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Abstract—The JavaCard multi-application platform is now
deployed to over twenty billion smartcards, used in various
applications ranging from banking payments and authentica-
tion tokens to SIM cards and electronic documents. In most
of those use cases, access to various cryptographic primitives
is required. The standard JavaCard API provides a basic
level of access to such functionality (e.g., RSA encryption)
but does not expose low-level cryptographic primitives (e.g.,
elliptic curve operations) and essential data types (e.g.,
Integers). Developers can access such features only through
proprietary, manufacturer-specific APIs. Unfortunately, such
APIs significantly reduce the interoperability and certifica-
tion transparency of the software produced as they require
non-disclosure agreements (NDA) that prohibit public shar-
ing of the applet’s source code.

We introduce JCMathLib, an open library that provides
an intermediate layer realizing essential data types and low-
level cryptographic primitives from high-level operations. To
achieve this, we introduce a series of optimization techniques
for resource-constrained platforms that make optimal use
of the underlying hardware, while having a small memory
footprint. To the best of our knowledge, it is the first generic
library for low-level cryptographic operations in JavaCards
that does not rely on a proprietary API.

Without any disclosure limitations, JCMathLib has the
potential to increase transparency by enabling open code
sharing, release of research prototypes, and public code
audits. Moreover, JCMathLib can help resolve the conflict
between strict open-source licenses such as GPL and propri-
etary APIs available only under an NDA. This is of particular
importance due to the introduction of JavaCard API v3.1,
which targets specifically IoT devices, where open-source
development might be more common than in the relatively
closed world of government-issued electronic documents.

Index Terms—Cryptography, JavaCard, Auditability, Trans-
parency, Elliptic Curves, Big Integers

1. Introduction

Smartcards were a significant achievement in the se-
cure hardware industry as they provided a relatively inex-
pensive platform that stores and computes over secrets
securely while operating under adversarial control. At
first, each hardware manufacturer maintained its platform
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that applications were compiled against. However, the
need for cross-manufacturer interoperability eventually led
to the formation of the JavaCard platform [16]. JavaCard
is a multi-application platform that promises full ap-
plication portability between manufacturers. This fueled
the adoption of the platform, and its popularity steadily
rose over the years; until 2017, more than 20 billion
of JavaCards have been sold [10]. Common applications
include telecommunications (e.g., SIM cards), payments,
and loyalty cards. Additionally, new use cases emerged
as Internet-of-Things (IoT) vendors seek secure hardware
components for their devices [3], [6], [12], [27].

In practice, interoperability is achieved through the
JavaCard Application Programming Interface (API), and
the specification of the JavaCard runtime environment
(JCRE) executing interoperable bytecode. The basic API
is available in all JavaCards regardless of their manufac-
turer and is maintained by Oracle [16], which periodically
(approximately every three years) releases updates with
JC 3.1 being the latest [17]. JavaCard developers use the
algorithms and the convenience functions it exposes in
their applets, without any need to manage the underlying
hardware (i.e., cryptographic coprocessor, secure parts of
the memory). For instance, to use the Digital Signature
Algorithm over Elliptic Curves (ECDSA), JavaCard devel-
opers can simply initialize a crypto engine with ECDSA.
Behind the scenes, a hardware implementation of the
algorithm is executed in the cryptographic coprocessor of
the card, while all secrets are stored in a safe section of
the memory. Such hardware-supported implementations of
popular algorithms are very convenient for developers as
they are much faster than their software-only counterparts
and provide additional protection against side-channel and
fault-induction attacks.

However, this reliance on the high-level API comes
at a price. Developers do not have direct access to the
underlying cryptographic components (e.g., crypto copro-
cessor) and rely solely on the API for the functionality
they need. While the JavaCard API supports a range of
common cryptographic algorithms, it cannot sufficiently
cover the wealth of crypto schemes that are currently used
in production. This results in many popular or modern
algorithms not being available in JavaCards (e.g., El-
Gamal [7], Schnorr [22] or many Authenticated Encryp-
tion algorithms [2]) and thus hinders the adoption of
JavaCards in novel applications. To address these limita-
tions, many manufacturers provide proprietary APIs that
give some degree of freedom to developers to implement
unsupported schemes themselves. However, since those

https://crocs.fi.muni.cz/papers/cybercert2020


APIs are manufacturer-specific, their use severely hinders
interoperability. More importantly, proprietary APIs re-
quire non-disclosure agreements that prohibit any source
code from being publicly released or shared. This signifi-
cantly reduces the number of open source projects, proto-
types, and in general, the exchange of expertise between
the members of the JavaCard developer community.

This paper introduces JCMathLib, an open-source in-
termediate layer that realizes essential low-level cryp-
tographic operations. At first glance, implementing new
functionality in software may look straightforward. How-
ever, resource-constrained platforms have neither the pro-
cessing power, nor the memory capacity to support such
implementations. To overcome these limitations, we in-
troduce a new approach that makes optimal use of the
platform’s resources (e.g., memory, hardware-acceleration
chips). We design various transformations that, given a
restricted set of high-level cryptographic operations, can
be used to realize essential low-level operations and funda-
mental data types. More specifically, our transformations
combine existing high-level hardware-accelerated opera-
tions (e.g., crypto-coprocessor for ECDSA), into new op-
erations, data types, and objects such as Integers, BigNum-
bers, EC Points, Modular arithmetic, Elliptic curve opera-
tions. The JavaCard platform is an ideal testbed, as it has
a very restrictive API and limited processing resources.

Contributions
This paper makes the following contributions:

v Transformations for primitive derivation. We
introduce a set of operation transformations
that combine high-level cryptographic operations
to reconstruct low-level ones. Our transforma-
tions cover basic cryptographic primitives and
span from simple Integer operations to resource-
demanding elliptic curve points operations.

v Open-source cryptographic library. To the best
of our knowledge, JCMathLib1 is the first open-
source library for JavaCards that realizes essential
Integer, BigNumber, and primitive Elliptic Curve
operations without the use of any proprietary
APIs. This enables developers to publicly share
parts of their code (e.g., research prototypes,
code audits) and alleviates several barriers that
hindered the exchange of expertise.

v Performance optimizations and evaluation.
The library’s performance is extensively opti-
mized and evaluated on various cryptographic
smartcards. The BigNumber operations are exe-
cuted faster than reported in previous works [25],
while even the most computationally-intense EC
Point operations complete in 4 seconds or less.
JCMathLib requires only 1KB of RAM in the
performance-optimized version, while can also
accommodate low-end cards with less RAM by
moving part of its state from the RAM into the
EEPROM.

The paper is organized as follows: We first pro-
vide some preliminary information on how the JavaCard
ecosystem operates and its shortcomings in the develop-
ment and adoption in new application areas. Then, we

1. https://github.com/OpenCryptoProject/JCMathLib/

introduce a set of transformations that realize commonly
missing functionality in resource-constrained platforms
and present JCMathLib, a library that implements all
these transformations for the JavaCard platform. Finally,
we evaluate and discuss the performance, security, and
limitations of our library.

2. Preliminaries

Smartcards are small embedded devices used in a wide
range of applications that require secure storage, access
control, and/or authentication. Initially, smartcards were
cumbersome to program and manage as the functional-
ity had to be loaded by the manufacturer at the time
of the fabrication. This changed with multi-application
cards supporting the dynamic loading of multiple binaries.
Building on top of this, JavaCard then introduced binary
interoperability between different cards and manufactur-
ers, thus increasing smartcard adoption even further. In
this section, we first provide an overview of the JavaC-
ard ecosystem processes and then examine the JavaCard
development and API.

JavaCard Specification. JavaCard holds the largest chunk
of the programmable smartcard market with more than 20
billion units deployed in production [10], [15]. To guar-
antee manufacturer interoperability, Oracle periodically
releases the specifications of the JavaCard API (JC API),
the JavaCard Virtual Machine (JCVM), and the JavaCard
Runtime Environment (JCRE) [16]. The JCVM aims to
isolate the user applications from the underlying hardware
and operating system, while the JC API exposes JavaCard
packages and classes to user applications. Manufacturers
are responsible for implementing these specifications in
their products and perform audits to ensure the security
of the final product. The most recent version of the spec-
ification in the current use is JC 3.1 (published in 2017),
but not yet seen in the cards available. Instead, 3.0.5
(published in 2015) is the the recent specification already
in the real-world deployment. The oldest specification
available online is JC 2.1 (published in 1999). Starting
from JC 3.x, the specification distinguishes between two
significantly different APIs – the classic and the connected
editions. The classic edition further extends the capabili-
ties of the JC 2.x versions but does not differ conceptually
from previous versions. On the other hand, the connected
edition introduces smartcards exposing web-service inter-
faces accepting XML requests. While the classic edition
is widely used, the connected edition has yet to appear in
commercial cards and seems to be stalled.

JavaCard Development. Even though JavaCard is a sub-
set of Java, it comes with severe limitations that are mainly
due to the low capabilities of the card’s hardware. In
particular, most of the standard Java packages have been
stripped away, and new packages have been added to
support selected cryptographic operations and basic data
transmission functions. Moreover, several standard Java
features are missing (e.g., threads, dynamic class loading,
and object cloning), while the JCVM specification fur-
ther restricts the maximum number of classes to 15 and
methods to 128 to make bytecode more compact. From
a technical perspective, JavaCard applet compilation is
straightforward. Applets are compiled using ordinary Java
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Package Functionality

javacardx.crypto.Cipher Symmetric Encryption Schemes

javacard.crypto.Signature Asymmetric Signing Schemes

javacard.security.MessageDigest Cryptographic Hash Functions

javacard.security.RandomData Random Number Generators

javacard.security.KeyAgreement Key Agreement Algorithms

javacard.security.KeyBuilder Key Generation

javacard.security.KeyPair Key Pair Storage

TABLE 1. LIST OF JAVACARD PACKAGES THAT PROVIDE
CRYPTOGRAPHIC FUNCTIONALITY.

tools (i.e., javac compiler) configured to link the JavaCard
packages. The produced Java bytecode is then processed
and checked for compliance by a JavaCard converter and
if successful, is turned into JavaCard bytecode. The final
binary is then uploaded and installed to the card, usually
via the GlobalPlatform interface [8]. To prevent potential
security issues, JavaCard will refuse to load an applet
that has been processed using a converter complying with
a newer version of the JavaCard SDK. For instance, a
smartcard shipped with JCVM 3.0.1 cannot load an applet
converted using JCSDK 3.0.5, even if only classes defined
in 3.0.1 are used – as the convertor will automatically add
higher versions of packages used.

JavaCard API. JavaCards expose their functionality
through various specialized packages that are part of the
standard API. In total, there are only 19 packages defined
by the JC 3.0.5 API. Table 1 lists the packages that con-
tain common high-level cryptographic operations, while
there are also specialized packages for biometric authen-
tication and remote method invocation. For performance
reasons, the majority of those cryptographic algorithms
are implemented in specialized hardware components (i.e.,
dedicated crypto-coprocessors).

JavaCard is notably slow in adopting modern schemes
(or even variants of existing ones) and thus developers are
often faced with the challenge of implementing unsup-
ported schemes by themselves, executed by card’s main
CPU. But without access to the underlying hardware,
developers can only build their schemes in software. How-
ever, such implementations are rarely usable, as they are
constrained both by the limited amount of RAM, and the
CPU’s meager performance. For example, a hardware-
accelerated implementation of AES takes less than 2ms
to execute, while a software re-implementation requires
more than 500ms 2. A solution to this problem could be
the use of the javacardx.framework.math package, speci-
fying the BigNumber class with hardware-accelerated add
and multiply operations. However, manufacturers are not
obligated to support all the packages and classes listed in
the specification, and BigNumber is not supported by the
great majority of the cards. This lack of full specification
compliance results in discrepancies in the functionality
exposed by different cards. For instance, an applet running
fine in one card will fail to install and instantiate properly
on another card that does not support one package, class
or even an algorithm variant it uses (e.g., EC operations

2. https://www.fi.muni.cz/∼xsvenda/jcalgtest/comparative-table.html

over large prime fields with 521-bit length ALG EC FP,
LENGTH EC FP 521). Currently, there is no complete
list of smartcards, and their supported packages and devel-
opers rely primarily on trial and error, and the JCAlgTest
survey [5].

On the other hand, manufacturers maintain their own
proprietary APIs that provide solutions to many of those
problems. These APIs are vendor-specific and either pro-
vide functionality not exposed by the standard API, or
realize hardened and otherwise extended versions of the
algorithms. For example, a commonly provided feature
is operations over elliptic curves, which allow for the
development of fast implementations of unsupported cryp-
tographic algorithms. However, proprietary APIs are typi-
cally available to selected customers and only after signing
a non-disclosure agreement (NDA) that prevents the publi-
cation of any details, information, and source code. These
restrictions have significantly fragmented the ecosystem,
reducing its transparency and almost eliminating any ex-
change of code and best-practices between developers.

3. Low-level Primitive Derivation

In this section, we introduce some generic transfor-
mations that can be used to efficiently derive low-level
primitive operations from high-level ones. We provide
transformations for all the operations needed to implement
any modern asymmetric cryptographic algorithm. Our ap-
proach assumes that a platform exposes a limited set of
hardware-accelerated high-level operations (e.g., ECDSA
signatures) and has some limited general computation
capabilities. In the rest of this section, we focus on two
types of low-level operations: modular arithmetic ones and
operations on elliptic curves.

Modular Arithmetic
Modulo operations are central in most cryptographic algo-
rithm implementations. The main difficulty in implement-
ing such operations in a resource-constrained platform is
the computational load of handling and operating over
large numbers. Moreover, the size of the numbers used
in cryptography often exceeds the storage capacity of
the native data types, and thus a specialized BigNumber
type must be used. For simplicity, the rest of this section
assumes that the platform exposes a BigNumber class. In
Section 4, we outline how such a class can be imple-
mented in case the platform does not provide it natively.

As seen in Table 2, simple operations (i.e., addition,
subtraction, negation) are not too computationally inten-
sive and can be handled by the CPU without the use
of any acceleration. On the other hand, multiplication,
exponentiation and inversion require the use of hard-
ware acceleration. To realize those operations, we use
the “RSA Decryption” routine, which is found in most
of the platforms that support cryptography and is almost
always hardware-accelerated. More specifically, we use
the plaintext version of RSA to tunnel computations to
the coprocessor, and thus offload the CPU. For Modular
exponentiation, the transformation is as straightforward as
simply executing an RSA Decryption. The RSA private
key parameter holds the exponent operand, while the
ciphertext and the prime field parameter ones hold the
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Primitive CPU Acceleration Operations

Addition 3 7 -

Subtraction 3 7 -

Negation 3 7 -

Exponentiation 7 3 RSA Decryption

Multiplication 3 3 RSA Decryption

Inversion 3 3 RSA Decryption

EC Point Generation 7 3 EC Key Pair Generation

EC Point Inversion 3 7 Modular Operations

EC Point Addition 3 3 Modular Operations

Scalar-EC Point Multiplication 7 3 EC Diffie-Hellman

TABLE 2. LIST OF ALL MODULAR ARITHMETIC AND ELLIPTIC
CURVE (EC) PRIMITIVE OPERATIONS REALIZED BY OUR

TRANSFORMATIONS, THEIR CPU AND HARDWARE-ACCELERATION
USAGE, AND THE OPERATIONS RELIED ON.

base and the modulo operands, respectively. As seen in
Table 2, no additional computations are performed on the
CPU. A similar approach was also used in [3].

Modular multiplication can be realized in a simi-
lar manner. However, the transformation makes use of
both the CPU and the coprocessor as there is no com-
monly used cryptographic scheme that directly triggers
a hardware-accelerated multiplication. Instead, as seen in
Formula 1, we express multiplication as a series of oper-
ations that are either hardware-accelerated or lightweight-
enough for the CPU to execute:

x · y mod p = ((x+ y)2 − x2 − y2)/2 mod p (1)

From these operations, the modular exponentiations are
performed on the coprocessor, while the subtractions, ad-
dition, and the division by two (i.e., bit shift) are handled
by the CPU. While Modular Inversion may look like
a special case of exponentiation, in many platforms the
private key (i.e., exponent) cannot be a negative number.
Hence, RSA Decryption could not be directly used to
perform the operation. However, given that our transfor-
mations are geared towards cryptographic applications,
we optimize “inversion” for use with prime moduli. In
particular, based on prime field properties, we express the
inversion as seen in Equation 2:

x−1 mod p = xp−2 mod p (2)

Hence, at the cost of some generality, we offload the CPU
almost completely. A software-based solution can still be
available for cases where p is not a prime. Finally, we
realize a more specialized low-level operation that solves
for r, a congruence of the form r2 = n (mod p), where
p is a prime. This operation is commonly used when
decompressing the coordinates of elliptic curve points.
For that, we use the Tonelli Shanks algorithm [24] [26],
and the previously described modular multiplication and
exponentiation operations as building blocks.

Elliptic Curve Arithmetic

Operations over elliptic curves are also essential for
most modern cryptographic algorithms. We provide trans-
formations for four elliptic curve operations: EC Point
Generation, EC Point Inversion, EC Point Addition and
Scalar-EC Point Multiplication. Similarly, with above, we
also assume a data type capable of storing elliptic curve

(EC) points, while in Section 4, we explain how such a
structure can be realized, when it is not provided natively
by the platform.

For the generation of EC Points, we rely on the
platform’s Key Pair generation capabilities. The on-chip
EC Key Pair generation uses a hardware random number
generator. The public part of these keys is essentially a
random point on the curve. Alternatively, given that there
is a reliable source of randomness, generating random EC
points is trivial. The inverse of an EC point P = (x, y)
is P−1 = (x,−y), which is also easy to compute.
We simply use the modular negation operation derived
previously, to negate the y coordinate. Point addition is
more complex and requires a combination of hardware-
accelerated operations and computations on the CPU. We
choose to use the “double & add” algorithm and re-use the
modular arithmetic operations outlined above. However,
given that the modular arithmetic operations have been
realized, any other EC point addition algorithm can also be
used. Finally, the multiplication of a scalar s with a point
P can be realized using a hardware-accelerated version
of the EC Diffie-Hellman (ECDH) Key Agreement proto-
col. This protocol is commonly implemented in resource-
constrained platforms and works as follows: Alice and
Bob want to agree on a common secret. At first, they
generate their own EC key pairs (a,A) and (b, B) and
then share their public keys A and B, respectively. Alice
uses the ECDH routine in her platform to compute a ·B,
while Bob computes b·A in the same manner. The result of
this operation is their shared secret. In our transformation,
we abuse this ECDH call to multiply any arbitrary s with a
P of our choice, and get the result as the “agreed secret”.

4. JCMathLib

We now introduce JCMathLib, a cryptographic li-
brary for the JavaCard platform. JCMathLib extends the
standard JavaCard API by realizing various data types,
primitive operations, and convenience methods that are
currently either not specified or not available. By pro-
viding these operations and data types, JCMathLib en-
ables developers to implement cryptographic algorithms
not supported by the JavaCard specification. As such, the
library focuses not only on provisioning a complete set
of low-level cryptographic primitives necessary for the
implementation of many cryptographic algorithms but also
on some additional convenience classes. We first provide
an overview of the library’s design and then discuss
integration aspects and strategies used to overcome the
platform’s limitations.

4.1. Structure

JCMathLib provides four classes that realize func-
tionality applicable to different use cases. Some of those
classes are outlined in the API specification but are not
available in commercial JavaCards, while others are en-
tirely new.

Integer class. The primitive data type int and its wrapper
class Integer are listed in the JC virtual machine speci-
fication since 2002 [18] as “optional”. We implemented
the class according to the specification to store a 32-bit



signed value along with methods for addition, subtraction,
multiplication, division, and modulo operations.

BigNumber class. This class encapsulates a large un-
signed value of arbitrary length and provides methods for
performing arithmetic operations on it. The BigNumber
class both complies and extends the API specification.
It has flexible internal representation capacity [19] and
provides methods for: addition, subtraction, multiplica-
tion, division, modulo, exponentiation and their modular
counterparts for 8-bytes and longer numbers.

ECCurve class. Stores the parameters of a given elliptic
curve and provides a convenient way to handle multiple
elliptic curves in a single applet. The class provides calls
for key pair generation over a specific curve and is a
dependency of the ECPoint class.

ECPoint class. This class implements an Elliptic Curve
Point and provides methods for point addition, inversion,
doubling and scalar multiplication. Similar classes can
only be found in proprietary APIs, as the JC API spec-
ification does not define it. This class, in conjunction
with BigNumber enables the implementation of currently
unsupported cryptographic algorithms based on ECC. This
class has a dependency on the ECCurve class.

4.2. Implementation

JCMathLib is comprised of several source code files
that implement the classes outlined above, as well as other
complementary methods. It can be loaded into JavaCard
project as an external package. However, it is advisable
that the developer strips away any unneeded functionality
to reduce the size of the final applet.

Technical Details. As seen in Table 2, most of the mod-
ular arithmetic operations rely on the RSA decryption
algorithm. To exploit the RSA decryption method, we first
create a PrivateKey object and set its value to be equal to
that of the exponent operand. Then, we initialize a cipher
engine for RSA decryption (i.e., ALG RSA NOPAD) and
pass the base and modulus operands as its parameters. To
store the resulting numbers, we implemented the BigNum-
ber class using arrays of short variables (i.e., the largest
data type natively supported by most JavaCards). Simi-
larly, to store the coordinates of EC Points, we abuse the
ECPublicKey class, which is designed to hold the public
part of an EC key pair. To implement the elliptic curve
operations, we mainly rely on the modular arithmetic
operations derived above, except the multiplication of a
scalar s with an EC point P . There, we also invoke
ALG EC SVDP DH PLAIN that realizes the EC Diffie-
Hellman Key Agreement protocol. However, due to the
design of the method, its output in JavaCard provides only
the x coordinate of the resulting EC point (the y is not
returned3). To obtain the missing y, we use x and solve
the Weierstrass equation for y. This gives us two candidate
points A = 〈x, y〉 and B = 〈x, ŷ〉, where y is complemen-
tary to ŷ. To determine which point is the correct one,
we extend the transformation to use another hardware-
accelerated method: ECDSA [9]. Using ECDSA, we first

3. Compressed elliptic curve points contain the x coordinate in full
and the first bit of coordinate y. During decompression, the two candi-
dates y’s are computed, and the one that matches the bit is chosen.

Figure 1. The measurement of basic operations available via JavaCard
public API on six different smartcards. Every point corresponds to a
single operation executed on a particular smartcard. The JCMathLib
operations are then composed of such operations.

sign a dummy plaintext using s as the private key and
then verify the produced signature using A as its public
counterpart. If the verification is successful, then A is the
result of the multiplication. Otherwise, it is B. It should
be noted that version JC 3.0.5 introduces a new method
ALG EC SVDP DH PLAIN XY that returns both the
x and y coordinates. Once commercial cards supporting
this version become available, our implementation can be
shortened to a single API call resulting in significantly
shorter execution time.

Optimizations.
As outlined in Section 3, our transformations rely on

existing high-level operations exposed by the platform.
Naturally, this imposes an upper bound on speed, as
optimizations can reduce the computational load on the
slow CPU, but will still rely on the cryptographic co-
processor’s performance. Figure 1 illustrates the timings
of certain high-level operations, while it also highlights
the timing differences between different cards. Apart from
the speed optimizations, memory management in such a
constrained environment is also cumbersome. Due to the
complexity of the cryptographic operations, JCMathLib
needs to use a large number of temporary variables to
store intermediate results. However, in contrast to standard
Java programming patterns, in JavaCard, frequent object
allocation introduces an impractically large performance
overhead. Pre-allocating all the temporary objects is not
an option either, as the size of the fast transient memory
is very limited. We, therefore, developed a method to
allocate and control a pool of shared memory objects
residing in both the transient and the persistent memory.



Through the lock() and unlock() methods, the developer
assigns objects to temporary variables, while our logical
runtime checks ensure that every object is used by only
one temporary variable at a time. Optionally, the contents
of a shared object can be automatically erased upon lock-
ing or releasing the object to prevent information leakage.
This centralized object management system also allows
for optimal object placement. A developer optimizing
for speed can store the objects in the faster transient
memory, while a reduced transient memory footprint can
be achieved through placement in the slower persistent
memory. These optimizations significantly improved the
initial performance of JCMathLib and enabled us to sup-
port a wider range of cards, including some with a limited
amount of transient memory.

JavaCard Performance Profiler. Performance profiling
of JavaCard code in applets is a notoriously difficult task.
More specifically, as the card environment is build to
protect the stored and processed secrets against an attacker
with direct physical access, it isn’t straightforward to
obtain a precise timing trace of the executed code on the
granularity of separate methods or even lines of code.

To the best of our knowledge, there is no open-source
performance profiler available for the JavaCard platform.
As the optimizations of JCMathLib required an extensive
analysis, we build a custom performance profiler called
JCProfiler. The profiler is based on the following idea:
The source code of an applet is automatically extended
with numerous additional lines of code called “perfor-
mance traps”. These traps are capable of prematurely
interrupting the applet’s execution when the stop condition
matches their trap ID. Such a trap is inserted into parts
relevant for measurement or after every single line in
the applet’s original code for the finest profiling granu-
larity. Then, the client-side testing application repeatedly
executes the applet for all possible controlling trap IDs.
As a result, an increasingly larger chunk of the applet’s
code is covered before the execution is interrupted by the
corresponding trap. The time measurements are collected
and processed to estimate the time difference between the
two consecutive traps – resulting in the time required
to execute a block of an original code between these
two traps. The intended position of a performance trap
is defined by the developer who manually inserts a trap
placeholder in the intended line. JCProfiler then locates
these placeholders, inserts the conditional code with a
unique trap ID and generates the necessary client-side
code to trigger all of them.

The modified applet is then compiled and uploaded to
the card. After the profiling session, the measured timings
(in milliseconds) are automatically inserted in the applet
source as comments next to the relevant lines. For the
profiling to be accurate, two pre-conditions must be met:
1) the measured code needs to be re-entrant and determin-
istic (i.e., subsequent executions have the same behavior)
and 2) the time required to reach a particular trap must
fluctuate only modestly when repeatedly executed. The
reported timings carry an error that adds up over as more
code is covered if these conditions are not satisfied.

NXP J2E081 NXP J2D081 G&D S@C 6.0

BigNumber operations

add(256b) 7 ms 10 ms 10 ms

subtract(256b) 14 ms 22 ms 11 ms

multiplication(256b) 112 ms 113 ms 117 ms

mod(256b) 30 ms 31 ms 23 ms

mod add(256b, 256b) 71 ms 72 ms 56 ms

mod mult(256b, 256b) 872 ms 855 ms 921 ms

mod exp(2, 256b) 766 ms 697 ms 667 ms

ECPoint operations

randomize(256b) 296 ms 245 ms 503 ms

add(256b) 2995 ms 2892 ms 2747 ms

inversion(256b) 112 ms 109 ms 94 ms

multiplication(256b) 4157 ms 3981 ms 3854 ms

RAM overhead

JCMathLib(256b) 1144 B 1152 B 923 B

new ECPoint(256b) 0* B 0* B 0* B

new BigNumber(256b) 32 B 32 B 32 B

TABLE 3. JCMATHLIB OPERATIONS RUNTIME(MS) AND TRANSIENT
RAM OVERHEAD (BYTES) ON THREE DIFFERENT COMMERCIALS

JAVACARDS. *COUNTER-INTUITIVELY THE ECPOINT CLASS HAS NO
RAM OVERHEAD. THIS IS BECAUSE THE ECPOINT CLASS WRAPS
THE KEYPAIR CLASS, WHICH IS ALWAYS STORED IN PERSISTENT

EEPROM.

4.3. Evaluation

In this section, we study the performance and security
provided by JCMathLib, while we also discuss other
platform and licensing limitations.

Performance Table 3 shows the runtime and the RAM
overhead of the core JCMathLib operations and struc-
tures. We first observe that while there are some timing
and RAM overhead discrepancies between different cards,
the measurements are quite consistent. Moreover, all the
BigNumber operations have a very low RAM overhead
(32 bytes), while their runtimes are always smaller than
1000ms. On the other hand, some of the ECPoint methods
exhibit a higher runtime. This is primarily due to the
complexity of the transformations outlined in Sections 3
and 4.2. From these, the most expensive operations are
the scalar multiplication, which takes approximately 4s
in some cards and the point addition, which in our ex-
periments took up to 4s as well. We expect the multi-
plication to be significantly speed-up with the introduc-
tion of ALG EC SVDP DH PLAIN XY as outlined in
Section 4.2. Overall, while our library’s primary goal is
to enable code sharing and research and prototyping, its
performance is decent.

Security Hardware implementations are inherently more
resilient to physical attacks than software ones. As such,
an API that is implemented purely in hardware is more
robust to power analysis compared to JCMathLib. On
the other hand, proprietary APIs often prevent developers
from releasing their code for public security auditing, as
many proprietary API NDAs prohibit any form of public
code sharing. JCMathLib allows developers to replace
the proprietary API calls, perform dynamic analysis (test



vectors, fuzzing, etc.), and publish their source code for
review.

Limitations & Licensing JCMathLib is based on the
JavaCard 3.0.x version with most modern cards with
ECC support expected to be compatible. Moreover, the
ECPublicKey class and the KeyAgreement engine support
elliptic curves parameters expressed in Weierstrass form
only. In practice, this is not expected to significantly affect
the applicability of JCMathLib as i) the great majority of
commonly used curves use this form [23] [13], and ii)
curves in other forms can often be expressed in Weier-
strass form4. Finally, the smartcard RSA engine must
accept the public exponent equal to 2 for the computation
to efficiently compute squaring for large numbers. Apart
from these requirements, the library does not come with
any other restrictions and is released under the permissive
MIT open source license.

5. Related Work

Despite the limitations of the platform, JavaCards have
been utilized in various applications, both in research and
production environments. Many of these works use smart-
cards as a secure element, while others aim to scrutinize
the security features of the platform.

Applications. Many other works utilize the security fea-
tures of the platform to realize new algorithms enabling
new use cases and applications. The authors in [21] use
JavaCards to store election secrets in a distributed man-
ner. For this purpose, they developed an applet realizing
ElGamal encryption and Shamir’s secret sharing scheme.
However, as the JavaCard API provides no support for
these algorithms, they had to abuse the API to realize
the necessary functionality in a hybrid fashion. [14] uses
an array of JavaCards originating from different manu-
facturers to realize an architecture resilient to backdoors
and hardware trojans. Their prototype features few hun-
dreds of JavaCards loaded with an applet realizing dis-
tributed protocols for essential cryptographic operations
(i.e., key generation, decryption, signing). A software re-
implementation of various cryptographic algorithms for
the JavaCard platform is provided in [28], optimized
for performance and low memory footprint. A follow-
up work [11] benchmarks the speed of various basic
cryptographic operations on different smartcards. In other
works, JavaCard is used as an embedded secure element
to make the device self-authenticable and add near-field
communication (NFC) capabilities [6]. Furthermore, in [3]
Bichsel et al. design and implement a lightweight anony-
mous credential system suitable for secure identity tokens.
Even though they were using an older JavaCard version
(2.2.1), they achieve transaction times that are orders of
magnitudes faster than those of prior works. Other studies
focus on more recent use cases such as securing bitcoin
transactions/storage [27] and homogenizing the Web of
Things [12]. However, in some cases, the limitations of
the JavaCard platform were impossible to overcome. For
instance, Mostowski et al. [20] developed a lightweight
anonymous credentials protocol suitable for devices with

4. https://github.com/david-oswald/jc curve25519

low computational power. Even though JavaCard hard-
ware was sufficient for their protocols, they opted to use
MULTOS, which is less widespread and without publicly
available SDK. Their main motivation was that MULTOS
provides direct access to the underlying hardware and low-
level cryptographic operations, while the JavaCard API
does not.

Third-party Libraries. There is also a smaller category
of works aiming to extend the JC API with low-level
primitives. The most known project is OV-Chip 2.0 [25],
which implements the BigNat library to provide big in-
teger functionality for JavaCards. However, the library is
developed with the OV-chipkaart in mind, and its main-
tenance has been inactive for more than nine years. E-
verification2 [21] featured a class that provides capabilities
similar to those of the Java BigInteger. Unfortunately,
it was never released as a standalone library, and the
development stopped in 2012. Finally, the JCMath li-
brary [4] aimed to enable operations over large numbers
in JavaCard, but it is neither maintained nor has any
documentation available. The underlying coprocessor for
fast, modular multiplication was utilized for fast imple-
mentation of quantum-computer resistant Kyber algorithm
[1] on smartcards; however, a low-level proprietary API
was used, and a working research prototype was not
released.

6. Conclusions

This paper identifies multiple issues that limit the
transparency and the auditability of modern JavaCard
applets and proposes techniques to alleviate them. We first
introduce a set of transformations that exploit existing
high-level functionality to reconstruct missing low-level
primitive operations. These transformations are geared
towards resource-constrained platforms and try to offload
the CPU by utilizing any hardware-acceleration compo-
nents that may be available. We then use them to imple-
ment JCMathLib, an open-source library, that realizes both
new features and already specified primitives that are not
available in commercial JavaCards. Our library provides
developers with the necessary classes and methods (e.g.,
BigNumber operations, Elliptic Curve Point operations)
to implement cryptographic algorithms not supported by
the JavaCard API. This enables the rapid adoption of
new algorithms, decreases the impact of the manufacturer
compliance issues and makes the JavaCard platform a
suitable candidate for previously unsupported applications
without any code-sharing limitations.

While proprietary APIs are likely to remain common
in the smartcard industry for the near future, open-source
alternatives such as JCMathLib can provide an option
for making the source code of certified products pub-
licly available – though with reduced performance and/or
smaller resilience against side-channel attacks. In some
cases, JCMathLib could also resolve the conflict between
strict open-source licenses such as GPL and proprietary
APIs available only under a non-disclosure agreement that
prohibits public distribution.

https://github.com/david-oswald/jc_curve25519
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[28] Petr Švenda. Cryptographic algorithms re-implementation for
JavaCard. http://www.fi.muni.cz/∼xsvenda/jcalgs.html, 2014.

https://eprint.iacr.org/2018/425
https://github.com/albertocarp/Primitives_SmartCard/blob/master/src/sid/JCMath.java
https://github.com/albertocarp/Primitives_SmartCard/blob/master/src/sid/JCMath.java
https://github.com/albertocarp/Primitives_SmartCard/blob/master/src/sid/JCMath.java
https://jcalgtest.org
https://globalplatform.org/specifications/technical-overview/
https://globalplatform.org/specifications/technical-overview/
https://javacardforum.com/2017/03/02/the-impact-of-java-card-technology-yesterday-and-tomorrow/
https://javacardforum.com/2017/03/02/the-impact-of-java-card-technology-yesterday-and-tomorrow/
http://www.oracle.com/technetwork/java/javame/javacard/index.html
http://www.oracle.com/technetwork/java/javame/javacard/index.html
https://docs.oracle.com/en/java/javacard/3.1/index.html
https://docs.oracle.com/en/java/javacard/3.1/index.html
http://download.oracle.com/otndocs/jcp/7047-javacard_devkit-2.2_01-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/7047-javacard_devkit-2.2_01-spec-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://download.oracle.com/otndocs/jcp/java_card_kit-2.2.2-fr-oth-JSpec/
http://www.fi.muni.cz/~xsvenda/jcalgs.html

	Introduction
	Preliminaries
	Low-level Primitive Derivation
	JCMathLib
	Structure
	Implementation
	Evaluation

	Related Work
	Conclusions
	References

