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Abstract

This dissertation studies the design and optimization of applying mobile edge

computing (MEC) in three kinds of advanced wireless networks, which is moti-

vated by three non-trivial but not thoroughly studied topics in the existing MEC-

related literature. First, we study the application of MEC in wireless powered

cooperation-assisted systems. The technology of wireless power transfer (WPT)

used at the access point (AP) is capable of providing sustainable energy supply

for resource-limited user equipment (UEs) to support computation offloading, but

also introduces the double-near-far effect into wireless powered communication

networks (WPCNs). By leveraging cooperation among near-far users, the system

performance can be highly improved through effectively suppressing the double-

near-far effect in WPCNs. Then, we consider the application of MEC in the

unmanned aerial vehicle (UAV)-assisted relaying systems to make better use of the

flexible features of UAV as well as its computing resources. The adopted UAV

not only acts as an MEC server to help compute UEs’ offloaded tasks but also

a relay to forward UEs’ offloaded tasks to the AP, thus such kind of cooperation

between the UAV and the AP can take the advantages of both sides so as to improve

the system performance. Last, heterogeneous cellular networks (HetNets) with the

coexistence of MEC and central cloud computing (CCC) are studied to show the

complementary and promotional effects between MEC and CCC. The small base
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stations (SBSs) empowered by edge clouds offer limited edge computing services

for UEs, whereas the macro base station (MBS) provides high-performance CCC

services for UEs via restricted multiple-input multiple-output (MIMO) backhauls

to their associated SBSs. With further considering the case with massive MIMO

backhauls, the system performance can be further improved while significantly

reducing the computational complexity.

In the aforementioned three advanced MEC systems, we mainly focus on

minimizing the energy consumption of the systems subject to proper latency

constraints, due to the fact that energy consumption and latency are regarded

as two important metrics for measuring the performance of MEC-related works.

Effective optimization algorithms are proposed to solve the corresponding energy

minimization problems, which are further validated by numerical results.
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Impact Statement

This thesis contributes to the design and optimization of mobile edge computing

(MEC) in advanced wireless communication networks, including the wireless

powered cooperation-assisted systems, the unmanned aerial vehicle (UAV)-assisted

relaying systems, and the heterogeneous cellular networks coexisting with the

central cloud computing. The research of MEC is motivated by the unprecedentedly

ever-growing mobile data generated by a large variety of mobile applications. In

order to meet the demands of massive data processing, offloading the computation

tasks to the cloud is an ideal offer for resource-limited mobile devices. Furthermore,

MEC brings the cloud closer to the edge of the network and to the end users,

which is promising to improve quality-of-service. Through integrating computing,

storage, and networking resources with the access points, computation-intensive

and latency-critical applications like unmanned driving and augmented reality can

be hosted at the edge of the network.

The attractive advantages of MEC have drawn great attention from both

the academia and industry. MEC has recently been standardized in a European

Telecommunication Standards Institute (ETSI) Industry Specification Group (ISG),

and it is also been recognized by the European 5G Infrastructure Public Private

Partnership (5G PPP) as one of the key emerging technologies for 5G networks.

However, taking full benefits of MEC still faces many challenges: i) Limited battery
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supply for mobile devices makes it difficult for them to offload massive data to

the MEC servers; ii) Weak connections for edge users may restrict their access

to the MEC resources at the access points; iii) MEC cannot entirely replace the

central cloud computing which makes it necessary to explore the cooperations with

central clouds. The research in this thesis bridges the gap to tackle these challenges

and provides pioneer optimization results from the perspective of academia. The

technology of wireless power transfer (WPT) in MEC networks is capable to

provide sustainable energy supply for end users, and the technologies of user

cooperation and UAV assistance are shown that can significantly enhance the

ability of MEC networks in dealing with computation-intensive and latency-critical

tasks. Also, it is illustrated that MEC and central cloud computing are highly

complementary and great benefits can be attained when utilizing them both.

The research in this thesis also provides theoretical supports for the develop-

ment of MEC in the industry. The advanced MEC and communication technologies

studied in this thesis are promising to be utilized in 5G networks. In fact, 5G and

MEC are inextricably linked. 5G is capable to increase speeds by up to ten times

that of 4G, whereas MEC reduces latency by bringing compute capabilities into

the radio access network (RAN). It is known that Google announced the Global

MEC (GMEC) strategy, where Google and telecommunication providers will offer

unique applications and services running at the edge delivered via the 5G networks.

Also, AWS and Verizon Communications announced a partnership that will bring

the power of the world’s leading cloud closer to mobile and connected devices at

the edge of Verizon’s 5G Ultra Wideband network.
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Chapter 1

Introduction

1.1 Background

Cloud computing as an efficient computing platform have enjoyed rapid devel-

opment over the last few decades, mainly driven by the ever-growing computing

and processing demands of various client devices. Accompanied by the massive

computing demands, higher quality requirements are also requested by users along

with the astounding advances of communication and networking technologies. To

this end, plenty of researchers and scientists have devoted to advanced techniques

that can improve the efficiency and reduce the latency of computing services.

Recently, a brightly new concept of mobile edge computing (MEC) has drawn

great attention from both the academia and industry, which is promising to provide

computing services with ultralow latency, high bandwidth, and real-time access,

through shifting the cloud computing from the remote centralized data centers to

the edge of mobile networks proximate to end users. In this section, we present

the basic background of cloud computing, mobile cloud computing (MCC), and
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MEC, and further the motivations and conditions that necessitate the shift of cloud

computing from the central to the edge of the networks.

1.1.1 Cloud Computing: A Centralized Platform for

Computing

The past few decades have witnessed the rapid advances of cloud computing

as an emerging Internet-based technology which facilitates the online computing

services for various users, including all sorts of organizations and personal devices.

As defined by National Institute of Standards and Technology (NIST): Cloud

computing is a model for enabling ubiquitous, convenient, on-demand network

access to a shared pool of configurable computing resources (e.g., networks, servers,

storage, applications and services) that can be rapidly provisioned and released with

minimal management effort or service provider interaction [1].

Cloud computing is a centralized platform, which is also known as central

cloud computing (CCC), and the shared pool of resources is also referred as the data

center or central cloud. The technology of cloud computing provides a promising

way of increasing the capacity of infrastructures and reducing the overall cost

through resource sharing, where the users can enjoy high quality of service (QoS)

with minimum cost. Hence, the main purpose of cloud computing is to use the

resources to the maximum level through centralized operations, combining them

to achieve better performance and higher efficiency. The attractive features of

cloud computing, such as scalability, inter-operability, feasibility, and pay-as-you

go service principle, speed up its further development and integration with other

advanced technologies.
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1.1.2 Mobile Cloud Computing: Integrating Cloud Computing

into Mobile Environment

The ever-growing number of mobile end-user devices along with the great amount

of processing data have driven the rising of the mobile cloud computing (MCC).

The technology of MCC integrates CCC into the mobile environment to facilitate

mobile users taking full advantages of cloud resources [2–8]. Through offloading

the computation data to the clouds, the computation tasks of mobile devices can

be addressed by using resources at cloud providers other than the mobile devices

themselves to host the execution of mobile applications. Such a cloud computing

infrastructure where data storage and processing happen outside the mobile devices

is specifically termed as ’mobile cloud’, through which the cloud computing

services can be accessed by the mobile user equipment (UEs) via the cellular core

networks. Hence, the plentiful computing resources available at the clouds can

be utilized to deliver elastic computing power and storage to support wide range

of applications for the resource-limited mobile UEs. By migrating computational

tasks from the UEs to the infrastructure-based cloud servers, MCC can improve the

performance of mobile applications and reduce the energy consumption of UEs.

1.1.3 New Computing Challenges and Opportunities for 5G

and Beyond Wireless Networks

It is well known that the latency is always a crucial performance metric for wireless

services, no matter in the first generation (1G) or the fifth generation (5G) and

beyond wireless networks. From 1G to the fourth generation (4G), the main target

the wireless systems is the pursuit of increasingly higher wireless speeds to support
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the service transition from voice-centric to multimedia-centric traffic with low

latency. By leveraging the advanced 5G technologies, such as the massive multiple-

input multiple-output (MIMO) and millimeter wave (mmWave) communications, it

is capable of achieving the wireless speeds approaching the wireline counterparts.

Hence, in light of the explosive evolution of information and communication

technology (ICT) and Internet, the mission of 5G is much more complex and

challenging beyond exploring higher transmission speed. Actually, 5G systems are

expected to support services of communications, computing, control and content

delivery (4C), and the latency requirements for all the 4C related services will

become even more stringent.

Among the 4C services, the computing requirement will become a great

challenge for 5G systems especially considering the explosively growing number of

mobile and Internet-of-things (IoT) devices. In addition, a wide range of emerging

mobile applications [9–13], from highly-interactive online gaming, virtual reality, to

smart homes and automatic driving, etc., have unprecedentedly driven the increas-

ing computing demands of UEs. One major characteristic of these applications

is that they require intensive computations, which should be accomplished with

low latency. Such computationally intensive applications easily exceed the ability

of resource-limited UEs, not to mention the fact that they will drain their power

quickly. Under this circumstance, a promising way to liberate the resources-

limited devices from heavy computation workloads is to rely on external computing

resources, either resorting to MCC or exploiting the computing resources at the

edge of the mobile networks, e.g., MEC.

Although MCC is capable of providing cloud computing services for UEs,

there exists one inherent drawback, i.e., the infrastructure-based central cloud
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servers are usually located far away from UEs. Hence, accessing the MCC services

induces excessive transmission latency, which highly aggravates the backhaul

congestion. Besides, it is easy to encounter the performance bottleneck considering

the finite backhaul capacity and the exponentially growing mobile data, and thus the

computation offloading efficiency and user experience through MCC may severely

degrade. Recently, more and more attention has been drawn to the the opportunities

provided by MEC due to its proximity to end users.

As we mentioned before, the unprecedentedly growing number of edge

devices, such as laptops, tablets, smartphones, and various wearable and sensor

devices will bring great challenges for 5G wireless networks since these devices

may require massive computing resources for operating application tasks which

may beyond their own abilities. However, the densely deployed devices also

provide some opportunities for facilitating edge computing. At every time instant,

a large number of edge devices will be idle, and thus their available computing

and storage resources can be harvested as a edge computing pool to support

the devices with resource deficits. Besides the ultra-dense user devices, a great

number of wireless access points (APs) will also be deployed to provide better

coverage and higher QoS in 5G networks. A more typical mode of MEC is that

a powerful computing server will be installed at each of the wireless AP, such as the

small-cell base stations (BSs), gateways, Wi-Fi routers, etc., which can be easily

accessed by the cellular connected or Wi-Fi connected mobile and IoT devices. The

corresponding computing servers are referred as MEC servers with certain degree

of cloud computing capabilities, and also known as edge clouds. This kind of MEC

mode is what we are focusing on in this thesis. In a word, a variety of computing

opportunities can be explored at the edge of 5G wireless networks.
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1.1.4 Mobile Edge Computing With Clouds Shifting from the

Central to the Edge

The explosion of demanding applications as well as the inherent drawback of MCC

necessitate the shift of the cloud computing services from the remote data centers

(central clouds) to the edge of the mobile networks, i.e., edge clouds, within the

radio access networks (RANs). This brightly new kind of computing mode is

well known as MEC, which exploits a new type of unified telecommunication and

micro-datacenter node able to jointly provide networking, local processing, and

storage resources for the support of novel 5G applications, such as IoT, vehicle-to-

everything (V2X), machine-type communications (MTC), and immersive media,

etc. Taking the applications of IoT as an example, MEC is a powerful computing

paradigm that can assist in providing ideal services for IoT devices. As a distributed

computing infrastructure, MEC is capable of bringing the computing capabilities

close to the distributed IoT devices. In addition, deploying a number of edge

computing nodes/servers in the IoT networks can locally collect, classify, and

analyze the raw IoT data streams by local executions, rather than transmitting

them to the cental clouds, which can significantly alleviate the traffic in the core

networks and potentially speed up the IoT big data processing and improve the user

experience.

In other words, MEC promotes to use cloud-computing facilities at the edge of

mobile networks by integrating MEC servers at the wireless APs. This paradigm of

computation offloading is motivated by proximity, ultralow latency, high bandwidth,

and real-time access to radio network information, which is widely considered as

an effective means to liberate the resource-limited UEs from heavy computation



1.2. RESEARCH MOTIVATIONS 35

workloads, e.g., [14–16]. With proximate access and distributed architectures,

MEC is well known as a promising complementary counterpart of centralized cloud

computing. In fact, MEC as one of the key enablers to shape the future advanced

wireless networks has recently been standardized in a European Telecommunication

Standards Institute (ETSI) Industry Specification Group (ISG) [17–19].1

1.2 Research Motivations

This thesis focuses on the design and optimization of MEC in three advanced

wireless communication networks, which is motivated by the following three non-

trivial but not thoroughly studied topics in the existing MEC-related literature.

• Recently, MEC has been widely used in cellular networks, focusing on

improving the energy efficiency or reducing the latency of various cellular-

based MEC systems [20–41]. In order to further task the full benefits of pow-

erful computational resources at the edges and overcome the energy-limited

drawbacks of traditional battery-based mobile devices, the technology of

wireless power transfer (WPT) has been considered as an important paradigm

to provide genuine sustainability for mobile communications [42–51]. Par-

ticularly, the form of wireless powered communication network (WPCN)

is utilized to achieve the synergy of integrating MEC with WPT [52–55].

However, the existing wireless powered MEC works do not carefully envisage

the terrible fact that WPCNs are susceptible to suffering from the so-called

“double-near-far” effect, which occurs because the farther UEs from an AP

harvest less energy and are also required to communicate in longer distances

[47–49]. To effectively resist the double-near-far effect in wireless powered
1More details of MEC and the related literature review are given in Chapter 2.
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MEC networks and improve the system performance, the technology of user

cooperation can be leveraged as a promising solution.

• The attractive advantages of unmanned aerial vehicles (UAVs), such as easy

deployment, flexible movement, and line-of-sight (LoS) connections, etc.,

have driven the extensive research on UAV-enabled wireless communications

in recent years [56–62]. Moreover, it is a great attempt to leverage the

technology of UAV in MEC systems, where the special features of UAV are

promising to achieve extra performance improvement [63–68]. Nevertheless,

the existing MEC works concentrate either on the cellular-based MEC

networks or the UAV-enabled MEC architectures, where only the computing

resources at the APs or at the UAV processing servers are utilized. In fact, it

is risky to rely solely on the APs or the UAVs to complete UEs’ computation-

intensive latency-critical tasks, considering the facts that the UEs’ wireless

fading channels accessing to the APs may be severely degraded and the

limited computing capabilities of the UAVs may be incapable of dealing

with UEs’ computation tasks. Hence, jointly leveraging the advantages of

cellular-based and the UAV-enabled MEC architectures, and considering a

UAV-assisted MEC system with cooperation between UAV and AP can make

a difference.

• Even though MEC has been regarded as a promising trend to deal with the

ever-growing mobile computing data, it cannot entirely replace the present

central cloud computing, due to the fact that edge computing is set to push

limited processing and storage capabilities at the APs close to UEs but may

be incapable of dealing with big data processing. For UEs with highly

computation-intensive tasks, the edge computing servers/clouds may be



1.3. THESIS ORGANIZATION AND MAIN CONTRIBUTIONS 37

incapable of providing them with satisfactory computing services. Under this

situation, CCC/MCC has been shown to be an effective solution. The latest

white paper from ETSI has further illustrated that central cloud computing

and edge computing are highly complementary and significant benefits can

be attained when utilizing them both [69]. However, the architecture with

the coexistence of edge and central clouds has not been thoroughly studied,

especially from the perspective of communications [14]. In conclusion, a

heterogeneous architecture consisting of both the edge servers at the small

BSs (SBSs) and central clouds connected to the macro BS (MBS) can not

only make up the drawbacks of MEC and MCC but also improve system

performance as well as user experience.

1.3 Thesis Organization and Main Contributions

Sequential to this chapter of introduction, the rest of this thesis is organized as

follows. Chapter 2 introduces some fundamental concepts and the related state-of-

the-art works. Driven by the three research motivations shown in Section 1.2, we

construct three technical chapters sequentially to deal with the problems derived

from the motivations, respectively in Chapter 3, Chapter 4, and Chapter 5. The

conclusions of this thesis are summarized in Chapter 6. And then Chapter 7 presents

the future works based on this thesis. Figure 1.1 shows the architecture of the

thesis organization. The content and contributions of the chapters following the

Introduction are summarized as follows.

Chapter 2: Fundamental Concepts and State-of-the-Art Works. In this

chapter, we present the fundamental concepts used in this thesis, and a compre-

hensive literature review is also given to demonstrate the relevant state-of-the-art



38 CHAPTER 1. INTRODUCTION

Chapter 3

MEC in Wireless Powered

Cooperation-Assisted

Systems

Chapter 1 Introduction

Chapter 2
Fundamental Concepts and 

State-of-the-Art Works

Chapter 3-5
MEC in Advanced Wireless 

Communication Networks 

Chapter 6 Conclusions

Chapter 7 Future Works

Chapter 4

MEC in UAV-Assisted

Relaying Systems

Chapter 5

MEC in Heterogeneous 

Cellular Networks with 

CCC

Figure 1.1: The figure of the thesis organization.

works.

Chapter 3: Mobile Edge Computing in Wireless Powered Cooperation-

Assisted Systems. A wireless powered cooperation-assisted MEC architecture

based on a WPCN is studied in this chapter, in which two near-far UEs are energized

by the AP through WPT. Partial computation offloading is utilized to offload part or

all of UEs’ computation tasks to the MEC server co-located at the AP. A harvest-

then-offload protocol with a block-based time division mechanism is proposed,

where the technology of cooperative communications is leveraged to overcome

the double-near-far effect in WPCNs. A low-complexity algorithm is proposed

to effectively solve the AP’s transmit energy minimization (APTEM) problem.

The numerical results not only verify that the proposed cooperative computation

offloading scheme can achieve a significant performance improvement but also

demonstrate the effectiveness of the scheme in handling computation-intensive

latency-critical tasks and resisting the double-near-far effect in wireless powered

MEC systems.
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Chapter 4: Mobile Edge Computing in UAV-Assisted Relaying Systems.

This chapter explores a UAV-assisted MEC architecture, where the computing

resources at the UAV and the AP are cooperatively utilized to help the UEs complete

their computation tasks through partial offloading. In addition, the energy-efficient

LoS transmissions of the UAV have been fully exploited since the UAV not only

serves as a mobile computing server to help the UEs compute their tasks but also

as a relay to further offload UEs’ tasks to the AP for computing. The weighted

sum energy consumption (WSEC) of the UAV and the UEs is minimized under

some practical constraints, and an alternating optimization algorithm is devised to

properly solve the problem by addressing three subproblems iteratively. Numerical

results are presented to show the optimized trajectories of the UAV under different

scenarios and the significant performance enhancement by leveraging the proposed

algorithm when compared with the existing benchmarks.

Chapter 5: Mobile Edge Computing in Heterogeneous Cellular Networks

with Central Cloud Computing. In this chapter, we study the coexistence and

synergy between the edge and central cloud computing in a heterogeneous cellular

network (HetNet) with an MBS and multiple SBSs. The SBSs are empowered

by edge clouds offering limited edge computing services for UEs, whereas the

MBS provides high-performance central cloud computing services to UEs via

restricted MIMO backhauls to their associated SBSs. An iterative algorithm based

on decomposition is proposed to solve the problem of minimizing the system energy

consumption while under the processing latency constraints at both the central and

edge networks. Numerical results show that the proposed solution can achieve

better performance than conventional schemes using edge or central cloud alone.

Also, with large-scale antennas at the MBS, the unique features of massive MIMO
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backhauls can significantly reduce the complexity of the proposed algorithm and

obtain even better performance.

Chapter 6: Conclusions. This chapter summarizes the main conclusions of

this thesis.

Chapter 7: Future Works. The future works based on this thesis are

discussed in this chapter. We first discuss some straightforward methods to extend

the work in Chapter 3 to more general settings. Then, we propose a wireless

powered MEC architecture with a cooperative UAV, which can be regarded as an

extension of the work in Chapter 4 by introducing the technologies of WPT and

time allocation, in order to further enhance the sustainability and flexibility of

the UAV-assisted MEC systems. Last, a cache-enabled multi-cell MEC scenario

is demonstrated, which is promising to address the resource allocation problems

related to both edge computing and caching.
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Chapter 2

Fundamental Concepts and

State-of-the-Art Works

2.1 Mobile Cloud Computing

Mobile devices such as smartphones, as the most effective and convenient com-

munication tools, have become an essential part of our daily life. Due to the size-

constrained and resource-limited property of mobile devices, they cannot effectively

handle the computation-intensive or latency-critical tasks, and sometimes they are

incapable to do so. To deal with the ever-increasing computation-intensive tasks

generated by a large variety of mobile applications, the concept of CCC first

emerges, which offloads these tasks to remote powerful data centers for computing,

also known as central clouds. MCC is a refined concept, which integrates CCC into

the mobile environment and facilitates mobile users to take full advantage of cloud

resources [78, 79]. MCC can be defined as a combination of mobile networks and

CCC [80,81], and it has been considered as one of the most popular tools for mobile
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users to access applications and services on the Internet.

Recent advances in virtualization and server interconnect architectures have

boosted the use of datacenter infrastructures which is widely regarded as an

enabling technology for services such as infrastructure as a service (IaaS), software

as a service (SaaS), and platform as a service (PaaS). These kinds of services

constitute the fundamental technologies behind cloud services. Based on these

technologies, a lot of attractive advantages are endowed to CCC/MCC by allowing

users to utilize infrastructures (e.g., servers, networks, and storages), softwares

(e.g., application programs), and platforms (e.g., middleware services and operating

systems) offered by cloud providers (e.g., Google, Amazon, and Salesforce) at low

cost. In addition, CCC and MCC enable users to elastically utilize resources in an

on-demand fashion.

Note that both CCC and MCC are in the vision with the centralization of

computing, storage, and network management in the clouds, referring to data

centers, backbone IP networks, and cellular core networks [4,5]. The basic function

of CCC/MCC is computation offloading, i.e., shifting intensive computation from

resource-limited UEs to powerful central cloud data centers. The cross-disciplinary

nature of MCC has attracted significant attention from computer science and

communications research communities in recent years, and extensive works on

CCC/MCC have been conducted to explore the potential of central clouds. In order

to prolong the battery lifetime of UEs and improve the computation performance,

several system architectures using various code offloading frameworks, e.g., MAUI

[7] and ThinkAir [8], were proposed. In [82], dynamic resource allocation using

virtualization technology was studied to achieve overload avoidance and green

computing by minimizing the number of physical machines. Also, a computation
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offloading algorithm was proposed in [83] to deal with multiple services in

workflow by leveraging MCC.

Although CCC/MCC can provide high-performance computing services for

mobile users, it has one inherent drawback, i.e., the central clouds are usually

located far away from users. Hence, accessing the CCC/MCC services induces

excessive transmission latency, which will definitely increase the burden of the

backhaul. Besides, it is easy to encounter the performance bottleneck considering

the finite backhaul capacity and exponentially growing mobile data, which has led to

the emergence of MEC in dealing with UEs’ computation-intensive latency-critical

tasks.

2.2 Mobile Edge Computing

The concept of MEC was firstly proposed by the ETSI in 2014, which was defined

as a new platform that “provides IT and cloud computing capabilities within the

RAN in close proximity to mobile subscribers” [17]. In other words, the rationale

behind MEC is that the UEs’ computation-intensive latency-critical tasks can be

offloaded and completed at the edge of wireless networks by deploying edge cloud

servers, i.e., the MEC servers, at the wireless APs, so as to liberate the resource-

limited UEs from heavy computing workloads and prolong their battery lifetime.

The MEC servers are typically small-scale data centers deployed by the cloud

computing or telecom operators, which can be co-located with the wireless APs,

e.g., the public Wi-Fi routers and BSs. In this way, the MEC allows the APs to

have the ability of storage and processing, and thus guarantee that the UEs can be

directly connected to the edge clouds. In comparison with the MCC, the MEC has

four main advantages in the aspects of latency reduction, energy saving, context
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awareness, and privacy/security enhancement, mainly due to the proximity to end

users. The attractive advantages of MEC lead to the fact that it has been widely

regarded as one of the key enablers to shape the future advanced wireless networks.

Similar to the MCC, MEC is also implemented based on a virtualization

platform that leverages recent advancements in network functions virtualization (N-

FV), information-centric networks (ICNs), and software-defined networks (SDNs).

Too be specific, NFV enables a single edge server to provide computing services

to multiple UEs by creating multiple virtual machines (VMs) for simultaneously

performing different tasks or operating different network functions of multiple

users. The NFV-based MEC is promising to support the stringent requirements such

as ultra-low latency and ultra-reliability of the forthcoming 5G services [84–87].

On the other hand, ICN provides an alternative end-to-end service recognition

paradigm for MEC, shifting from a host-centric to information-centric architecture

for implementing context-aware computing, such ac the computing tasks related

to image or video processing [88, 89]. ICN-based MEC as well as MEC-enables

caching are two interesting research directions for computing and caching resource

allocation [90–92]. It should be noted that edge caching and computing are highly

related for completing MEC tasks, and thus ICN plays an important role in MEC

networks. Last, SDN allows MEC network administrators to manage services

via function abstraction, achieving scalable and dynamic computing. Recently,

the SDN-based MEC are exploited in LTE/LTE-A and vehicular ad hoc networks

[93–95]. Actually, the functions of NFV, ICN and SDN are highly collaborated

for enhancing the performance of data communication, computing, and caching. A

main focus of MEC research is to develop these general network technologies so

that they can be implemented at the network edges [96–98]. In a word, the off-the-
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shelf technologies of cloud computing can be easily applied to MEC, which will

definitely accelerate the development of MEC.

For practical deployment, several edge computing architectures have already

been proposed, such as fog computing [99, 100], and also cloudlets [101]. Fog

computing is a more flexible computing architecture consisting of highly hetero-

geneous fog computing nodes with different levels of computing ability such as

routers and network gateways. Cloudlet is another concept of edge computing,

where the computing resources are managed by cloudlet agents [101]. In wireless

local area networks with Wi-Fi access, cloudlets run virtual machines to complete

the computation tasks. Besides, multi-access edge computing (also using the same

acronym “MEC” originated from mobile edge computing) has been introduced to

support multiple access technologies including cellular, Wi-Fi, etc. [102]. Recently,

MEC has been regarded as one of the key enablers to shape the future advanced

wireless networks, which has attracted great attention from both the academia

and the industry [14, 15, 103]. The standardization organizations and industry

associations such as ETSI and 5G Automotive Association (5GAA) have identified

a large number of use cases for MEC, from the intelligent video acceleration and

application-aware performance optimization to V2X and massive machine-type

communications (mMTC), etc. [18, 69, 104].

2.2.1 Computation Task Model

In order to properly conduct academic research related to MEC, we should first

find a good way to model the computation tasks. Note that the computation tasks

can be affected by various parameters such as task size, computation intensity,

latency, bandwidth utilization, context awareness, scalability, and generality, etc.,
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and thus developing accurate computation task models is highly sophisticated. It is

known that energy consumption and latency, especially used for communication

and computation, have been widely considered as two important performance

metrics for MEC systems, and the objective is to complete the UEs’ computation-

intensive latency-critical tasks with high energy efficiency and low latency. Hence,

to properly describe the properties related to energy consumption and latency, we

adopt a reasonable and mathematically tractable computation task model in this

thesis, which has also been widely used in the existing MEC literature.

For a given computation task with fixed computation task size, it can be fully

characterized by a positive parameter tuple [I, C,O]. Here, I denotes the size (in

bits) of the computation task-input data (e.g., the program codes and the input

parameters), C is the amount of required computational resources for computing

1-bit of task-input data (i.e., the number of central processing unit (CPU) cycles

required), also known as the computation workload/intensity, O ∈ (0, 1) is the ratio

of task-output data size to that of the task-input data, which means that computing I

bits of task-input data will generate OI bits of task-output data for the specific UE.

In addition, the parameters in the task tuple of [I, C,O] can be obtained through task

profilers by applying the methods, e.g., call graph analysis [7, 14, 105–107]. Note

that this computation task model tuple not only captures the essential properties

of mobile applications related to the computation and communication demands

but also enables mathematical tractability shown in the following Sections 2.2.3

and 2.2.4. Besides, this model allows rich task modeling flexibility in practice

and can be easily extended to consider other kinds of resources by introducing

more parameters into the tuple. For example, the latency-critical computation tasks

usually have a latency constraint, and thus a parameter T could be added into the
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tuple to indicate the maximum tolerable latency or deadline for the computation

task.

In terms of the sizes of the computation results (task-output data), the compu-

tation tasks can be generally divided into two groups as follows:

• Computation Tasks with Negligible Computing Results: For some compu-

tation tasks, the sizes of the task-output data, i.e., OI , are much smaller than

the sizes of the task-input data I , like several orders of magnitude lower than

I . For instance, the computation task-output data may be just a few command

or control bits for some applications related to surveillance or system control,

while the corresponding computation task-input data usually measured by

Kbit or Mbit. In this case, the parameter O is usually with a very small value.

Hence, the downloading overheads such as time and energy consumption

for delivering the task-output data from the remote MEC servers back to the

corresponding UEs are negligible and usually can be ignored.

• Computation Tasks with Non-Negligible Computing Results: In contract,

for some computation tasks with a larger parameter O, the sizes of the task-

output data OI are comparable to those of the task-input data I . For example,

the tasks of video compression, even though the sizes of the compressed

videos are much less than but still comparable to the input data sizes. In

this case, the downloading overheads of time and energy consumption for

delivering the computation task-output data from the remote MEC servers

back to the corresponding UEs should be taken into consideration.
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2.2.2 Computation Offloading Modes

According to the structural characteristics of various applications or computation

tasks, different computation offloading modes should be leveraged to deal with

different computation tasks. In this subsection, we introduce two computation

offloading modes used in this thesis, respectively corresponding to the partial

offloading mode and binary offloading mode, which are also popularly used in

existing state-of-the-art literature on MCC and MEC.

• Partial Offloading Mode: Many mobile applications are composed of

multiple procedures or components, making it possible to implement fine-

grained (partial) computation offloading. Specifically, the computation task-

input data are bit-wise independent and can be arbitrarily divided to facilitate

parallel trade-offs between local computing at the UEs and computation

offloading to other MEC servers with stronger computing capabilities. For

the partial offloading tasks, the partition of the task-input data for parallel

computation, i.e., task allocation, is necessary and has a great effect on the

system performance.

• Binary Offloading Mode: For some atomic highly integrated computation

tasks or relatively simple tasks, they cannot be partitioned and have to be

completed as a whole either locally at the UEs or offload to the remote MEC

servers. For the binary offloading tasks, mode selection (local computing

mode or computation offloading mode) plays an important role and needs to

be properly addressed.
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2.2.3 Communications in MEC Systems

In MEC systems, communications act as an essential part for completing users’

computation tasks, which typically happen between UEs and APs (with co-located

MEC servers) through wireless channels. For computation tasks with negligible

task-output data, communications mainly correspond to the computation offloading

from UEs to the MEC servers, while for computation tasks with non-negligible task-

output data, communications are also necessary for downloading the computation

results from the MEC servers to UEs. In fact, the wireless APs not only provide

wireless interfaces for the MEC servers but also enable the access to the remote

central clouds (large-scale data centers) through backhaul links, thus assisting the

MEC servers to further offload some computation-intensive tasks to enjoy the more

powerful computing capabilities at the central clouds. In addition, for the mobile

devices that cannot communicate with the APs directly due to insufficient wireless

interfaces or severe blockage, device-to-device (D2D) communications through

neighboring devices provide the opportunity to forward the computation tasks to

MEC servers. Furthermore, D2D communications also enable the peer-to-peer

cooperation on resource sharing and computation-load balancing within the clusters

of mobile devices.

Next, we will analyze the communications in MEC systems from the two wide-

ly used performance metrics, i.e., latency and energy consumption. According to

the Shannon-Hartley theorem [108, 109], the maximum achievable communication

rate (in bits per second), i.e., the channel capacity, of a wireless additive white

Gaussian noise (AWGN) channel can be expressed as

R = B log2

(
1 +

S

N0

)
, (2.1)
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where B is the bandwidth of the wireless channel in hertz (Hz); S indicates

the average received signal power over the bandwidth, measured in watts (W);

N0 denotes the average power of the noise and interference over the bandwidth,

measured in W; and S
N0

is the signal-to-interference-plus-noise ratio (SINR) at the

receiver. Normally, the average received signal power S can be further expressed

as S = Ph, where P and h denote the transmit power and the effective channel

gain, respectively. In other words, the wireless communication rate of a UE/AP

is positively correlated to the transmit power and the effective channel gain of

the corresponding UE/AP. It should be noted that the channel capacity can be

achieved by employing a capacity-approaching code when large block lengths or

computational tasks are considered. A more general model for the achievable rate

can be expressed as R = B log2

(
1 + S

ΓN0

)
, where Γ represent the gap between the

channel capacity and the a specific modulation and coding scheme, and Γ = 1 when

a capacity-approaching code is employed.

Based on the computation task model mentioned in Section 2.2.1, i.e.,

[I, C,O], the communication latency for offloading I bits of computation task-input

data from a UE to the MEC server can be calculated as

toff = I/Roff , (2.2)

where Roff is the corresponding communication rate for computation offloading

based on (2.1). Accordingly, the energy consumption used for offloading the I bits

of task-input data to the MEC server is given as

Eoff = Pofftoff = PoffI/Roff , (2.3)
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where Poff is the UE’s transmit power for computation offloading. As we described

above, Roff is monotonically increasing versus Poff , and thus it is easy to note that

there exists a performance tradeoff between the communication latency and energy

consumption by adjusting UE’s transmit power Poff . To be specific, the commu-

nication latency can be reduced by increasing Poff but at the cost of increasing the

energy consumption used for communications, and vice versa. Hence, the UEs’

transmit power for computation offloading is an important parameter for resource

allocation in MEC systems which should be properly adjusted so as to achieve a

good balance between the communication latency and energy consumption.

2.2.4 Computation in MEC systems

Computation also plays an important role in MEC systems for completing the UEs’

computation tasks. Similarly, in this part, we mainly pay attention to the analysis of

the energy consumption and latency related to computation in MEC systems.

The energy consumption of a computing server/processor is jointly determined

by the usage of the CPU, storage, memory, and network interfaces, etc. Since the

CPU contribution is dominant among these factors, it is the main focus widely used

in the existing related literature. As for the CPU power, it consists of the dynamic

power, the short circuit power, and leakage power, in which the dynamic power

dominates and the other components are negligible compared with the dynamic

power [14]. As a result, we only take the dynamic power into account, denoted as

Pcomp, which is proportional to the product of V 2f under the assumption of a low

CPU voltage, where V and f are the corresponding circuit supplied voltage in volt

(V) and the CPU clock frequency in cycles/second, respectively [14,30]. It is further

noticed in [110–112] that, the clock frequency of the computing server/processor’s
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CPU chips, i.e., f , is approximately linearly proportional to the voltage supply V .

In other words, Pcomp should be linearly proportional to f 3, and thus can be written

as Pcomp = κf 3, where κ is the effective capacitance coefficient that depends on

the chip architecture of the computing server/processor. Hence, the unit energy

consumption of the computing server/processor for operating each CPU cycle can

be denoted as

Eunit = Pcomptcomp = κf 3 ∗ (1/f) = κf 2, (2.4)

where tcomp = 1/f is the time duration for one CPU cycle [14]. Based on the

computation task model mentioned in Section 2.2.1, i.e., [I, C,O] with I bits of

task-input data and each bit requiring C CPU cycles for computing, the energy

consumption of computation for completing this task can be calculated as

Ecomp = ICEunit = κICf 2. (2.5)

Accordingly, the computation latency for completing the task [I, C,O] by

operating IC CPU cycles can be expressed as

tcomp = IC/f. (2.6)

To efficiently use the energy for computation, the computing server-

s/processors can leverage the dynamic voltage and frequency scaling (DVFS)

technique. In this way, the energy consumed for computation can be adaptively

controlled by adjusting their CPU frequency for each CPU cycle [20]. Denoting the

adjustable CPU frequency for the i-th CPU cycle as fi, then the energy consumption
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of computation for completing the task [I, C,O, ] can be calculated as

EDVFS
comp = κ

IC∑
i=1

f 2
i , (2.7)

and the corresponding computation latency is described as

tDVFS
comp =

IC∑
i=1

1/fi. (2.8)

Another kind of DVFS computation is that the CPU frequency is fixed during

a given slot and adaptively changes among different slots. In this case, we

respectively denote the n-th slot length and the corresponding CPU frequency

during this slot as τn and fn, for n = 1, 2, · · · , N , where N is the total number

of slots. Hence, in order to complete the computation task [I, C,O], the following

equation should be satisfied

I =
N∑
n=1

In =
N∑
n=1

τnfn/C, (2.9)

where In = τnfn/C is the completed task-input bits during the slot n. Accordingly,

the total computation energy consumption and latency for completing the computa-

tion task [I, C,O] can be respectively calculated as

Ehyb
comp = κ

N∑
n=1

τnf
3
n = κ

N∑
n=1

InCf
2
n, (2.10)

thyb
comp =

N∑
n=1

τn =
N∑
n=1

InC/fn. (2.11)

From the above analysis, we can observe that there also exists a performance

trade-off between the computation energy consumption and latency through ad-
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justing the computing server/processor’s CPU clock frequency f . Specifically,

increasing f will definitely reduce the computation latency but at the cost of

increasing the energy consumption used for computing, which is vice versa. This

trade-off indicates that the computing server/processor’s CPU clock frequency f

also plays a significant role in resource allocation in MEC systems, which should

be properly controlled in order to achieve a good balance between the computation

energy consumption and latency.

2.2.5 Joint Design of Computation and Communication/Radio

Resource Management

The broadcast nature and random variations of wireless channels in time, frequency,

and space make it important to seamlessly integrate the control of computation and

communication/radio resource management, and it is also crucial for designing high

energy-efficient and low-latency MEC systems. For instance, when the wireless

channels are in deep fading, the reduction in execution latency by remotely com-

pleting the computation tasks through computation offloading may not be sufficient

to compensate for the increase of communication latency due to the steep drop in

transmission-data rates. It is true that increasing transmit power for offloading can

increase the data rate, but also lead to higher communication energy consumption.

For such cases, it is desirable to defer the computation offloading until the channel

gains are favorable or switch to alternative frequency/spatial channels with better

quality for offloading. The above considerations necessitate the joint design of

resource management for computation offloading and wireless communications,

which should be adaptive to the time-varying channels based on the channel state

information (CSI). For the deployment of wireless technologies in MEC systems,
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the communication and networking protocols need to be redesigned to integrate

both the computing and communication infrastructures, so as to effectively improve

the computation efficiency.

2.2.6 State-of-the-art MEC Works

The cross-disciplinary nature of MEC plays an important role of joint computational

and radio resource management in achieving energy-efficient or delay-optimal MEC

performance. Recent years have witnessed the encouraging progress on this topic

for both single-user [20–27] as well as multiuser [28–36] MEC systems.

For single-user MEC systems, an energy-optimal edge computing architecture

under a stochastic wireless channel was considered in [20], where the optimal

offloading decision policy by comparing the energy consumption of optimized local

computing (with variable CPU cycles) and offloading (with variable transmission

rates) was given. Later in [21], a dynamic offloading scheme with adaptive long

term evolution (LTE)/Wi-Fi link selection was proposed to improve the energy

efficiency. Another dynamic offloading scheme with energy harvesting was ad-

dressed in [22] to reduce the execution cost, including the execution latency and task

failure, by leveraging the Lyapunov optimization technique. The tradeoff between

energy consumption and latency in information transmission and computation

was analyzed in [26], where a UE offloaded its application tasks to an SBS for

processing. The energy-delay tradeoff in single-user MEC systems with a multi-

core UE and heterogeneous types of mobile applications were investigated in [23]

and [24], respectively. In [25], a Markov decision process approach was adopted to

handle a delay minimization problem, where the computation tasks were scheduled

based on the queueing state of the task buffer, the execution state of the local
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processing unit, as well as the state of the transmission unit. Later in [27], the

scenario of a UE with multiple tasks was considered, where multiple APs assisted

the UE to reduce its total task execution latency and energy consumption.

As for the multiuser MEC systems, joint radio-and-computational resource

management becomes more complicated. An initial investigation for multi-user

MEC systems with delay-tolerant applications was conducted in [28], which, how-

ever, only focused on computational resource scheduling and failed to address radio

resource management. A multi-cell MEC offloading system was considered in [29],

where the radio and computation resources were jointly allocated to minimize the

overall energy consumption of users under offloading latency constraints. In [30],

the distributed offloading decision-making problem was formulated as a multiuser

computation offloading game to explore both energy-and-latency minimizations at

mobile users. Optimal energy-efficient resource allocation for multiple users was

addressed in [31] based on time-division multiple-access (TDMA) and orthogonal

frequency-division multiple-access (OFDMA) systems. The cooperation among

clouds was investigated in [32] to maximize the revenues of clouds and meet the

demands of UEs via the resource pool sharing. In [33], stochastic resource manage-

ment of multiple users resorting Lyapunov optimization was considered with the

objective of minimizing the long-term average weighted sum power consumption

of the UEs and the MEC server, subject to a task buffer stability constraint. Later

in [34], an energy-aware offloading scheme was proposed to tradeoff between users’

energy consumption and the execution latency for computation offloading. The sum

of computation efficiency defined as the calculated data bits divided by the energy

consumption was maximized in [35] with iterative and gradient descent methods.

A multi-cell and multi-server MEC system was considered in [36], where joint task
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offloading and resource allocation was addressed to maximize the task offloading

gain.

In addition, the technology of MEC also plays an important role in promoting

the development of IoT. It is known that IoT devices may lack computing capability,

while MEC is capable to achieve edge execution which avoids frequent delivery of

massive computing tasks to the core networks with central cloud for computing,

and thus MEC can help IoT devices reduce the computing latency and backhaul

congestion [10, 37]. The survey work [10] presented a comprehensive overview

of fog computing in IoT networks and illustrated how fog computing tackles the

challenges in IoT networks. In [37], Lyapunov optimization techniques were

adopted to develop an online MEC scheduling solution with partial knowledge of

the IoT network.

Recent works related to edge computing also focus on multi-service scenarios.

For example, [38] considered a single MEC server with storage capability and

attempted to maximize the revenue of providing both the computing and caching

services. In [39], a D2D fogging was explored to achieve energy-efficient task

completion by sharing computation and communication resources amongst mobile

devices. A blockchain-based platform was also considered for video streaming with

MEC in [40], and an incentive mechanism was proposed to facilitate the cooperation

of different nodes. Most recently, user cooperation was also adopted as an effective

method to improve the MEC performance [41], where a three-node MEC system

was considered to exploit joint computation and communication cooperation for

reducing the total energy consumption of the system.

The complementary benefits between the edge and central cloud have driven

research towards the coexistence and cooperation between the edge and central
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clouds [113]. One such example was [114] where delay-aware scheduling between

local and Internet clouds was studied, and a priority-based cooperation policy was

given to maximize the total successful offloading probability. The placement and

provisioning of virtualized network functions were explored in [115], in which a

QoS-aware optimization strategy was proposed over an edge-central carrier cloud

infrastructure. Also, the work in [116] considered that an edge server and a central

cloud coexist to complete the UEs’ computations cooperatively, where a wired

connection was assumed between the edge and the central cloud. However, the

existing works [114–116] considering the coexistence of edge and central cloud

computing either focus on delay-aware priority scheduling, virtualized resource

allocation, or offloading with wired backhaul. The issues related to offloading deci-

sion and resource allocation of hybrid edge/central cloud computing networks with

wireless backhaul have not been thoroughly studied, especially from the viewpoint

of communications [14]. Therefore, we completed the works [J3] and [C3] ( [72]

and [76]), where the deployment of heterogeneous edge and central clouds was

studied to leverage the easy access of edge clouds and the abundant computing

resources at the central cloud, mainly from the viewpoint of communications by

considering cloud selection, resource allocation, and the physical properties of the

wireless backhauls.

2.3 Wireless Power Transfer

Even though MEC has many advantages as we mentioned in the previous section,

taking the full benefits of powerful computational resources at the edges still faces

several challenges. Among them, the insufficient power supply is one major

limitation of conventional battery-based UEs. The computing performance may
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be compromised due to the lack of energy supply, i.e., mobile applications will be

terminated and UEs will be out of services if their batteries are running out. It

is true that this issue can be addressed to some degree by using larger batteries or

recharging the batteries regularly. However, using larger batteries at the UEs implies

increased hardware cost, which is not desirable. On the other hand, recharging

batteries frequently is reported as one of the most unfavorable characteristics of

UEs, and it may even be impossible in certain application scenarios, e.g., for

sensors embedded in building structures or wearable devices inside human bodies.

It therefore makes sense to leverage the technology of WPT, which is known

as a promising solution to provide convenient and sustainable energy supplies to

wireless networks. The WPT utilizes the radio frequency (RF) wave as the carrier

of energy to wirelessly charge UEs, so that user devices are not power-limited by

their batteries but can be energized remotely, e.g., [42–55]. WPT, particularly in the

form of simultaneous wireless information and power transfer (SWIPT) [44–46]

and WPCNs [47–55] have recently been considered as two important paradigms to

provide genuine sustainability for mobile communications.

2.3.1 Energy Harvested from WPT

The mobile devices, wearable devices, unmanned aerial devices, and sensors, etc.,

can all be treated as UEs that are able to harvest energy from the APs or dedicated

power beacons that broadcast RF energy through WPT. Assume that the energy

transmit power of the AP is denoted as P0, and the effective channel gain between

the AP and the specific UE is h, and thus the harvested energy for this UE during a
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time slot T can be calculated as

Eharv = νP0hT, (2.12)

where the linear energy harvesting model is adopted since we assume that the

input RF power of UEs are within the linear regime of the rectifier, and ν is the

energy conversion efficiency of the UE. Note that the energy transmission efficiency

can be highly improved by leveraging some advanced communication techniques

to improve the effective channel gain h, such as using the technology of energy

beamforming if the AP is equipped with multiple antennas.

The WPT technique can support the UEs with sustainable energy supply, and

the extra energy can be stored by the UEs for their future operations. For these UEs,

an energy harvesting causality constraint should be satisfied in each time slot, i.e.,

Econs ≤ Eharv + Esav, (2.13)

where Econs is the UE’s energy consumption during the corresponding slot, and

Esav is the UE’s energy savings from the previous time slots.

2.3.2 MEC Works in Networks with WPT

The wireless powered MEC systems are typically WPCNs, where the RF energy

transmissions are from APs to UEs through downlink channels while the informa-

tion transmissions for computation offloading are from UEs to APs through the

uplink channels. As we mentioned before, the combination of MEC and WPT

is a promising solution to release the burden of resource-limited UEs. Many

recent works have witnessed the possible synergy integrating MEC with WPT
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[52–55]. An interesting work in [52] considered a wireless powered single-user

MEC system, where a single-antenna sensor harvested RF energy from a dedicated

BS for computation offloading, in which binary offloading was investigated to

maximize the computing probability. More recently in [53], an energy-efficient

wireless powered multiuser MEC system combining with a multi-antenna AP was

considered. The optimal transmit energy beamforming of the AP, the offloading

decision, and the resource allocation for minimizing the energy consumption at the

AP were obtained. Unlike the considered network in [53] where wireless power

transfer and computation offloading were operated over orthogonal frequency

bands, the work [54] designed a new time frame that the AP first broadcast the

RF energy to the UEs and then the energy-constrained UEs offloaded their tasks to

the AP at their allocated time slots, where the computation rate was maximized with

the binary offloading mode. In [55], BSs were powered by hybrid energy supplies

including green energy and grid power, and a green-energy aware cloudlet solution

was proposed to minimize the total grid power consumption.

2.3.3 Double-Near-Far Effect in WPCNs

As we mentioned before, the wireless powered MEC systems are typically WPCNs.

However, WPCNs are susceptible to suffer from the so-called “double-near-far”

effect, which occurs because the farther UEs from an AP harvest less energy and

are also required to communicate in longer distances [47–49]. In other words, if two

identical UEs are powered by an AP and have equally-intensive computational tasks

to be offloaded for computing at the MEC server located at the AP, the farther device

harvesting less energy will consume more energy for computation offloading due to

the doubled distance-dependent signal attenuation over both the downlink energy
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harvesting and uplink computation offloading. It is known that user cooperation

is an effective way to improve the capacity, coverage, and diversity performance

in conventional wireless communication systems. Recent works [49–51, 117, 118]

show that cooperation among near-far users in WPCNs is also capable to resist the

double-near-far effect in WPCNs, so as to improve performance of WPCNs.

Based on the analysis above, we understand that user cooperation should

be an effective way to deal with the double-near-far effect in wireless powered

MEC networks which are typically WPCNs. It is against this background that we

completed the works [J1] and [C1] ( [70] and [74]), which introduce the technology

of user cooperation into a three-node wireless powered MEC network. In this work,

two UEs are powered by the AP through WPT and the nearer UE to the AP is

selected to act as a relay to help offload the farther UE’s computation tasks so as to

satisfy the latency constraint of tasks as well as reduce the total energy consumption

of the AP. It is demonstrated that the user cooperation is of great value in resisting

the double-near-far effect in wireless powered MEC networks.

2.4 UAV-Enabled Communications

UAVs, also commonly known as drones, are aircrafts piloted by remote control

or embedded computer programs without human onboard. Recently, the cellular-

based UAV-enabled wireless communications have drawn great attention from both

academia and industry due to the attractive advantages of the UAVs for their

easy deployment, flexible movement, and LoS connections, etc [58]. Thanks

to the almost ubiquitous coverage of the cellular network worldwide as well

as its advanced communication technologies, it is capable to support the UAV-

ground communications in a cost-efficient manner, which significantly promotes
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the development of cellular-based UAV-enabled communications. The forthcoming

5G cellular network is expected to achieve the peak data rate of 10 Gbits/second

with only 1 millisecond round-trip latency, which in principle is adequate for

high-rate and delay-sensitive UAV communication applications such as real-time

video streaming and data relaying. In this way, the requirements for UAV-

enabled communications for both the control and payload communications can be

potentially met, regardless of the density of UAVs as well as their distances with the

corresponding ground nodes.

Generally, the cellular-based UAV communications can be partitioned into two

categories, i.e., cellular-connected UAV communications and UAV-assisted com-

munications [56–58]. The UAVs in cellular-connected UAV communications are

considered as aerial users that access the cellular networks from the sky for wireless

communications. Cellular-connected UAV communication is a cost-effective way

for wireless communications since it reuses the millions of cellular BSs worldwide

without the need of building new infrastructures dedicated for unmanned aerial

systems (UAS) only. In this way, the cellular-connected UAV communication is

expected to be a win-win technology for both UAV and cellular industries, with

rich business opportunities to explore in the future. In contrast, the UAVs in UAV-

assisted communications are normally regarded as aerial communication platforms

such as APs, BSs, and relays, to assist the terrestrial wireless communications

by providing access interfaces from the sky. UAVs as aerial APs can bring

many attractive advantages compared to conventional terrestrial communications

with typically static APs. First, UAV-mounted APs can be swiftly deployed on

demand, which is especially appealing for application scenarios such as temporary

or unexpected events, emergency response, search, and rescue, etc. Besides, UAVs



66 CHAPTER 2. FUNDAMENTAL CONCEPTS AND RELATED WORKS

as aerial APs are more likely to have LoS connections with their ground users

thanks to their high altitude above the ground, thus providing more reliable links

for communications as well as multiuser scheduling and resource allocation. In

addition, an additional degree of freedom can be achieved from the controllable

altitudes of the UAVs, which makes it possible to enhance the communication

performance by dynamically adjusting their locations in three-dimensional (3D) to

cater for the terrestrial communication demands.

Based on the above advantages of UAV-enabled communications, it is of

great benefits to introduce UAV-enabled communications into MEC networks. It

is true that MEC has been widely regarded as a key technology for enhancing

the computational capabilities of small devices by allowing them to offload the

computation-intensive tasks to nearby MEC servers (e.g., APs). However, for

users located at the cell edge, such an offloading strategy may even cause more

transmission energy and/or longer delay than local computation due to the limited

communication rate with the AP. To address this problem, UAVs with highly

controllable mobility can be used as the flying cloudlets/servers to achieve more

efficient computation offloading for the users by moving significantly closer to

them. Hence, it is a great attempt to leverage the technology of the UAV in MEC

systems, and the performance improvement of the UAV-enabled MEC architectures

has been shown to be substantial in literature [65–68].

2.4.1 UAVs’ Propulsion Energy Consumption

For UAV-enabled MEC networks, the UAVs’ energy consumption should include

that utilized for task transmissions (offloading or downloading), task computation,

and propulsion, where the additional propulsion energy is used to remain the
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UAVs aloft and moving freely over the air. Hence, the energy-efficient design

of UAV-enabled MEC networks is more involved than that for the conventional

terrestrial MEC systems which consider the transmission and computation energy

only. Note that the energy consumed for task transmissions and computation

can refer to the corresponding expressions given in subsections 2.2.3 and 2.2.4,

respectively. However, the propulsion energy highly depends on the types of UAVs.

In practice, there are many types of UAVs that are applicable for numerous and

diversified applications. In terms of wing configuration, fixed-wing and rotary-wing

UAVs are the two main types of UAVs that have been widely utilized in existing

works. Typically, fixed-wing UAVs have higher maximum flying speed and can

carry greater payloads for traveling longer distances as compared to rotary-wing

UAVs, while their disadvantages lie in that a runway or launcher is needed for take

off/landing as well as that hovering at a fixed position is impossible. In contrast,

rotary-wing UAVs are able to takeoff/land vertically and remain static at a hovering

location. The propulsion energy consumption for these two kinds of UAVs are quite

different, which is described as follows [58].

• Fixed-wing UAV propulsion energy consumption model: For a fixed-wing

UAV in straight-and-level flight with constant speed v meter/second (m/s) in

the duration τ , the propulsion energy consumption consists of the parasite and

induced energy, which can be expressed in a closed form as

Efixed
U,prop = τ

(
θ1v

3︸︷︷︸
parasite

+
θ2

v︸︷︷︸
induced

)
, (2.14)

where θ1 and θ2 are two parameters related to the UAV’s weight, wing area,

wing span efficiency, and air density, etc.
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• Rotary-wing UAV propulsion energy consumption model: In contrast, for

a rotary-wing UAV in straight-and-level flight with speed v in the duration τ ,

the propulsion energy consumption consists of the parasite, induced, and the

blade profile energy, which is expressed as

Erotary
U,prop = τ

[
p0

(
1 +

3v2

U2
tip

)
︸ ︷︷ ︸

blade profile

+ pi

(√
1 +

v4

4v4
0

− v2

2v2
0

) 1
2

︸ ︷︷ ︸
induced

+
1

2
f0%sAv

3︸ ︷︷ ︸
parasite

]
,

(2.15)

where p0 and pi respectively denote the blade profile power and induced

power in hovering status that depend on the aircraft weight, air density %,

rotor disc area A, etc., Utip represents the tip speed of the rotor blade, v0

is known as the mean rotor induced velocity in hovering, f0 and s are the

fuselage drag ratio and rotor solidity, respectively.

For both types of UAVs, the energy consumption for propulsion consists of at

least two components: the parasite energy and the induced energy. The parasite

energy is needed to overcome the parasite drag caused by the moving of the aircraft

in the air, while the induced energy is used for overcoming the induced drag resulted

from the lift force to maintain the aircraft airborne. Besides, for both two kinds

of UAVs, the parasite power increases in cubic with the aircraft speed v, while

the induced power decreases as v increases, with a more complicated expression

for rotary-wing UAVs than fixed-wing UAVs. Compared to the fixed-wing UAVs,

the rotary-wing UAVs has one additional propulsion energy term: the blade profile

energy, which is needed to overcome the profile drag due to the rotation of blades.

From the two expressions in (2.14) and (2.15), we can observe that the required

energy consumption of fixed-wing UAV is infinity for the extreme case with v =
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0, whereas that of rotary-wing UAVs is given by a finite value τ(p0 + pi). This

corroborates the well-known facts that fixed-wing UAVs must maintain a minimum

forward speed to remain airborne, while rotary-wing UAVs can hover with zero

speed at fixed locations [58].

2.4.2 UAV-Related Works

Due to the attractive advantages of UAV for its easy deployment, flexible movement,

and LoS connections, and so on, extensive UAV-enabled wireless communication

works have been researched in recent years [56–64]. For instance, an energy-

efficient UAV communication was investigated in [59], in which a UAV flew

at a fixed altitude and had the initial and final locations preset on its trajectory

design. In [60], the UAV-enabled mobile relaying systems were studied, where

the throughput was maximized by optimizing the transmit power allocation and the

UAV’s trajectory. Recently, [61] proposed a generic framework for the analysis

and optimization of the air-to-ground systems, and an optimum altitude for UAV in

maximizing the coverage region with a guaranteed minimum outage performance

was derived.

The technology of WPT was considered for UAV wireless networks in [62],

and the UAV trajectory was optimized to maximize the sum energy or the minimum

energy transferred to all the UEs. It was revealed that UAV-enabled WPT can

significantly enhance the WPT performance over the traditional WPT systems

where fixed energy transmitters are utilized. To better take the advantages of

the dominated LoS air-ground links provided by UAVs, an more energy-efficient

laser-beamed WPT technology has been utilized in recent wireless powered UAV-

enabled architectures [119, 120], which is regarded as a viable solution to provide
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unlimited endurance for UAVs in flight. Through providing a narrower energy laser

beam, hundred of watts can be harvested at the laser power receiver [121], and the

feasibility for laser-charged UAV has been verified by the field tests of LaserMotive

company [122].

A UAV-based MEC system was investigated in [65], where a moving UAV

equipped with a processing server was considered to help UEs compute their

offloaded tasks. The total mobile energy consumption was minimized by jointly

optimizing the task-bit allocation and the UAV trajectory using the successive

convex approximation (SCA) method. Later in [66], a wireless powered UAV-

enabled MEC system was studied, where the UAV was endowed with an energy

transmitter and an MEC server to provide energy as well as MEC services for the

UEs. The computation rate maximization problems were addressed under both

the partial and binary computation offloading modes by alternating algorithms.

A UAV-aided offloading scenario was considered at the edges of multiple cells

in [67], in which the sum rate of edge users was maximized by optimizing the

UAV’s trajectory and user scheduling. In another study [68], the UAV acted as a

UE rather than an MEC server, which was served by multiple cellular ground base

stations to compute its offloaded tasks. The UAV’s mission completion time was

minimized by optimizing the resource allocation and the UAV trajectory through an

SCA algorithm.

The aforementioned MEC works concentrate either on the cellular-based MEC

networks where the UEs’ tasks are completed by using the computing resources

at the APs; or the UAV-enabled MEC architectures by exploiting the computing

capabilities of the UAV processing servers. However, for the UEs with seriously

degraded links to the AP due to severe blockage, it is impossible to take full use
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of the computing resources at the AP directly. Besides, due to the size-constrained

resource-limited property of the UAVs, it is risky to rely only on the UAVs to assist

the UEs for completing their computation-intensive latency-critical tasks. For these

reasons, we completed the works [J2] and [C2] ( [71] and [75]), where a UAV-

assisted MEC architecture was studied, and the computing resources at the UAV

and the AP are utilized at the same time. In addition, the energy-efficient LoS

transmissions of the UAV have been fully exploited since the UAV is not only served

as a mobile computing server to help the UEs complete their computation tasks but

also as a relay to further offload UEs’ tasks to the AP for computing.
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Chapter 3

Mobile Edge Computing in Wireless

Powered Cooperation-Assisted

Systems

This chapter is based on our works published in [J1] and [C1] ( [70] and [74]).

3.1 Introduction

MEC has been widely regarded as a promising solution to liberate the resource-

limited UEs from heavy computation workloads through helping them compute

their offloaded computation-intensive latency-critical tasks. In order to further help

the battery-based resource-limited UEs make full use of powerful computational

resources at the edge servers, the technology of WPT is utilized to provide

convenient and sustainable energy supplies for UEs. Besides, user cooperation is

leveraged to effectively resist the double-near-far effect in WPCNs.
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In this chapter, we study a wireless powered MEC system based on a WPCN,

where two near-far UEs are energized by the AP through WPT. Partial computation

offloading mode is adopted, so that the UEs can offload part or all of their

computation-intensive latency-critical tasks to the AP connected with an MEC

server or an edge cloud. A harvest-then-offload protocol is operated for UEs in

an optimized time-division manner, so as to make better use of the system energy

and time resources. Besides, to overcome the double-near-far effect on the farther

UE in this WPCN, cooperative communications in the form of relaying via the

nearer UE is considered for computation offloading of the farther UE. Our aim is to

minimize the AP’s total transmit energy through jointly optimize the AP’s energy

transmit power, UEs’ offloading power, and time allocation, subject to the time

allocation constraint, computation task constraints, and energy harvesting causality

constraints. We first formulate the AP’s transmit energy minimization (APTEM)

problem and then prove that it can be equivalently transformed into a min-max

problem, which can be optimally solved by a two-phase method. Numerical

results demonstrate that the optimized wireless powered MEC system utilizing

cooperation can achieve significant performance improvement in handling the UEs’

computation-intensive latency-critical tasks and resisting the double-near-far effect

caused by doubly path-loss in WPCNs.

3.2 System Model and Problem Formulation

3.2.1 System Model

We consider a wireless powered MEC system shown in Figure 3.1 that consists

of a single-antenna AP (with an integrated MEC server), and two single-antenna
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Wireless Power Transfer

Computation Offloading
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Edge Cloud

MEC Server

UE1

UE2

Figure 3.1: An illustration of the wireless powered cooperation-assisted MEC architecture,
where the AP broadcasts RF energy to two near-far UEs through WPT and the UEs offload their
computation tasks to the AP for computing by leveraging user cooperation.

UEs, denoted by UE1 and UE2, both operating in the same frequency band and

each having a computation-intensive latency-critical task to be completed. A block-

based TDMA structure is adopted where each block has a duration of T seconds.

During each block, AP energizes the UEs in the downlink via WPT. Using the

harvested energy, the two UEs accomplish their computation tasks in a partial

offloading fashion [14], where the task-input bits are bit-wise independent and can

be arbitrarily divided to facilitate parallel trade-offs between local computing at

the UEs and computation offloading to the MEC server at the AP. After the AP

computes the offloaded data, it sends the results back to the UEs. Note that local

computing and downlink WPT can be performed simultaneously while wireless

communications (for offloading) and WPT are non-overlapping in time considering

half-duplex transmission for both two users. As a result, the harvest-then-transmit

protocol proposed in [47] is employed in our model but for wireless powered

computation offloading, which we refer to it as the harvest-then-offload protocol.

Assuming that the AP has the perfect knowledge of all the channels and task-

related parameters which can be obtained by feedback, the AP is designed to make
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offloading decisions and allocate both radio and computational resources optimally

so as to improve the system performance.

3.2.2 Computation Task Model

Each UEk (k ∈ {1, 2}) has a computation-intensive and latency-critical task in each

block, fully characterized by a positive parameter tuple [Ik, Ck, Ok, Tk], where Ik

denotes the size (in bits) of the computation task-input data (e.g., the program

codes and input parameters), Ck is the amount of required computational resources

for computing 1-bit of task-input data (i.e., the number of CPU cycles required),

Ok ∈ (0, 1) is the ratio of task-output data size to that of the task-input data, i.e., the

output data size should be OkIk, and Tk in second (s) is the maximum tolerable

latency. A UE can apply the methods (e.g., call graph analysis) in [7, 107] to

obtain the information of Ik and Ck. Note that this model allows rich task modeling

flexibility in practice and can be easily extended to consider other kinds of resources

by introducing more parameters in the tuple. In this chapter, we assume that the

maximum tolerable latency for two users is one block length, i.e., T1 = T2 = T .

3.2.3 User Cooperation Model for Computation Offloading

For computation-intensive latency-critical tasks with large input data sizes (large

Ik) and strict latency constraints (small T ), it would be difficult to rely upon

local computing by UEs themselves to satisfy the latency constraint, and thus

computation offloading may be necessary. Considering the double-near-far effect

in our considered WPCN, cooperation amongst near-far UEs during offloading

will help to improve the computation performance. Without loss of generality, it

is assumed that UE2 is nearer to the AP than UE1, and we denote the distances
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between AP and UE1, AP and UE2, UE1 and UE2 as d1, d2, and d12, respectively,

with d2 ≤ d1. We also assume that d12 ≤ d1, and therefore it will be easier for UE2

to decode the information sent by UE1 than the AP, which makes such cooperative

communications meaningful.

t0 (P0)

WPT Computation Offloading

t1 (p1) t21 (p21) t22 (p22)

AP UE1,UE2 AP,UE2UE1 APUE2 (UE1) APUE2 (UE2)

Figure 3.2: The time division structure for the harvest-then-offload protocol.

For an arbitrary single block, the time division structure is shown in Figure

3.2. During the first period t0, AP broadcasts wireless energy to both UE1 and UE2

in the downlink with transmit power P0. Assume that the two UEs have enough

battery storages, and thus the energy harvested by each UE during the WPT period

is given by

Ek = νkgkP0t0, k ∈ {1, 2} , (3.1)

where gk is the downlink channel power gain from the AP to UEk and 0 < νk ≤ 1

is the energy conversion efficiency for UEk. Note that no other sources of energy

are available to carry out the computation tasks except from the WPT of the AP.

After the WPT period, UE1 transmits its input-data-bearing information with

average power p1 from its harvested energy during the subsequent period t1, and

both the AP and UE2 decode their respective received signals from UE1. To

overcome the double-near-far effect, during the remaining time of the block, the

nearer user UE2 will first relay the farther user UE1’s information with average

power p21 over t21 amount of time and then transmits its own input-data-bearing
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information to the AP with average power p22 over period t22, all using its

harvested energy. We denote the time allocation and power allocation vectors as

t = [t0, t1, t21, t22] and p = [p1, p21, p22], respectively. According to the results

(Theorems 1–5) in [118], with a given pair of t and p, the offloaded data size of

UE1 for remote computation at the AP should be the smaller value between the

decoded data sizes at the AP and UE2, i.e.,

L1(t,p) = min {L1,1(t,p) + L1,2(t,p), L1,12(t,p)} , (3.2)

where L1,1(t,p), L1,2(t,p) and L1,12(t,p) denote UE1’s offloaded data size from

UE1 to the AP, from UE2 to the AP, and from UE1 to UE2, respectively, which are

given by

L1,1(t,p) = t1r1,1(p) = t1B log2

(
1 +

p1h1

N0

)
, (3.3)

L1,2(t,p) = t21r1,2(p) = t21B log2

(
1 +

p21h2

N0

)
, (3.4)

L1,12(t,p) = t1r1,12(p) = t1B log2

(
1 +

p1h12

N2

)
, (3.5)

where r1,1(p), r1,2(p), and r1,12(p) are the transmission rates according to the

channel achievable rates for offloading UE1’s input data. In the above expressions,

h1, h2 are the uplink channel power gains from UE1 and UE2 to the AP, respectively,

and h12 is the device-to-device channel power gain from UE1 to UE2.1 Also, B is

the channel bandwidth. N0 and N2 are respectively the receiver noise power at

the AP and UE2, and we further assume that N2 = N0 without loss of generality.

1All the channels mentioned in this chapter are quasi-static block fading channels. In order to
investigate the effect of user cooperation in resisting the double-near-far effect caused by path loss,
we mainly consider the case of h1 < h12, and thus L1,1(t,p) < L1,12(t,p) always holds.
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Similarly, the offloaded data size of UE2 for computing at the AP is described as

L2(t,p) = t22r2(p) = t22B log2

(
1 +

p22h2

N0

)
, (3.6)

where r2(p) denotes the transmission rate for offloading UE2’s input data. Accord-

ing to the task model, the offloaded data size of each user should not be greater than

its corresponding input data size, i.e., Lk(t,p) ≤ Ik, for k ∈ {1, 2}.

In practice, the MEC-integrated AP is capable of providing sufficient CPU

computing capability, and thus the decoding and computation time spent at the AP

can be ignores especially compared with those consumed by local computing at UEs

themselves. It is assumed that the size of the computation task-out data, i.e., OkIk,

is much smaller than that of the task-input data Ik in the considered application

scenario of this chapter. For instance, the computation task-output data may be just a

few command or control bits for some applications related to surveillance or system

control, while the corresponding computation task-input data usually measured by

Kbit or Mbit. In this case, the parameters {Ok}k∈K are usually with very small

values. Hence, the downloading overheads such as time and energy consumption

for delivering the computation task-output data from the remote MEC server back

to the corresponding UEs are negligible and usually can be ignored. For the nearer

user UE2, the decoding time for UE1’s information is also negligible compared with

the wireless uplink transmission time for offloading both UE1 and UE2’s extensive

task-related information. For these reasons, we only consider the WPT time and the

uplink offloading time as the total latency of the considered WPT-MEC system, and

thus we obtain a latency constraint given by

t0 + t1 + t21 + t22 ≤ T. (3.7)



80 CHAPTER 3. MEC IN WIRELESS POWERED COOPERATIVE SYSTEMS

For each user, the energy required to receive its computed results from the

AP is also considered negligible. Therefore, the energy consumption of UE1

and UE2 for computation offloading equals to the energy consumed for wireless

transmissions, given by2


Eoff,1(t,p) = p1t1,

Eoff,2(t,p) = p21t21 + p22t22.

(3.8)

3.2.4 Local Computing Model

Given a pair of time and power allocation vectors (t,p), the offloaded data sizes

{Lk(t,p)} will be known, and hence the remaining input data of the corresponding

computation tasks, i.e., Ik − Lk(t,p), should be computed locally at UEk, k ∈

{1, 2}. For local computing, we assume that the CPU frequency is fixed as fk

for UEk, which means that the two UEs are of limited computing resources. In

order to satisfy the latency constraint, i.e., (Ik − Lk(t,p))Ck/fk ≤ T , the offloaded

data for UEk should have a minimum size of Lk(t,p) ≥ M+
k with Mk = Ik −

fkT/Ck where a+ = max {a, 0}. Under the assumption of a low CPU voltage that

normally holds for low-power devices, the energy consumption per CPU cycle for

local computing at UEk can be denoted as Qk = κkf
2
k , where κk is the effective

capacitance coefficient that depends on the chip architecture. Hence, the energy

consumption of UEk for local computing can be expressed as

Eloc,k(t,p) = (Ik − Lk(t,p))CkQk, k ∈ {1, 2} . (3.9)

2All the energy consumption in this thesis uses the unit of Joule, abbreviated as J .
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3.2.5 Problem Formulation

Based on the analysis above, we can obtain the energy saving for UEk, k ∈ {1, 2}

as follows

Es,k (P0, t,p) = νkgkP0t0 − Eoff,k (t,p)− Eloc,k (t,p) . (3.10)

Furthermore, the APTEM problem for minimizing AP’s transmit energy can be

formulated as problem (P3.1) below

(P3.1) : min
P0>0,t,p

P0t0 (3.11a)

s.t. T − (t0 + t1 + t21 + t22) ≥ 0, (3.11b)

Es,1 (P0, t,p) ≥ 0, (3.11c)

Es,2 (P0, t,p) ≥ 0, (3.11d)

M+
1 ≤ L1(t,p) ≤ I1, (3.11e)

M+
2 ≤ L2(t,p) ≤ I2, (3.11f)

t0 ≥ 0, t1 ≥ 0, t21 ≥ 0, t22 ≥ 0, (3.11g)

p1 ≥ 0, p21 ≥ 0, p22 ≥ 0, (3.11h)

where (3.11a) is the objective function for minimizing the AP’s transmit energy;

(3.11b) is the system latency constraint; (3.11c) and (3.11d) respectively represent

the energy harvesting causality constraints for UE1 and UE2; (3.11e) and (3.11f)

respectively denote the task allocation constraints for UE1 and UE2; (3.11g) and

(3.11h) ensure the non-negativeness of the optimized variables. Note that problem

(P3.1) is a non-convex optimization problem in the above form because of the
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expressions of L1(t,p) and L2(t,p), and the product of P0t0. Actually, problem

(P3.1) can be equivalently transformed into the following min-max problem (P3.2)3

(P3.2) : min
P0>0

max
t,p

Es,1(t,p) + Es,2(t,p)

s.t. (3.11b)–(3.11h).
(3.12)

However, problem (P3.2) is still non-convex in this form. In order to make this

problem solvable and facilitate further analysis, we propose a two-phase method.

In the first phase, we solve the inner subproblem with a given P0 where the sum-

energy-saving (SES), i.e., Es,1(t,p)+Es,2(t,p) is maximized under the constraints

in (P3.1), referred to as the SES maximization (SESM) problem (P3.3):

(P3.3) : max
t,p

Es,1(t,p) + Es,2(t,p)

s.t. (3.11b)–(3.11h),
(3.13)

through which the optimal time and power allocation corresponding to the given

P0 can be obtained. In the second phase, we will find the optimal minimum of P0

through a bi-section search method. In the following section, we will demonstrate

the details of the problem-solving process with the two-phase method.

3.3 Proposed Two-Phase Method

In this section, we focus on designing the two-phase method for the joint power

and time allocation of the considered wireless powered cooperation-assisted MEC

system. The process of operating the first phase with a given P0 is presented

in Sections 3.3.1 to 3.3.4, where the optimal offloaded data sizes of UEs, the
3The proof of verifying the equivalence between problems (P3.1) and (P3.2) will be given in

Section 3.3.5 after solving the inner SESM subproblem (P3.3) since the proof needs some results
obtained through solving problem (P3.3).
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power allocation of UE1 (in semi-closed form) and UE2 (in closed form) as well

as the optimal time allocation are obtained for each subproblem with a given P0.

Besides, the equivalence between problem (P3.1) and (P3.2) is given in Section

3.3.5. Finally, the second phase is described in Section 3.3.6, where the optimal

minimum of P ?
0 is achieved.

3.3.1 Transforming the SESM Problem (P3.3) into Convex

To make the non-convex SESM problem (P3.3) in (3.13) solvable with a given P0,

we first introduce the variables q1 = p1t1
ν1g1P0

and q21 = p21t21

ν2g2P0
. By denoting q =

[q1, q21], L1,1(t,p), L1,2(t,p) and L1,12(t,p) described in (3.3)–(3.5) can then be

re-expressed as functions of t and q as

L1,1(t,q) = t1B log2

(
1 + β1P0

q1

t1

)
, (3.14)

L1,2(t,q) = t21B log2

(
1 + β2P0

q21

t21

)
, (3.15)

L1,12(t,q) = t1B log2

(
1 + β12P0

q1

t1

)
, (3.16)

where β1 = ν1g1h1

N0
, β2 = ν2g2h2

N0
, and β12 = ν1g1h12

N2
. Note that the above three

functions equal to 0 when t1 = 0, t21 = 0 and t1 = 0, respectively. Using the

property of perspective function [123], it is easily verified that L1,1(t,q), L1,2(t,q)

and L1,12(t,q) are all joint concave functions of t and q. Besides, they are all

monotonically increasing functions over each element of (t1, q1), (t21, q21) and

(t1, q1), respectively. Next, we introduce a new variable

L1 = min {L1,1(t,q) + L1,2(t,q), L1,12(t,q)} (3.17)
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to replace L1(t,p) in problem (P3.3) with two additional convex constraints

L1,1(t,q) + L1,2(t,q) ≥ L1, (3.18)

and

L1,12(t,q) ≥ L1. (3.19)

Thus, the expression of energy saving for UE1 in the objective function of problem

(P3.3) (and its corresponding constraints) has been turned into concave (convex).

However, even though we can use a similar variable-changing method to convert

L2(t,p) into a concave function L2(t,q), the corresponding constraint L2(t,q) ≤

I2 in (3.11f) is still non-convex. To tackle this issue, we redefine the offloaded data

size of UE2 as an independent variable L2, and then by defining a convex function

g(x) = N0(2
x
B − 1), x ≥ 0, (3.20)

the offloading power p22 can be described as a function of L2 and t22 according to

(3.6), given by

p22 =
1

h2

g

(
L2

t22

)
. (3.21)

Hence, the energy savings for UE1 and UE2 with a given P0 can be rewritten as

Es,1

(
t,q, L1

)
= ν1g1P0(t0 − q1)− (I1 − L1)C1Q1, (3.22)

Es,2 (t,q, L2) = ν2g2P0(t0 − q21)− t22

h2

g

(
L2

t22

)
− (I2 − L2)C2Q2. (3.23)
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Therefore, the SESM problem (P3.3) can be equivalently reformulated as another

SESM problem (P3.4)

(P3.4) : max
t,q,L1,L2

Es,1

(
t,q, L1

)
+ Es,2 (t,q, L2) (3.24a)

s.t. T − (t0 + t1 + t21 + t22) ≥ 0, (3.24b)

Es,1

(
t,q, L1

)
≥ 0, (3.24c)

Es,2 (t,q, L2) ≥ 0, (3.24d)

L1,1(t,q) + L1,2(t,q) ≥ L1, (3.24e)

L1,12(t,q) ≥ L1, (3.24f)

M+
1 ≤ L1 ≤ I1, (3.24g)

M+
2 ≤ L2 ≤ I2, (3.24h)

t0 ≥ 0, t1 ≥ 0, t21 ≥ 0, t22 ≥ 0, (3.24i)

q1 ≥ 0, q21 ≥ 0. (3.24j)

As g(x) is a convex function, its perspective function t22g(L2

t22
) is a joint convex

function of t22 and L2 considering both the cases of t22 > 0 and t22 = 0 [123].

Therefore, the objective function is concave and all the constraints are convex,

constituting a convex optimization problem (P3.4).

3.3.2 Problem-Solving with Lagrange Method

To gain more insights into the solution, we next solve the equivalent SESM problem

(P3.4) optimally by leveraging the Lagrange method [123]. The partial Lagrange
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function of (P3.4) is defined as

L(t,q, L1, L2, η,λ)

, (1 + λ1)Es,1

(
t,q, L1

)
+ (1 + λ2)Es,2 (t,q, L2)

+ η (T − (t0 + t1 + t21 + t22))

+ λ3

(
L1,1(t,q) + L1,2(t,q)− L1

)
+ λ4

(
L1,12(t,q)− L1

)
,

(3.25)

where η ≥ 0 and λ = [λ1, . . . , λ4] � 0 (� denotes the componentwise inequality)

consist of the Lagrange multipliers associated with the constraints (3.24b) and

(3.24c)-(3.24f) in problem (P3.4), respectively. In order to facilitate the analysis

in the sequel, we define another two functions

f(x) = ln(1 + x) +
1

1 + x
− 1, x ≥ 0, (3.26)

h(x) = g(x)− xg′(x), x ≥ 0, (3.27)

where g′(x) denotes the first-order derivative of g(x), and thus the following two

lemmas are established.

Lemma 3.1. f(x) is a monotonic increasing function of x ≥ 0 with f(0) = 0.

Given C > 0, there exists a unique positive solution for equation f(x) = C, given

by

x∗ = −
(

1 +
1

W0(−e(−(C+1)))

)
, (3.28)

where W0(z), defined as the solution for equation W0(z)eW0(z) = z [124], is

the principal branch of the lambert W function, and e is the base of the natural
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logarithm.

Proof. It is easy to verify that f(x) is a monotonic increasing function for x ≥ 0

with f(0) = 0 by simply deriving its first-order derivative. Hence, the equation

f(x) = C withC > 0 has a unique positive solution. Through derivation, f(x) = C

can be equivalently expressed as

− 1

1 + x
e−

1
1+x = −e−(C+1) ∈ (−e−1, 0). (3.29)

By using the definition and property of Lambert function [124], we obtain the

solution x∗ = −
(

1 + 1
W0(−e(−(C+1)))

)
> 0, where W0(−e(−(C+1))) ∈ (−1, 0).

Lemma 3.2. h(x) is a monotonic decreasing function of x ≥ 0 with h(0) = 0.

Given G < 0, there exists a unique positive solution for equation h(x) = G, given

by

x∗ =
B

ln 2

[
W0

(
G/N0 + 1

−e

)
+ 1

]
. (3.30)

Proof. Similar to Lemma 3.1, by deriving the first-order derivative of h(x), we

can verify that h(x) is a monotonic decreasing function of x ≥ 0 with h(0) = 0.

Hence, the equation h(x) = G with G < 0 has a unique positive solution. Through

derivation, h(x) = G can be equivalently expressed as

(
ln 2

B
x− 1

)
e( ln 2

B
x−1) =

G/N0 + 1

−e
. (3.31)

Therefore, we obtain x∗ = B
ln 2

[
W0

(
G/N0+1
−e

)
+ 1
]
> 0 by using the definition and

property of Lambert function [124], where W0

(
G/N0+1
−e

)
> W0(−e−1) = −1.

We first assume that problem (P3.4) is feasible with the given AP’s energy
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transmit power P0, and let (t∗,q∗, L
∗
1, L

∗
2) denote the optimal solution of problem

(P3.4) and η∗, λ∗ denote the optimal Lagrange multipliers. Then applying the

Karush-Kuhn-Tucker (KKT) conditions [123], the following necessary and suffi-

cient conditions can be obtained:

∂L
∂t∗0

= (1 + λ∗1)ν1g1P0 + (1 + λ∗2)ν2g2P0 − η∗ = 0, (3.32)

∂L
∂t∗1

=
Bλ∗3
ln 2

f

(
β1P0

q∗1
t∗1

)
+
Bλ∗4
ln 2

f

(
β12P0

q∗1
t∗1

)
− η∗


< 0, t∗1 = 0,

= 0, t∗1 > 0,

(3.33)

∂L
∂t∗21

=
Bλ∗3
ln 2

f

(
β2P0

q∗21

t∗21

)
− η∗


< 0, t∗21 = 0,

= 0, t∗21 > 0,

(3.34)

∂L
∂t∗22

= −(1 + λ∗2)
1

h2

h

(
L∗2
t∗22

)
− η∗


< 0, t∗22 = 0,

= 0, t∗22 > 0,

(3.35)

∂L
∂q∗1

= −(1 + λ∗1)ν1g1P0 +
B

ln 2
×

 λ∗3β1P0

1 + β1P0
q∗1
t∗1

+
λ∗4β12P0

1 + β12P0
q∗1
t∗1



< 0, q∗1 = 0,

= 0, q∗1 > 0,

(3.36)

∂L
∂q∗21

= −(1 + λ∗2)ν2g2P0 +
B

ln 2

 λ∗3β2P0

1 + β2P0
q∗21

t∗21



< 0, q∗21 = 0,

= 0, q∗21 > 0,

(3.37)

∂L
∂L
∗
1

= (1 + λ∗1)C1Q1 − λ∗3 − λ∗4


< 0, L

∗
1 = M+

1 ,

= 0, L
∗
1 ∈ (M+

1 , I1),

> 0, L
∗
1 = I1,

(3.38)

∂L
∂L∗2

= (1 + λ∗2)

[
C2Q2 −

1

h2

g′
(
L∗2
t∗22

)]

< 0, L∗2 = M+

2 ,

= 0, L∗2 ∈ (M+
2 , I2),

> 0, L∗2 = I2,

(3.39)
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η∗ (T − (t∗0 + t∗1 + t∗21 + t∗22)) = 0, (3.40)

λ∗1Es,1

(
t∗,q∗, L

∗
1

)
= 0, (3.41)

λ∗2Es,2 (t∗,q∗, L∗2) = 0, (3.42)

λ∗3

(
L1,1(t∗,q∗) + L1,2(t∗,q∗)− L∗1

)
= 0, (3.43)

λ∗4

(
L1,12(t∗,q∗)− L∗1

)
= 0. (3.44)

Note that t∗0 + t∗1 + t∗21 + t∗22 = T must hold; otherwise, we can always allocate

the remaining time to t∗0 to further increase the energy saving of the two users,

and thus η∗ > 0 holds for sure. Furthermore, the following lemma describes an

important result concerning t∗, q∗ and L
∗
1:

Lemma 3.3. The optimal time and power allocation (t∗,q∗) ensures the

following property of UE1’s offloaded data size, L
∗
1.

L
∗
1 = L1,1(t∗,q∗) + L1,2(t∗,q∗) ≤ L1,12(t∗,q∗). (3.45)

Proof. According to the definition of g(x), h(x), and condition (3.35), we know

that

∂(t22g(L2

t22
))

∂t22

= h

(
L2

t22

)
< 0 for t22 > 0, (3.46)

which indicates that t22g(L2

t22
) is a monotonically decreasing function of t22. It

is easy to prove that the inequality L1,1(t∗,q∗) < L1,12(t∗,q∗) always holds for

the considered case of h1 < h12, as indicated in footnote 1 of this chapter. If

L1,1(t∗,q∗) + L1,2(t∗,q∗) > L1,12(t∗,q∗) > L
∗
1 holds, we can always allocate part

of t∗21 to t∗22 while maintaining the same L
∗
1, L∗2, q∗, t∗0, t∗1 and the sum of t∗21, t∗22,
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which will decrease L1,2(t∗,q∗) until the equality holds. This operation will result

in an increased Es,2 (t∗,q∗, L∗2) (expression (3.23)) by decreasing t∗22g(
L∗2
t∗22

) without

reducing Es,1(t∗,q∗, L
∗
1) (expression (3.22)), and thus will increase the objective

function of problem (P3.4) while satisfy all the constraints. Hence, expression

(3.45) always holds with the optimal solution of problem (P3.4).

Remark 3.1. (Intuitive Explanation). Lemma 3.3 sheds light on the fact that

the optimal offloaded data size of UE1, i.e., L
∗
1 should be the sum of the decoded

data sizes at the AP, i.e., (L1,1(t∗,q∗)+L1,2(t∗,q∗)) rather than L1,12(t∗,q∗), which

simplifies the expression of L1 compared with that in expression (3.17).

Based on the result of Lemma 3.3, we can derive that λ∗3 > 0 and λ∗4 = 0.

Furthermore, for t∗ � 0 and q∗ � 0, it can be derived from the KKT conditions

(3.33), (3.34) and the result of Lemma 3.1 that

β1
q∗1
t∗1

= β2
q∗21

t∗21

= − 1

P0

1 +

(
W0

(
−e
−
(
η∗ ln 2
λ∗3B

+1

)))−1
 . (3.47)

Moreover, through the KKT conditions (3.36) and (3.37), we can respectively derive

that

β1
q∗1
t∗1

=
λ∗3Bβ1

(1 + λ∗1)ν1g1P0 ln 2
− 1

P0

, (3.48)

β2
q∗21

t∗21

=
λ∗3Bβ2

(1 + λ∗2)ν2g2P0 ln 2
− 1

P0

. (3.49)

Based on (3.47)-(3.49), we obtain that (1 + λ∗1)ν1g1P0 = β1

β2
(1 + λ∗2)ν2g2P0. Com-

bining the condition (3.32), the optimal Lagrange multipliers have the following

property:

(1 + λ∗k)νkgkP0 =
βkη

∗

β1 + β2

, k ∈ {1, 2} . (3.50)
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Hence, by substituting (3.50) into (3.48) and (3.49), we obtain

β1
q∗1
t∗1

= β2
q∗21

t∗21

=
Bλ∗3(β1 + β2)

η∗ ln 2
− 1

P0

. (3.51)

Based on these results, the optimal resource allocation of problem (P3.4) for a given

feasible P0 is characterized in the following sections.

3.3.3 Optimal Offloading Decisions with Power Allocation

First, we define an offloading priority indicator for UEk as

µk ,
BhkCkQk

N0 ln 2
, k ∈ {1, 2} . (3.52)

Note that µk depends on the corresponding variables quantifying uplink offloading

channel (hk), local computing overhead (CkQk), and it is a monotonically increas-

ing function of hk, Ck and Qk. The relationship between the optimal offloaded data

size and power allocation for each user with the corresponding offloading priority

indicator is shown in the following theorem.

Theorem 3.1. (Optimal Cooperative Computation Offloading Decisions with

Power Allocation).

1) If M+
1 > 0 or µ1 ≥ (β1 + β2)P0/z

∗, the optimal L
∗
1, p∗1 and p∗21 (all in

semi-closed form) can be expressed as

L
∗
1



= M+
1 , µ1 <

(β1 + β2)P0

z∗
,

∈ (M+
1 , I1), µ1 =

(β1 + β2)P0

z∗
,

= I1, µ1 >
(β1 + β2)P0

z∗
,

(3.53)
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p∗1 =
N0

h1

(
(β1 + β2)P0

z∗
− 1

)
> 0, (3.54)

p∗21 =
N0

h2

(
(β1 + β2)P0

z∗
− 1

)
> 0, (3.55)

in which z∗ is the unique solution of the equation given by e

(
1

(β1+β2)P0
−1
)
z −

e
(β1+β2)P0

z = 0 on the specific range of z ∈ (0, (β1 + β2)P0).

If M+
1 = 0 and µ1 < (β1 + β2)P0/z

∗, it is optimal to set L
∗
1 = 0, p∗1 = 0, and

p∗21 = 0.

2) If M+
2 > 0 or ρ(µ2) ≥ (β1 + β2)P0, the optimal L∗2 and p∗22 (all in closed

form) are given by

L∗2


= M+

2 , ρ(µ2) < (β1 + β2)P0,

∈ (M+
2 , I2), ρ(µ2) = (β1 + β2)P0,

= I2, ρ(µ2) > (β1 + β2)P0,

(3.56)

p∗22 =
1

h2

g

(
B

ln 2

[
W0

(
(β1 + β2)P0 − 1

e

)
+ 1

])
> 0, (3.57)

where ρ(µ2) , µ2 lnµ2 − µ2 + 1.

If M+
2 = 0 and ρ(µ2) < (β1 + β2)P0, it is optimal to set L∗2 = 0 and p∗22 = 0.

Proof. See Appendix A.1.

Lemma 3.4. (Quick Offloading Decisions for the Minimum Offloaded Data

Size of UE1 and UE2). When µ1 ≤ 1 (or µ2 ≤ 1), the optimal offloaded data size

for UE1 (or UE2) is the minimum, i.e., L
∗
1 = M+

1 (or L∗2 = M+
2 ). In these two

cases, we can get the optimal L
∗
1 (or L∗2) just according to the value of µ1 (or µ2)

without making comparisons as in (3.53) (or (3.56)).

Proof. Based on the expression of ∂L
∂L
∗
1

in (A.1.3) of Appendix A.1 and the range
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of z∗ ∈ (0, (β1 + β2)P0), we can verify that ∂L
∂L
∗
1
< 0 when µ1 ≤ 1, and thus

L
∗
1 = M+

1 . As for UE2, L∗2
t∗22

> B
ln 2

lnµ2 always holds when µ2 ≤ 1 and L∗2 > 0,

which is equivalent to ∂L
∂L∗2

< 0 according to the proof of Theorem 3.1, and thus

L∗2 = M+
2 , which completes the proof.

Remark 3.2. (Whether Computation Offloading is Necessary?). According to

Theorem 3.1, it is easy to note that the offloading decision and power allocation

of each user depend on their corresponding offloading priority indicator µk as well

as the minimum required offloaded data size M+
k , k ∈ {1, 2}. If M+

1 = 0 and

µ1 < (β1 + β2)P0/z
∗, then operating the whole computation task locally is optimal

for UE1; otherwise computation offloading is required. Similarly, if M+
2 = 0 and

ρ(µ2) < (β1 + β2)P0, then fulfilling the whole computation task locally is optimal

for UE2; otherwise computation offloading is necessary.

Remark 3.3. (Effects of Parameters on the Offloading Priority). It is easy to

note that ρ(µ2) is a monotonic increasing function of µ2 for µ2 > 1 (as for µ2 ≤

1, L∗2 = M+
2 according to Lemma 3.4), and thus it also monotonically increases

with parameters C2, Q2, and h2 in this case, according to the monotonicity rule of

compound function. The results in Theorem 3.1 show that the optimal offloaded

data sizes for the two cooperative users UEk, k ∈ {1, 2} grow with increasing µk,

which is consistent with the intuition that more resources should be scheduled to

computation offloading when users have good channels (i.e., large hk) or endure

high local computing energy consumption (i.e., large Ck and Qk), so as to save

energy.

Remark 3.4. (Binary Structure of the Offloading Decisions for Two Coop-

erative Users). Theorem 3.1 reveals that the optimal offloading decisions for both

UE1 and UE2 have a similar threshold-based structure when computation offloading
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saves energy. Moreover, since the exact cases of µ1 = (β1 + β2)P0/z
∗ in (3.53)

and ρ(µ2) = (β1 + β2)P0 in (3.56) rarely occur in practice, the optimal offloading

decisions have a binary structure for both cooperative users.

Remark 3.5. (Effects of Parameters on the Thresholds of the Offloading

Decisions). The same item in the thresholds of the offloading decisions for the

two users in Theorem 3.1, i.e., (β1 + β2) = (ν1g1h1 + ν2g2h2)/N0, reflects the

energy harvesting potentials of the two users (i.e., ν1g1 and ν2g2) and the quality of

uplink offloading channels for the users (i.e., h1 and h2), which demonstrates the

effect of user cooperation that either user’s offloading decision is affected by the

other user’s energy-harvesting ability and offloading-channel quality.

Lemma 3.5. For the case of L
∗
1 > 0, the optimal transmit rates of UE1 and

UE2 for offloading UE1’s input data are same, which is expressed as

r1,1(p∗) = r1,2(p∗) = B log2

(β1 + β2)P0

z∗
. (3.58)

Proof. It is easy to verify the result in Lemma 3.5 by substituting the optimal

transmit power in (3.54) and (3.55) into the expressions of r1,1(p) and r1,2(p) in

(3.3) and (3.4), respectively.

3.3.4 Optimal Energy-Efficient Time Allocation

Using Theorem 3.1, we have obtained the optimal offloaded data size, i.e., (L
∗
1, L

∗
2)

and the optimal power allocation, i.e., p∗ = (p∗1, p
∗
21, p

∗
22), for the SESM problem

(P3.3) under a given feasible P0. In this subsection, we focus on obtaining

the corresponding optimal time allocation, i.e., t∗ = (t∗0, t
∗
1, t
∗
21, t

∗
22), which is

summarised in Theorem 3.2.
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Theorem 3.2. (Optimal Time Allocation for WPT and Cooperative Computa-

tion Offloading).

1) The optimal time allocation for offloading UE2’s input data is given by

t∗22 =
ln 2× L∗2

B
[
W0

(
(β1+β2)P0−1

e

)
+ 1
] . (3.59)

2) The optimal WPT duration time can be derived as

t∗0 =


T − t∗22 − L

∗
1/r1,1(p∗), L

∗
1 > 0,

T − t∗22, L
∗
1 = 0.

(3.60)

3) The optimal time allocation for offloading UE1’s input data, i.e., (t∗1, t
∗
21)

can be expressed as 
t∗1 =

L
∗
1

r1,12(p∗)
,

t∗21 =
L
∗
1

r1,1(p∗)
− t∗1,

(3.61)

where (t∗1, t
∗
21) = (0, 0) when L

∗
1 = 0.

Proof. See Appendix A.2.

Remark 3.6. (Time Allocation versus UE1’s Offloaded Data). From 3) of

Theorem 3.2, we can easily see that if local computing is preferred to complete

the whole computation task of UE1, i.e., L
∗
1 = 0, no time will be allocated to

UE1 for offloading as well as UE2 for cooperatively offloading UE1’s task bits, and

thus (t∗1, t
∗
21) = (0, 0). All the remaining time of the slot except the time used for

offloading UE2’s task-input data, i.e., t∗0 = T − t∗22, will be utilized for WPT so as

to maximize the saved energy at the UEs as shown in 2) of Theorem 3.2. For the

case with L
∗
1 > 0, positive time allocation for (t∗1, t

∗
21) is necessary, and the equality
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of t∗1 + t∗21 = L
∗
1

r1,1(p∗)
= L

∗
1

r1,2(p∗)
is satisfied, due the facts obtained from Lemma 3.3

and Lemma 3.5. Hence, the remaining time of the slot, i.e., t∗0 = T − t∗22 − t∗1 − t∗21

will be used for energy harvesting.

Remark 3.7. (Time Allocation versus UE2’s Offloaded Data). Similarly, if

local computing is preferred to complete the whole computation task of UE2, i.e.,

L∗2 = 0, no time will be allocated for offloading UE2’s task-input data, i.e., t∗22 = 0

as seen from 1) of Theorem 3.2. In contrast, t∗22 > 0 if L∗2 > 0, which also depends

on the offloading power of UE2, i.e., p∗22 given in (3.57).

Remark 3.8. (Relationship between Time Allocation and User Cooperation).

The Theorem 3.2 in combination with the power allocation in Theorem 3.1 further

show that the optimal time allocation for UEs’ computation offloading and WPT are

highly related to the strategy of user cooperation. Based on the power allocation in

Theorem 3.1, we know that r1,1(p∗) = r1,2(p∗) = B log2
(β1+β2)P0

z∗
and r1,12(p∗) =

B log2(1 + N0h12

h2

(
1 + (β1+β2)P0

z∗
− 1)

)
. We can see that the value of (β1 + β2) =

(ν1g1h1 + ν2g2h2)/N0 plays an important role in determining the values of t∗1, t∗21

and/or t∗22 for computation offloading when L
∗
1 > 0 and/or L∗2 > 0, and further

affect the value of t∗0 for WPT. As discussed in Remark 3.5, the value of (β1 +

β2) reflects the energy harvesting potentials of the two users (i.e., ν1g1 and ν2g2)

and the quality of uplink offloading channels for the users (i.e., h1 and h2), which

further indicates the effect of cooperation among near-far users that either user’s

allocated time for computation offloading is affected by the other user’s energy-

harvesting ability and offloading-channel quality, and then have an influence on the

time utilized for energy harvesting.
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3.3.5 The Equivalence Between Problem (P3.1) and Problem

(P3.2)

In this part, we proceed to show the equivalence between the original APTEM

problem (P3.1) and the min-max problem (P3.2). First, an important property of

the optimal WPT duration time t∗0 is given in the following Lemma 3.6.

Lemma 3.6. The optimal WPT duration time t∗0 is a monotonic non-decreasing

function of P0.

Proof. See Appendix A.3.

Remark 3.9. (The Effect of P0 and t0 on Maximizing SES). The result of

Lemma 3.6 shows that t∗0 is small when P0 is relatively small, since in this case

the extra energy harvested by increasing t0 cannot compensate the extra energy

consumed by reducing the time for computation offloading (i.e., T − t0), leading to

a smaller energy saving of both users. On the contrary, when P0 becomes large, t∗0

increases accordingly to obtain more sum-energy saving.

Theorem 3.3. The APTEM problem (P3.1) is equivalent to the min-max

problem (P3.2).

Proof. We first introduce a transitional problem (P3.5), denoted as the AP’s transmit

power minimization (APTPM) problem

(P3.5) : min
P0>0,t,p

P0,

s.t. (3.11b)–(3.11h).
(3.62)

In the sequel, we first try to prove the equivalence between problem (P3.2) and

problem (P3.5), and then show the equivalence of problem (P3.5) and problem
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(P3.1) to finally verify the theorem.

Problem (P3.5) is a general problem for minimizing the WPT transmit power

P0 by jointly optimizing P0, t and p, while problem (P3.2) gives a specific method

for obtaining the minimum P0. Problem (P3.2) is solved by a two-phase method

where the minimum P ?
0 can be obtained through a one-dimensional (bi-section)

search by solving problem (P3.3) (or P3.4) with each given P0. It is easy to

understand that if we assume the given P0 is the minimum P ?
0 , then the optimal t?

and p? of problem (P3.5) can be obtained by solving the SESM problem (P3.3) with

the given P ?
0 . If we find the minimum given P ?

0 that maximizes the sum-energy-

saving with all the constraints being satisfied through a bi-section search, then the

obtained (P ?
0 , t

?,p?), i.e., the optimal solution of problem (P3.2), is actually the

joint-optimal solution of problem (P3.5). Hence, we can say that problem (P3.2) and

problem (P3.5) are equivalent for obtaining the joint-optimal solution (P ?
0 , t

?,p?).

According to the result of Lemma 3.6, the optimal WPT duration time of the

SESM problem (P3.3), i.e., t∗0, is a monotonic non-decreasing function of P0, which

indicates that P0t
∗
0(P0) is a monotonic increasing function of P0. Hence, we can

conclude that the minimum P0 of the APTPM problem (P3.5) is same as the optimal

P0 for minimizing P0t0 in the original APTEM problem (P3.1), which means that

problem (P3.1) and problem (P3.5) are equivalent, finally proving the equivalence

between problem (P3.1) and problem (P3.2). This indicates that when the minimum

feasible P ?
0 is used in problem (P3.3) (or P3.4), the obtained maximum sum-energy

saving reaches its minimum with respect to P0.
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3.3.6 Optimal Resource Allocation for Obtaining AP’s

Minimum Energy Transmit Power

In this section, we will discuss the second phase of solving problem (P3.2) to obtain

the AP’s minimum energy transmit power P ?
0 . It is easy to note that with a larger

feasible P0, as extra MP0 > 0 is available, the feasible region of problem (P3.3)

(or P3.4) will be larger as well, and thus more extra energy, at least v1g1MP0t0 +

v2g2MP0t0 will be saved, which means that the maximum SES obtained by problem

(P3.3) (or P3.4) is a monotonic increasing function of P0 as long as problem (P3.3)

(or P3.4) is feasible. Hence, the minimum P ?
0 of the original APTEM problem

(P3.1) can be obtained through a bi-section search of P0.

As a matter of fact, the optimal time allocation parameters should satisfy the

latency constraint (3.7). Note that t∗22 monotonically decreases with P0 (as verified

in the Appendix A.3: proof of Lemma 3.6), and thus a lower bound of P0, denoted

as PL
0 , can be obtained by solving the equation t∗22(P0) = T with L∗2 = M2. Based

on this PL
0 , we can further obtain a proper upper bound of P0, denoted as PU

0 , which

should make problem (P3.4) feasible and lead to positive energy savings for both

of the users. The optimal P ?
0 must be in the range of (PL

0 , P
U
0 ), and the following

lemma shows a property of P ?
0 which gives a stopping criterion of the bi-section

search.

Lemma 3.7. When the minimum feasible P ?
0 is used in problem (P3.3) (or

P3.4), at least one of the two users should use up all its harvested energy, i.e.,

E∗s,1(P ?
0 ) = 0 or E∗s,2(P ?

0 ) = 0.

Proof. The above lemma can be proved by the method of contradiction. If both
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E∗s,1(P ?
0 ) > 0 and E∗s,2(P ?

0 ) > 0 hold, then at least

4P0 = min

{
E∗s,1(P ?

0 )

ν1g1t∗0
,
E∗s,2(P ?

0 )

ν2g2t∗0

}
> 0 (3.63)

can be reduced to minimize P0, which will make E∗s,1(P ?
0 −4P0) = 0 or E∗s,2(P ?

0 −

4P0) = 0.

3.3.7 Algorithm Summary

The whole process of solving the original APTEM problem (P3.1) is summarized

in Algorithm 3.1, where the final optimal P ?
0 and the corresponding offloaded data

size (L
?

1, L
?
2), and power-time allocation (p?, t?) can all be obtained.

Remark 3.10. (Low-complexity Algorithm). Through implementing Algorith-

m 3.1, the optimal solutions of the original APTEM problem (P3.1) can be obtained

with closed or semi-closed form by substituting the optimal P ?
0 into Theorem 3.1

and Theorem 3.2. At most two tiers of one-dimensional (bi-section) search are

needed to execute Algorithm 3.1. The inner tier one is for obtaining z∗ in Theorem

1-1) and the outer tier one is for acquiring the optimal P ?
0 following the step 2-

step 15. Therefore, the complexity of Algorithm 3.1 is at most with the order

of O(1) ln(1/σ) ln(1/δ), where σ, δ > 0 denote the computational accuracies of

the two tiers of one-dimensional search. Compared with the traditional block-

coordinate descending algorithm where iterative optimization should be operated,

the proposed Algorithm 3.1 is of much lower complexity.
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Algorithm 3.1 Joint Power and Time Allocation Algorithm for Solving the APTEM

Problem (P3.1)

1: Input: νk, gk, hk, fk, (Ik, Ck, T ), Qk = κkf
2
k , Mk = Ik − fkT/Ck, k ∈ {1, 2},

and ω > 1, δ > 0, B, T,N0, h12;

2: Initialize PU
0 = PL

0 , θ = 0, where θ ∈ {0, 1} is an indicator for the feasibility

of problem (P3.4);

3: while θ = 0 do

4: Set PU
0 = ωPU

0 , and then obtain the corresponding (L
∗
1, L

∗
2,p

∗) and t∗

according to Theorem 3.1 and Theorem 3.2;

5: Calculating E∗s,1(PU
0 ) and E∗s,2(PU

0 ) according to (3.10);

6: if t∗0(PU
0 ) > 0, E∗s,1(PU

0 ) > 0, and E∗s,2(PU
0 ) > 0,

then θ = 1;

7: else θ = 0;

8: end if

9: end while

10: while PU
0 − PL

0 > δ do

11: Set P0 = (PL
0 +PU

0 )/2, and then obtain the corresponding (L
∗
1, L

∗
2,p

∗) and t∗

according to Theorem 3.1 and Theorem 3.2;

12: Calculating E∗s,1(P0) and E∗s,2(P0) according to (3.10);

13: if t∗0(P0) > 0, E∗s,1(P0) > 0, and E∗s,2(P0) > 0,

then PU
0 = P0;

14: elseif t∗0(P0) ≤ 0 or E∗s,1(P0) < 0 or E∗s,2(P0) < 0,

then PL
0 = P0;

15: else break;

16: end if

17: end while

18: Output: P ?
0 = P0, and the corresponding L

?

1, L?2, t? = (t?0, t
?
1, t

?
21, t

?
22), p? =

(p?1, p
?
21, p

?
22).
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3.4 Numerical Results

In this section, the performance of the proposed wireless powered computation

offloading scheme with user cooperation by jointly optimizing AP’s energy transmit

power, UEs’ offloading power, and time allocation, is investigated by computer

simulations. We will refer to our proposed scheme as “UC-JOPT” in the figures for

comparison. Also, we include the results of the following two baselines:

1. A simplified wireless powered computation offloading scheme with user

cooperation where UE1 and UE2 use equal transmit time to offload UE1’s

input data (“UC-ET” for short). In this scheme, p, L1, L2, t22 and t1 are

assigned according to the optimal solutions obtained from Theorem 3.1 and

Theorem 3.2. As for t21, UE2 chooses to use the same time duration as

t1 to relay UE1’s input-data information, i.e., t21 = t1, and thus t0 =

T − t1 − t21 − t22, which is suboptimal when compared with the optimal

resource allocation obtained in the proposed UC-JOPT scheme.

2. Wireless powered computation offloading scheme with inactive user cooper-

ation by letting t21 = 0 and t1 = L
∗
1/r1,1(p∗) (“IUC” for short).

The simulation settings are set as follows unless specified otherwise. The

bandwidth and the time block length are set as B = 10MHz and T = 0.2s,

respectively. It is assumed that the channel reciprocity holds for the downlink

and uplink, and thus g1 = h1, g2 = h2. The channel power gain is modeled

as hj = 10−3d−αj φj , j ∈ {1, 2, 12}, where φj represents the short-term fading

which is assumed to be an exponentially distributed random variable with unit

mean (Rayleigh fading). For distance dj in meters (m) with the same path-loss
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exponent α, a 30dB average signal power attenuation is assumed for all the channels

at reference of 1m. We assume that d1 = 10m, d2 = 6m, d12 = 6m and α = 2. The

noise at the AP and UE2 is assumed to have a white power ofN0 = 10−9W. For each

user UEk, k ∈ {1, 2}, the CPU frequency fk is uniformly selected from the set of

{0.1, 0.2, . . . , 1.0}GHz. We set νk = 0.8 and κk = 10−28, respectively. As for the

computation tasks, the input data size and the required number of CPU cycles per

bit follow the uniform distribution with Ik ∈ [100, 500] Kbits andCk ∈ [1000, 2000]

cycles/bit, respectively. The figures by simulations in the following subsections are

based on 1000 independent realizations, in which hk, fk, Ik and Ck are randomly

selected according to the above assumptions in each realization, modeling the real

heterogeneous computing scenarios.

3.4.1 The Equivalence of Problem (P3.1) and Problem (P3.2)

In this subsection, we will verify the equivalence of problem (P3.1) and (P3.2)

by simulations. The results of the average minimum transmit energy (AMTE)

combining with the corresponding average minimum transmit power (AMTP) of

the AP are shown in Figure 3.3 and Figure 3.4, versus the block length T and the

same task-input data size I = I1 = I2, respectively.

From Figure 3.3, we can observe that the corresponding curves of AMTE

and AMTP illustrate the same trend and property, verifying the equivalence of

these two criteria in problem (P3.1) and (P3.2). It is shown that the proposed

UC-JOPT scheme obviously outperforms the baselines. Specifically, the curves

of UC-JOPT are much lower than those of UC-ET, indicating the effectiveness of

the optimization for time allocation. Besides, the AMTE and AMTP of UC-JOPT

are even less than half of those for IUC, which further displays the significance of
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Figure 3.3: Average minimum transmit energy and power of the AP versus T .

user cooperation in handling the double-near-far effect in WPCNs. It is valuable

to note that the gaps of AMTE (AMTP) between different schemes become more

significant for a shorter block length (smaller T ), demonstrating the superiority of

the proposed UC-JOPT scheme in handling the latency-critical tasks.

Figure 3.4 also shows the equivalence between problem (P3.1) and (P3.2) by

depicting both AMTE and AMTP versus the same task-input data size I . The

AMTE and AMTP of all the schemes increase gradually with I , as expected.

Besides, the performance improvement of the proposed UC-JOPT scheme is clearly

displayed, and we can obtain similar results as those reported in Figure 3.3. Also,

it is noted that the reduction of AMTE (AMTP) between different schemes become

more obvious as I increases, which further indicates the advantage of the proposed

UC-JOPT scheme in completing computation-intensive tasks.

The above results verify that the proposed UC-JOPT scheme is highly ca-

pable of dealing with computation-intensive latency-critical tasks and resisting
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Figure 3.4: Average minimum transmit energy and power of the AP versus I .

the double-near-far effect in WPCNs by fully taking the benefits of joint-optimal

resource allocation and user cooperation.

3.4.2 The Effects of Path Loss

From the expression of the channel power gain described above, it is understood

that the path-loss exponent α and the distances d1, d2 and d12 have great influence

on the value of h1, h2 and h12, and thus further affect the AMTE (AMTP) of each

scheme. In this part of simulations, we set same short-term fading parameters for

UE1 and UE2, i.e., φ1 = φ2, and focus on the effect of α and distances on the

AMTE. Setting d1 = 10m, d2 = ξd1, and d12 = (1 − ξ)d1, Figure 3.5 depicts the

AMTE with respect to the distance ratio ξ for α = 1.5, 2, 2.5.

From the results in Figure 3.5, we have the observation that the performance

of the proposed UC-JOPT scheme is superior to the benchmarks, and the corre-

sponding improvements are even more pronounced with a larger α, indicating that
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Figure 3.5: Average minimum transmit energy of the AP versus the distance ratio ξ.

the UC-JOPT scheme is highly effective in resisting the attenuation caused by path

loss. It is also noticed that the AMTE curves of the two cooperative schemes, i.e.,

UC-JOPT and UC-ET, first decrease then increase with the distance ratio ξ, and

there is a saddle point of ξ in each curve achieving the minimum AMTE. This

is due to the fact that for the cooperative computation offloading schemes, the

performance depends not only on h2 but also h12, and there exists a tradeoff between

these two values. When ξ is small, the performance is limited by the value of h12,

and the AMTE curves decrease with ξ since h12 increases accordingly. Around the

saddle point, the performance of both two cooperative schemes degrades with ξ as

the decreasing h2 plays a dominant role in this situation. This figure also shows

that when ξ is less than the saddle point, the gaps between the two cooperative

schemes are not that obvious, while the gaps widen obviously as ξ goes beyond the

saddle point. It is interesting to note that the performance of the proposed UC-JOPT

scheme converges to that of IUC as ξ gradually tends to 1 since both UE1 and UE2
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suffer from severe signal attenuation, and t?21 gradually approaches to 0. However,

the performance of the UC-ET scheme is even worse than that of the IUC scheme

when ξ becomes larger approaching to 1, which shows the importance and effect of

optimizing the offloading time fraction.

3.5 Summary

In this chapter, we investigated the use of cooperative communications in computa-

tion offloading for a WPT-MEC system, in which an AP acts as an energy source

via WPT and serves as an MEC server to assist two near-far UEs to complete their

computation-intensive latency-critical tasks. Joint power and time allocation for

cooperative computation offloading has been considered based on a block-based

harvest-then-offload protocol, with the aim to minimize the total transmit energy

of the AP for completing the computation tasks of the two UEs. A two-phase

method was proposed to find the optimal solution of the offloading decisions and the

AP’s minimum-energy transmit power, where the joint power and time allocation

are obtained in closed or semi-closed form with the given AP’s energy transmit

power. Numerical results not only revealed that the proposed scheme can achieve

significant performance improvement but also demonstrated the effectiveness of the

scheme in handling computation-intensive latency-critical tasks and resisting the

double-near-far effect in WPCNs.
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Chapter 4

Mobile Edge Computing in UAV-

Assisted Relaying Systems

This chapter is based on our works published in [J2] and [C2] ( [71] and [75]).

4.1 Introduction

Due to the attractive advantages of UAV for its easy deployment, flexible movement,

and LoS connections, etc., it is a great attempt to leverage the technology of the

UAV in MEC systems. Most existing MEC works concentrate either on the cellular-

based MEC networks, where the UEs’ tasks are completed by using the computing

resources at the APs; or the UAV-enabled MEC architectures by exploiting the

computing capabilities of the UAV processing servers. However, for the UEs with

seriously degraded links to the AP due to severe blockage, it is impossible to take

full use of the computing resources at the AP directly. Besides, due to the size-

constrained resource-limited property of the UAVs, it is risky to rely only on the
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UAVs to assist the UEs for completing their computation-intensive latency-critical

tasks. For these reasons, we study a UAV-assisted MEC architecture in this chapter,

where the computing resources at the UAV and the AP are utilized cooperatively at

the same time to help the UEs complete their computation-intensive latency-critical

tasks. In addition, the energy-efficient LoS transmissions of the UAV have been

fully exploited since the UAV is not only served as a mobile computing server to

help the UEs compute their tasks but also as a relay to further offload UEs’ tasks to

the AP for computing.

Our aim is to minimize the weighted sum energy consumption (WSEC) of the

UAV and the UEs subject to the UEs’ task constraints, the information-causality

constraints, the bandwidth allocation constraints, and the UAV’s trajectory con-

straints. The required optimization is nonconvex, and an alternating optimization

algorithm is proposed to jointly optimize the computation resource scheduling, the

bandwidth allocation, and the UAV’s trajectory in an iterative fashion. Numerical

results demonstrate that significant performance gain is obtained over conventional

methods. Also, the advantages of the proposed algorithm are more prominent when

handling computation-intensive latency-critical tasks.

The UAV in the considered scenario of this chapter acts as a MEC server

as well as a relay, which is actually an aerial communication platform. It is

interesting to note that the technology of user-cooperation can also be applied in

the UAV scenarios especially when the UAVs are acting as aerial users, where

the ground users and UAV users can cooperatively help each other to complete

the computation tasks. For example, the users (current-strong users) with more

idle radio/computing resources can share these resources with the users (current-

weak users) with insufficient radio/computing resources due to the currently high
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computing demand such as operating computation-intensive applications. The

cooperation can be either computing the current-weak users’ offloaded data with

shared computing resources or relaying the offloaded data to the AP with shared

radio resources. The incentive behind this kind of user cooperation could be

that the current-strong users sharing their resources to other current-weak users

can enjoy the shared resource if they become current-weak users in the situation

with insufficient resources for completing the intensive computing workloads in the

future. The work considering this UAV-user cooperation strategy will be considered

as one of our future works.

4.2 System Model and Problem Formulation

As shown in Figure 4.1, a UAV-assisted MEC system is considered, which consists

of an AP, a cellular-connected UAV, and K ground UEs, all being equipped with a

single antenna. The UAV and UEs are all assumed to have an on-board communica-

tion circuit and on-board computing processor powered by their embedded battery,

while the AP is capable of providing high-speed transmission rate with grid power

supply and is endowed with an ultra-high performance processing server. It is also

assumed that each UE has a bit-wise-independent computation-intensive task, and

the UAV acts as an assistant to help the UEs complete their computation tasks by

providing both MEC and relaying services. For providing MEC service, the UAV

shares its computing resources with the UEs to help compute their tasks; while for

the relaying service, the UAV forwards part of the UEs’ offloaded tasks to the AP

for computing with the purpose of satisfying the latency constraints or saving its

own energy.
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Figure 4.1: An illustration of the UAV-assisted MEC architecture, where the UAV serves as an
MEC server to help the ground UEs compute their offloaded tasks as well as a possible relay to
further forward the offloaded tasks to the AP with more powerful computing resources.

4.2.1 Channel Model and Coordinate System

A 3D Euclidean coordinate system is adopted, whose coordinates are measured in

meters (m). We assume that the locations of the AP and all the UEs are fixed on the

ground with zero altitude, with the location of the AP being s̃0 = (x0, y0, 0). Let

K = {1, . . . , K} denote the set of the UEs, with s̃k = (xk, yk, 0) representing the

location of UE k ∈ K. It is assumed that the locations of UEs are known to the UAV

for designing its trajectory [59]. We assume that the UAV flies at a fixed altitude

H > 0 during the task completion time T , which corresponds to the minimum

altitude that is appropriate to the work terrain and can avoid buildings without the

requirement of frequent descending and ascending.

For ease of exposition, the finite task completion time T in seconds (s) is

discretized into N equal time slots each with a duration of τ = T/N , where τ
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is sufficiently small such that the UAV’s location can be assumed to be unchanged

during each slot. The initial and final horizontal locations of the UAV are preset as

uI = (xI, yI) and uF = (xF, yF), respectively. Let N = {1, . . . , N} denote the set

of the N time slots. At the n-th time slot, the UAV’s horizontal location is denoted

as u[n] ≡ u(nτ) = (x[n], y[n]) with u[0] = uI and u[N ] = uF. It is assumed that

the UAV flies with a constant speed in each time slot, denoted as v[n], which should

satisfy the following maximum speed constraint

v[n] =
‖u[n]− u[n− 1]‖

τ
≤ Vmax, n ∈ N , (4.1)

where Vmax is the predetermined maximum speed of the UAV, and Vmax ≥ ‖uF −

uI‖/T establishes to make sure that at least one feasible trajectory of the UAV

exists.

Similar to [59], the wireless channels between the UAV and the AP as well as

the UEs are assumed to be dominated by LoS links, which is verified by recent field

experiments done by Qualcomm [125].1 Thus, the channel power gain between

the UAV and the AP and between the UAV and UE k at the time slot n can be,

respectively, given by

hAP[n] = h0d
−2
AP =

h0

‖u[n]− s0‖2 +H2
, n ∈ N , (4.2)

hk[n] = h0d
−2
k =

h0

‖u[n]− sk‖2 +H2
, k ∈ K, n ∈ N , (4.3)

where h0 is the channel power gain at a reference distance of d0 = 1m; dAP and dk

are respectively the distances between the UAV and the AP as well as the UE k at the

1It is of great value to extend our work on the probabilistic LoS and Rician fading channel
models when we consider the scenarios where the UAV’s flying altitude changes according to the
work terrain.
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n-th time slot with s0 = (x0, y0) and sk = (xk, yk) denoting the horizontal locations

of the AP and UE k, k ∈ K. It is assumed that the channel reciprocity establishes in

our considered scenario, and thus the offloading and downloading channels between

the UEs and the UAV are identical. In this chapter, the direct links between UEs

and the AP are assumed to be negligible due to e.g., severe blockage,2 which means

that the UEs cannot directly offload their task-input bits to the AP unless with the

assistance of the UAV. The motivation behind this scenario is based on the fact that it

is more important to guarantee the UEs’ computation tasks being completed within

the given limited time T with as little UEs’ energy as possible, than dropping their

tasks or letting the UEs compute their takes locally at the cost of exhausting their

energy.

4.2.2 Computation Task Model and Execution Methods

The computation task of UE k ∈ K is denoted as a positive tuple [Ik, Ck, Ok, Tk],

where Ik denotes the size (in bits) of the computation task-input data (e.g., the

program codes and input parameters), Ck is the amount of required computing

resource for computing 1-bit of input data (i.e., the number of CPU cycles required),

Ok ∈ (0, 1) is the ratio of task-output data size to that of the task-input data, i.e., the

output data size should be OkIk for UE k, and Tk is the maximum tolerable latency

with Tk ≤ T, k ∈ K. In this chapter, we only consider the case that Tk = T for all

k ∈ K. It should be noted that the UEs’ task-input bits are bit-wise independent and

can be arbitrarily divided to facilitate parallel trade-offs between local computing

at the UEs and computation offloading to the UAV or further to the AP with the

assistance of the UAV. In other words, the UEs can accomplish their computation

2The general case with direct links between the UEs and the AP is a promising extension of our
current work.
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tasks in a partial offloading fashion [14] with the following three ways.

4.2.2.1 Local Computing at UEs

Each UE can perform local computing and computation offloading simultaneously

since local computing at the UEs does not need radio resources such as bandwidth.

To efficiently use the energy for local computing, the UEs leverage the DVFS

technique, and thus the energy consumed for local computing can be adaptively

controlled by adjusting the UEs’ CPU frequency during each time slot [20]. The

CPU frequency of UE k during time slot n is denoted as fk[n] (cycles/second).

Thus, the computation bits and energy consumption of UE k during time slot n for

local computing can be, respectively, expressed as

Lloc
k [n] = τfk[n]/Ck, k ∈ K, n ∈ N , (4.4)

Eloc
k [n] = τκkf

3
k [n], k ∈ K, n ∈ N , (4.5)

where κk is the effective capacitance coefficient of UE k that depends on its

processor’s chip architecture.

4.2.2.2 Task Offloaded to the UAV for Computing

The UEs’ remaining task-input data should be computed remotely, first by offload-

ing to the UAV, and then one part of the data being computed at the UAV while the

other part further offloaded to the AP for computing. In order to avoid interference

among the UEs during the offloading process, we adopt the TDMA protocol. Each

slot is further divided into K equal durations δ = T/(NK), and UE k offloads its

task-input data in the k-th duration. Let Loff
k [n] denote the offloaded bits of UE k in

its allocated duration at time slot n, and thus the corresponding energy consumption
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of UE k at slot n for computation offloading can be calculated as

Eoff
k [n] = δP off

k [n] ≡ δN0

hk[n]

(
2
Loff
k [n]

δBoff
k

[n] − 1

)
, k ∈ K, n ∈ N , (4.6)

where P off
k [n] is the transmit power of UE k for offloading Loff

k [n] computation bits

to the UAV at time slot n, Boff
k [n] is the corresponding allocated bandwidth for UE

k, and N0 denotes the noise power at the UAV.3

Assume that the UAV also adopts the DVFS technique to improve its energy

efficiency for computing, and its adjustable CPU frequency in the k-th duration

of slot n for computing UE k’s offloaded task is denoted as fU,k[n]. Hence, the

completed computation bits and the energy consumption of the UAV for computing

UE k’s task at time slot n can be, respectively, given by

LU,k[n] = δfU,k[n]/Ck, k ∈ K, n ∈ N , (4.7)

EU,k[n] = δκUf
3
U,k[n], k ∈ K, n ∈ N , (4.8)

where κU is the effective capacitance coefficient of the UAV. Note that computing

LU,k[n] bits of UE k’s task-input data will produce OkLU,k[n] bits of task-output

data, which should be downloaded from the UAV to the UE k later.

4.2.2.3 Task Offloaded to the AP for Computing

Part of the UEs’ offloaded task-input data at the UAV will be offloaded to the AP’s

processing server for computing. To better distinguish the offloading signals from

different UEs, the TDMA protocol with K equal time divisions (δ = T/(NK))

is also adopted in this case. Let Loff
U,k[n] denote the number of UE k’s task-

3Without loss of generality, we assume that the noise power at any node in the system is
considered the same as N0 in this chapter.
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input bits being offloaded from the UAV to the AP at time slot n. Thus, the

corresponding energy consumption of the UAV for offloading UE k’s task at slot

n can be calculated as

Eoff
U,k[n] = δP off

U,k[n] ≡ δN0

hAP[n]

(
2

Loff
U,k[n]

δBoff
U,k

[n] − 1

)
, k ∈ K, n ∈ N , (4.9)

where P off
U,k[n] and Boff

U,k[n] are respectively the transmit power and the allocated

bandwidth of the UAV for offloading UE k’s task to the AP at time slot n.

After computing the Loff
U,k[n] input bits at the AP, OkL

off
U,k[n] bits of computation

results for UE k will be generated. As the AP is integrated with an ultra-high-

performance processing server, the computing time is negligible. The AP will send

the computation results back to the UAV in the TDMA manner using a separate

bandwidth. Since the AP is supplied with grid power and can support ultra-high

transmission rate, the download transmission time from the AP to the UAV is also

assumed negligible.4

For the latter two offloading methods, the generated computation results at the

UAV (including the results from UAV’s computing and received from the AP) will

then be downloaded back to the corresponding UEs. It is assumed that the UAV is

equipped with a data buffer with sufficiently large size, and it is capable of storing

each UE’s offloaded data and the corresponding computation results separately.

Besides, we assume that the UAV operates in a frequency-division duplex (FDD)

mode in each UE’s operation duration δ with separate bandwidths allocated for task

reception from UEs ({Boff
k [n]}), task offloading transmission to the AP ({Boff

U,k[n]}),

4Once the AP receives the forwarded Loff
U,k[n] bits input data from the UAV in the k-th duration

of the n-th time slot, it will immediately decode, compute the data, and then send the induced
OkL

off
U,k[n] bits of output data back to the UAV, all with ultra-low latency that is negligible compared

with the length of each duration δ, which means that the UAV can receive the task-output data from
the AP in the same duration of its offloading process.
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and task results downloading transmission to the UEs ({Bdown
U,k [n]}), with a total

bandwidth B satisfying the constraint

Boff
k [n] +Boff

U,k[n] +Bdown
U,k [n] = B, k ∈ K, n ∈ N . (4.10)

The UEs’ computation results are subsequently transmitted by the UAV using

TDMA similar to the UEs’ offloading process, each with an equal duration δ in each

time slot. Let Ldown
U,k [n] denote the bits of task-output data being downloaded from

the UAV to UE k at time slot n. Hence, the corresponding energy consumption of

the UAV can be calculated as

Edown
U,k [n] = δP down

U,k [n] ≡ δN0

hk[n]

(
2

Ldown
U,k [n]

δBdown
U,k

[n] − 1

)
, k ∈ K, n ∈ N , (4.11)

where P down
U,k [n] is the transmit power of the UAV for downloading UE k’s task-

output data at time slot n.

Note that at each time slot n, the UAV can only compute or forward the task-

input data that has already been received from the UEs. By assuming that the

processing delay, e.g., the delay for decoding and computing preparation, at the

UAV is one time slot, then we have the following information-causality constraint:

n∑
i=2

(
δfU,k[i]

Ck
+ Loff

U,k[i]

)
≤

n−1∑
i=1

Loff
k [i], (4.12)

for n ∈ N2 and k ∈ K where N2 = {2, . . . , N − 1}. Similarly, at each time slot n,

the UAV can only transmit the task-output data corresponding to the task-input data

that has already been computed at the UAV or offloaded for computing at the AP
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and received the results. Thus, we have another information-causality constraint:

n∑
i=3

Ldown
U,k [i] ≤ Ok

n−1∑
i=2

(
δfU,k[i]

Ck
+ Loff

U,k[i]

)
, (4.13)

for n ∈ N3 and k ∈ K where N3 = {3, . . . , N}. It is clear that the UEs should

not offload at the last two slots, while the UAV should not compute or forward the

received input data of UEs at the first and the last slots as well as not transmit the

output data to the UEs in the first two slots. Hence, we haveLoff
k [N−1] = Loff

k [N ] =

0, fU,k[1] = fU,k[N ] = 0, Loff
U,k[1] = Loff

U,k[N ] = 0, and Ldown
U,k [1] = Ldown

U,k [2] = 0.

4.2.3 Problem Formulation

Considering the fact that the traditional battery-based UEs and UAVs are usually

power-limited, one major problem that the UAV-assisted MEC system faces will

be energy. Hence, in this chapter, we try to minimize the WSEC of the UAV as

well as all the UEs during the whole task completion time T . In the previous

subsection, we have obtained the energy consumption of the UEs and the UAV

for task offloading/downloading and computation. In fact, the energy consumption

for UAV’s propulsion is also considerable which is greatly affected by the UAV’s

trajectory, and hence should be taken into account. With the assumption that the

time slot duration τ is sufficiently small, the UAV’s flying during each slot can be

regarded as straight-and-level flight with constant speed v[n]. Taking a fixed-wing

UAV as an example [58, 59], its propulsion energy consumption at time slot n can

be expressed as

Eprob
U [n] = τ

(
θ1v

3[n] +
θ2

v[n]

)
, n ∈ N , (4.14)
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where θ1 and θ2 are two parameters related to the UAV’s weight, wing area, wing

span efficiency, and air density, etc. Combining with the above analysis, we obtain

the total energy consumption of UE k and the UAV in each time slot n as

Ek[n] = Eloc
k [n] + Eoff

k [n], k ∈ K, n ∈ N , (4.15)

EU[n] =
K∑
k=1

(
EU,k[n] + Eoff

U,k[n] + Edown
U,k [n]

)
+ Eprob

U [n], n ∈ N . (4.16)

In our considered scenario, the UEs’ CPU computing frequencies {fk[n]},

their offloading task-input bits {Loff
k [n]} and the corresponding allocated bandwidth

{Boff
k [n]}; the UAV’s CPU computing frequencies {fU,k[n]}, its forwarding (further

offloading) task-input bits {Loff
U,k[n]} and downloading task-output bits {Ldown

U,k [n]}

as well as the corresponding allocated bandwidths {Boff
U,k[n]}, {Bdown

U,k [n]} for dif-

ferent UEs; along with the UAV’s trajectory, i.e., {u[n]}, will be jointly optimized

to minimize the WSEC. To this end, the WSEC minimization problem can be

formulated as problem (P4.1) given below

(P4.1) : min
z,B,u

N∑
n=1

(
wUEU[n] +

K∑
k=1

wkEk[n]

)
(4.17a)

s.t.
n∑
i=2

(
δfU,k[i]

Ck
+ Loff

U,k[i]

)
≤

n−1∑
i=1

Loff
k [i], ∀n ∈ N2, k ∈ K, (4.17b)

n∑
i=3

Ldown
U,k [i] ≤ Ok

n−1∑
i=2

(
δfU,k[i]

Ck
+ Loff

U,k[i]

)
,∀n ∈ N3, k ∈ K,(4.17c)

N−1∑
n=2

(
δfU,k[n]

Ck
+ Loff

U,k[n]

)
=

N−2∑
n=1

Loff
k [n], ∀k ∈ K, (4.17d)

N∑
n=3

Ldown
U,k [n] = Ok

N−1∑
n=2

(
δfU,k[n]

Ck
+ Loff

U,k[n]

)
, ∀k ∈ K, (4.17e)

N∑
n=1

τ

Ck
fk[n] +

N−2∑
n=1

Loff
k [n] = Ik, ∀k ∈ K, (4.17f)
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Boff
k [n] +Boff

U,k[n] +Bdown
U,k [n] = B, ∀n ∈ N , k ∈ K, (4.17g)

fk[n] ≥ 0, ∀n ∈ N , k ∈ K, (4.17h)

Loff
k [N − 1] = Loff

k [N ] = 0, Loff
k [n] ≥ 0, ∀n ∈ N1, k ∈ K, (4.17i)

fU,k[1] = fU,k[N ] = 0, fU,k[n] ≥ 0, ∀n ∈ N2, k ∈ K, (4.17j)

Loff
U,k[1] = Loff

U,k[N ] = 0, Loff
U,k[n] ≥ 0, ∀n ∈ N2, k ∈ K, (4.17k)

Ldown
U,k [1] = Ldown

U,k [2] = 0, Ldown
U,k [n] ≥ 0, ∀n ∈ N3, k ∈ K, (4.17l)

Boff
k [N − 1] = Boff

k [N ] = 0, Boff
k [n] ≥ 0, ∀n ∈ N1, k ∈ K, (4.17m)

Boff
U,k[1] = Boff

U,k[N ] = 0, Boff
U,k[n] ≥ 0, ∀n ∈ N2, k ∈ K, (4.17n)

Bdown
U,k [1] = Bdown

U,k [2] = 0, Bdown
U,k [n] ≥ 0,∀n ∈ N3, k ∈ K, (4.17o)

u[0] = uI, u[N ] = uF, (4.17p)

‖u[n]− u[n− 1]‖ ≤ Vmaxτ, ∀n ∈ N , (4.17q)

where we have z , {zk[n]}k∈K,n∈N and B , {Bk[n]}k∈K,n∈N

with zk[n] , {fk[n], Loff
k [n], fU,k[n], Loff

U,k[n], Ldown
U,k [n]} and Bk[n] ,

{Boff
k [n], Boff

U,k[n], Bdown
U,k [n]}, respectively, denote the sets of the computational

resource scheduling variables and the bandwidth allocation variables for UE k in

time slot n, u , {u[n]}n∈N denotes the set of the UAV’s horizontal locations

for all the slots, i.e., the trajectory of the UAV, and N1 = {1, . . . , N − 2}. In

problem (P4.1), (4.17a) is the objective function for minimizing the WSEC where

wU and {wk}k∈K represent the weights of the UAV and UEs, respectively, which

trade-offs the energy consumption between the UAV and UEs, and consider

the priority/fairness among the UEs. Also, (4.17b) and (4.17c) are the two

information-causality constraints, while (4.17d)–(4.17f) are the UEs’ computation

task constraints to make sure that all the UEs’ computation task-input data has been
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computed and the corresponding task-output data has been received. The bandwidth

constraints are in (4.17g), while (4.17h)–(4.17o) ensure the non-negativeness of

the optimization variables. (4.17p) and (4.17q) specify the UAV’s initial and final

horizontal locations, and its maximum speed constraints.

4.3 Proposed Three-Step Alternating Optimization

Algorithm

The formulated WSEC minimization problem (P4.1) is a complicated non-convex

optimization problem because of the non-convex objective function where non-

linear couplings exist among the variables Loff
k [n] and Boff

k [n], Loff
U,k[n] and Boff

U,k[n],

Ldown
U,k [n] and Bdown

U,k [n] for k ∈ K, n ∈ N , and these variables are also strongly

coupled with the trajectory of the UAV, i.e., u[n]. To address these issues, we

propose a three-step alternating optimization algorithm to solve the problem. In

the first step, the computation resource scheduling variables in z are optimized by

solving the problem with given UAV’s trajectory u and bandwidth allocation B; and

then in the second step, the bandwidth allocation variables in B will be optimized

with the same given UAV’s trajectory u and the optimized z obtained in the first

step; and finally in the third step, we focus on designing the UAV’s trajectory u

with the optimized variables z and B.

We assume that the proposed three-step alternating optimization algorithm

for solving the formulated WSEC minimization problem (P4.1) is carried out at

the servers of the AP, and then the the UAV and UEs will be informed with

the obtained solution sent from the AP as the control information. Hence, the

UEs and the UAV can perform the offloading and computing operations based



4.3. PROPOSED THREE-STEP ALTERNATING ALGORITHM 123

on the computing resource scheduling, bandwidth allocation and UAV’s trajectory

contained in the obtained solution. This strategy is applicable in practice since the

considered UEs and the UAV are cellular-based, and the control information is sent

periodically. Considering the fact the grid-powered AP is with super computing

capability and high transmit power, the cost of time and energy for implementing

the propose algorithm and sending the solution back to the UEs and the UAV should

be acceptable in general. The details for the three-step algorithm are presented in

the next section.

4.3.1 Computation Resource Scheduling with Fixed UAV’s

Trajectory and Bandwidth Allocation

A subproblem of (P4.1) is the computation resource scheduling problem (P4.1.1),

where the UAV’s trajectory u and bandwidth allocation B are given as fixed. In

this case, the time-dependent channels {hAP[n]}n∈N and {hk[n]}k∈K,n∈N defined

in (4.2) and (4.3) are also known. Besides, the non-linear couplings among the

offloading/downloading task-input/task-output bits (Loff
k [n], Loff

U,k[n], Ldown
U,k [n]) with

their corresponding allocated bandwidths (Boff
k [n], Boff

U,k[n], Bdown
U,k [n]) no longer

exist. The resource scheduling problem (P4.1.1) is convex with a convex objective

function and convex constraints, which is expressed as

(P4.1.1) : min
z

N∑
n=1

(
wUE

(1)
U [n] +

K∑
k=1

wkEk[n]

)
(4.18a)

s.t. (4.17b)− (4.17f), (4.17h)− (4.17l), (4.18b)

whereE(1)
U [n] =

K∑
k=1

(
EU,k[n]+Eoff

U,k[n]+Edown
U,k [n]

)
. In order to gain more insights

into the solution, we leverage the Lagrange method [123] to solve problem (P4.1.1),
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and the optimal solution of problem (P4.1.1) is given in the following theorem.

Theorem 4.1. The optimal solution of problem (P4.1.1) related to UE k ∈ K

is given below

f ∗k[n] =

√
[β∗k]

+

3Ckwkκk
, n ∈ N , (4.19)

Loff∗
k [n] =


δBoff

k [n]

[
ϕoff
k [n] + log2

[ N−1∑
i=n+1

λ∗k,i + β∗k − η∗k
]+
]+

, n ∈ N1,

0, n = N − 1 or N,

(4.20)

f ∗U,k[n] =



√√√√√
[
η∗k −Okρ∗k +Ok

N∑
i=n+1

µ∗k,i −
N−1∑
i=n

λ∗k,i

]+

3CkwUκU

, n ∈ N2,

0, n = 1 or N,

(4.21)

Loff∗
U,k [n] =



δBoff
U,k[n]

[
ϕoff

U,k[n] + log2

[
η∗k −Okρ

∗
k +Ok

N∑
i=n+1

µ∗k,i

−
N−1∑
i=n

λ∗k,i

]+
]+

, n ∈ N2,

0, n = 1 or N,

(4.22)

Ldown∗
U,k [n] =


δBdown

U,k [n]

[
ϕdown

U,k [n] + log2

[
ρ∗k −

N∑
i=n

µ∗k,i

]+
]+

, n ∈ N3,

0, n = 1 or 2,

(4.23)

where

ϕoff
k [n] = log2

Boff
k [n]hk[n]

wkN0 ln 2
, n ∈ N1, (4.24)
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ϕoff
U,k[n] = log2

Boff
U,k[n]hAP[n]

wUN0 ln 2
, n ∈ N2, (4.25)

ϕdown
U,k [n] = log2

Bdown
U,k [n]hk[n]

wUN0 ln 2
, n ∈ N3, (4.26)

are denoted as the offloading/downloading priority indicators for the UEs in each

given slot. Also, λ∗k,n ≥ 0 and µ∗k,n ≥ 0 for k ∈ K, n ∈ N are respectively

the optimal Lagrange multipliers (dual variables) associated with the inequality

constraints (4.17b) and (4.17c) in problem (P4.1.1) (or P4.1), while η∗k, ρ∗k and

β∗k are respectively the optimal Lagrange multipliers associated with the equality

constraints (4.17d)–(4.17f) for k ∈ K.

Proof. See Appendix B.1.

Remark 4.1. (Intuitive Explanation). From the expressions relating to the

computation resource scheduling parameters in Theorem 4.1, we observe that

{Loff
k [n]}, {Loff

U,k[n]}, and {Ldown
U,k [n]} are monotonically increasing with {ϕoff

k [n]},

{ϕoff
U,k[n]} and {ϕdown

U,k [n]} when they are positive. It coincides with the intuition

that more input (or output) data should be offloaded (or downloaded) with larger

{ϕoff
k [n]}, {ϕoff

U,k[n]} and {ϕdown
U,k [n]}, corresponding to the scenarios with larger

bandwidths, channel power gains and smaller weights for energy consumption.

Remark 4.2. (Decreasing Offloading and Increasing Downloading Data

Size). Theorem 4.1 sheds light on the fact that Loff∗
k [n] decreases with the time

slot index n while Ldown∗
U,k [n] increases with n for the reason that

∑N−1
i=n+1 λ

∗
k,i and∑N

i=n µ
∗
k,i in (4.20) and (4.23) decrease with n as λ∗k,i ≥ 0 and µ∗k,i ≥ 0. This

indicates that the resource allocated for UEs’ task offloading gradually decreases

while that for UAV’s downloading gradually increases as time goes by.

It is necessary to obtain the optimal values of the Lagrange multipliers, i.e.,
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λ∗ = {λ∗k,n}k∈K,n∈N , µ∗ = {µ∗k,n}k∈K,n∈N , η∗ = {η∗k}k∈K, ρ∗ = {ρ∗k}k∈K

and β∗ = {β∗k}k∈K since they play important roles in determining the optimal

computation resource scheduling z∗ according to Theorem 4.1. In this chapter,

we adopt a subgradient-based algorithm to obtain the optimal dual variables in λ∗

and µ∗ related to the inequality constraints (4.17b), (4.17c), as described in the

following Lemma 4.1.

Lemma 4.1. The dual variables {λk,n} and {µk,n} obtained at the (j + 1)-th

(j = 1, 2, . . . ) iteration of the subgradient-based algorithm are expressed as

λk,n,j+1 = [λk,n,j − ε(λ)
j ∆λk,n,j]

+, k ∈ K, n ∈ N2, (4.27)

µk,n,j+1 = [µk,n,j − ε(µ)
j ∆µk,n,j]

+, k ∈ K, n ∈ N3, (4.28)

with the corresponding subgradients given as

∆λk,n,j =
n−1∑
i=1

Loff∗
k,j [i]−

n∑
i=2

(
δf ∗U,k,j[i]

Ck
+ Loff∗

U,k,j[i]

)
, (4.29)

∆µk,n,j = Ok

n−1∑
i=2

(
δf ∗U,k,j[i]

Ck
+ Loff∗

U,k,j[i]

)
−

n∑
i=3

Ldown∗
U,k,j [i], (4.30)

where ε(λ)
j and ε

(µ)
j respectively denote the iterative steps for obtaining the dual

variables in λ and µ at the j-th iteration [126]. Also, {Loff∗
k,j [n]}, {f ∗U,k,j[n]},

{Loff∗
U,k,j[n]}, {Ldown∗

U,k,j [n]} are the computation resource scheduling variables ob-

tained through Theorem 4.1 with the dual variables obtained at the j-th iteration,

i.e., λj = {λk,n,j}k∈K,n∈N , µj = {µk,n,j}k∈K,n∈N , ηj = {ηk,j}k∈K, ρj = {ρk,j}k∈K

and βj = {βk,j}k∈K.

Proof. See Appendix B.2.
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Besides, the bi-section search method is used to obtain the optimal dual

variables in η∗, ρ∗ and β∗ related to the equality constraints (4.17d)–(4.17f), as

summarized in the following Lemma 4.2.

Lemma 4.2. With the obtained λj+1 and µj+1 above, the corresponding

ηj+1, ρj+1 and βj+1 can be obtained by bi-section search of {βk,j+1}k∈K ∈

[0, {βk,max}k∈K) where βk,max = 3Ckwkκk(
IkCk
T

)2. For each given βk,j+1 ∈

[0, βk,max), the corresponding ηk,j+1 and ρk,j+1 can be obtained with another two

bi-section searches within ηk,j+1 ∈ [ηlow
k,j+1, η

up
k,j+1] and ρk,j+1 ∈ [ρlow

k,j+1, ρ
up
k,j+1] to

make the expressions satisfy (B.3.1)=(B.3.2) and (B.3.1)=(B.3.3), respectively, in

Appendix B.3, where the expressions of ηlow
k,j+1, ηup

k,j+1, ρlow
k,j+1, and ρup

k,j+1 are given

in (B.3.5)–(B.3.8) in Appendix B.3. The optimal βk,j+1, ηk,j+1 and ρk,j+1 should

satisfy (B.3.1)=(B.3.4).

Proof. See Appendix B.3.

The optimal dual variables λ∗,µ∗ and η∗,ρ∗,β∗ can be finally obtained when

the subgradient algorithm converges [127], and the bi-section searches terminate.

The results in [127] implies that the subgradient method is guaranteed to converge

to the optimal value of a convex optimization problem if the diminishing step size

rule is adopted. Even if the constant step length are employed, the subgradient

method is capable of finding a ε-suboptimal point within a finite number of steps. It

is known that the Lagrange dual problem is convex no matter the original problem

is convex or not, and thus the convergence of the subgradient algorithm for solving

the dual problem to obtain the dual variables can be guaranteed.

Hence, the corresponding convergence of the Lagrange method in combination

with the subgradient algorithm and bi-section search method for obtaining the
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optimal solutions of problem (P4.1.1) in (4.18) can be further guaranteed according

to [123, 127], based on the fact that the problem (P4.1.1) is proved to be convex.

4.3.2 Bandwidth Allocation with Fixed UAV’s Trajectory and

Computation Resource Scheduling

Here, another subproblem of (P4.1), denoted as the bandwidth allocation problem

(P4.1.2) is considered to optimize B with the same given UAV’s trajectory u and

the optimized computation resource scheduling parameters in z. The bandwidth

allocation problem (P4.1.2) is expressed as

(P4.1.2) : min
B

N∑
n=1

(
wUE

(2)
U [n] +

K∑
k=1

wkE
off
k [n]

)
(4.31a)

s.t. (4.17g), (4.17m)− (4.17o), (4.31b)

where E(2)
U [n] =

K∑
k=1

(
Eoff

U,k[n] + Edown
U,k [n]

)
. It can be easily proved that problem

(P4.1.2) is convex with convex objective function and constraints. To gain more

insights into the structure of the optimal solution, we again leverage the Lagrange

method [123] to solve this problem, and the optimal solution to problem (P4.1.2) is

given in the following theorem.

Theorem 4.2. The optimal solution of problem (P4.1.2) related to UE k ∈ K

is given by

Boff∗
k [n] =


ln 2
2
Loff
k [n]

δW0

[
ln 2
2

(
φk,n
wk
hk[n]Loff

k [n])
1
2

] , n ∈ N1,

0, n = N − 1 or N,

(4.32)
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Boff∗
U,k [n] =


ln 2
2
Loff

U,k[n]

δW0

[
ln 2
2

(
φk,n
wU

hAP[n]Loff
U,k[n])

1
2

] , n ∈ N2,

0, n = 1 or N,

(4.33)

Bdown∗
U,k [n] =


ln 2
2
Ldown

U,k [n]

δW0

[
ln 2
2

(
φk,n
wU

hk[n]Ldown
U,k [n])

1
2

] , n ∈ N3,

0, n = 1 or 2,

(4.34)

where φk,n =
ν∗k,n

δ2N0 ln 2
with {ν∗k,n}k∈K,n∈N being the optimal Lagrange multipliers

(dual variables) associated with the equality constraints in (4.17g) of problem

(P4.1.2) (or P4.1), and W0(x) is the principal branch of the Lambert W function

defined as the solution of W0(x)eW0(x) = x [124].

Proof. See Appendix B.4.

Lemma 4.3. (Exclusive Bandwidth Allocation). According to the optimal

bandwidth allocation results in Theorem 4.2 combining with the equality con-

straints in (4.17g), we have

Boff∗
k [n] = B, if Loff

k [n] > 0, Loff
U,k[n] = Ldown

U,k [n] = 0, (4.35)

Boff∗
U,k [n] = B, if Loff

U,k[n] > 0, Loff
k [n] = Ldown

U,k [n] = 0, (4.36)

Bdown∗
U,k [n] = B, if Ldown

U,k [n] > 0, Loff
k [n] = Loff

U,k[n] = 0, (4.37)

where the whole bandwidth is exclusively occupied when only one of Loff
k [n],

Loff
U,k[n], Ldown

U,k [n] is positive for any k ∈ K, n ∈ N . Also, it is always sure that

Boff∗
k [1] = B, Bdown∗

U,k [N ] = B, k ∈ K. (4.38)

The optimal Lagrange multipliers {ν∗k,n} for obtaining the optimal bandwidth
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allocation in Theorem 4.2 correspond to {φk,n}, which should make the equality

constraints in (4.17g) satisfied. In fact, φk,n can be obtained effectively with the

bi-section search when the bandwidth is not exclusively occupied, i.e., at least two

of Loff
k [n], Loff

U,k[n], Ldown
U,k [n] are positive, since {Boff∗

k [n]}n∈N1 , {Boff∗
U,k [n]}n∈N2 and

{Bdown∗
U,k [n]}n∈N3 are all monotonically decreasing functions with respect to (w.r.t.)

{φk,n} according to the property of the W0 function. Besides, we can obtain tight

search ranges using the results in Lemma 4.4.

Lemma 4.4. A tight bi-section search range of φk,n (k ∈ K) for any slot n ∈ N

with non-exclusive bandwidth allocation is given as φk,n ∈ [φmin
k,n , φ

max
k,n ] where

φmin
k,n (or φmax

k,n ) = min (or max) (4.39)

{φoff
UE,k,n(B/3), φoff

U,k,n(B/3), φdown
U,k,n(B/3)}, case 1

{φoff
UE,k,n(B/2), φoff

U,k,n(B/2)}, case 2

{φoff
UE,k,n(B/2), φdown

U,k,n(B/2)}, case 3

{φoff
U,k,n(B/2), φdown

U,k,n(B/2)}, case 4

where case 1-case 4 are distinguished by the values of Loff
k [n], Loff

U,k[n] and Ldown
U,k [n]

for each n ∈ N . For case 1, all the three parameters have positive values; for case

2, Ldown
U,k [n] = 0; for case 3, Loff

U,k[n] = 0; for case 4, Loff
k [n] = 0. In (4.39),

φoff
UE,k,n(x) =

wkL
off
k [n]

δ2x2hk[n]
e
Loff
k [n] ln 2

δx , k ∈ K, n ∈ N , (4.40)

φoff
U,k,n(x) =

wUL
off
U,k[n]

δ2x2hAP[n]
e
Loff

U,k[n] ln 2

δx , k ∈ K, n ∈ N , (4.41)

φdown
U,k,n(x) =

wUL
down
U,k [n]

δ2x2hk[n]
e
Ldown

U,k [n] ln 2

δx , k ∈ K, n ∈ N , (4.42)

which are the value of φk,n obtained by letting the expressions of Boff∗
k [n], Boff∗

U,k [n]
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and Bdown∗
U,k [n] in (4.32)–(4.34) equal to x.

4.3.3 UAV Trajectory Design With Fixed Computation

Resource Scheduling and Bandwidth Allocation

Here, the subproblem for designing the UAV’s trajectory u is considered, which

we refer to it as the UAV trajectory design problem (P4.1.3), by assuming that the

computation resource scheduling z and bandwidth allocation B are given as fixed

with the previously optimized values. Hence, the UAV trajectory design problem

(P4.1.3) can be rewritten as

(P4.1.3) : min
u

N∑
n=1

(
wUE

(3)
U [n] +

K∑
k=1

wkE
off
k [n]

)
(4.43a)

s.t. (4.17p), (4.17q), (4.43b)

where E(3)
U [n] = Eprob

U [n] +
K∑
k=1

(
Eoff

U,k[n] +Edown
U,k [n]

)
. It is noted that the Eprob

U [n]

defined in (4.14) with v[n] in (4.1) is not a convex function of u. In order to address

this issue, we first define an upper bound of Eprob
U [n] as follows

Ẽprob
U [n] = τ

(
θ1v

3[n] +
θ2

ṽ[n]

)
, n ∈ N , (4.44)

by introducing a variable ṽ[n] and a constraint v[n] ≥ ṽ[n], which is equivalent to

‖u[n] − u[n − 1]‖2 ≥ ṽ2[n]τ 2. This constraint is still non-convex, and we then

leverage the successive convex approximation (SCA) technique to solve this issue.

The left-hand side of the constraint is convex versus u and can be approximated

as its linear lower bound by using the first-order Taylor expansion at a local point

ui, where i = 1, 2, . . . denotes the iteration index of the SCA method. Hence, the
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additional constraint can be approximated as a convex one as follows

ṽ2[n]τ 2 − 2(ui[n]− ui[n− 1])T (u[n]− u[n− 1]) (4.45)

+ ‖ui[n]− ui[n− 1]‖2 ≤ 0, n ∈ N .

The approximated problem of (P4.1.3) with {Ẽprob
U [n]}, {ṽ[n]} and the additional

constraint (4.45) is convex w.r.t. u and {ṽ[n]}. However, the UAV’s locations in

different slots are coupled with each other as in (4.17q), and thus it is difficult to

obtain a closed-form solution of u. In this case, we resort to the software CVX [128]

to solve the approximated problem of (P4.1.3).

4.3.4 Algorithm, Convergence, and Complexity

Based on the aforementioned analysis of the alternating optimization for the

computation resource scheduling z, the bandwidth allocation B and the UAV’s

trajectory u in each subproblem, Algorithm 4.1 is proposed to solve the original

problem (P4.1) for obtaining the solution {z∗,B∗,u∗}.5

The convergence of Algorithm 4.1 is easy to prove in light of the guaranteed

convergence of the loop Repeat 1.1 in Step 1, the bi-section search in Step 2 and

the CVX solving process based on the SCA method in Step 3 [123]. The lower-

bounded objective function of problem (P4.1) will monotonically decrease with the

iteration index ζ by optimizing z, B and u alternatingly in each subproblem, which

further guarantees the convergence of the algorithm.

In addition, Algorithm 4.1 is easy to implement and the corresponding com-

plexity is acceptable. In Step 1, the complexity mainly comes from the subgradient

5The proposed method is not theoretically optimal due to problem non-convexity, but its
performance gain is verified by the simulation results.
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Algorithm 4.1 Three-Step Algorithm for Solving Problem (P4.1)

1: Set B, T , N , K, h0, N0, H , Vmax, θ1, θ2, uI, uF, wU, κU, s0,

{sk, wk, Ik, Ck, Ok, κk}k∈K, two tolerant thresholds ε1 and ε, and the iterative

steps {ε(λ)
j } and {ε(µ)

j };
2: Initialize the iteration index ζ = 1 and u1, B1;

3: Repeat 1

4: Initialize j = 1, as well as λ1, µ1;

5: Step 1: Repeat 1.1

6: a) Obtain ηj , ρj , βj with λj , µj through Lemma 4.2;

b) Obtain z∗ζ,j =
{
{f ∗k,j[n]}, {Loff∗

k,j [n]}, {f ∗U,k,j[n]}, {Loff∗
U,k,j[n]}, {Ldown∗

U,k,j [n]}
}

through Theorem 4.1 with λj , µj , ηj , ρj , βj and uζ , Bζ ;

c) Calculate the WSEC E
(1)
j by substituting z∗ζ,j , Bζ , uζ into the objective

function of problem (P4.1.1);

d) j = j + 1;

e) Update λj and µj according to Lemma 4.1;

7: End Repeat 1.1 until convergence, i.e., |E(1)
j −E

(1)
j−1| < ε1 (j > 1), and obtain

optimal zζ+1 = z∗ζ,j;

8: Step 2: Bi-section search of {νk,n} to find the optimal {ν∗k,n} and obtain the

Bζ+1 = B∗ζ =
{
{Boff∗

k [n]}, {Boff∗
U,k [n]}, {Bdown∗

U,k [n]}
}

according to Theorem

4.2, Lemma 4.3 and Lemma 4.4 with given uζ and zζ+1;

9: Step 3: Solve the approximated problem of (P4.1.3) by CVX based on the

SCA method, so as to obtain the optimal solution uζ+1 with the given zζ+1,

Bζ+1;

10: ζ = ζ + 1;

11: Calculate the WSEC Eζ , by substituting zζ , Bζ , and uζ into the objective

function of problem (P4.1);

12: End Repeat 1 until convergence, i.e., |Eζ − Eζ−1| < ε (ζ > 2), and obtain the

minimum WSEC Eζ with the solution z∗ = zζ , B∗ = Bζ , u∗ = uζ ;
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method for obtaining {λk,n}, {µk,n}, and the bi-section searches of {βk}, {ρk} and

{ηk} in each iteration of Repeat 1.1. Let εsub > 0, and εβ, ερ, εη > 0 denote the

computational accuracies of the subgradient method and the bi-section searches for

{βk}, {ρk} and {ηk}. Thus, the corresponding complexity can be calculated as

O(1/ε2
sub + K log2(1/εβ)(log2(1/ερ) + log2(1/εη))). In Step 2, the complexity

is from the bi-section search of {νk,n}, which is calculated as O(KN log2(1/εν)),

where εν is the corresponding computational accuracy. In Step 3, the complexity

mainly focuses on solving the approximation problem of (P4.1.3) by CVX, which

is acceptable in general.

4.4 Numerical Results

In this section, simulation results are presented to evaluate the performance of the

proposed algorithm against the benchmarking schemes. The effects of the key

parameters will be analyzed, including the relative location of the AP (s0),6 the

computation task sizes of UEs (Ik for k ∈ K), the task completion time for UEs

(T ), the size ratio of task-output data to task-input data (Ok for k ∈ K), the weight

for energy consumption of the UAV (wU), and the iteration index of the alternating

optimization algorithm (ζ). The basic simulation parameters are listed in Table 4.1

unless specified otherwise.

4.4.1 Trajectory of the UAV

In this subsection, numerical results for the trajectory of the UAV are given to shed

light on the effects of the task sizes of UEs ([I1, I2, I3, I4]) and the relative location
6In order to properly show the effects of the relative location of the AP to UEs on UAV’s

trajectory and the performance, we fix the locations of the UEs and vary the location of AP even
though AP is usually fixed in practice.
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Table 4.1: Simulation Parameters
Parameter Symbol Value

The total system bandwidth B 30 MHz

The total task completion time T 10 seconds

Number of time slots N 50

Number of ground UEs K 4

The channel power gain at a reference distance of d0=1 m h0 −30dB

The noise power N0 −60dBm

The fixed altitude of the UAV H 10 m

The maximum available speed of the UAV Vmax 10 m/s

The UAV’s propulsion energy consumption related parameters (θ1, θ2) (0.00614,15.976)

The initial and final horizontal location of the UAV uI, uF (−5,−5), (5,−5)

The horizontal locations of the UEs s1, s2, s3, s4 (5, 5), (−5, 5), (−5,−5), (5,−5)

The effective switched capacitance of the UAV and UEs κU, κk(k ∈ K) 10−28

The weight for energy consumption of the UAV wU 0.2

The weight for energy consumption of the UEs wk (k ∈ K) 1

Required CPU cycles per bit Ck (k ∈ K) 1000 cycles/bit

UEs’ task-input data size Ik (k ∈ K) 400 Mbits

UEs’ task size ratio of output data to input data Ok (k ∈ K) 0.8

The tolerant thresholds ε1 and ε 10−4

of the AP (s0). In Figure 4.2, the UAV’s flying trajectories are depicted in different

scenarios. It should be noted that the total task size of UEs is same for the cases in

(a), (c), (d) and (f), i.e., 1400 Mbits, while the cases for (b) and (e) are with larger

total task size, e.g., 1800 Mbits. From these results in Figure 4.2, we can observe

that the trajectory of the UAV is heavily reliant on the relative location of the AP

and the distribution of UEs’ task sizes.

For the scenario of s0 = (0, 0), the AP is surrounded by the UEs and at the

center of the UEs’ distributed area. We can observe that the UAV tends to fly close

to the UEs with large task sizes and tries to be not too far away from the AP when

the total task sizes of UEs are moderate as the results in cases (a) and (c). When the

total task size becomes larger and the distribution of UEs’ task sizes becomes more
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Figure 4.2: The trajectories of the UAV in the situations with different horizontal location of the
AP and task size allocation of the UEs: s0 = (0, 0) for (a), (b) and (c), s0 = (10, 5) for (d), (e) and
(f); [I1, I2, I3, I4] = [6, 2, 4, 2] × 102Mbits for (a) and (d), [I1, I2, I3, I4] = [6, 4, 6, 2] × 102Mbits
for (b) and (e), [I1, I2, I3, I4] = [2, 2, 6, 4]× 102Mbits for (c) and (f).

average, the UAV tends to fly close to the AP as the result in case (b). These three

cases indicate that for the scenario where the AP is located at the center of UEs’

distributed area, the distribution of the UEs’ task sizes plays an important role in

the UAV’s trajectory. In addition, the effect of the AP’s location will become more

dominant when the UEs’ total task size becomes larger, which coincides with the

intuition that more task-input data will be offloaded to the AP in this situation so as

to reduce the WSEC by making use of the super computing resources at the AP.

For the scenario of s0 = (10, 5), the AP is located outside the distributed area

of the UEs and its average distance to the UEs is relatively larger than the above

scenario. In this situation, the effects of AP’s location on the UAV’s trajectories are

more prominent, where the comparison between the cases (a) and (d), (b) and (e),

(c) and (f) can properly explain this.
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The reason behind these results in Figure 4.2 is that there exists a tradeoff

between the distribution of UEs’ task sizes and the relative location of the AP to

the UEs. In other words, getting closer to the UEs with larger task sizes can reduce

the UEs’ offloading and the UAV’s downloading energy consumption, while being

closer to the AP will reduce the UAV’s offloading energy consumption, and thus

the UAV has to find a balance between these two factors meanwhile taking its own

flying energy consumption into consideration, so as to minimize the WSEC of the

UAV and UEs through optimizing its flying trajectory.

4.4.2 Performance Improvement

Here, we focus on the performance improvement of the proposed algorithm. The

performance of the baselines is also provided for comparison, including the “Direct

Trajectory” scheme where the UAV flies from its initial location to the final location

directly with an average speed; the “Offloading Only” scheme where the UEs

just rely on task offloading to the UAV and the AP for computing without local

computing by the UEs themselves; the “Equal Bandwidth” scheme indicating the

solution that the whole bandwidth is equally divided by the active Boff
k [n], Boff

U,k[n],

and Bdown
U,k [n], for n ∈ N and k ∈ K without bandwidth optimization; and the

“Local Computing” scheme, where the UEs rely on their own computing resources

to complete their computation tasks without offloading. Note that the former four

schemes are all offloading schemes. To better illustrate the effects of the AP’s

relative location on the performance, we present all the results in two scenarios

given in Figure 4.2, i.e., s0 = (0, 0) and s0 = (10, 5).

Figure 4.3 shows the WSEC results versus the uniform task size I = Ik for

k ∈ K. All the curves in the figures increase with I as expected since more energy
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Figure 4.3: The WSEC of the UAV and UEs versus the uniform task size: I = Ik for k ∈ K.

will be consumed by completing tasks with more input data. It can be seen that great

performance improvement can be achieved by leveraging the proposed solution in

comparison with all the baseline schemes in both scenarios. It is clear that the

performance of the “Local Computing” scheme is far worse than the other schemes

with computation offloading, verifying the importance of edge computing through

offloading. Specifically, the WSECs of the “Proposed Solution” are almost one

thousandth of that for the “Local Computing” scheme, presenting the tremendous

benefits the UEs obtained by deploying the UAV as an assistant for computing and

relaying. In addition, the WSECs of the “Proposed Solution” are half less than those

of the “Equal Bandwidth” scheme and they are almost quarter less than those of the

“Direct Trajectory” scheme. The “Offloading Only” scheme performs well with

relatively small task sizes, e.g., I = 400 Mbits, but its gaps between the “Proposed

Solution” are even larger than those of the “Direct Trajectory” scheme when task

sizes are large, e.g., I = 500 Mbits. All these results verify that the proposed
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optimization on bandwidth allocation and UAV’s trajectory, as well as making full

use of the computing resources at UEs have great effects on minimizing the WSEC

of the UAV and UEs. Note that the gaps between the proposed solution and the

baselines become larger when I increases, which further indicates that the proposed

algorithm is more capable of handling the computation-intensive tasks.
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Figure 4.4: The WSEC of the UAV and UEs versus the total task completion time: T (s).

In Figure 4.4, the WSEC w.r.t. the total task completion time T is depicted.

We can see that the WSECs of all the schemes decrease with T , coinciding

with the intuition that a tradeoff exists between the energy consumption and time

consumption for completing the same tasks, and the energy consumption will

decrease when the consumed time increases. It is notable that the proposed solution

is superior to the four baseline schemes in both scenarios, and the performance

improvement is even more prominent with strict time restriction (small T ), which

further confirms that the proposed algorithm is good at dealing with the latency-

critical computation tasks and can achieve a better energy-delay tradeoff. Besides,
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some similar insights can also be obtained as from Figure 4.3.
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Figure 4.5: The WSEC of the UAV and UEs versus the uniform size ratio of task-output data to
task-input data: O = Ok for k ∈ K.

Figure 4.5 depicts the WSEC w.r.t. the uniform size ratio of the task-output

data to the task-input data O = Ok for k ∈ K. We can see that the proposed scheme

outperforms the baselines in both scenarios as in Figure 4.3 and Figure 4.4. The

WSEC of the “Local Computing” scheme is constant w.r.t O, while the WSECs of

all the other schemes increase with O since more output data will be downloaded to

the UEs in the cases with larger O. However, the curves of the “Equal Bandwidth”

scheme are almost unchanged forO ∈ [0.2, 0.8] due to the fact that equally allocated

bandwidth to the downloading transmissions should be sufficient to complete the

downloading missions, and its performance is much worse than the other offloading

schemes for smaller O because of the irrational bandwidth allocation. Note that the

gaps between the “Proposed Solution” and the “Direct Trajectory” scheme decrease

as O increases since it becomes more difficult to balance the tradeoff between UEs’
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task sizes and the relative location of the AP. In comparison, the gaps between

the “Proposed Solution” and the “Offloading Only” scheme become large as O

increases for the reason that local computing may be an energy-saving way when

with a large O. In the scenario of s0 = (10, 5), the “Offloading Only” scheme

performs even worse than the “Equal Bandwidth” scheme when O = 1, which

further verifies that the effect of partial local computing in minimizing the WSEC.
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Figure 4.6: The WSEC of the UAV and UEs versus the weight for UAV’s energy consumption:
wU.

Results for the WSEC versus the UAV’s energy consumption weight wU are

shown in Figure 4.6. It is clear that the proposed scheme still performs best in

both scenarios. All the curves increase with wU except that for “Local Computing”

scheme, since a larger proportion of UAV’s energy consumption will be calculated

into the WSEC with a larger wU. Note that the gaps between the “Proposed

Solution” and the “Direct Trajectory” scheme become obviously larger as wU

increases in both scenarios especially compared with those gaps related to the
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“Offloading Only” and the “Equal Bandwidth” schemes. This is due to the fact that

the energy consumption for UAV’s propulsion contributes a larger part for WSEC of

the “Direct Trajectory” scheme without trajectory optimization, and thus its WSEC

increases much faster w.r.t. wU than the other schemes.

From the above results, we can observe that the WSEC for the scenario of s0 =

(10, 5) is higher than that for the scenario of s0 = (0, 0) for all the schemes. It is

easy to understand that more energy will be used for UAV’s offloading transmission

and flying because of the farther average distances between the AP and UEs. The

performance of the proposed scheme is also more stable than that of the baseline

schemes considering the changing of the relative location of the AP to UEs since its

relative WSEC increment is the smallest among the schemes.
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Figure 4.7: Separate energy consumption of the UEs and the UAV versus the weight for UAV’s
energy consumption: wU.

Based on Figure 4.6, we depict the energy consumption of the UEs (also the

weighted energy consumption of the UEs with w1 = w2 = w3 = w4 = 1), the
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weighted energy consumption, and the energy consumption of the UAV versus

wU in Figure 4.7 (a), (b) and (c), respectively. It is clear that the weighted

energy consumption of the UEs and the UAV for the four offloading schemes

increase with wU as in (a) and (b), while their energy consumption of the UAV

decreases with wU as in (c). This is due to the fact that we aim at minimizing the

WSEC, and the objectives increase with wU similar to the results in Figure 4.6.

Meanwhile minimizing the UAV’s energy consumption becomes more important as

wU increases. From this figure, we can better see the tremendous benefits obtained

by the UEs from the assistance of the UAV, especially when wU is smaller. In the

case of wU = 0.2, the UAV consumes 120 Joule of energy to help the UEs decrease

their energy consumption from 2.56 ∗ 105 Joule of the “Local Computing” scheme

to 20 Joule of the “Proposed Solution”, by providing assistance of task computing

and relaying (further offloading to the AP for computing) through the proposed

algorithm.
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Figure 4.8: The WSEC of the UAV and UEs versus the number of iteration: ζ.
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Figure 4.8 shows the WSEC of the proposed solution w.r.t to the iteration index

ζ under different settings. From the figure, we can see that the proposed solution

almost converges at ζ = 3, i.e., after twice iteration of optimizing z, B and u,

regardless of the UEs’ task sizes or the location of the AP.

4.5 Summary

In this chapter, we investigated the UAV-assisted MEC architecture, where the UAV

acts as an MEC server and a relay to assist the UEs to compute their tasks or

further offload their tasks to the AP for computing. We minimized the WSEC of the

UAV and the UEs under some practical constraints, using an alternating algorithm

iteratively optimizing the computation resource scheduling, bandwidth allocation,

and the UAV’s trajectory. The numerical results have confirmed that the UAV’s

trajectory is greatly affected by the relative location of the AP and the distribution

of UEs’ task sizes. Besides, significant performance improvement and more stable

performance can be achieved by the proposed algorithm over the baseline schemes.
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Chapter 5

Mobile Edge Computing in Hetero-

geneous Cellular Networks with

Central Cloud Computing

This chapter is based on our works published in [J3] and [C3] ( [72] and [76]).

5.1 Introduction

Most of the existing computing works focused on either the edge or central cloud

computing independently, and the edge computing works mainly concentrated on

small-scale networks such as the single MEC server or cloudlet case [30,31,37,38,

52–54, 70, 129]. Even though edge computing has been regarded as a promising

trend to deal with the ever-growing mobile computing data, it cannot entirely

replace the present central cloud computing, due to the fact that edge computing

is set to push limited processing and storage capabilities close to UEs but may
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be incapable of dealing with big data processing. The latest white paper from

ETSI has further illustrated that central cloud computing and edge computing are

highly complementary and significant benefits can be attained when utilizing them

both [69]. However, the architecture with the coexistence of edge and central cloud

has not been thoroughly studied, especially from the communication perspective

[14].

Therefore, in this chapter, we study the coexistence and synergy between the

edge and central cloud computing in a heterogeneous cellular network (HetNet),

which contains a multi-antenna MBS, multiple multi-antenna SBSs and multiple

single-antenna UEs. The SBSs are empowered by edge clouds offering limited com-

puting services for UEs, whereas the MBS provides high-performance central cloud

computing services to UEs via restricted MIMO backhauls to their associated SBSs.

We aim to minimize the system energy consumption used for task offloading and

computation by jointly optimizing the cloud selection, the UEs’ transmit powers,

the SBSs’ receive beamformers, and the SBSs’ transmit covariance matrices, which

is a mixed-integer and non-convex optimization problem. Based on methods such as

the decomposition approach and successive pseudoconvex approximation approach,

a tractable solution is proposed via an iterative algorithm. The numerical results

show that our proposed solution can achieve better performance than conventional

schemes using edge or central cloud alone. Also, with large-scale antennas at the

MBS, the unique features of massive MIMO backhauls can significantly reduce the

complexity of the proposed algorithm and obtain even better performance.



5.2. SYSTEM MODEL AND PROBLEM FORMULATION 147

5.2 System Model and Problem Formulation

As shown in Figure 5.1, we consider a two-tier HetNet, where an M -antenna MBS

provides wireless MIMO backhauls and is fiber-optic connected to the central cloud

with super computing capability, and K SBSs with edge clouds can provide limited

computing capabilities.1 In each small cell, an SBS equipped withL antennas serves

a single-antenna UE2. Note that existing user association schemes [131] can be

adopted to determine which user is connected to an SBS.
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Figure 5.1: An illustration of two-tier HetNets equipped with edge clouds associated with the
SBSs and central cloud connected by the MBS via optical fiber, where the MBS provides central
cloud computing services for UEs through restricted MIMO/massive MIMO backhauls to their
associated SBSs for addressing more complicated computing tasks which cannot be efficiently
handled by the SBSs’ edge clouds due to the limited computing capabilities.

Let K = {1, . . . , K} denote the set of the SBSs as well as the UEs. Each UE

1The central cloud can be regarded as the computing part of the cloud radio access network
(Cloud RAN) [130]. Each edge cloud can be an independent edge computing server co-located at
the corresponding SBS or a certain part of computing capability allocated to the SBS from a nearby
fiber-optic connected edge computing center [14].

2The extended case of serving multiple UEs in each small cell can be effectively dealt with by
using the existing orthogonal multiple access techniques for radio resource allocation. In addition,
the extended case of our work can be viewed as leveraging equal computing resource sharing at a
SBS for multiple active UEs in a small cell, or dedicated computing resource policy for different
types of computing services, i.e., each service will be granted one dedicated computing resource.
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k ∈ K has an atomic highly integrated computation-intensive task, which cannot

be partitioned for parallel execution, characterized by a positive tuple [Ik, Ok, Ck].

Here Ik is the size (in bits) of the computation task-input data (e.g., the program

codes and the input parameters) which cannot be divided and has to be offloaded as

a whole either offloaded to and computed at the edge cloud with edge computing

mode or offloaded to and computed at the central cloud with central computing

mode. Ok ∈ (0, 1) is the ratio of task-output data size to that of the task-input data,

i.e., the output data size should be OkIk for UE k, and Ck is the amount of required

computing resources for computing 1-bit of UE k’s task-input data (i.e., the number

of CPU cycles required). The parameters in the task tuple of [Ik, Ok, Ck] can be

obtained through task profilers by applying the methods (e.g., call graph analysis)

in [7,14,105–107].3 Let Ba and Bb denote the bandwidths allocated to UEs’ access

links to their serving SBSs and SBSs’ backhaul links to the MBS, respectively. A

coordination and monitoring protocol between SBSs and MBS, like the one used

in [132, 133], is needed.

Assuming that the UEs are endowed with very limited computing resources,

they tend to choose computation offloading to complete their computation tasks

remotely, so as to save their own energy and resources. Since the computation tasks

offloaded by the UEs could be executed either at the edge clouds or central cloud,

the cloud selection needs to be appropriately determined before evaluating the

computation latency and energy consumption. Let the binary indicator ck denote the

computing decision, where ck = 1 indicates edge computing, and ck = 0 indicates

central cloud computing being selected for each UE k ∈ K. In the sequel, we

3It is assumed that the size of computing outputs, i.e., OkIk (a few command bits in our
considered scenario in this chapter) is much smaller than Ik (usually measured by Kbit or Mbit)
in practice, and thus the downlink overhead such as time and energy consumption for delivering the
output data back to the UEs is negligible and can be ignored.
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will study the latency and energy consumption of the network, and then formulate

the optimization problem for minimizing the network’s total energy consumption

for task offloading and computation under the central and edge processing latency

constraints.

5.2.1 Transmission and Computing Latency

5.2.1.1 Access Transmission Latency

The uplink transmission rate of UE k for offloading the Ik-bit computation tasks to

its serving SBS k is expressed as

Ra
k(p

u,wk) = Ba log2 (1 + γa
k(p

u,wk)) , k ∈ K, (5.1)

with the signal-to-interference-plus-noise ratio (SINR)

γa
k(p

u,wk) =
pu
k|wH

k ha
k,k|2∑K

i=1,i 6=k p
u
i |wH

k ha
i,k|2 + |wH

k nk|2
, (5.2)

where wk is the receive beamforming vector of the k-th SBS, ha
i,k ∈ CL×1 is the

access channel vector between UE i and SBS k, nk is a vector of the additive white

Gaussian noise with zero mean and variance σ2
k, and pu , [pu

1, . . . , p
u
K ]T ∈ RK×1

denotes the transmit power vector of the UEs. Therefore, the uplink access

transmission latency for offloading UE k’s task can be calculated as

T a
k (pu,wk) =

Ik
Ra
k(p

u,wk)
, k ∈ K. (5.3)
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5.2.1.2 Edge Computing Latency (ck = 1)

Let fk denote the CPU clock frequency of the k-th edge cloud server associated

with SBS k, and thus the corresponding edge computation latency for dealing with

the Ik-bits task-input data can be described as

T edge
k =

IkCk
fk

, k ∈ K, (5.4)

which indicates that the value of edge computing latency depends on the offloaded

task size (Ik), the required unit computing resource (Ck), and edge cloud’s CPU

clock frequency (fk).

5.2.1.3 Central Cloud Processing/Backhaul Transmission Latency (ck = 0)

The central cloud processing latency mainly comes from backhaul transmission and

task execution at the central cloud. Due to the central cloud’s super computing

capability, its computing time is much lower than edge computing, thus we assume

that the time for central cloud computing is negligible. Hence, the central cloud

processing latency, i.e., the backhaul transmission latency, for the k-th UE can be

calculated as4

T central
k (Q) =

Ik
Rb
k(Q)

, k ∈ K, (5.5)

4In our considered scenario, the accessing latency of MBS to the central cloud through optical
fiber should be negligible especially compared with the wireless backhaul transmission latency.
For the extreme case that the optical fiber transmission latency is not negligible, the central cloud
processing latency can be re-expressed as T central

k (Q) = Ik
Rb

k(Q)
+ T central

of , where T central
of is a

maximum threshold of optical fiber transmission latency. Even though, the proposed algorithms are
still effective.
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where Rb
k(Q) is the corresponding backhaul transmission rate given by

Rb
k(Q) = Bb log2 det

(
I + Ψ(Q−k)

−1Hb
kQk

(
Hb
k

)H)
, (5.6)

with the noise-plus-interference covariance matrix

Ψ(Q−k) = σ2I +
N∑

i=1,i 6=k

Hb
i Qi

(
Hb
i

)H
. (5.7)

In (5.6), Qk is the transmit covariance matrix of SBS k, Q = {Qk}Kk=1 and

Q−k = {Qi}Ki=1,i 6=k are respectively the compact transmit covariance matrices

and the compact transmit covariance matrices except Qk, and Hb
k ∈ CM×L is the

backhaul channel matrix from SBS k to the MBS. Note that if the computation task

of UE k ∈ K is executed by the edge cloud of SBS k, i.e. ck = 1, the transmit

covariance matrix at SBS k shall be Qk = 0.

5.2.2 Energy Consumption

The network energy consumption mainly results from task offloading and task

execution/computation. Based on Section 5.2.1, the amount of energy consumption

of UE k ∈ K for offloading its computation task to its serving SBS k can be

calculated as

Ea
k = pu

kT
a
k (pu,wk), k ∈ K. (5.8)
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If UE k’s task is executed by the edge cloud associated with the SBS k, the

computation energy consumption at the corresponding edge server is given by

Eedge
k = κkIkCkf

2
k , k ∈ K, (5.9)

where κk is the effective switched capacitance of the edge cloud k. Else, if the

task is executed by the central cloud, we then have the central processing energy

consumption, including the backhaul transmission and the computation energy

consumption, which is expressed as

Ecentral
k = tr (Qk)T

central
k (Q) + ζkE

edge
k , k ∈ K, (5.10)

where ζk is the ratio of the central cloud’s computation energy consumption to that

of the edge cloud k for computing the same UE k’s task.5 Thus, the network’s total

energy consumption for task offloading and computation can be calculated as6

Etotal =
K∑
k=1

(
Ea
k + ckE

edge
k + (1− ck)Ecentral

k

)
. (5.11)

5.2.3 Problem Formulation

Our aim is to minimize the network’s total energy consumption used for task

offloading and computation under central/backhaul and edge processing latency

constraints through jointly optimizing UEs’ cloud selection decisions in c =

5ζk can be determined by κk, fk, and the effective switched capacitance and the CPU frequency
of the central cloud used for computing UE k’s task. Different values of {ζk, k ∈ K} represent
different relationships between the computing energy consumption at central cloud and edge clouds,
and may have different effects on edge/central cloud selection and system performance.

6Here, the static energy consumption of UEs, SBSs, and MBS consumed by the circuit or cooling
is ignored since it has negligible effects on our design.
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{ck}Kk=1, UEs’ transmit power vector pu, SBSs’ receive beamformers in w =

{wk}Kk=1, and SBSs’ transmit covariance matrices in Q. To this end, the problem is

formulated as

min
c,pu,w,Q

Etotal (5.12)

s.t. C1 : ck ∈ {0, 1} , ∀k ∈ K,

C2 : (1− ck)T central
k (Q) ≤ αT edge

k , ∀k ∈ K,

C3 : T a
k (pu,wk) + ckT

edge
k ≤ Tth, ∀k ∈ K,

C4 : 0 ≤ pu
k ≤ P u

max, ∀k ∈ K,

C5 : Qk � 0, ∀k ∈ K.

In problem (5.12), C2 represents the central/backhaul processing latency constraint,

indicating that the central cloud is selected, i.e., the backhaul is allowed to be

used for task offloading, only when the set parameters can make sure that the

central/backhaul processing latency is lower than a certain percentage, e.g., α, of

edge computing latency. Considering the scarce backhaul resources, this constraint

is reasonable in practice and of great benefit to guarantee the high-speed backhaul

transmission, avoid the abuse of backhauls, and alleviate the backhaul congestion.

Here, 0 < α < 1 is a predefined ratio parameter for a specified scenario depending

on the central cloud and backhaul restriction. For the special case of α = 0, the

central cloud becomes unavailable as indicated in C2 and thus ck = 1 for k ∈ K,

then problem (5.12) reduces to resource allocation problem in traditional MEC

networks, which has been studied from different perspectives in the literature such

as [30, 31, 37, 38, 52–55, 70, 129]. C3 is the latency constraint for edge processing,

such that the sum of the access transmission latency and the edge computing latency
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should not exceed a given threshold Tth. Note that T edge
k expressed in (5.4) increases

with the task size Ik, and thus if edge cloud cannot meet its latency constraint in C3

when encounters large tasks, e.g., T edge
k > Tth, central cloud will be the only option

to be utilized, which further indicates the complementary relationship between edge

and central cloud computing [69]. C4 and C5 guarantee the non-negativeness of the

transmit power values.

In our considered scenario, we assume that UEs’ tasks have already been

synchronized. In fact, our work can be easily extended into the cases considering

the latency of synchronizing UEs’ tasks. For the case with deterministic task arrival

model [14], the edge processing latency constraints C3 should be changed into

T syn
k + T a

k (pu,wk) + ckT
edge
k ≤ Tth, k ∈ K, where T syn

k is the synchronization

latency of UE k. For the case with random task arrival model [14], we can introduce

a maximum synchronization latency threshold, denoted as Tsyn. Then constraints

C3 can be changed into T a
k (pu,wk) + ckT

edge
k ≤ Tth−Tsyn, k ∈ K. In this way, we

can also leverage the algorithms proposed in section 5.3 to solve the corresponding

formulated problem (5.12) for minimizing the network’s total energy consumption.

5.3 Algorithm Design

The considered problem (5.12) is a mixed-integer and non-convex optimization

problem because of the integer cloud selection indicator c, and the non-convex

objective function and constraints C2, C3, which is NP-hard in general and its

optimal solution is difficult to achieve. To be tractable, we first need to determine

whether edge or central cloud computing will be employed for each UE, and then we

can optimize the transmit powers, receive beamformers, and covariance matrices.

Hence, a tractable decomposition approach can be developed to solve (5.12) in



5.3. ALGORITHM DESIGN 155

an iterative manner considering the fact that c and {pu,w,Q} are coupled in the

objective function and constraints C2, C3 of problem (5.12).

5.3.1 Edge or Central Cloud Computing

As mentioned in section 5.2.3, when the k-th edge cloud’s computing time T edge
k is

greater than the maximum allowable time Tth, the use of edge cloud is infeasible and

central cloud computing has to be utilized for UE k, i.e., ck = 0. Next, we optimize

the cloud selection indicator c for the case of T edge
k < Tth for k ∈ K. To properly

deal with the integer optimization caused by ck, we first relax ck ∈ {0, 1} as ĉk ∈

[0, 1], and denote ĉ = {ĉk}Kk=1 as the set of the relaxed cloud selection variable ĉk.

Then problem (5.12) with given feasible {pu,w,Q} can be decomposed into the

following relaxed version

min
ĉ

K∑
k=1

(
ĉkE

edge
k + (1− ĉk)Ecentral

k

)
(5.13)

s.t. Ĉ1 : ĉk ∈ [0, 1] , ∀k ∈ K,

Ĉ2 : (1− ĉk)T central
k (Q) ≤ αT edge

k , ∀k ∈ K,

Ĉ3 : T a
k (pu,wk) + ĉkT

edge
k ≤ Tth, ∀k ∈ K.

Problem (5.13) is one-dimensional linear programming, and its solution can be

given in the following two cases:

• Case 1: Without loss of generality, if the energy consumption of edge

computing is lower than that of central processing for UE k’s task, i.e,

Eedge
k ≤ Ecentral

k , the objective function of problem (5.13) is a decreasing

function of ĉk. Therefore, the optimal ĉ∗k is the maximum value that satisfies
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Ĉ1− Ĉ3, i.e.,

ĉ∗k =

[
min

{
Tth − T a

k (pu,wk)

T edge
k

, 1

}]+

. (5.14)

• Case 2: if Eedge
k > Ecentral

k , the objective function of problem (5.13) is

an increasing function of ĉk, and the optimal ĉ∗k is the minimum value that

satisfies Ĉ1− Ĉ3, i.e.,

ĉ∗k =

[
1− αT edge

k

T central
k (Q)

]+

. (5.15)

It is seen that the relaxed edge/central cloud computing decision ĉ∗ is reliant on the

optimal {pu,w,Q} of problem (5.12). In the following two subsections, we will

focus on obtaining the optimal {pu∗,w∗} and Q∗, respectively, based on a given

cloud selection decision ĉ.

5.3.2 UEs’ Transmit Powers and SBSs’ Receive Beamformers

With a fixed cloud selection decision ĉ, the optimal {pu∗,w∗} can be obtained by

solving a subproblem of (5.12) as follows:

min
pu,w

K∑
k=1

pu
kT

a
k (pu,wk) (5.16)

s.t. Ĉ3, C4,

where Ĉ3 and C4 are the corresponding constraints expressed in problem (5.13)

and (5.12), respectively. The subproblem (5.16) is non-convex (over pu) and its

objective function is the weighted sum-of-ratios related to pu, which is challenging
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to solve. Here, we first examine the interplay between UEs’ transmit power vector

pu and SBSs’ receive beamformers in w.

Lemma 5.1. For a given feasible pu, the optimal w∗k of problem (5.16) is given

by

w∗k = eigvec
{

max
{

eig{(Ω−k)−1 Ωk}
}}

, (5.17)

where Ω−k = σ2
kIL +

∑K
i=1,i 6=k p

u
i h

a
i,k(h

a
i,k)

H and Ωk = pu
kh

a
k,k(h

a
k,k)

H .

Proof. Based on problem (5.16), we can easily find that each SBS’s receive

beamformer wk aims to maximize the SINR, i.e.,

max
wk

γa
k(p

u,wk). (5.18)

Problem (5.18) can be equivalently rewritten as

max
wk

wH
k Ωkwk

wH
k Ω−kwk

. (5.19)

Note that problem (5.19) is a generalized eigenvector problem and the optimal w∗k is

the corresponding eigenvector associated with the largest eigenvalue of the matrix

(Ω−k)
−1 Ωk [134, 135]. Thus, we obtain the result in (5.17).

With the help of auxiliary variables t = {tk}Kk=1, problem (5.16) over the UEs’

transmit power vector pu for fixed w can be equivalently transformed as

min
pu,t

K∑
k=1

Iktk (5.20)

s.t. C̃1 :
pu
k

Ra
k(p

u,wk)
≤ tk, ∀k ∈ K,
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C̃2 : γa
k(p

u,wk) ≥ τk, ∀k ∈ K,

C̃3 : 0 ≤ pu
k ≤ P u

max, ∀k ∈ K,

where τk = 2

Ik

Ba(Tth−ĉkT
edge
k ) − 1.

Lemma 5.2. The optimal solution (pu∗, t∗) of problem (5.20) satisfies the

Karush-Kuhn-Tucker (KKT) conditions of the following K (k ∈ K) subproblems

min
pu
k

(λk +Mk) p
u
k − λktkRa

k(p
u,wk) (5.21)

s.t. C̃2 : γa
k(p

u,wk) ≥ τk,

C̃3 : 0 ≤ pu
k ≤ P u

max,

with

Mk =
K∑

j=1,j 6=k

λjtj
Ba

ln 2

(
γa
j

)2 |wH
j ha

k,j|2

pu
j |wH

j ha
j,j|2

(
1 + γa

j

)+ (5.22)

K∑
j=1,j 6=k

µj

(
γa
j

)2 |wH
j ha

k,j|2

pu
j |wH

j ha
j,j|2

,

where {λk}Kk=1 and {µk}Kk=1 are Lagrange multipliers associated with the

constraints C̃1 and C̃2 of problem (5.20), respectively, and Mk =

−
∑K

j=1,j 6=k λjtj
∂Ra

j

∂pu
k
−
∑K

j=1,j 6=k µj
∂γa
j

∂pu
k
. For optimal (pu∗,w∗), λk and tk are

respectively calculated as

λk =
Ik

Ra
k (pu∗,w∗k)

, (5.23)

tk =
pu∗
k

Ra
k (pu∗,w∗k)

. (5.24)
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Proof. See Appendix C.1.

Through Lemma 5.2, we know that the optimal solution of problem (5.20) can

be obtained by solving K parallel subproblems described in (5.21). Given λk and

tk, the subproblem (5.21) is convex w.r.t. pu
k. Therefore, we have the following

theorem.

Theorem 5.1. The solution of subproblem (5.21) is given by

pu∗
k =



τk
Λk

, if Gk <
τk
Λk

,

Gk, if
τk
Λk

≤ Gk ≤ P u
max,

P u
max, if Gk > P u

max,

(5.25)

µ∗k =


λk +Mk

Λk

− Ba

ln 2

λktk
τk + 1

, if Gk <
τk
Λk

,

0, otherwise,

(5.26)

ν∗k =


Ba

ln 2

λktk
P u

max + 1/Λk

− λk −Mk, if Gk > P u
max,

0, otherwise,

(5.27)

where we define Λk ,
|wH
k ha

k,k|
2∑K

i=1,i 6=k p
u
i |wH

k ha
i,k|2+|wH

k nk|2
,Gk , Ba

ln 2
λktk

λk+Mk
− 1

Λk
, and µ∗k and

ν∗k are respectively the optimal Lagrange multipliers associated with the constraints

C̃2 and C̃3 of problem (5.21).

Proof. See Appendix C.2.

In light of the results in Lemma 5.1, Lemma 5.2 and Theorem 5.1, we provide

an iterative approach to effectively solve problem (5.16) for obtaining UEs’ transmit

powers and SBSs’ receive beamformers, which is shown in Algorithm 5.1.
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Algorithm 5.1 Solution of Problem (5.16)

1: Initialize pu
k = P u

max, ∀k. Set wk based on Lemma 5.1.

2: Repeat

3: a) Given w, Loop:

i): Compute Mk, λk and tk based on Lemma 5.2.

ii): Update pu
k and µk based on Theorem 5.1.

Until convergence.

4: b) Update w based on Lemma 5.1.

5: Until convergence, and obtain the optimal {pu∗,w∗}.

The convergence of Algorithm 5.1 can be guaranteed since the objective

function of problem (5.16) decreases with the iteration index (in step 3 and step

4 of Algorithm 5.1), which is indicated from optimizing pu and w in each iteration

as shown in Lemma 5.1 and Lemma 5.2, respectively.

5.3.3 SBSs’ Transmit Covariance Matrices

With a fixed cloud selection decision ĉ, the optimal Q∗ can be obtained by solving

the following subproblem:

min
Q

y (Q) =
K∑
k=1

(1−ĉk) tr (Qk)T
central
k (Q) (5.28)

s.t. Ĉ2 : Rb
k(Q) ≥ (1− ĉk)

Ik

αT edge
k

, ∀k ∈ K, C5,

where Ĉ2 and C5 are the corresponding constraints expressed in problem (5.13) and

(5.12), respectively, and Ĉ2 is re-expressed in an equivalent form here. Problem

(5.28) is non-convex due to the non-convexity of the objective function and

constraint Ĉ2, which cannot be solved directly. Thus, we resort to a successive
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pseudoconvex approach to solve this problem iteratively, which has many advan-

tages such as fast convergence and parallel computation [136].

First, let Ql denote the Q value in the l-th iteration. Thus the non-convex

item (1 − ĉk)tr (Qk)T
central
k (Q) for each k ∈ K in the objective function can be

approximated as a pseudoconvex function at Ql, which is written as

ŷk(Qk; Q
l) , (1−ĉk)

Iktr(Qk)

Rb
k(Qk; Ql)

+ χk(Qk), (5.29)

where χk(Qk) =
∑K

j=1,j 6=k(1 − ĉj)Ijtr(Q
l
j)
〈

(Qk − Ql
k),∇Qk

1
Rb
j (Ql)

〉
with

〈A1,A2〉 , R{tr(AH
1 A2)} is a function obtained by linearizing the non-convex

function
∑K

j=1,j 6=k(1− ĉj)tr (Qj)T
central
j (Q) in Qk at the point Ql, and∇Qk

1
Rb
j (Ql)

is the Jacobian matrix of 1
Rb
j (Ql)

w.r.t. Qk at the point Ql. Based on (5.29), we can

approximate the objective function y (Q) of problem (5.28) at Ql as

ŷ(Q; Ql) =
K∑
k=1

ŷk(Qk; Q
l). (5.30)

It is easily seen that ŷ(Q; Ql) is pseudoconvex and has the same gradient with y (Q)

at Q = Ql. Hence, converging to a stationary point is guaranteed for the successive

pseudoconvex approach [136].

Then, we equivalently rewrite the non-concave function Rb
k(Q) in con-

straint Ĉ2 as a difference of two concave functions as expressed in (5.31a)

according to its definition in (5.6). By leveraging the first-order Tay-

lor expansion at Ql, the second concave function denoted as Rb2
k (Q) =

Bb log2 det
(
σ2I +

∑K
i=1, 6=k Hb

i Qi

(
Hb
i

)H) can be approximated by its linear up-
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per bound. Hence, Rb
k(Q) can be approximated as

Rb
k(Q) = Bb log2 det

(
σ2I + Ξ(Q)

)
−Rb2

k (Q) (5.31a)

> Bb log2 det
(
σ2I + Ξ(Q)

)
−Rb2

k (Ql)−
K∑

j=1,j 6=k

〈
(Qj −Ql

j),∇Qj
Rb2
k (Ql)

〉
, R̄b

k(Q), (5.31b)

where Ξ (Q) =
∑K

i=1 Hb
i Qi

(
Hb
i

)H . Here, R̄b
k(Q) expressed in (5.31b) is a

concave function over Q.

Therefore, at point Ql, the original problem (5.28) can be approximately

transformed as

min
Q

ŷ(Q; Ql) (5.32)

s.t. C2 : R̄b
k(Q; Ql) ≥ (1− ĉk)

Ik

αT edge
k

, ∀k ∈ K, C5.

The objective function of problem (5.32) is a sum of K pseudoconvex functions

each containing a fractional function and a linear function. In addition, all the

constraints in problem (5.32) are convex. Hence, by leveraging the Dinkelbach-like

algorithm [137] and introducing a set of auxiliary variables for the K fractional

functions in the objective function, problem (5.32) can be transformed into a

solvable convex optimization problem, which can be effectively solved by CVX

[128] and owns provable convergence [136]. Let BQl represent the optimal solution

of problem (5.32) at the l-th iteration, and thus the value of Q in the next (l + 1)-th

iteration can be updated as

Ql+1 = Ql + ς(l)(BQl −Ql), (5.33)
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where ς(l) is the step size at the l-th iteration and can be obtained through the

successive line search, and BQl −Ql is the descent direction of y (Q) [136]. Thus,

the solution of problem (5.28) can be iteratively obtained.

Based on the aforementioned analysis of optimizing the variables

{pu∗,w∗,Q∗}, Algorithm 5.2 is proposed to solve the original problem (5.12) for

minimizing the network’s total energy consumption by jointly optimizing c, pu, w,

and Q.

5.3.4 Convergence and Complexity

The convergence of Algorithm 5.2 is easy to prove in light of the guaranteed

convergence of Algorithm 5.1, the successive pseudoconvex method and the

Dinkelbach-like algorithm used to solve problem (5.32) [136, 137], and the update

process of the cloud selection ĉ illustrated in Section 5.3.1. Note that the objective

function of problem (5.12), i.e., the network’s total energy consumption for task

offloading and computation, is a decreasing function of the iteration index (in step

3 and step 4 of Algorithm 5.2), which ensures the convergence of Algorithm 5.2.

The proposed Algorithm 5.2 enjoys an acceptable complexity as well as an

easy implementation. In each iteration, the majority of computational complexity

lies in solving subproblem (5.20) for obtaining the optimal pu∗ and the approximate

subproblem (5.32) for obtaining the optimal Q∗ with a given ĉ. In the proposed

algorithm, problem (5.20) can be equivalently transformed into K independent

subproblems (5.21) and thus can be easily solved in a parallel way. Moreover,

the optimal solution of each subproblem has closed-form expressions as indicated

in Theorem 5.1, which only generates a complexity ordered by O(K). For the

approximate subproblem (5.32) of obtaining Q∗, the Dinkelbach-like algorithm is
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Algorithm 5.2 Solution of Problem (5.12)

1: Initialize pu
k = P u

max, ∀k. Set wk based on Lemma 5.1.

Based on the constraint Ĉ3 of problem (5.13), we first set the initial ĉk =[
min

{
Tth−T a

k (pu,wk)

T edge
k

, 1− δ
}]+

, where δ ∈ (0, 0.5) is a tolerant value to avoid

the selection of solely edge clouds or central cloud at the initial point. Then,

based on the constraint Ĉ2 of problem (5.13), Q is set to meet T central
k (Q) =

αT edge
k

1−ĉk
through the use of ZF precoding with equal power allocation at each

SBS.

2: Repeat

3: a) Given {ĉk}Kk=1:

i): Update {pu,w} based on Algorithm 5.1.

ii): Loop:

ii-1): Solve problem (5.32) via Dinkelbach-like algorithm [137].

ii-2): Update Ql based on (5.33).

Until convergence, and obtain the updated Q.

4: b) Update {ĉk}Kk=1 according to subsection 5.3.1.

5: Until convergence, and obtain solution {c∗,pu∗,w∗,Q∗}, in which c∗ is

obtained by rounding the cloud selection solution of problem (5.13), i.e., ĉ,

and pu∗,w∗,Q∗ are obtained based on the final obtained c∗.
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proved to exhibit a linear convergence rate [137] and the corresponding convex

optimization problem can be efficiently solved by the software CVX [128], thus the

generated complexity is acceptable in general.

The offloading/transmissions in the previously mentioned scenario with tra-

ditional MIMO backhauls can be implemented by leveraging the Sub-6 GHz

frequency band. Note that the real-time implementation of proposed Algorithm

5.2 is achievable if the number of SBSs, UEs is not very large. However, due to the

iterative property of Algorithm 5.2, the real-time implementation may be hindered

by the increasing computational complexity as the number of SBSs, UEs increases.

One promising way to overcome this drawback is to leverage the deep learning

method. Specifically, the proposed Algorithm 5.2 can be utilized to generate the

required data samples and train the deep neural networks (DNNs) offline, and then

the well-trained DNNs is capable of emulating Algorithm 5.2 and inferencing the

obtained solution online to realize real-time implementation.

In order to further reduce the computational complexity of solving the opti-

mization problem for minimizing the network’s total energy consumption of task

offloading and computation, we will consider the scenario with massive MIMO

backhauls in the following section by applying the massive MIMO technology at

the MBS. It demonstrates that the complexity of the proposed algorithm can be

substantially reduced while even better performance can be achieved compared to

the case with traditional MIMO backhauls.

5.4 Massive MIMO Backhauls

In the prior sections, we have studied the synergy of combining edge-central cloud

computing with traditional multi-cell MIMO backhauls. Since massive MIMO
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has been one of the key 5G radio-access technologies, in this section, we further

consider the time-division duplex (TDD) massive MIMO aided backhauls in the

Rayleigh fading environment, i.e., the MBS is equipped with a very large number

of antennas and the SBSs only use one single transmit antenna (M � K).

There are two main merits for massive MIMO backhaul transmission:

1) Since SBSs and MBSs are usually still and the backhaul channels will

become deterministic, a phenomenon known as “channel hardening” [138, 139],

and thus the backhaul channel coherence time will be much longer than ever before,

which means that the time spent on uplink channel estimation will be much lower.

Some real-time massive MIMO channel measurement works such as [140] also

demonstrated that the use of massive antennas can mitigate the fast-fade error

bursts, and enable much less frequent update of power control in low-mobility

environments compared to the single-antenna case (see [140, Fig. 8]);

2) As shown in [141], simple linear processing methods can achieve nearly-

optimal performance. As a result, we will consider two linear detection schemes

at the MBS with massive antennas, namely the maximal-ratio combining (MRC)

and the zero-forcing (ZF), to provide low-complexity massive MIMO backhaul

solutions.

5.4.1 MRC Receiver at the MBS

When MRC receiver is applied at the MBS, we consider a lower-bound achievable

backhaul rate for tractability, which can well approximate the exact massive MIMO

transmission rate as confirmed in [142]. As such, given the cloud selection decision
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ĉ, the backhaul related problem (5.28) reduces to

min
q

K∑
k=1

(1−ĉk) qk
Ik

Rb
k(q)

(5.34)

s.t. Ĉ2 : Rb
k(q) ≥ (1− ĉk)

Ik

αT edge
k

, ∀k ∈ K,

C5 : qk ≥ 0, ∀k ∈ K,

where qk is the k-th SBS’s transmit power, q = [q1, · · · , qK ], and

Rb
k(q) = Bb log2

(
1 + (M − 1)

qkβk∑K
i=1,i 6=k qiβi + σ2

k

)
, (5.35)

in which βi is the large-scale fading coefficient of the link between SBS i and the

MBS [142]. Problem (5.34) is non-convex, but can be equivalent to problem (5.16)

with wk = 1. Thus, it can be directly solved by using Algorithm 5.1. Note that

when using Algorithm 5.1, SBSs’ initial feasible transmit power vector q needs

to be carefully selected. Here, we assume that the present fractional power control

solution applied in 3GPP-LTE [143] can satisfy the constraint Ĉ2 in (5.34), i.e.,

qk = (dk)
ε$b , where dk is the communication distance between the k-th SBS and

the MBS, ε ∈ [0, 1] is the pathloss compensation factor, and $b is the pathloss

exponent of the backhaul links. For the special case of full compensation (ε = 1),

the number of MBS’s antennas needs to meet

M ≥ 1 + (K − 1)

(
2

(1−ĉk)Ik
BbαT

edge
k − 1

)
. (5.36)
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5.4.2 ZF Receiver at the MBS

When ZF receiver is applied at the MBS, we adopt the corresponding tight lower-

bound achievable rate shown in [142]. Given the cloud selection decision ĉ, the

backhaul related problem (5.28) reduces to the following version

min
q

K∑
k=1

(1−ĉk)
qkIk
Rb
k(qk)

(5.37)

s.t. Ĉ2 : Rb
k(qk) ≥ (1− ĉk)

Ik

αT edge
k

, ∀k ∈ K,

C5 : qk ≥ 0, ∀k ∈ K,

where Rb
k(qk) = Bb log2

(
1 + (M −K) qkβk

σ2
k

)
. Since qk

Rb
k(qk)

is an increasing

function of qk according to the derivative
∂
(

qk
Rb
k

(qk)

)
∂qk

≥ 0, the optimal q∗k is the

minimum value that meets the constraints Ĉ2 and C5 in (5.37), i.e.,

q∗k =
2

(1−ĉk)Ik
BbαT

edge
k − 1

(M −K) βk
σ2
k

, ∀k ∈ K. (5.38)

Based on the above analysis, when massive MIMO backhauls are employed at

the MBS, the solution of problem (5.12) can still be obtained by using the proposed

Algorithm 5.2, where the optimal SBSs’ transmit powers are given by the solution

of problem (5.34) for the MRC receiver or (5.38) for the ZF receiver.

In comparison with the case of using traditional MIMO backhaul, the MRC

and ZF linear detection schemes for the case with massive MIMO backhaul links

can enjoy super-low complexity. For MRC scheme, the problem (5.34) can be

effectively solved by Algorithm 5.1, and its computational complexity is with

the order of O(K). For ZF scheme, the closed-form solution of problem (5.37)
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can be directly obtained, and its complexity order is O(1). Hence, applying the

massive MIMO technology at the MBS can significantly facilitate the cooperation

between the edge and central clouds by providing easier but more efficient backhaul

offloading for UEs to access the central cloud computing services.

In the scenario with the massive MIMO backhauls, the real-time online

implementation of the proposed Algorithm 5.2 is more achievable in general

especially considering the case with ZF receiver at the MBS, where the closed-

form solution of the SBS’s offloading power to the cental cloud can be obtained and

better performance can be achieved as well. In addition, the data-driven approach

with offline trained DNNs can be further leveraged to achieve real-time online

implementations even in the scenario with massively connected user devices. It

should be noted that we currently consider the offloading/transmissions where the

massive MIMO backhauls are implemented through the Sub-6 GHz frequency band.

Actually, the performance can be further enhanced if we combine the technology

of massive MIMO with the technology of mmWave communications, which is

regarded as a potential extension of our current work.

5.5 Numerical Results

In this section, simulation results are presented to evaluate the performance of the

proposed algorithms and shed light on the effects of the key parameters including

the ratio of energy consumption between central and edge cloud computing (ζk =

ζ, k ∈ K), the task size (Ik = I, k ∈ K), the latency threshold of edge

processing (Tth), the required ratio parameter of edge computing time for backhaul

transmission (α), and the edge clouds’ CPU clock frequency (fk = f, k ∈ K). The

performance of some practical schemes are also given as benchmarks, including
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the “Edge-cloud-only”, “Central-cloud-only” schemes, and a scheme with fixed

cloud selection, denoted as “Half edge, Half central” scheme where half number

of UEs choose edge cloud and the other half use central cloud to complete their

computation tasks. Besides, the “Initial feasible solution”, representing the case

with the initial values set in Algorithm 5.2, is also given as a baseline to show the

performance improvement of optimizing the crucial system parameters. Note that

the performance indicators (the total energy consumption and the percentage of UEs

that select edge cloud computing) shown in the following figures are averaged over

500 independent channel realizations.

All the small-scale fading channel coefficients follow independent and iden-

tically complex Gaussian distribution with zero mean and unit variance. The

pathloss between SBSs and UEs and between MBS and SBSs are respectively set

as −(140.7 + 36.7 log10 d)dB and −(100.7 + 23.5 log10 d)dB according to 3GPP

TR 36.814 [144], where d (in kilometer) is the distance between two nodes. In the

following simulation results, it is assumed that the MBS is located at the origin of

the horizontal coordinate system, where the coverage area of the macro cell is a

MBS-centered circle with the radius of rb. The locations of the SBSs are randomly

deployed within the MBS-centered circle area with the radius of rb − ra, and the

location of the UE in each small cell is randomly generated within the SBS-centered

circle area with the radius of ra. With the location information of the MBS, SBSs

and UEs, we can then easily calculate the distance between two specific nodes. The

other basic simulation parameters are listed in Table 5.1.



5.5. NUMERICAL RESULTS 171

Table 5.1: Simulation Parameters
Parameter Symbol Value

Bandwidth for an access or backhaul links Ba,Bb 10 MHz

Noise power spectral density for an access or backhaul links σ2
k, k ∈ K, σ2 -174 dBm/Hz

Pathloss exponent for access links $a 3.67

Pathloss exponent for backhaul links $b 2.35

Pathloss compensation factor ε 1

Radius of the small cells ra 50 m

Radius of the macro cell rb 500 m

Number of SBSs/UEs K 6

Number of antennas for each SBS L 2

UEs’ maximum transmit power Pu
max 23 dBm

Required CPU cycles per bit Ck, k ∈ K 300 cycles/bit

The effective switched capacitance of the SBSs’ processors κk, k ∈ K 10−28

The tolerant value in Algorithm 5.2 δ 0.1

5.5.1 Improvement with Traditional MIMO Backhauls

In this subsection, numerical results for the integrated edge and central cloud

computing system with traditional MIMO backhauls are presented in comparison

with the benchmarks mentioned before. These results can properly demonstrate

the performance enhancement of using the proposed algorithm through jointly

optimizing the key system parameters including cloud selection decision, UEs’

transmit powers, SBSs’ receive beamformers, and SBSs’ transmit covariance

matrices.

Figure 5.2 shows the effect of the uniform computing energy ratio ζ = ζk, k ∈

K on the total energy consumption of the system with traditional MIMO backhauls.

We see that the energy consumption of all the schemes are non-decreasing functions

of ζ , due to the fact that the energy cost of central cloud computing increases with

ζ . It is confirmed that the proposed solution outperforms all the baselines, i.e.,

the energy cost can be significantly reduced. The performance improvement is
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Figure 5.2: The total energy consumption of the system with traditional MIMO backhauls versus
the uniform computing energy ratio ζ: M = 16, Tth = 0.3 s, α = 0.1, I = Ik = 5 Mbits,
f = fk = 6 GHz for k ∈ K.

particularly noticeable compared with the Edge-cloud-only scheme in the range of

ζ < 1, the traditional Central-cloud-only scheme in the range of ζ > 1, and the Half

edge, Half central scheme in the whole range of ζ . In addition, the proposed solution

also consumes much less energy than the Initial feasible solution, demonstrating the

performance enhancement of jointly optimizing the system parameters.

Figure 5.3 depicts the total energy consumption of the system versus the

uniform task sizes I = Ik, k ∈ K for the cases of ζ = 0.9 and ζ = 1.1. It is

easy to understand that computing more input data consumes more energy, and thus

the energy cost of each scheme increases with I . Again, we see that the proposed

solution is superior to the baseline solutions in all cases. For the case of ζ = 0.9,

the performance of the Central-cloud-only solution is very close to the proposed one

since the central cloud is dominant in this case, i.e., more UEs tend to use central

cloud computing for saving energy. For the case of ζ = 1.1, the advantage of the
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Figure 5.3: The total energy consumption of the system with traditional MIMO backhauls versus
the uniform task size I: M = 16, Tth = 0.3 s, α = 0.1, f = fk = 6 GHz for k ∈ K.

proposed scheme becomes more obvious compared with the baselines, and actually

this case is more common in practice since the central cloud tends to consume

more energy for computing because of the higher CPU frequency. We observe

that the results of the proposed solution approach to those of the Central-cloud-only

solution when I becomes large, indicating that more UEs tend to select the central

cloud for computing, i.e., central cloud computing plays an important role in dealing

with relatively large tasks. The reason is that when the task size is large, the edge

processing latency constraint C3 of problem (5.12) may be no longer satisfied due

to the limited edge computing capability, and central cloud has to be chosen for

computation.

Figure 5.4 shows the total energy consumption of the system varying with the

latency threshold of edge processing for the cases of ζ = 0.9 and ζ = 1.1. It is

seen that the proposed solution is a non-increasing function of Tth and outperforms

the baselines in both cases. The Central-cloud-only solution is insensitive to Tth,
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Figure 5.4: The total energy consumption of the system with traditional MIMO backhauls versus
the latency threshold of edge processing Tth: M = 16, α = 0.1, I = Ik = 5 Mbits, f = fk = 6
GHz for k ∈ K.

and its performance is almost invariant thanks to its super computing capability for

low computing latency. Note that all the solutions consume almost same amount

of energy when Tth is small, e.g., Tth = 0.25 s in this figure. The reason is that

the edge processing latency constraint C3 cannot be met and only central cloud

computing can be employed to satisfy the latency constraints. For the case of ζ =

0.9, the performance gap between the proposed solution and the Central-cloud-only

is small since central cloud computing is dominant, and both solutions perform

much better than the Initial feasible solution. It is interesting to note that the the

curve of the Initial feasible solution is an increasing function of Tth ∈ [0.25, 0.4] s

when ζ = 0.9. This is because the edge cloud computing becomes more feasible as

Tth increases, and the initial solution allowing more UEs to choose edge cloud for

computing while in fact central cloud computing saves more energy, which indicates

the importance of optimizing cloud selection in improving the system performance.

For the case of ζ = 1.1, the consumed energy of the proposed solution decreases
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with Tth since more UEs are allowed to choose the energy-efficient edge cloud

computing for large Tth.

5.5.2 Benefits of Massive MIMO Backhauls

In this subsection, we mainly illustrate the performance of the considered hetero-

geneous edge/central cloud computing system with massive MIMO backhauls, to

confirm the benefits of equipping massive antennas at the MBS in improving the

system performance. Here, we focus on MRC and ZF beamforming at the MBS, as

studied in Section 5.4.
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Figure 5.5: The total energy consumption of the system versus the latency ratio parameter α:
M = 128 for massive MIMO backhauls, M = 8 for traditional MIMO backhauls, Tth = 0.3 s,
ζ = ζk = 0.9, I = Ik = 5 Mbits, f = fk = 6 GHz for k ∈ K.

Figure 5.5 and Figure 5.6 depict the total energy consumption and the corre-

sponding percentage of UEs that select edge cloud for computing versus the ratio

parameter α, respectively. It is seen from Figure 5.5 that the energy consumption

of each scheme decreases with α since less power will be consumed for backhaul
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Figure 5.6: The percentage of UEs that select edge cloud computing versus the ratio parameter
α: M = 128 for massive MIMO backhauls, M = 8 for traditional MIMO backhauls, Tth = 0.3 s,
ζ = ζk = 0.9, I = Ik = 5 Mbits, f = fk = 6 GHz for k ∈ K.

transmission with a higher α according to the backhaul latency constraint C2 of

problem (5.12). This result is also reflected by Figure 5.6 where the percentage of

UEs using edge cloud computing decreases, which means that more UEs choose

to use the central cloud for computing as α increases so as to save more energy.

Obviously, the energy consumed by the ZF scheme is less than that of the MRC

scheme and the solution with traditional MIMO backhauls, which demonstrates the

benefits of using ZF beamforming and large antenna arrays at the MBS. Moreover,

for the ZF scheme, the percentage of UEs using edge cloud is lower than that of

the MRC and traditional MIMO schemes when α < 0.4. In contrast, the MRC

scheme only uses the edge cloud for computing when α ≤ 0.2. This is because

the backhaul latency constraint C2 in (5.12) for central cloud processing cannot be

satisfied with a small α when MRC receiver is adopted at the MBS due to the inter-

SBS interference. Based on these two figures, we see that the consumed energy
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of the ZF scheme as well as the corresponding percentage of UEs served by edge

cloud decrease very slowly, and are almost unchanged for α ≥ 0.2, which further

indicates that the ZF scheme can provide more stable and higher-speed backhaul

transmission for computation tasks offloading.
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Figure 5.7: The total energy consumption of the system versus the uniform task size I: M = 128
for massive MIMO backhauls, M = 8 for traditional MIMO backhauls, Tth = 0.3 s, α = 0.6,
f = fk = 6 GHz for k ∈ K.

Figure 5.7 shows the total energy consumption of the system versus the

uniform task size I for the cases of ζ = 0.9 and ζ = 1.1. Similar to Figure 5.3,

all the curves increase with I as expected. The ZF scheme outperforms the MRC

scheme and the traditional MIMO scheme. For the case of ζ = 0.9, the ZF scheme

and the traditional MIMO scheme are dominated by central cloud computing,

while the MRC scheme experiences a gradual transition from edge-cloud-dominant

to central-cloud-dominant and more UEs tend to choose the central cloud for

computing so as to satisfy the processing latency constraint as well as saving energy.

For the case of ζ = 1.1, all the schemes are edge-cloud dominant when I ≤ 5 Mbits,
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and then gradually become central-cloud-dominant as I increases. It is confirmed

that the ZF scheme with massive MIMO backhauls has the advantage of handling

the computation-intensive tasks.

Figure 5.8(a) and Figure 5.8(b) depict the total energy consumption of the

system versus the edge clouds’ uniform CPU clock frequency f = fk, k ∈ K in

the case of ζ = 0.9 and ζ = 1.5, respectively. According to these two figures, we

see that the effect of f is heavily reliant on both the computing task size I and ζ .

When I is not large and ζ < 1, the network’s energy consumption may increase

with f as shown in Figure 5.8(a), where the curves of all the schemes increase with

f and the increasing rates become higher when enlarging I . This is due to the fact

that when I is not large and ζ < 1, the energy consumption of the central cloud

computing plays a dominant role in contributing to the total energy consumption.

In this case, the advantage of using ZF scheme becomes more obvious as f grows

large. However, when ζ > 1, network’s energy consumption may decrease with f

in certain scenario as shown in Figure 5.8(b), where there is an obvious decrease as

f ∈ [5, 6]× 109 cycles/s(Hz) in the case of I = 5 Mbits. The reason is that when

f is small, e.g., less than 4 × 109 cycles/s in Figure 5.8(b), the edge processing

latency constraint C3 may not be satisfied and central cloud computing becomes

the only option. As f increases, edge cloud computing becomes feasible for more

UEs to save energy, and the total energy cost will decrease accordingly. In addition,

it is seen from Figure 5.8(b) that the energy consumption of the three considered

schemes are very close due to the fact the edge cloud computing is dominant for

energy saving in this case.
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(a) M = 128 for massive MIMO backhauls, M = 8 for traditional MIMO
backhauls, Tth = 0.3 s, α = 0.6, ζ = ζk = 0.9 for k ∈ K.
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(b) M = 128 for massive MIMO backhauls, M = 8 for traditional MIMO
backhauls, Tth = 0.3 s, α = 0.6, ζ = ζk = 1.5 for k ∈ K.

Figure 5.8: The total energy consumption of the system versus SBSs’ uniform CPU clock
frequency f .
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5.6 Summary

In this chapter, we studied the joint design of computing services when edge cloud

computing and central cloud computing coexist in a two-tier HetNet with MIMO

or massive MIMO self-backhauls. By jointly optimizing the cloud selection, the

UEs’ transmit powers, the SBSs’ receive beamforming vectors and the transmit

covariance matrices, the network’s total energy consumption for task offloading

and computation can be minimized while meeting both the edge processing and

central processing (backhaul) latency constraints. An iterative algorithm was

proposed to solve the formulated non-convex mixed-integer optimization problem,

which can ensure the convergence and that better performance can be achieved

than any existing feasible solutions. The numerical results have further confirmed

that the proposed solution can greatly enhance the system performance, especially

compared with the edge-cloud-only and central-cloud-only computing schemes,

indicating the great value of cooperation between the edge and central clouds.

Moreover, we showed that the massive MIMO backhauls can largely decrease the

complexity of the proposed algorithm while achieving even better performance.
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Chapter 6

Conclusions

This dissertation focus on the design and optimization of applying MEC in wireless

communication networks. Chapter 2 is the foundation of this thesis, which

introduces some fundamental concepts and state-of-the-art works. Then in Chapter

3, Chapter 4 and Chapter 5, we demonstrate the works of design and optimization

of MEC in wireless powered cooperation-Assisted systems, UAV-assisted relaying

systems, and HetNets with CCC, respectively. Next, we summarize the conclusions

and contributions of each chapter in detail.

Chapter 2: Fundamental Concepts and State-of-the-Art Works. In this

chapter, we present the fundamental concepts used in this thesis, such as mobile

cloud computing, mobile edge computing, wireless power transfer, and UAV-

enabled communications, including not only the rationale behind these concepts but

also the descendable concepts. Besides, as two important performance metrics for

task computing, the basic expressions and derivations related to energy consumption

and latency are also shown in this chapter. Moreover, comprehensive literature

reviews related to the concepts are given to demonstrate the relevant state-of-the-art
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works.

Chapter 3: Mobile Edge Computing in Wireless Powered Cooperation-

Assisted Systems. The conclusions and contributions of this chapter are summa-

rized as follows:

• Wireless Powered MEC Architecture with User Cooperation — In this

chapter, a wireless powered MEC system is studied, in which two mobile

devices are first energized by the WPT from an AP and then they can offload

part or all of their computation-intensive latency-critical tasks to the AP

connected with an MEC server or an edge cloud. This harvest-then-offload

protocol operates in an optimized time-division manner. To overcome the

double-near-far effect for the farther mobile device in WPCNs, cooperative

communications in the form of relaying via the nearer mobile device is

considered for offloading.

• Problem Formulation with Joint Optimization on AP’s WPT power, UEs’

Offloading Power, and Time Allocation— Our aim is to minimize the AP’s

total transmit energy through jointly optimize the AP’s energy transmit power,

UEs’ offloading power, and time allocation, subject to the time allocation

constraint, computation task constraints, and energy harvesting causality con-

straints. We first formulate the AP’s transmit energy minimization (APTEM)

problem, which is a non-convex optimization problem and difficult to solve

directly. We then equivalently transform the APTEM problem into a min-

max optimization problem which is also turned out to be equivalent to the

AP’s transmit power minimization (APTPM) problem.

• Algorithm Design with A Two-Phase Approach — The formulated min-
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max optimization problem is optimally tackled by a two-phase approach. In

the first phase, the inner sum-energy-saving maximization (SESM) problem

based on a given energy transmit power is solved by the Lagrangian method,

where the optimal offloading decisions with joint power and time allocation

are found in closed or semi-closed form. We prove that the optimal offloaded

data sizes of the two users have threshold-based structures in relation to some

offloading priority indicators. Then in the second phase, a simple bisection

search is adopted to obtain the AP’s minimum energy transmit power based

on the solution of the SESM problem, resulting in the joint-optimal solution.

It is shown the proposed algorithm is with low-complexity, at most with

the order of O(1) ln(1/σ) ln(1/δ), where σ, δ > 0 respectively denote the

computational accuracies of two tiers of Bi-section search in the algorithm.

• Design Insights with Considerable Performance Improvement — Nu-

merical results verify the theoretical analysis of the proposed cooperative

computation offloading scheme, and it demonstrates that the optimized MEC

system utilizing cooperation has significant performance improvement over

systems without cooperation. It is also shown that the proposed scheme not

only achieves significant performance improvement but also demonstrates

great effectiveness in handling computation-intensive latency-critical tasks

and resisting the double-near-far effect in WPCNs.

• Practical Implications and Applications for Wireless Powered

Cooperation-Assisted MEC Systems — In this chapter, we leverage

the the technology of user cooperation to resist the double-near-far effect

rooted in wireless powered MEC systems. It is verified by the simulation

results that significant performance improvement can be achieved by the
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proposed algorithm compared with other benchmark schemes. More

importantly, this work provides fundamental basis and instructive insights for

practical implementations of applying wireless powered cooperation-assisted

MEC in 5G and beyond networks. The ever growing mobile and IoT devices

along with the rapid evolution of 5G communication technologies have given

rise of the massive connectivity for fulfilling various novel applications.

Even though this massively connected feature bring challenges for stringent

requirements of computing and energy resources, it also offers opportunities

since massive connectivity can help facilitate the cooperation among user

devices. Besides, WPT has been widely regarded as a promising solution

to provide sustainable energy supply for the mobile and IoT devices in the

practical networks. In conclusion, the architecture of wireless powered

cooperation-assisted MEC proposed in this thesis provides a paradigm for

providing sustainable energy supply and user-cooperated MEC services in

the future 5G and beyond networks with massive connectivity.

Chapter 4: Mobile Edge Computing in UAV-Assisted Relaying Systems.

The conclusions and contributions of this chapter are summarized as follows:

• UAV-Assisted MEC Architecture — In this chapter, we consider a UAV-

assisted MEC architecture with a partial offloading mode where the cellular-

connected UAV serves as a mobile computing server as well as a relay to

help the UEs complete their computing tasks or further offload their tasks to

the AP for computing. This architecture takes full advantage of the UAV’s

energy-efficient LoS transmissions, and makes proper use of the computing

resources at both the UAV and AP through cooperation between each other.

• Problem Formulation with Joint Computation Resource Scheduling,



185

Bandwidth Allocation and UAV’s Trajectory Optimization—Our aim is

to minimize the weighted sum energy consumption (WSEC) of the UAV

and the UEs subject to the UEs’ task constraints, the information-causality

constraints, the bandwidth allocation constraints and the UAV’s trajectory

constraints, by jointly optimizing the computation resource scheduling, the

bandwidth allocation, and UAV’s trajectory iteratively. The formulated

problem is complicated and non-convex due to the coupled optimization

variables.

• Alternating Algorithm Design with Guaranteed Convergence — An

alternating optimization algorithm is devised to decouple the optimization

variables, through which the formulated problem can be properly solved

by addressing three subproblems iteratively. Note that the computation

resource scheduling parameters, including the offloading/downloading task

sizes and the CPU frequencies at each UE and the UAV, as well as the

bandwidth allocation parameters are obtained by leveraging the Lagrange

duality method, and that the corresponding Lagrange multipliers associated

with the inequality constraints can be obtained using the subgradient method

while those associated with the equality constraints can be obtained through

bi-section search. The subproblem relating to the UAV’s trajectory opti-

mization can be efficiently solved by CVX [128] based on the SCA method.

Besides, the convergence of the proposed algorithm can be guaranteed, and

the required complexity appears to be acceptable.

• Design Insights with UAV’s Trajectory and Significant Performance

Improvement — Numerical results are presented to show the optimized

trajectories of the UAV under different scenarios and the significant perfor-
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mance enhancement by leveraging the proposed algorithm when compared to

existing schemes, such as the one with a preset UAV trajectory, the scheme

with task offloading only, the scheme with equal bandwidth allocation, and

the local computing scheme without offloading. Moreover, the proposed

algorithm is capable of providing more stable performance in adapting to the

changes in the operating environment, and its advantages will become much

more prominent when dealing with the computation-intensive and latency-

critical tasks.

• Practical Implications and Applications for UAV-assisted MEC systems

— In this chapter, we resort to the technology of UAV communications to

enhance the performance of a MEC system serving multiple ground UEs with

a powerful MEC server co-located at the AP. The flexible movement of the

assisted UAV brings an additional degree of freedom, and we can observe that

significant performance improvement can be achieved by effectively design

the UAV’s trajectories. In the future communication networks, UAV will play

an important role for facilitating various novel communication and computing

applications thanks to its highly flexible properties that fixed APs or BSs

cannot reach. The UAV-assisted MEC architecture proposed in this thesis can

be easily applied in the practical scenario congregated with a large number

of users such as the venues of large conferences or expositions, where each

UAV can not only act as a moving MEC server providing shared computing

resources for UEs but also as a moving relay bringing convenient connections

between the AP and UEs. In conclusion, it is of great benefits to explore the

UAVs’ potentials and their cooperation with cellular-based APs in practical

MEC systems, where better communication and computing performance can
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be achieved by properly designing the UAV’s trajectories with optimized

resource allocation according to the requirements of the applications.

Chapter 5: Mobile Edge Computing in Heterogeneous Cellular Networks

with Central Cloud Computing. The conclusions and contributions of this chapter

are summarized as follows:

• Hybrid Edge/Central Cloud Computing Architecture — In this chapter,

we consider a hybrid edge and central cloud computing architecture in a two-

tier HetNet, including one macro cell with a multi-antenna MBS and multiple

small cells each with a multi-antenna SBSs. The edge clouds with limited

computing capabilities are co-located at or linked to the SBSs by error-free

optical fibers while the central cloud with ultra-high computing capability is

connected with the MBS through optical fibers as well. The binary offloading

mode is adopted, and thus the UEs can offload their computation tasks directly

to the SBSs to access the edge cloud computing services (edge computing

mode) or further offload to the MBS through the restricted MIMO/massive

MIMO backhauls to utilize the central cloud computing services (central

computing mode). Cooperation of edge and central clouds will improve

the quality-of-service (QoS) and ensure the scalability and load balancing

between the edge and central clouds.

• Problem Formulation with Joint Optimization on the Cloud Selection,

Access Transmit Powers, Receive Beamforming Vectors and Backhaul

Transmit Covariance Matrices — Our aim is to minimize the network’s

energy consumption for task offloading and computation under both the

central and edge processing latency constraints through jointly optimizing the
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cloud selection, the UEs’ transmit powers, the SBSs’ receive beamforming

vectors, and the SBSs’ transmit covariance matrices. The central processing

latency constraints require the backhaul transmission latencies being lower

than the corresponding computing latencies at the edge clouds; otherwise, the

central cloud will not be selected. The edge processing latency constraints

require the corresponding latencies not exceeding a targeted threshold to

guarantee the QoS provided by the edge clouds. A mixed-integer and non-

convex optimization problem is formulated accordingly, which is NP-hard

in general. For the case of massive MIMO backhauls, we consider two

low-complexity linear processing methods, namely MRC and ZF, and the

corresponding optimization problems can be much simplified.

• Algorithm Design with MIMO and massive MIMO Backhauls — An

iterative algorithm based on decomposition is developed to solve the combi-

natorial mixed-integer and non-convex optimization problem corresponding

to the case with traditional MIMO backhauls. In particular, we show that in

each iteration, the UEs’ transmit powers and the SBSs’ receive beamforming

vectors can be optimized in closed-form, and the SBSs’ transmit covariance

matrix solution is obtained by leveraging a successive pseudoconvex opti-

mization approach. In addition, the massive MIMO backhaul solutions can be

easily obtained thanks to the unique features of massive MIMO transmission,

which significantly reduces the complexity of the algorithm. The practicality

of the proposed algorithm lies in that it can properly address the issues

of cloud selection and resource allocation for a HetNet architecture with

hybrid edge/central cloud computing resources while considering the physical

properties of wireless backhauls.
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• Design Insights With Performance Improvement and Complexity Reduc-

tion — Numerical results are presented to demonstrate the efficiency of the

proposed algorithm and shed light on the effects of key parameters such as

the offloaded task size, edge processing latency threshold, and edge clouds’

CPU frequency. It is confirmed that the solution of the integrated edge and

central cloud computing scheme proposed in this work can achieve better

performance than the schemes with edge (cloud) computing alone or central

cloud computing alone, and outperforms all the other benchmark solutions.

In addition, low-complexity massive MIMO solution with ZF receiver could

always outperform the solution with traditional MIMO backhauls, while the

solution with MRC receiver could achieve similar or better performance than

the traditional MIMO one in certain scenarios.

• Practical Implications and Applications for Hybrid Edge-Central Cloud

Computing Systems — In this chapter, a practical cloud computing scenario

with the coexistence of edge clouds and central cloud is considered in a two-

tier heterogeneous cellular network with a macro cell and multiple small

cells. The complementary benefits can be achieved through the cooperation

between the edge and central clouds by taking into the account of the

limitation of wireless backhauls. It is an inexorable trend that both the central

clouds and the edge clouds will coexist in the future networks since the edge

cloud computing cannot entirely replace the central clouds for completing

highly computation-intensive application tasks due to its relatively limited

computing capabilities compared with central clouds. Coexisting with central

clouds can guarantee the QoS and user experience even in the situations that

the computing demands exceed the abilities of the edge clouds. In addition,



190 CHAPTER 6. CONCLUSIONS

the deployment of edge clouds at the SBSs can significantly alleviate the

backhaul congestion since a large proportion of computation tasks with small

and medium sizes can be completed at the edge clouds without the need of

backhaul offloading. Moreover, the advanced technologies of massive MIMO

and mmWave can further facilitate the cooperation between the edge and cen-

tral clouds, achieving better performance with much reduced computational

complexity. In a word, the hybrid edge-central cloud computing architecture

proposed in this thesis can provide guidelines for the design of the future

networks with coexistence of both edge and central cloud computing.
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Chapter 7

Future Works

Driven by the motivations discussed in Section 1.2, we completed the research

works in this thesis, which addresses the design and optimization of applying MEC

in wireless powered cooperation-Assisted systems, UAV-assisted relaying systems,

and HetNets with CCC. Actually, our works in this thesis can be further extended

to more general or practical scenarios which are regarded as promising research

directions for our future works. In this chapter, we will present some potential

future works based on this thesis.

7.1 Extensions of MEC in Wireless Powered

Cooperation-Assisted Systems

Our work shown in Chapter 3 focuses on the wireless powered cooperation-assisted

MEC model for only a three-node scenario, comprising an AP, and two near-

far UEs, all with a single antenna. However, extensions to other more complex

scenarios are possible, which are also the potential directions of our future works.
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This section discusses some straightforward approaches to extend the proposed

system in Chapter 3 to more general settings, including the scenarios with multi-

antenna AP, more UEs, and computing resource sharing.

7.1.1 Multi-antenna AP

In this case, we consider that the AP is equipped with multiple antennas. Hence, the

design of the transmit energy beamforming and the received signal combining at the

AP will be handled to improve the network performance giving the multiple antenna

capability of the AP. Such a design can be easily achieved by using maximum

ratio transmission for wireless power transfer and maximum ratio combining for

data reception at the AP. The formulation and approach will be more or less the

same except that the resulting channel coefficients after the antenna processing is

considered.

7.1.2 More UEs

In Chapter 3, our proposed method in its current form addresses the near-far prob-

lem by pairing two UEs (one “near” user and another “far” user) for cooperation.

Therefore, for the cases with multiple UEs (far more than two), a natural approach

would be to list, then rank and pair users according to their distances from the AP.

Communications among different pairs can be dealt with over orthogonal channels

within the same cell covered by the AP. By doing so, our proposed solution could

be adopted directly. Not allowing different pairs to occupy the same radio channels

makes sense because the intra-cell interference would be too much to bear unless

advanced interference mitigation techniques are in place. In that case, user pairing

has to be done with consideration of the interference levels, as the interference is an
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important indicator of the system performance, which will significantly affect the

energy consumption at the UEs as well as the AP.

Same goes to extend the proposed work to a multi-cell scenario where inter-

cell interference is a crucial factor. After a proper user pairing with consideration

of interference control and balancing, our proposed method in Chapter 3 can be

directly applied, although the pairing will be more challenging.

7.1.3 Computing Resource Sharing

Another possible extension is to allow users to share not only the radio resources

(i.e., power and relaying cooperation as in our current work) but also the computing

resources, where the users with stronger computing capacities can help weaker users

complete their computation tasks. In this scenario, the required optimization will

be much more complex because the energy consumption for carrying out tasks for

others and sending back the results to others will need to be evaluated and compared

with that for simply relaying the decoded data to the AP. The overall optimization

problem can be formulated in a similar manner with the emphasis on minimizing

the transmit energy of the AP but the required optimization is not believed to be

convex. The exact way to tackle this will require further analysis and it is likely to

be considered in our future work.

7.2 MEC in Wireless Powered System with

Cooperative UAV

In traditional cellular-based MEC works, the UEs usually resort to the APs for help

to complete their offloaded computation tasks, while in the UAV-enabled MEC
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architectures, the UEs normally rely on the UAV to handle their offloaded tasks.

As mentioned in the Chapter 4, the cooperation between the AP and the UAV is

potential and sometimes necessary for completing UEs’ tasks due to the facts that

the AP can not always provide good connections to some edge users and the size-

constrained UAV is resource-limited especially compared with the grid powered AP.

In order to make the resource-limited UAV and UEs operate in a sustainable way, the

technology of WPT or laser charging can be leveraged to transfer energy from the

AP to the UAV and UEs, which is a good way to to fully exploit the AP’s abundant

grid power supply and further facilitate the cooperation between the UAV and the

AP. Based on the analysis above, we plan to construct a wireless powered UAV-

assisted MEC architecture, where the UAV cooperates with the AP to compute UEs’

offloaded task-input data with sustainable energy supply. This kind of architecture is

capable of making full use of both the AP and the UAV’s advantages and suppress

their disadvantages by leveraging the cooperation between the AP and the UAV,

which is a promising research direction that we are now focusing on.

The wireless powered UAV-assisted MEC architecture is shown in Figure

7.1, which consists of an AP, a cellular-connected UAV, and K ground UEs. It

is assumed that the UAV and UEs are endowed with wireless energy-harvesting

circuits, communication circuits, and computing processors with limited computing

capability. In contrast, the grid power supplied AP is equipped with an ultra-

high performance processing server, so that it can provide high-speed transmission

rate and superb computing capability. Besides, the AP is endowed with a high

power energy transmitter and it can transfer energy to the UAV during the task

completion time, so as to provide sustainable energy supply for the UAV to support

its operations. Part of the UAV’s harvested energy will be further broadcast to the
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Figure 7.1: An illustration of wireless powered UAV-assisted MEC architecture, where the UAV
harvests energy wirelessly from the AP. Besides, the UAV acts as an energy transmitter to offer
sustainable wireless energy supply for the UEs, as well as an MEC server and a relay to help the
resource-limited UEs compute their offloaded computation tasks or further forward their offloaded
tasks to the more powerful processing server at the AP for computing.

UEs, and the remaining part will be utilized for computing and transmissions. We

suppose that each UE has a large amount of bit-wise-independent computation task-

input data and can be operated in the partial offloading mode. The UAV acts as

an MEC server as well as a relay to help the UEs compute their task-input data

or further offload their data to the more powerful server at the AP for computing.

In this case, it is meaningful to maximize the weighted sum completed task-input

bits (WSCTB) of UEs under the task and time allocation, information-causality,

energy-causality, and the UAV’s trajectory constraints, by jointly optimizing the

task and time allocation as well as the UAV’s energy transmit power and trajectory.

The formulated WSCTB maximization problem should be non-convex due to the

strongly coupled optimization parameters, and finding a proper solution is non-

trivial. A conference paper [71] has been published based on this architecture, and
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we are now focusing on a related journal paper.

7.3 MEC in Cache-Enable Multi-Cell Systems

With the rapid proliferation of mobile devices and Internet-of-things equipment,

the global mobile data traffic is growing in an unprecedented way. The explosion

of various modern services such as multimedia, smartphone applications, artificial

intelligence has driven the demand of wireless communication services shifting

from connection-oriented services to content-oriented services. In order to avoid

the waste of resources caused by repeatedly transmitting the popular contents, the

technology of content caching has been widely regarded as a promising solution

[145–149]. Caching the popular contents at the BSs is an effective way for

massive content delivery through reducing the distances between popular contents

and requesters, and content-caching becomes even more promising considering

the gradually reduced prices of storage. Recently, there is a trend of moving the

data from cloud to edge [150–154]. In fact, edge caching and edge computing are

complementary and can mutually reinforce [155–157].

For one of our future works, we will consider a scenario addressing the edge

computing and edge caching simultaneously. As shown in Figure 7.2, a cache-

enabled multi-cell MEC architecture is constructed, which comprises N small cells

each with a SBS and K UEs. Note that all the SBSs are connected to the corn

network through fiber-connected or wireless backhauls. Each UE is assumed to

have a hybrid content-aware computation-intensive task, including a computational

part and a caching-related part. It is assumed that the users have very limited

computing capability, and the computational tasks are atomic and cannot be divided,

and thus all the users tend to offload their computation tasks to their associated
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Core

Network

...

Small BS MEC server

User equipment

Cache

Small Cell 1

Small Cell 2

Small Cell 3
Small Cell N

Optical fiber backhual

Figure 7.2: An illustration of cache-enabled multi-cell MEC architecture, where N small cells
each with a small base station (SBS) to provide caching and computing services to UEs. Each SBS
is connected to the corn network through fiber-connected or wireless backhauls.

SBS (MEC server) through uplink transmissions. As for the caching-related part

of the task, we assume that all the required contents are saved at the core network,

while each SBS has finite caching storage for saving a certain number of contents

that is much less than the total amount. Hence, the requested contents of users

should either be retrieved directly from the associated SBSs (for contents saved at

the corresponding SBSs) or further obtained from the core network (for contents not

saved at the corresponding SBSs) through the fiber-connected or wireless backhauls

and then send back to the users by the corresponding SBSs.

Based on the assumption above, the users have to complete both uplink

communications for computation offloading and downlink communications for

content requesting on the premise of satisfying the latency constraints of the tasks.

It is assumed that the uplink and downlink communications work in different

frequency bands, and the orthogonal multiple access techniques such as TDMA



198 CHAPTER 7. FUTURE WORKS

or OFDMA can be leveraged among users in the same cell. Note that there is

no intra-cell interference in each cell, but the inter-cell interference is severe, and

should be properly managed so as to achieve satisfactory performance. The uplink

and downlink power allocation of UEs, the content placement at the SBSs, the

backhaul resource allocation for the SBSs will be considered as the optimization

parameters to minimize the total cost, i.e., the energy consumption of the whole

system. This optimization problem will be a mixed integer nonlinear programming

which is known as a NP-hard problem, and thus solving the problem to obtain a

proper solution will be challenging.
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Appendices

Appendix A: Proofs in Chapter 3

A.1 Proof of Theorem 3.1

There are two steps to prove Theorem 3.1.

1) In order to prove the first result of Theorem 3.1, we need the following

lemma.

Lemma A.1. For function q(z) = e(m−1)z − emz = 0, there exists a unique

root on z ∈ (0, 1
m

), where m > 0 is a constant.

Proof. Note that q(0) = 1 > 0 and q( 1
m

) = e(e−1/m − 1) < 0, indicating that there

exists at least one root for q(z) = 0 on z ∈ (0, 1/m). Besides, the second-order

derivative of q(z) is non-negative, which means that q(z) is a convex function of

z. Hence, we can conclude that there exists one and only one root on (0, 1
m

) for

q(z) = 0, and it can be easily obtained by a bi-section search on z ∈ (0, 1
m

).

We will next show that for the cases of M+
1 > 0 or µ1 ≥ (β1 + β2)P0/z

∗,

computation offloading for UE1 is necessary, and thus L
∗
1 > 0, t∗1 > 0, q∗1 > 0.

From the two expressions of β1
q∗1
t∗1

in (3.47) and (3.51), we can get the equation
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given below

W0

(
−e−( η

∗ ln 2
λ∗3B

+1)
)

=
−η∗ ln 2

λ∗3B(β1 + β2)P0

. (A.1.1)

Denoting z∗ = η∗ ln 2
λ∗3B

> 0 and using the definition of the Lambert function, the

above equation can be rewritten as

e

(
1

(β1+β2)P0
−1
)
z∗ − e

(β1 + β2)P0

z∗ = 0. (A.1.2)

Note that β1
q∗1
t∗1

=
λ∗3B(β1+β2)

η∗ ln 2
− 1

P0
= (β1+β2)

z∗
− 1

P0
> 0, which means that the above

equation should have a unique root z∗ on (0, (β1 + β2)P0) because the optimal

Lagrange multipliers λ∗3 and η∗ are uniquely determined in the convex optimization

problem (P3.4). According to Lemma A.1, solving (A.1.2) is equivalent to finding

the unique root of q(z) = 0 on z ∈ (0, (β1 + β2)P0) with m = 1/(β1 + β2)P0, and

this unique root always exists which can be obtained through a bi-section search on

z∗ ∈ (0, (β1 + β2)P0). Therefore, λ∗3 can be expressed by η∗ as λ∗3 = η∗ ln 2
Bz∗

.

Substituting the expressions of λ∗3, (1 + λ∗1) (in (3.50)) related in η∗, and the

definition of β1 into the condition (3.38) leads to

∂L
∂L
∗
1

=
ln 2

B

(
µ1

(β1 + β2)P0

− 1

z∗

)
η∗. (A.1.3)

Comparison between µ1

(β1+β2)P0
and 1

z∗
according to the result in (3.38) establishes

the result of L
∗
1 in (3.53).

Similarly, substituting λ∗3 = η∗ ln 2
Bz∗

into (3.51), the expressions of q∗1
t∗1

and q∗21

t∗21
can

be obtained as

q∗1
t∗1

=
1

β1

(
β1 + β2

z∗
− 1

P0

)
> 0, (A.1.4)
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q∗21

t∗21

=
1

β2

(
β1 + β2

z∗
− 1

P0

)
> 0. (A.1.5)

Based on these, we can further obtain p∗1 and p∗21 through the variable revivification,

i.e., p∗1 = ν1g1P0
q∗1
t∗1

and p∗21 = ν2g2P0
q∗21

t∗21
, in combination with β1 = ν1g1h1

N0
and

β2 = ν2g2h2

N0
, which leads to the results in (3.54) and (3.55).

For the case of M+
1 = 0, µ1 < (β1 + β2)P0/z

∗, it can be derived that L
∗
1 = 0

according to condition (3.38), which means that fulfilling UE1’s computation task

locally saves more energy, and thus we have p∗1 = 0, p∗21 = 0.

2) Next, we will prove the second result of Theorem 3.1. Similarly, we also

first show that for the cases of M+
2 > 0 or ρ(µ2) ≥ (β1 + β2)P0, computation

offloading for UE2 is necessary, and thus L∗2 > 0, t∗22 > 0, q∗22 > 0. According to

Lemma 3.2, the optimal transmission rate for offloading UE2’s input data, i.e., L∗2
t∗22

can be obtained through the condition (3.35) as

r∗2 =
L∗2
t∗22

=
B

ln 2

[
W0

( −h2η∗

(1+λ∗2)N0
+ 1

−e

)
+ 1

]
(a)
=

B

ln 2

[
W0

(
(β1 + β2)P0 − 1

e

)
+ 1

]
> 0,

(A.1.6)

where (a) is obtained through the property of λ∗2 in (3.50) and the definition of

β2. Based on the expression of g(x), its first-order derivative can be expressed as

g′(x) = N0 ln 2
B

2
x
B , which is a monotonically increasing function of x. Through the

KKT condition (3.39), we can derive that the cases ∂L
∂L∗2

(<,=, >)0 hold if and only if

L∗2
t∗22

(>,=, <) B
ln 2

lnµ2, respectively. Hence, the result of L∗2 in (3.56) can be obtained

by comparing the expression of L∗2
t∗22

in (A.1.6) and B
ln 2

lnµ2, where the definition and

property of the Lambert functionW0 [124] should be used. According to (3.21), the

optimal transmit power for offloading UE2’s data is p∗22 = 1
h2
g
(
L∗2
t∗22

)
, giving the
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result in (3.57).

For the case of M+
2 = 0, ρ(µ2) < (β1 + β2)P0, it can be derived that L∗2 =

0 according to (3.39), which means that fulfilling UE2’s task locally saves more

energy, thus p∗22 = 0.

A.2 Proof of Theorem 3.2

Based on the results of Theorem 3.1, we can easily derive the expression of t∗22 by

leveraging the fact of t∗22 =
L∗2
r∗2

with the expression of r∗2 in (A.1.6). With the result

of t∗22, we can further derive the optimal WPT duration time t∗0 as follows.

For the case of L
∗
1 = 0, we understand that t∗1 = 0 and t∗21 = 0, and thus t∗0 =

T − t∗22. For the case of L
∗
1 > 0, combining the results of Lemma 3.3, Lemma 3.5,

and the active time-sharing constraint in (3.24b), establishes the following equation

t∗1 + t∗21 =
L
∗
1

r1,1(p∗)
= T − t∗22 − t∗0, (A.2.1)

which leads to the results in (3.60).

As for the derivation of (t∗1, t
∗
21) when L

∗
1 > 0, we resort to the results of

Lemma 3.3 and Theorem 3.1, and further derive the following lemma.

Lemma A.2. The optimal time allocation (t∗1, t
∗
21) for cooperatively offloading

UE1’s task-input data satisfies

L
∗
1 = L1,1(t∗1) + L1,2(t∗21) = L1,12(t∗1). (A.2.2)

Proof. According to Lemma 3.3 and Lemma 3.5, we know that

L
∗
1 = (t∗1 + t∗21)r1,1(p∗1) ≤ t∗1r1,12(p∗1), (A.2.3)
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where L
∗
1 and p∗1 have been obtained in Theorem 3.1. Since we assume that h1 <

h12, then r1,1(p∗1) < r1,12(p∗1) holds for sure. With a given feasible P0 and the

corresponding optimal t∗0, t∗22 given above, and p∗1, p∗21, p∗22, L
∗
1, L∗2 obtained in

Theorem 3.1, maximizing the SES is equivalent to minimizing the following energy

consumption for offloading UE1’s task-input data, i.e.,

min
t1,t21

p∗1t1 + p∗21t21

s.t. (A.2.3), t1 ≥ 0, t21 ≥ 0.

(A.2.4)

In order to make the cooperative computation offloading strategy effective, we

mainly consider the case of h1 < h2
1, and thus the offloading power satisfies

p∗1 > p∗21 according to the result of Theorem 3.1. If L
∗
1 = (t∗1 + t∗21)r1,1(p∗1) <

t∗1r1,12(p∗1) holds, we can always increase t21 meanwhile decreasing t1 with the fixed

t1 + t21 = L
∗
1/r1,1(p∗1) until L

∗
1 = (t∗1 + t∗21)r1,1(p∗1) = t∗1r1,12(p∗1) holds, which will

lead to a smaller objective value of problem (A.2.4). Hence, expression (A.2.2)

always holds with the optimal time allocation (t∗1, t
∗
21).

From the result of the above lemma, we can deduce the optimal time division

parameters (t∗1, t
∗
21) as in (3.61).

A.3 Proof of Lemma 3.6

According to the expression of t∗0 in (3.60), its monotonicity with respect to P0 is

determined by the monotonicity of L
∗
1/r1,1(p∗) and t∗22 = L∗2/r

∗
2 when L

∗
1 > 0 or

L∗2 > 0. From the expression of r∗2 in (A.1.6), it is clear that r∗2 is a monotonic

1In this thesis, we mainly consider the case of h1 < h2, which is most likely to happen based on
our assumption that UE2 is closer to the AP than UE1 . Actually, if the rare case of h1 > h2 does
happen, we can simply exchange the roles of the two users to apply the proposed scheme, which will
achieve similar performance.
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increasing function of P0 due to the fact that the first-branch of Lambert function

W0(·) is a monotonic increasing function. Next, we will prove that P0/z
∗ is also a

monotonic increasing function of P0 to further proceed this proof.

From the equation used to obtain z∗ in (A.1.2), it is easy to note that z∗ is an

implicit function of P0. Besides, equation (A.1.2) can be transformed into another

form given by

ln

(
z∗

(β1 + β2)P0

)
=

z∗

(β1 + β2)P0

− z∗ − 1. (A.3.1)

As such, the first-order derivative of z∗ on P0 can be found as

dz∗

dP0

=
z∗ [(β1 + β2)P0 − z∗]

P0 [(β1 + β2)P0 − z∗ + (β1 + β2)P0z∗]
(A.3.2)

through applying the differentiation rule of the implicit function on the equation

(A.3.1). Note that dz∗

dP0
> 0 always holds since z∗ is in the range of (0, (β1 +β2)P0).

Thus, the first-order derivative of P0/z
∗ can then be expressed as

d (P0/z
∗)

dP0

=
(β1 + β2)P0

(β1 + β2)P0 − z∗ + (β1 + β2)P0z∗
, (A.3.3)

which is always positive for z∗ ∈ (0, (β1 + β2)P0). Hence, we can conclude that

P0/z
∗ monotonically increases with P0. Then we further prove that r1,1(p∗) in

(3.58) is also a monotonic increasing function of P0 according to the monotonicity

rule of compound function. Note that the thresholds of the offloading decisions for

two users in Theorem 3.1, i.e., (β1 + β2)P0/z
∗ and (β1 + β2)P0, monotonically

increase with P0, which means that L
∗
1 and L∗2 are two non-increasing piecewise

functions of P0 each with two constant values. Therefore, it is natural that t∗22 =
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L∗2/r
∗
2 and L

∗
1/r1,1(p∗) are two monotonic decreasing functions of P0. Therefore,

we can conclude that the optimal WPT duration t∗0 in (3.60) is a monotonic

increasing function of P0 for the cases of L
∗
1 > 0 or L∗2 > 0. When L

∗
1 = 0

and L∗2 = 0 hold simultaneously, we have t∗1 = t∗21 = t∗22 = 0, and thus t∗0 is fixed as

t∗0 = T . In conclusion, the WPT duration t∗0 is a monotonic non-decreasing function

of P0.

Appendix B: Proofs in Chapter 4

B.1 Proof of Theorem 4.1

The partial Lagrange function of (P4.1.1) can be expressed as

L(1)(z,λ,µ,η,ρ,β)

=
K∑
k=1

{
N∑
n=1

(
wk

(
Eloc
k [n] + Eoff

k [n]
)

+ wU

(
EU,k[n] + Eoff

U,k[n] + Edown
U,k [n]

))

+

(
N−1∑
n=2

λ̃k,n

(
δfU,k[n]

Ck
+ Loff

U,k[n]

)
−

N−2∑
n=1

λ̂k,nL
off
k [n]

)

+

(
N∑
n=3

µ̃k,nL
down
U,k [n]−Ok

N−1∑
n=2

µ̂k,n

(
δfU,k[n]

Ck
+ Loff

U,k[n]

))

+ ηk

(
N−2∑
n=1

Loff
k [n]−

N−1∑
n=2

(
δfU,k[n]

Ck
+ Loff

U,k[n]

))

+ ρk

(
Ok

N−1∑
n=2

(
δfU,k[n]

Ck
+ Loff

U,k[n]

)
−

N∑
n=3

Ldown
U,k [n]

)

+ βk

(
Ik −

N−2∑
n=1

Loff
k [n]−

N∑
n=1

τ

Ck
fk[n]

)}
, (B.1.1)

where λ = {λk,n}k∈K,n∈N , µ = {µk,n}k∈K,n∈N , η = {ηk}k∈K, ρ = {ρk}k∈K,

β = {βk}k∈K, λ̃k,n =
∑N−1

i=n λk,i, λ̂k,n =
∑N−1

i=n+1 λk,i, µ̃k,n =
∑N

i=n µk,i, and
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µ̂k,n =
∑N

i=n+1 µk,i. The Lagrangian dual function of problem (P4.1.1) can be

presented as

d(1)(λ,µ,η,ρ,β) = min
z
L(1)(z,λ,µ,η,ρ,β) (B.1.2)

s.t. (4.17h)− (4.17l).

Hence, the solution of z with given dual variables λ,µ,η,ρ,β can be obtained

by solving problem (B.1.2). If the given dual variables are optimal, denoted as

λ∗,µ∗,η∗,ρ∗,β∗, then the corresponding solutions are optimal, i.e., z∗. According

to the structures of the Lagrange function L(1)(z,λ,µ,η,ρ,β) and the constraints

(4.17h)-(4.17l), it is noted that the problem (B.1.2) can be equivalently divided

into K subproblems w.r.t. each UE k ∈ K to facilitate parallel execution.

Apply the Karush-Kuhn-Tucker (KKT) conditions [123] and let the derivations of

L(1)(z,λ,µ,η,ρ,β) w.r.t. fk[n], Loff
k [n], fU,k[n], Loff

U,k[n], Ldown
U,k [n] equal to zero,

we can thus obtain the corresponding optimal solution given in Theorem 4.1 with

some straightforward calculations.

B.2 Proof of Lemma 4.1

The optimal Lagrange multipliers λ∗, µ∗, η∗, ρ∗ and β∗ related to the optimal

solution of problem (P4.1.1) can be obtained by solving the dual problem of

(P4.1.1), which is expressed as

max
λ,µ,η,ρ,β

d(1)(λ,µ,η,ρ,β) (B.2.1)

s.t. λk,n ≥ 0, µk,n ≥ 0, k ∈ K, n ∈ N , (B.2.2)
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N−2∑
n=1

Loff∗
k,j [n] =

N−1∑
n=2

(
δf ∗U,k,j[n]

Ck
+ Loff∗

U,k,j[n]

)
, k ∈ K, (B.2.3)

Ok

N−1∑
n=2

(
δf ∗U,k,j[n]

Ck
+ Loff∗

U,k,j[n]

)
=

N∑
n=3

Ldown∗
U,k,j [n], k ∈ K, (B.2.4)

N∑
n=1

τ

Ck
f off∗
k,j [n] +

N−2∑
n=1

L∗k,j[n] = Ik, k ∈ K, (B.2.5)

where (B.2.3)–(B.2.5) are given to make sure that the obtained Lagrange multipliers

η∗, ρ∗ and β∗ based on the λ∗ and µ∗ can make the optimal solution of problem

(P4.1.1) satisfy the equality constraints (4.17d)-(4.17f). The optimal λ∗ and µ∗

associated with the inequality constraints (4.17b)–(4.17c) can be obtained through

the subgradient-based algorithm, which gives the results of λj+1 and µj+1 at the

(j + 1)-th iteration as shown in Lemma 4.1.

B.3 Proof of Lemma 4.2

With the achieved λj+1 and µj+1 in Lemma 4.1, we can then obtain the ηj+1, ρj+1

and βj+1 correspondingly. According to the expressions of the optimal solution in

Theorem 4.1 and the equality constraints in (4.17d)–(4.17f), we can express the

value of
∑N−2

n=1 L
off∗
k,j+1[n] in the following forms in (B.3.1)–(B.3.4)

N−2∑
n=1

Loff∗
k,j+1[n] = Ik −

T

Ck

√
βk,j+1

3Ckwkκk
(B.3.1)

= δ
N−2∑
n=1

Boff
k [n]

[
ϕoff
k [n] + log2

[
λ̂k,n,j+1 + βk,j+1 − ηk,j+1

]+
]+

(B.3.2)

=
δ

Ok

N∑
n=3

Bdown
U,k [n]

[
ϕdown

U,k [n] + log2

[
ρk,j+1 − µ̃k,n,j+1

]+
]+

(B.3.3)

=
N−1∑
n=2

{
δ

Ck

√
[ηk,j+1 −Okρk,j+1 +Okµ̂k,n,j+1 − λ̃k,n,j+1]+

3CkwUκU
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+ δBoff
U,k[n]

[
ϕoff

U,k[n] + log2

[
ηk,j+1 −Okρk,j+1

+Okµ̂k,n,j+1 − λ̃k,n,j+1

]+
]+
}
, (B.3.4)

where λ̃k,n,j+1, λ̂k,n,j+1, µ̃k,n,j+1, and µ̂k,n,j+1 are defined similar to λ̃k,n, λ̂k,n,

µ̃k,n, and µ̂k,n in Appendix B.1. The expression (B.3.1) is obtained from (4.17f),

(B.3.2) comes from the expression of {Loff∗
k,j+1[n]}, (B.3.3) is derived from (4.17d)

and (4.17e) with equation
∑N−2

n=1 L
off∗
k,j+1[n] = 1

Ok

∑N
n=3 L

down∗
U,k,j+1[n], and (B.3.4) is

obtained from (4.17d).

According to (B.3.1) and the facts that
∑N−2

n=1 L
off
k,j+1[n] ∈ [0, Ik], f ∗k[n] ≥ 0,

we can derive the range of βk,j+1 ∈ [0, βk,max) with βk,max = 3Ckwkκk(
IkCk
T

)2 for

k ∈ K. It is observed from (B.3.1)–(B.3.3) that ηk,j+1 and ρk,j+1 are respectively

monotonic non-decreasing and non-increasing implicit functions of βk,j+1, which

further shows that (B.3.4) is also a monotonic non-decreasing function of βk,j+1.

Hence, with the obtained λj+1 and µj+1, and a given βk,j+1 ∈ [0, βk,max), we can

derive the corresponding ηk,j+1 and ρk,j+1 from the equations constituted by (B.3.1)

in company with (B.3.2) and (B.3.3), respectively, also using the bi-section search

method with the ranges of ηk,j+1 ∈ [ηlow
k,j+1, η

up
k,j+1] and ρk,j+1 ∈ [ρlow

k,j+1, ρ
up
k,j+1],

where

ηlow
k,j+1 = λ̂k,N−2,j+1 − 2

Ik/δ−
∑N−2
n=1 Boff

k [n]ϕoff
k [n]∑N−2

n=1 Boff
k

[n] , (B.3.5)

ηup
k,j+1 = λ̂k,1,j+1 + βk,max, (B.3.6)

ρlow
k,j+1 = µ̃k,N,j+1, (B.3.7)

ρup
k,j+1 = µ̃k,3,j+1 + 2

IkOk/δ−
∑N
n=3 B

down
U,k [n]ϕdown

U,k [n]∑N
n=3 B

down
U,k

[n] , (B.3.8)
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which are obtained from (B.3.2) and (B.3.3) in combination with the definitions

of λ̂k,n,j+1 and µ̃k,n,j+1, and the range of βk,j+1. The optimal βk,j+1 and the

corresponding ηk,j+1, ρk,j+1 should make the equation formed by (B.3.1) and

(B.3.4) satisfied, which indicates the termination of the bi-section search of βk,j+1,

k ∈ K.

B.4 Proof of Theorem 4.2

The partial Lagrange function of (P4.1.2) is defined as

L(2)(B,ν) =

K∑
k=1

N∑
n=1

(
wkE

off
k [n] + wU

(
Eoff

U,k[n] + Edown
U,k [n]

))
+

K∑
k=1

N∑
n=1

νk,n
(
Boff
k [n] +Boff

U,k[n] +Bdown
U,k [n]−B

)
, (B.4.1)

where ν = {νk,n}k∈K,n∈N . The Lagrangian dual function of problem (P4.1.2) can

be presented as

d(2)(ν) = min
B
L(2)(B,ν) (B.4.2)

s.t. (4.17m)− (4.17o).

Hence, the optimal solution of B with optimal dual variables ν∗ can be obtained by

solving (B.4.2). This problem can also be equivalently divided into K subproblems

w.r.t. each UE k ∈ K to facilitate parallel execution. It is easy to note that the

expressions of Eoff
k [n], Eoff

U,k[n] and Edown
U,k [n] have similar structures w.r.t. Boff

k [n],

Boff
U,k[n] and Bdown

U,k [n], and thus the optimal solution of Boff
k [n], Boff

U,k[n] and

Bdown
U,k [n] should have similar structures according to problem (B.4.2). Next, we
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will take Boff
k [n] as an example to obtain its closed-form optimal solution versus

ν∗k,n for k ∈ K, n ∈ N . Applying the KKT conditions [123] leads to the following

necessary and sufficient condition of Boff∗
k [n]:

∂L(2)(B,ν)

∂Boff∗
k [n]

= ν∗k,n −
Loff
k [n]wkN0 ln 2

(Boff∗
k [n])2hk[n]

2
Loff
k [n]

Boff∗
k

[n]δ = 0, (B.4.3)

where the optimal dual variable ν∗k,n should make sure that the equality constraint

Boff∗
k [n] +Boff∗

U,k [n] +Bdown∗
U,k [n] = B is satisfied. It is not easy to obtain the closed-

form solution of Boff∗
k [n] through (B.4.3) directly. By defining ξ =

Loff
k [n]

Boff∗
k [n]δ

, the

equation in (B.4.3) can be re-expressed as

ξ22ξ =
ν∗k,nhk[n]Loff

k [n]

δ2wkN0 ln 2
, Γ. (B.4.4)

By applying the natural logarithm at the both sides of (B.4.4) leads to

ln ξ +
ln 2

2
ξ = ln Γ

1
2 . (B.4.5)

Then applying the exponential operation at both sides of (B.4.5), we can obtain that

ln 2

2
ξe

ln 2
2
ξ =

ln 2

2
Γ

1
2 , (B.4.6)

where e is the base of the natural logarithm. According to the definition and property

of Lambert function [124], we have ln 2
2
ξ = W0( ln 2

2
Γ

1
2 ), and finally we can express

Boff∗
k [n] as

Boff∗
k [n] =

ln 2
2
Loff
k [n]

δW0

[
ln 2
2

(
φk,n
wk
hk[n]Loff

k [n])
1
2

] , n ∈ N1. (B.4.7)
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Integrating with the cases Boff∗
k [N − 1] = Boff∗

k [N ] = 0, the complete solution of

Boff∗

k [n] in (4.32) can be obtained. The solution of Boff∗
U,k [n] and Bdown∗

U,k [n] in (4.33)

and (4.34) can be obtained in a similar way.

Appendix C: Proofs in Chapter 5

C.1 Proof of Lemma 5.2

The Lagrange function of problem (5.20) is

L (pu, t,λ,µ,ν) =
K∑
k=1

Iktk +
K∑
k=1

λk (pu
k − tkRa

k(p
u,wk))

+
K∑
k=1

µk (τk − γa
k(p

u,wk))

+
K∑
k=1

νk (pu
k − P u

max) , (C.1.1)

where {λk, µk, νk}Kk=1 are non-negative Lagrange multipliers. Based on the defini-

tion of KKT conditions, we have

∂L
∂pu

k

= λk − λktk
∂Ra

k

∂pu
k

− µk
∂γa

k

∂pu
k

+ νk −
K∑

j=1,j 6=k

λjtj
∂Ra

j

∂pu
k

−
K∑

j=1,j 6=k

µj
∂γa

j

∂pu
k

= 0,

(C.1.2)

∂L
∂tk

= Ik − λkRa
k = 0, (C.1.3)

λk (pu
k − tkRa

k) = 0, (C.1.4)

µk (τk − γa
k) = 0, (C.1.5)

νk (pu
k − P u

max) = 0. (C.1.6)
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In (C.1.2), we have
∂Ra

j

∂pu
k

= − Ba

ln 2

(γa
j )

2
|wH
j ha

k,j |
2

pu
j |wH

j ha
j,j |2(1+γa

j )
, and

∂γa
j

∂pu
k

= −(γa
j )

2
|wH
j ha

k,j |
2

pu
j |wH

j ha
j,j |2

. In

addition, since Ra
k > 0, we have λk = Ik

Ra
k
> 0 based on (C.1.3), and then tk =

pu
k

Ra
k

based on (C.1.4). Through (C.1.2)–(C.1.6), we observe that problem (5.20) has

the same KKT conditions with the K subproblems shown in (5.21). Likewise, by

considering the KKT conditions of K subproblems in (5.21), we find that they are

identical to those shown in (C.1.2)–(C.1.6). In other words, problems (5.20) and

(5.21) have the same optimal solution.

C.2 Proof of Theorem 5.1

Based on (C.1.2), (C.1.5) and (C.1.6) of Appendix C.1, KKT conditions for

subproblem (5.21) is given by

λk +Mk −
Ba

ln 2

λktkΛk

1 + γa
k

− µkΛk + νk = 0, (C.2.1)

µk (τk − γa
k) = 0, (C.2.2)

νk (pu
k − P u

max) = 0, (C.2.3)

where Λk =
|wH
k ha

k,k|
2∑K

i=1,i 6=k p
u
i |wH

k ha
i,k|2+|wH

k nk|2
. From (C.2.1) and the definition of γa

k =

pu
kΛk in (5.2), we see that the optimal pu∗

k meets

pu∗
k =

Ba

ln 2

λktk
λk +Mk − µ∗kΛk + ν∗k

− 1

Λk

, (C.2.4)

where µ∗k and ν∗k satisfy the KKT conditions (C.2.2) and (C.2.3), respectively. To

explicitly obtain {pu∗
k , µ

∗
k, ν
∗
k}, we need to consider the following cases:

• Case 1: When pu∗
k ∈

(
τk
Λk
, P u

max

)
, µ∗k = ν∗k = 0 according to (C.2.2) and

(C.2.3). In this case, pu∗
k = Gk with Gk = Ba

ln 2
λktk

λk+Mk
− 1

Λk
according to
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(C.2.4). Therefore, if Gk ∈
[
τk
Λk
, P u

max

]
, pu∗

k = Gk and µ∗k = ν∗k = 0.

• Case 2: IfGk <
τk
Λk

, it is seen from (C.2.4) that µ∗k > 0. In this case, pu∗
k = τk

Λk

and ν∗k = 0 according to (C.2.2) and (C.2.3). Substituting pu∗
k = τk

Λk
and

ν∗k = 0 into (C.2.4), we obtain µ∗k = λk+Mk

Λk
− Ba

ln 2
λktk
τk+1

• Case 3: If Gk > P u
max, it is seen from (C.2.4) that ν∗k > 0. In this case, pu∗

k =

P u
max and µ∗k = 0 according to (C.2.3) and (C.2.2). Substituting pu∗

k = P u
max

and µ∗k = 0 into (C.2.4), we obtain ν∗k = Ba

ln 2
λktk

Pu
max+1/Λk

− λk −Mk.

Thus, we get the optimal {pu∗
k , µ

∗
k, ν
∗
k} as shown in Theorem 5.1.
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