂eg M > 0. Therefore, we cannot have both the de-

grees of f and s being negative, and we can assume that ∂eg f ≥ 0, otherwise

Q is reduced. Furthermore, ⌊ f ⌋ ̸= ⌊s⌋, so we apply

1 h

0 1

, with h = ⌊ f ⌋.

This transformation sends (M,B,C) to (M,N,L), which is reduced and repre-

sents M. From Theorem 5.1.6, (M,N,L) must be one of the forms in the chain,

i.e M must appear amongst the Ai’s.

Theorem 5.1.10. Suppose Q is an indefinite binary quadratic form which

forms a chain of equivalent reduced forms Φi =
(
(−1)iAi,Bi,(−1)i+1Ai+1

)
, for

i ∈ Z. Then

inf
X ,Y∈Q[t]

(X ,Y )̸=(0,0)

∂eg Q(X ,Y ) = inf
i∈Z

∂eg Ai.

Proof. If Q is not a reduced form, then we can use the algorithm in Theorem

5.1.3 to find a properly equivalent form Q̂ that is reduced, and moreover,

since they are properly equivalent, they will represent the same elements by

Proposition 5.1.8. Thus we can assume that Q = (A,B,C) is a reduced form of

discriminant D. Then

∂eg

(√
D

A

)
= ∂eg

(√
D+B
2A

+

√
D−B
2A

)
> 0.
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In particular, A∈Q((1/t)) is such that ∂eg A < ∂eg
√

D. Additionally observe

that when investigating inf X ,Y∈Q[t]
(X ,Y )̸=(0,0)

∂eg Q(X ,Y ), it suffices to focus our atten-

tion on inf ∂eg M, where the infimum is taken over M ∈ Q((1/t)), properly

represented by Q. Hence, in order to study inf X ,Y∈Q[t]
(X ,Y )̸=(0,0)

∂eg Q(X ,Y ) we need

to only look at Laurent series M, properly represented by Q and which are of

degree less than ∂eg
√

D. By Theorem 5.1.9, these are given precisely by the

Ai’s, i.e. the first coefficients in the chain of reduced forms, where Q = Φ0.

Therefore running over i ∈ Z, yields

inf
X ,Y∈Q[t]

(X ,Y )̸=(0,0)

∂eg Q(X ,Y ) = inf
i∈Z

∂eg Ai.

5.2 The Markov spectrum over Q((1/t))

5.2.1 The classical definition

Definition 5.2.1. Let Q be an indefinite binary quadratic form of discriminant

D ̸= 0. Let m(Q) := inf X ,Y∈Q[t]
(X ,Y )̸=(0,0)

∂eg Q(X ,Y ). Then the Markov spectrum is

defined to be

M :=
{

∂eg
√

D(Q)−m(Q) : Q indefinite binary quadratic form
}
.

From Theorem 5.1.10 we can conclude that

M =

{
∂eg

√
D(Φi)− inf

i∈Z
∂eg Ai : Φi =

(
(−1)iAi,Bi,(−1)i+1Ai+1

)
chain

}
.

Similarly to the Lagrange spectrum, we can alternatively define the Markov

spectrum via doubly infinite sequences of polynomials of positive degree, G =

. . . ,g−1,g0,g1, . . . . We will use this new form of the spectrum to completely

determine M .
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5.2.2 Alternative realisation

To give some intuition on how the Markov spectrum is realised via doubly

infinite sequences, we re-examine a few identities from section 5.1. Suppose

we are given an indefinite binary quadratic form Q of discriminant D, which

forms a chain of equivalent forms

Φi =
(
(−1)iAi,Bi,(−1)i+1Ai+1

)
.

Just as in the discussion after corollary 5.1.5, we can define Fi := (−1)i/ fi and

Si := (−1)i+1/si, where fi and si are the first and second roots of Φi. Then

from (5.6), we have

Fi +Si =

√
D

Ai+1
= [gi, gi+1, . . .]+ [0, gi−1, gi−2, . . .],

where gi ∈ Q[t] have positive degree. Furthermore, by Theorem 5.1.10, the

elements of the Markov spectrum are given by ∂eg
√

D− infi∈Z ∂eg Ai. Recall

that given a doubly infinite sequence of polynomials with coefficients in Q, of

positive degree G = . . . , g−1, g0, g1, . . ., we have defined

λi(G) = [gi, gi+1, . . .]+ [0, gi−1, gi−2, . . .].

Theorem 5.2.1. The Markov spectrum M can be realised as the set

M= {M(G) : G doubly infinite sequence of gi ∈Q[t], deggi > 0},

where M(G) := supi∈Z ∂eg λi(G).

Proof. From the discussion above and (5.6), given an indefinite binary

quadratic form Q of discriminant D ̸= 0 we obtain a doubly infinite sequence

of non constant polynomials G, such that M(G) = ∂eg
√

D−m(Q). Hence

M ⊆M.

On the other hand, given a doubly infinite sequence of polynomials with
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coefficients in Q, of positive degree G = . . . , g−1, g0, g1, . . ., we consider

λi(G) = [gi, gi+1, . . .]+ [0, gi−1, gi−2, . . .] ∈Q((1/t)) .

Thus we can find an element of Q((1/t)), say Ai+1, of degree −deggi < 0, such

that λi(G) = 1/Ai+1. Let Fi = [gi, gi+1, . . .] and Si = [0, gi−1, gi−2, . . .], then

Fi +Si = 1/Ai+1. Define Bi := 2FiAi+1−1 ∈Q((1/t)) then

Fi =
1+Bi

2Ai+1
and Si =

1−Bi

2Ai+1
.

Then we consider fi := (−1)i/Fi and si := (−1)i/Si, i.e

fi =
1−Bi

2(−1)iai
and si =

1+Bi

2(−1)iai
,

where 4Ai+1ai = 1−B2
i . Furthermore, ∂eg Si < 0 < ∂eg Fi and thus ∂eg fi <

0 < ∂eg si. Therefore, fi and si are the roots of the reduced indefinite binary

quadratic form Qi =
(
(−1)iai,Bi,(−1)i+1Ai+1

)
of discriminant 1. From the

continued fraction expansion of Fi and Si we have

Fi = gi +
1

Fi+1
and 1

Si
= gi−1 +Si−1

⇒ fi+1 = δi−
1
fi

and si+1 = δi−
1
si
,

where δi = (−1)igi. Then the transformation ∆i =

 0 1

−1 δi

 sends Qi to Qi+1,

and in particular ai = Ai. Hence the forms Qi =
(
(−1)iAi,Bi,(−1)i+1Ai+1

)
are

reduced, of discriminant 1 and in a chain. From Theorem 5.1.10, we know that

infi∈Z ∂eg Ai = m(Q), where Q is an indefinite quadratic form of discriminant
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1 properly equivalent to Qi. Then

M(G) = sup
i∈Z

∂eg λi(G) = sup
i∈Z

∂eg
(

1
Ai+1

)
=− inf

i∈Z
∂eg Ai+1

=−m(Q).

Since ∂eg 1 = 0, we can conclude M⊆M .

Theorem 5.2.2. The Markov spectrum M = N∪{∞}.

Proof. From the above theorem

M =M= {M(G) : G doubly periodic sequence of gi ∈Q[t], deggi > 0}.

Furthermore, M(G) = supi∈Z ∂eg λi(G), and ∂eg λi(G) = ∂eg gi, where gi ∈Q[t]

have positive degree. The result follows.

Corollary 5.2.3. The Lagrange and Markov spectra coincide.



Appendix A

Mathematica code for

computing continued fractions

of formal Laurent series

Here we will present two small Mathematica programmes, written by the au-

thor, implementing the continued fraction algorithm for certain α ∈Q((1/t)).

Firstly, we display below the code for computing the continued fraction ex-

pansion of p/q ∈Q(t).

1 PolyPart[s_] := Module[{r = 0, i = 0},
2 While[i < Exponent[s, x] + 1,
3 r = r + Coefficient[s, x, i]*x^i ;
4 i++];
5 r]
6

7 (* computes the polynomial part of a Laurent series, ⌊α⌋ *)
8

9 RatPart[s_] := s - PolyPart[s]
10

11 (* computes the fractional part of a Laurent series, {α} *)
12

13 Invert[s_, precision_] := (x^(-Exponent[s, x])/
14 Coefficient[s, x^{Exponent[s, x]}]*
15 Series[(s*x^(-Exponent[s, x])/
16 Coefficient[s, x^{Exponent[s, x]}])^{-1},
17 {x, Infinity, precision}])[[1]]
18

19 (* computes the multiplicative inverse of a series α ∈Q((1/t)) *)
20

21 CF[p_, q_, n_, precision_] := Module[{A = {PolyPart[Series[p*q^{-1},
22 {x, Infinity, precision}][[1]]]},
23 s = RatPart[Series[p*q^{-1},
24 {x, Infinity, precision}][[1]]],
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25 i = 0},
26 While[i < n,
27 A = Append[A, PolyPart[Invert[s, precision]]];
28 s = RatPart[Invert[s, precision]];
29 i++];
30 A]
31

32 (* gives the continued fraction expansion of p/q ∈Q(t) in
33 the form [a_0, a_1, a_2,...., a_n] *)

Secondly, we display the Mathematica programme for computing the con-

tinued fraction expansion of
√

D(t), whenever D(t)∈Q[t] is of even degree and

with leading coefficient a square in Q.

1 FactorOut[D_] := {x^{Exponent[D, x]}, Apart[D/(x^{Exponent[D, x]})]}
2

3 (* it factors out the highest order term, so it can be
4 expanded to the power -1/2 *)
5

6 SquareRoot[D_, precision_] := (Sqrt[FactorOut[D][[1]]]*
7 Series[FactorOut[D][[2]]^{1/2},
8 {x, Infinity, precision}])[[1]]
9

10 (* expands the above to the power -1/2, up to the precision'ed
11 degree term*)
12

13 PolyPart[s_] := Module[{r = 0, i = 0},
14 While[i < Exponent[s, x] + 1,
15 r = r + Coefficient[s, x, i]*x^i ;
16 i++];
17 r]
18

19 (* computes the polynomial part of a Laurent series, ⌊α⌋ *)
20

21 RatPart[s_] := s - PolyPart[s]
22

23 (* computes the fractional part of a Laurent series, {α} *)
24

25 Invert[s_, precision_] := (x^(-Exponent[s, x])/
26 Coefficient[s, x^{Exponent[s, x]}]*
27 Series[(s*x^(-Exponent[s, x])/
28 Coefficient[s, x^{Exponent[s, x]}])^{-1},
29 {x, Infinity, precision}])[[1]]
30

31 (* computes the multiplicative inverse of a series α ∈Q((1/t)) *)
32

33 CF[D_, n_, precision_] := Module[{A = {PolyPart[SquareRoot[D, precision]]},
34 s = RatPart[SquareRoot[D, precision]],
35 i = 0},
36 While[i < n, A = Append[A, PolyPart[Invert[s, precision]]];
37 s = RatPart[Invert[s, precision]];
38 i++];
39 A]
40
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41 (* gives the continued fraction expansion of
√

D in
42 the form [a_0, a_1, a_2,...., a_n] *)
43

44 PolyCF[D_, n_, precision_ ] := Module[{i = 1, b },
45 b = CF[D, n, precision][[n]];
46 While[i < n,
47 b = CF[D, n, precision][[n - i]] + 1/b;
48 i++];
49 b];
50

51 (* gives the continued fraction of
√

D in the fractional
52 form up to the nth iteration *)
53

54 PolyConvergent[D_, n_, precision_ ] := Module[{i = 0, b },
55 b = CF[D, n, precision][[n]];
56 While[i < n,
57 b = Together[CF[D, n, precision]
58 [[n - i]] + 1/b];
59 i++];
60 b];
61

62 (* gives the nth convergent of
√

D *)
63

64 PolyApprox[D_, n_, precision_] := SquareRoot[D, precision] -
65 Series[PolyConvergent[D, n, precision],
66 {x, Infinity, precision}];
67

68 (* gives the difference between
√

D and its nth

69 convergent *)
70

71 DegreePolyApprox[D_, n_, precision_] := Exponent[PolyApprox[D, n, precision], x ];
72

73 (* gives the degree of the difference between
√

D and
74 its nth convergent *)
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