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Abstract

The concept of brain maintenance refers to the preservation of brain integrity in older

age, while cognitive reserve refers to the capacity to maintain cognition in the pres-

ence of neurodegeneration or aging-related brain changes. While both mechanisms

are thought to contribute to individual differences in cognitive function among older

adults, there is currently no “gold standard” for measuring these constructs. Using

machine-learning methods, we estimated brain and cognitive age based on deviations

from normative aging patterns in the Whitehall II MRI substudy cohort (N = 537, age

range = 60.34–82.76), and tested the degree of correspondence between these con-

structs, as well as their associations with premorbid IQ, education, and lifestyle trajec-

tories. In line with established literature highlighting IQ as a proxy for cognitive

reserve, higher premorbid IQ was linked to lower cognitive age independent of brain

age. No strong evidence was found for associations between brain or cognitive age

and lifestyle trajectories from midlife to late life based on latent class growth ana-

lyses. However, post hoc analyses revealed a relationship between cumulative life-

style measures and brain age independent of cognitive age. In conclusion, we present

a novel approach to characterizing brain and cognitive maintenance in aging, which

may be useful for future studies seeking to identify factors that contribute to brain

preservation and cognitive reserve mechanisms in older age.
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1 | INTRODUCTION

Most cognitive abilities are well established to decline with age

(Grady, 2012), and cognitive deterioration can to some extent be

attributed to concurrent changes in brain structure (Bennett &

Madden, 2014; Fjell et al., 2016; Fjell, Sneve, Grydeland, Storsve, &

Walhovd, 2017; Fjell & Walhovd, 2010; Nyberg, Dahlin, Stigsdotter

Neely, & Bäckman, 2009). Age-related structural changes typically

manifest as reductions in brain volume, cortical thinning, and decline

in white matter (WM) microstructure (Fjell et al., 2014), which can

lead to poorer cognitive performance in domains such as executive

function, memory, and processing speed (Cabeza et al., 2018;

Grady, 2012; Nyberg, Lövdén, Riklund, Lindenberger, &

Bäckman, 2012). However, the aging population is characterized by

considerable variation between individuals, and while some develop

cognitive impairment, Alzheimer's disease, and other types of demen-

tia, others may to a large extent maintain their cognitive function well

into late life (Nyberg et al., 2012).

1.1 | Brain maintenance and cognitive reserve

Interindividual differences within older adult populations have led to a

large number of studies focusing on risk and protective factors for

cognitive decline in aging (Anatürk, Demnitz, Ebmeier, &

Sexton, 2018; Bråthen, Lange, Fjell, & Walhovd, 2020; Nyberg, Fjell, &

Walhovd, 2019; Sabia et al., 2019; Zsoldos et al., 2018), as well as fac-

tors that characterize successful aging or “SuperAgers” (Gefen

et al., 2014; Harrison, Weintraub, Mesulam, & Rogalski, 2012;

Rogalski et al., 2013; Yu et al., 2019). The maintenance of a “younger”
brain, that is, the relative lack of aging-related changes including

pathology, has been suggested as a main mechanism to preserve cog-

nitive function into older age (Nyberg et al., 2012). For example, while

decline in cortical thickness is commonly observed between midlife

and late life, a unique group of older adults (i.e., “SuperAgers”) do not

exhibit this typical pattern of cortical atrophy. SuperAgers also appear

to possess higher cortical thickness in some brain regions relative to

younger individuals (Rogalski et al., 2013), and perform comparably to

young adults on assessments of memory (Harrison et al., 2012; Sun

et al., 2016). However, a number of clinical studies have reported

weak associations between degree of brain pathology and relevant

cognitive symptoms (Scarmeas & Stern, 2003), and as a consequence,

reserve theories have gained prominence in the aging field (Driscoll

et al., 2006; Snowdon, 2003; Stern, 2002; Stern, 2009).

The cognitive reserve theory seeks to explain why some individuals

are able to maintain cognitive function in the presence of pathology

or aging-related brain changes. It has been suggested that individuals

with higher cognitive reserve process information more efficiently,

enabling them to functionally adapt to brain aging and sustain greater

pathology before cognitive impairments manifest (Stern, 2002). Edu-

cation has been suggested to promote cognitive reserve by enhancing

cognitive flexibility, and factors such as lifestyle behaviors may mod-

erate the beneficial effect of education on cognition in older age

(Cabeza et al., 2018). As there is no established method to directly

measure cognitive reserve, the majority of reserve studies have used

measures such as IQ or education as proxies of reserve (Valenzuela &

Sachdev, 2006a; Valenzuela & Sachdev, 2006b), and focused on how

cognitive function and brain metrics differ between individuals with

high or low levels of this proxy measure (Cabeza et al., 2018).

In summary, preservation of brain structure and cognitive reserve

mechanisms can both potentially contribute to a higher degree of

maintained cognitive function in older age. Brain maintenance and

cognitive reserve can thus be viewed as complementary constructs

that may be malleable over the lifespan (Cabeza et al., 2018), poten-

tially serving as targets for lifestyle interventions. However, despite

their centrality to studies of aging (Stern, 2003), there remains no con-

sistent approach to measuring and comparing these constructs. In this

article, we refer to maintained brain structure and cognitive function

relative to normative age trajectories as brain maintenance and cogni-

tive maintenance. A strong association between the two would imply

correspondence between degrees of brain and cognitive maintenance,

while a weak association could reflect a lack of one-to-one relation-

ships between these trajectories—potentially providing evidence for

cognitive reserve mechanisms.

Definition of key concepts

Brain maintenance

Preserved brain structure in older age relative to normative age

trajectories

Cognitive maintenance

Preserved cognitive function in older age relative to normative age

trajectories

Cognitive reserve

Preserved cognitive function in the presence of aging-related brain

changes

1.2 | Prediction of brain age and cognitive age

The application of machine learning to neuroimaging data has pro-

vided an avenue for estimating the apparent age of an individual's

brain, and determining deviations from normative brain aging patterns
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(Cole, Marioni, Harris, & Deary, 2019). Studies in this area suggest

that the difference between estimated “brain age” and chronological

age (i.e., brain age gap [BAG]) varies between individuals, with positive

BAG values (older brain age relative to chronological age) relating to

poorer cognitive function (Boyle et al., 2020; Cole et al., 2018; Elliott

et al., 2019). A recent multicohort study of 45,615 individuals further

highlighted that BAG may be a sensitive marker of disease, with accel-

erated brain aging observed in a range of conditions including mild

cognitive impairments, Alzheimer's disease, and depression

(Kaufmann et al., 2019). Mapping this metric onto the concepts intro-

duced in Section 1.1, BAG estimated from structural MRI may reflect

degree of brain maintenance (Steffener et al., 2016), with negative

values suggesting preserved brain structure relative to what is

expected based on normative trajectories (as illustrated in Figure 1).

Based on this rationale, machine learning algorithms can also be

applied to cognitive data to provide an estimate of cognitive age, with

the difference between cognitive and chronological age (i.e., cognitive

age gap [CAG]) reflecting degree of cognitive maintenance (see

Figure 1). The correlation between BAG and CAG would indicate the

degree of correspondence between brain and cognitive maintenance

or decline relative to normative aging patterns, as illustrated in

Figure 1. Developing methods for characterizing brain and cognitive

maintenance is timely, as there is a growing demand for lifestyle-

based interventions that may help prevent or delay age- and disease-

related cognitive decline (Livingston et al., 2017).

1.3 | Lifestyle predictors of cognitive/neural
integrity

The extent to which BAG and CAG relate to known predictors of

healthy aging may shed light on the associations between lifestyle fac-

tors and maintenance/reserve mechanisms. For example, educational

level may relate to cognitive maintenance independent of brain main-

tenance, potentially suggesting that education facilitates preserved

cognition via cognitive reserve mechanisms. Health behaviors such as

abstaining from smoking (Zhong, Wang, Zhang, Guo, & Zhao, 2015),

limiting the amount of alcohol consumed (Rehm, Hasan, Black,

Shield, & Schwarzinger, 2019), and achieving a sufficient amount of

physical activity (PA; Guure, Ibrahim, Adam, & Said, 2017) could pro-

mote maintained cognitive function (Cadar et al., 2012; Clare

et al., 2017; Sabia et al., 2009) and decreased dementia risk (Lourida

et al., 2019) through brain preservation, as indicated by studies show-

ing a link between these factors and estimates of BAG (Cole, 2020; de

Lange, Anatürk, et al., 2020; Smith et al., 2020; Steffener et al., 2016).

However, a substantial proportion of studies on lifestyle factors and

brain/cognitive aging are based on cross-sectional measurements

(Anatürk et al., 2018; Scarmeas & Stern, 2003) or on self-reported his-

tory, which is highly susceptible to recall biases (Gow, Pattie, &

Deary, 2017). As prolonged or cumulative exposure to a healthy life-

style has been suggested to play an important role in individual varia-

tion in health outcomes (Ben-Shlomo, Cooper, & Kuh, 2016; Whalley,

Dick, & McNeill, 2006), a lifespan perspective may be critical for

understanding how lifestyle factors relate to cognitive/neural aging

and dementia onset. For example, lower average alcohol consumption

over 30 years is linked to higher regional gray matter (GM) density

and WM integrity in older adults (Topiwala et al., 2017). While exam-

ining cumulative exposure is a useful approach, it provides limited

insight into the specific lifestyle trajectories conducive to cognitive and

brain aging. Recent data-driven approaches have begun to character-

ize the different lifestyle patterns that co-occur between midlife and

late life. For instance, a coordinated analysis of data from six cohorts

(based in the United States, England, Europe, Japan, Korea, and China)

suggested that there may be three major “clusters” of middle-aged

and older adults, including (a) those who engaged in multiple healthy

behaviors, (b) those who were socially and physically inactive but did

not engage in risky behaviors, and (c) ex-smokers engaging in other

risk behaviors (Liao et al., 2019). Other studies report between two

and nine subgroups (reviewed in Noble, Paul, Turon, and

Oldmeadow (2015)). The majority of this evidence, however, is based

on cross-sectional survey data, and the ways in which brain preserva-

tion or cognitive reserve mechanisms may serve as potential pathways

between lifestyle trajectories and late-life cognition are not well

understood.

F IGURE 1 Conceptual illustration of
brain age (left) and cognitive age (right),
where the distance between estimated
brain age/cognitive age (colored dots) and
the expected brain age/cognitive age
(black line) represents brain age gap
(BAG) and cognitive age gap (CAG)
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1.4 | Study aims

In the current study, we used machine learning models to estimate

(a) brain age based on MRI-derived measures, and (b) cognitive age

based on performance scores on several cognitive tests. For each par-

ticipant, we calculated an estimate of BAG (predicted brain age minus

chronological age, indicating degree of brain maintenance (Steffener

et al., 2016)), and CAG (predicted cognitive age minus chronological

age, i.e., degree of cognitive maintenance). We first correlated BAG

with CAG to investigate the degree of correspondence between brain

and cognitive maintenance. Second, we tested the associations of

CAG and BAG with premorbid IQ and education, which are known as

proxies of cognitive reserve (Cabeza et al., 2018). Finally, we

employed a latent class growth analysis (LCGA) to characterize life-

style trajectory classes based on five repeated measures of lifestyle

behaviors (PA, smoking status, and alcohol intake) between midlife to

late life, and tested the associations between trajectory class and

BAG/CAG. In addition, we calculated an index of cumulative lifestyle

behaviors based on a composite score across measurement

timepoints, and tested the association of this index with BAG

and CAG.

2 | MATERIALS AND METHODS

2.1 | Sample

Data from participants enrolled in the Whitehall II imaging substudy

were examined. A detailed description of this cohort has been publi-

shed previously (Filippini et al., 2014). In brief, these individuals were

originally recruited in 1985 as part of a cohort of 10,308 civil servants

based in London (Marmot & Brunner, 2005), and have since been reg-

ularly assessed (at �5 year intervals) on a range of lifestyle, biological,

and cognitive variables. Between 2012 and 2016, a random sample of

800 individuals were invited to undergo an MRI brain scan and com-

prehensive cognitive battery, as part of the Whitehall II imaging sub-

study (Filippini et al., 2014).

The current sample was drawn from the Imaging Sub-study

cohort, and included 537 participants who had provided lifestyle

information for at least four previous study phases. Additional

criteria for inclusion were complete MRI, cognitive and demo-

graphic data at the MRI phase, no artifacts or substantial motion in

the MRI images, no structural abnormalities detected in the MRI

scans (e.g., strokes or tumors) and no self-report neurological diag-

noses (e.g., Parkinson's disease) or a current SCID diagnosis of

depression, anxiety, psychosis, or cognitive disorder. A description

of sample characteristics is provided in Table 1, and an overview of

the study timeline is available in Figure 2. The study received ethical

approval from the University of Oxford Central University Research

Ethics Committee, as well as the University College London Medical

School Committee on the Ethics of Human Research. All partici-

pants enrolled in this study gave their informed and written

consent.

2.2 | Demographics

All demographic variables were assessed at the time of scan. Educa-

tion was measured as total years of full time and part time education.

Ethnicity was defined as White/Non-white. Body mass index (BMI)

was calculated using information on height and weight: weight

[kg]/(height [m])2.

2.3 | MRI data acquisition and processing

The participants underwent a 3 T MRI scan at the Centre for Func-

tional Magnetic Resonance Imaging of the Brain, Wellcome Centre for

TABLE 1 Sample characteristics N = 537

Variables Mean ± SD Range

Age at MRI scan (years) 69.75 ± 5.08 60.34–82.76

Sex

Female (%) 94 (17.50%)

Education (years) 16.75 ± 4.44 7–44

Ethnicity

White (%) 508 (94.60%)

MoCA (score) 27.31 ± 2.16 18–30

Healthy lifestyle scorea

Phase 5 1.11 ± 0.85 0–3

Phase 7 1.16 ± 0.84 0–3

Phase 9 1.24 ± 0.84 0–3

Phase 11 1.27 ± 0.87 0–3

Phase OX 2.05 ± 0.66 0–3

Cumulative lifestyle score 5.07 ± 2.96 0–12.6

Abbreviation: MoCP, Montreal cognitive assessment.
aScale is number of self-reported health behaviors. While raw values are

reported here, these variables were standardized for the analyses.

F IGURE 2 An overview of the variables of interest provided at
each phase of the WHII study (for a full description of data available at
all study phases, please see https://www.ucl.ac.uk/epidemiology-health-
care/research/epidemiology-and-public-health/research/whitehall-ii/

data-collection). Phases were selected based on the availability of
measures of alcohol consumption, smoking habits, and physical activity.
Composite measures of healthy lifestyle scores were derived from five
phases (average length of time [mean ± SD] = 16.3 years ± 1.4), with an
MRI scan administered at the fifth timepoint
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Integrative Neuroimaging, at the University of Oxford. Between April

2012 and December 2014, scanning was conducted with a Siemens

Magnetom Verio with a 32-channel receive head coil

(No. participants = 390). Following a scanner upgrade in early 2015,

further scanning was conducted on a Siemens Magnetom Prisma with

a 64-channel head–neck coil (No. participants = 147). T1-weighted

(GM volume), diffusion-weighted (WM microstructure), and fluid

attenuated inversion recovery (FLAIR, WM lesions) images were

examined in this study. For details of the MRI acquisition parameters

for each modality, please see Filippini et al. (2014) and Zsoldos

et al. (2018).

2.3.1 | MRI features

The GM feature preparation followed the procedures described in

previous studies (de Lange et al., 2019; de Lange, Anatürk,

et al., 2020; Kaufmann et al., 2019). Briefly, the features were derived

using a fine-grained cortical parcellation scheme (Glasser et al., 2016)

including global and region-specific measures of surface area, volume,

and cortical thickness, in addition to the classic set of subcortical vol-

ume parcellations and summary statistics based on the automatic seg-

mentation in FreeSurfer (Fischl et al., 2002). The GM variables were

residualized with respect to scanner, relative head motion measured

during the acquisition of resting state fMRI images (in line with previ-

ous studies that have adjusted for motion-related variance in struc-

tural measures (Miller et al., 2016; Smith et al., 2015)), sex, ethnic

background, and intracranial volume (ICV (Voevodskaya et al., 2014))

using linear models. As a crosscheck, we ran an additional brain-age

model using cortical thickness features that were left out of the gen-

eral ICV-correction.

WM features including global and tract-specific estimates of frac-

tional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD),

radial diffusivity (RD), and mode of anisotropy (MO) were derived

using 48 standard-space masks available from the ICBM-DTI-81

White-Matter Labels Atlas (Mori, Wakana, van Zijl, & Nagae-

Poetscher, 2005; Wakana et al., 2007). Prior to this step, the

diffusion-weighted images were preprocessed using a combination of

FSL's tools, including Top Up to correct for eddy currents and head

motion, DTIFIT to fit the diffusion tensor and extract images for each

metric of interest (e.g., FA and RD images), which was followed by

tract-based spatial statistics for registration and extracting FA/MD/

AD/RD/MO skeletons for each individual (for further details, see sup-

plementary methods in Anatürk et al. (2020). Global WM

hyperintensity (WMH) volumes were automatically extracted from

FLAIR images with Brain Intensity AbNormality Classification Algo-

rithm, as described in Griffanti et al. (2016). To test for improvements

in model performance using more detailed measures of WMH, we

also included an extended model with separate measures for deep

and periventricular WMH (Armstrong et al., 2020; Griffanti

et al., 2018). The WM variables were residualized with respect to

scanner, relative head motion, sex, and ethnic background using linear

models.

A total of 1,118 GM features and 245 WM features were

included in the brain age prediction model. For comparison purposes,

a reduced model was run using one measure per modality as input

variables (total GM volume, average FA, and total WMH volume).

2.4 | Cognitive features

A cognitive battery was administered on the day of the MRI scan by

either a trained research assistant or psychiatrist. The tests included

measures of premorbid IQ (test of premorbid functioning;

Wechsler, 2011), global cognition (Montreal cognitive assessment

[MoCA]; (Nasreddine et al., 2005)), working memory (Digit Span: for-

ward, backward, ascending sequence (Wechsler, 2008)), visual atten-

tion and task-switching (Trail Making Test; TMT A & B;

(Reitan, 1958)), visuospatial memory (Rey–Osterrieth complex figure:

immediate and delayed recall, recognition (Osterrieth, 1944)), verbal

memory (Hopkins Verbal Learning Test: immediate and delayed recall,

recognition (Brandt, 1991)), semantic memory (Boston Naming Test

(Kaplan, Goodglass, & Weintraub, 2001)); verbal fluency (adapted from

the Addenbrookes Cognitive Examination Revised (Hsieh, Schubert,

Hoon, Mioshi, & Hodges, 2013): semantic and letter fluency);

processing speed (Digit Coding (Wechsler, 2008)), and simple and

complex reaction time (CANTAB RTI; CANTABeclipse 5.0; Cambridge

Cognition Ltd. Measures: simple reaction time; choice reaction time;

simple movement time; and choice movement time). For a detailed

description of these tests, please see Filippini et al. (2014).

2.5 | Lifestyle index scores

Lifestyle index scores were calculated separately for each of the five

study phases shown in Figure 2. The index was derived based on an

individual's position on three behavioral variables: alcohol intake,

smoking status, and PA. In general, participants received a point of

1 for each behavior if they met governmental guidelines and/or rec-

ommendations outlined in the literature, with the lifestyle index

scores ranging from 0 (reporting no healthy behaviors) to 3 (reporting

three healthy behaviors).

For alcohol consumption, the measurement was based on self-

reported total units consumed on a weekly basis (over the last year).

Individuals who self-reported as abstinent from alcohol (<1 unit/week)

or engaged in light drinking (i.e., 1–7 units/week) were assigned a

point of 1. As a prior analysis of the Whitehall sample (Topiwala

et al., 2017) recently suggested that moderate levels of alcohol may

be associated with adverse brain outcomes, individuals consuming

more than 7 units per week received a score of 0 (classified as

“unhealthy”).
For smoker status, individuals were assigned a point of 1 if they

had never smoked, whereas individuals who were current or previous

smokers were given a score of 0 (as done in prior studies: (Sabia

et al., 2009; Zhong et al., 2015)). At the MRI time point, smoker status

was inferred from two items of the lifestyle questionnaire,” Have you
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smoked cigarettes in the past four weeks?” and” How many cigarettes in

a typical week?”

For PA, an individual reporting at least 2.5 hr of moderate to vig-

orous intensity activities per week (Metabolic equivalent of task

values > 3, assignments were coded as 1 based on previous findings

(Sabia et al., 2017), with all other individuals scoring 0. The measure-

ment and computation of these variables are described in greater

detail in Sabia et al. (2017). At the time of scan, the Community

Healthy Activities Model Program for Seniors (CHAMPS (Stewart

et al., 2001)) questionnaire was used to measure engagement (fre-

quency and duration) in a range of 41 activities per week, including

20 moderate to vigorous intensity activities (e.g., playing tennis, aero-

bics exercises, strength training).

2.6 | Statistical analyses

2.6.1 | Brain age and cognitive age

A regression model from XGBoost (https://xgboost.readthedocs.io/

en/latest) was used to predict brain age based on the MRI measures

described in Section 2.3.1, and cognitive age based on the cognitive

tests described in Section 2.4 (excluding premorbid IQ). The XGBoost

model is based on a decision-tree ensemble algorithm that includes

advanced regularization to reduce overfitting (Chen &

Guestrin, 2016), and uses a gradient boosting framework where the

final model is based on a collection of individual models (https://

github.com/dmlc/xgboost). To optimize hyperparameters, a random-

ized search was performed with 10 folds for each model, with

scanned parameter ranges set to maximum depth: (Bennett &

Madden, 2014; Bråthen et al., 2020; Grady, 2012), number of estima-

tors: [60, 220, 40], and learning rate: [0.1, 0.01, 0.05]. The optimized

parameters were maximum depth = 2, number of estimators = 180, and

learning rate = 0.1 for the brain age model, and maximum depth = 2,

number of estimators = 140, and learning rate = 0.05 for the cognitive

age model. In addition, a grid search with nested cross-validation was

performed to test for potential overfitting. All MRI and cognitive vari-

ables were standardized before being entered as features into these

analyses.

To assess the significance of the general model performances,

average R2, root mean square error (RMSE), and mean absolute error

(MAE) were estimated for each model using cross-validation with

10 splits and 5 repetitions, and compared to null distributions calcu-

lated from 1,000 permutations. The 10-fold cross-validations pro-

duced an estimate of each measure for every individual in the sample.

To investigate the prediction accuracy, correlation analyses were run

for predicted brain age versus chronological age and predicted cogni-

tive age versus chronological age. R2, RMSE, and MAE were calculated

for each model using the Scikit-learn library with Python (version

3.7.0). An overview of how BAG and CAG estimates were calculated

is available in Table 2. To investigate the associations between BAG

and CAG, we first corrected the estimations for chronological age

using linear regression (Le et al., 2018) before correlating the BAG and

CAG residuals.

2.6.2 | Associations with education and
premorbid IQ

Linear regressions were performed to evaluate whether CAG and

BAG associated with education or premorbid IQ, which are known

predictors of cognitive reserve (Kartschmit, Mikolajczyk, Schubert, &

Lacruz, 2019). These associations were first adjusted for age only, and

if an association was found, sex, education, ethnicity, BMI, as well as

CAG/BAG were included as covariates in a follow-up analysis to

adjust for potential confounders. If education or premorbid IQ were

significantly associated with either BAG or CAG (at an alpha [α] level

of .05), we directly compared these covariate adjusted associations

using Z-tests for correlated samples (Zimmerman, 2012) with:

Z = βm1−βm2ð Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2m1 + σ

2
m2−2ρσm1σm2

q
, ð1Þ

where m1 = Model 1 (CAG); m2 = Model 2 (BAG); β = beta coeffi-

cients from the covariate adjusted linear regressions between vari-

ables of interest and BAG/CAG; σ = SEs of the beta coefficients; and

ρ = age-adjusted correlation between BAG and CAG.

2.6.3 | Associations with lifestyle trajectories

LCGA was employed to evaluate whether the sample could be sub-

divided into trajectory classes based on repeated measures of lifestyle

index scores (Section 2.5). This is a widely used method that has pre-

viously been applied to identify trajectories of sleep (Zitser

et al., 2020) and BMI (Vistisen et al., 2014) in the Whitehall II cohort.

LCGA was run with the following specifications: No. random sets of

starting values: 500, optimizations: 20, and iterations: 20. Time metric:

Mean age at each assessment was used as the metric of time, with

each time score centered by 53 (mean baseline age) and divided by

TABLE 2 A summary of the main
dependent variables of the study

Variable Calculation Negative values= Concept

BAG (Brain age—chron. age) Younger brain age

relative to chron. age

Brain maintenance

CAG (Cognitive age—chron. age) Younger cognitive age

relative to chron. age

Cognitive maintenance

Abbreviations: BAG, brain age gap; CAG, cognitive age gap.
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10 to aid model convergence: [0, 0.3, 1.1, 1.5, 1.7]. Estimator:

restricted maximum likelihood with robust SEs was used. Full informa-

tion maximum likelihood was also employed to estimate parameters in

the presence of missing data (Enders & Bandalos, 2001). All lifestyle

index scores were standardized prior to the LCGA to minimize biases

introduced by variation in the questionnaire between the prior phases

and MRI scan.

The model with best fit was identified based on achieving the

lowest Akaike information criterion (AIC), Bayesian information crite-

rion (BIC), and sample-size adjusted BIC (aBIC), with an entropy value

≥0.8 and a p-value <.05 for the Vuong–Lo–Mendell–Rubin (VLMR)

likelihood ratio and bootstrap likelihood ratio (BLRT) tests (Jung &

Wickrama, 2008). A minimum of 5% of participants within each class

was also required to minimize the likelihood that a class captured out-

liers only (Andruff, Carraro, Thompson, Gaudreau, & Louvet, 2009).

These analyses were conducted with MPlusAutomation (version 0.7-3

(Hallquist & Wiley, 2018)).

To test for relationships between lifestyle trajectories and esti-

mates of brain and cognitive maintenance, BAG and CAG were used

as dependent variables in separate linear regressions. Lifestyle trajec-

tory classes were entered as independent variables and as dummy

coding was used, the class with the least favorable lifestyle served as

the reference category. In addition, a cumulative lifestyle score based

on an average of lifestyle scores across all phases was examined as a

potential predictor of BAG and CAG in separate regression analyses.

An average was selected over a summary score due to being less

biased in the presence of missing data (as individuals with either four

or five phases of lifestyle data were included in the analyses). In order

to derive comparable β estimates, all variables were standardized prior

to the linear regression analyses. The associations were first examined

adjusting for chronological age only (Model 1), and if the associations

were significantly different from zero (α level of .05), they were

followed up by analyses adjusting for age as well as CAG/BAG, and

additional factors known to influence brain and cognitive health in

aging, including sex (e.g., Ritchie et al., 2018), education (e.g., Boller,

Mellah, Ducharme-Laliberté, & Belleville, 2017), ethnicity (e.g., Gavett

et al., 2018), and BMI (e.g., Dekkers, Jansen, & Lamb, 2019), (Model

2). If the relationships remained significant (prior to multiple compari-

sons), the associations were directly compared using the z-test for

correlated samples as described in Equation (1).

2.6.4 | Multiple comparison corrections and
sensitivity analyses

All hypothesis tests were two-sided. We report unadjusted p-value (p)

and p-values corrected for multiple comparisons using false discovery

rate (FDR) correction (Benjamini & Hochberg, 1995) (pcorr). As linear

regression and z-tests for correlated samples were performed multiple

times, we report the associations that showed a p-value <.05 but did

not survive FDR-correction as trends, and associations that showed

pcorr <.05 as significant. The linear regression analyses and Z-tests for

correlated samples were rerun after outliers on any of the variables of

interest were excluded (i.e., individuals with values <Q1–-

3 × interquartile range [IQR] or values >Q3 + 3 × IQR).

3 | RESULTS

3.1 | Brain age and cognitive age

Average R2, RMSE, and MAE for the brain age and cognitive age

models are provided in Table 3. Supplementary Information

(SI) Figure 1 shows the average R2, RMSE, and MAE for each of the

models compared to null distributions. The number of permuted

results from the null distribution that exceeded the mean from the

cross-validation was 0 for both the brain age and cognitive age

models (p = 1.00 × 10−3).

The brain age model showed a higher correlation between

predicted and chronological age (r = .63; 95%CI [0.58, 0.68]) com-

pared to the cognitive age model (r = .31; 95% CI [0.23, 0.38]), as

shown in Table 3 and SI Figure 2. To test whether the relative differ-

ence in prediction accuracy depended on number of features

included, the models were rerun using principal component analysis

(PCA) transformed variables with the top 20 components as input for

each model. The relative accuracy of the two models was consistent

with the main results, as showed in Table 4.

The results from the nested cross-validation with grid search

were similar to the main results, as shown in SI Table S1. For the

brain-age model, leaving cortical thickness out of the general GM ICV-

correction did not change the results, as shown in SI Tables S2 and

S3. While the extended model with separate measures for deep and

periventricular WMH did not improve the model prediction, the

reduced model using one summary measure per modality as input

showed lower prediction accuracy, as shown in SI Table S4.

Predicted brain age correlated positively with predicted cognitive

age (Pearson's r = .24, 95% CI = [0.16, 0.31], p < .001), indicating a

moderate correspondence between cross-sectional estimates of nor-

mative brain and cognitive age trajectories. The age-adjusted associa-

tion between BAG and CAG was not significant (Pearson's r = .06,

95% CI = [−0.03, 0.14], p = .17). As a crosscheck, we tested whether

BAG was associated with global and domain-specific cognition (Boyle

et al., 2020; Cole et al., 2018; Elliott et al., 2019). A subset of tests

were used to define domains of executive function, memory and

processing speed, in line with prior studies (Demnitz et al., 2017; Sex-

ton et al., 2017). The results showed that BAG did not correlate with

measures of global (MoCA scores) or domain-specific cognitive func-

tion, as shown in SI Table S5.

3.2 | Associations with education and
premorbid IQ

The CAG/BAG associations with education and premorbid IQ are pro-

vided in Table 5. Both higher premorbid IQ and years of education

related to a younger cognitive age relative to chronological age (β =
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TABLE 3 Average R2, RMSE, and MAE ± SDs for each of the models, and correlations (r) between predicted brain/cognitive age and
chronological age. 95% confidence intervals are indicated in square brackets. RMSE and MAE are reported in years

Model R2 RMSE MAE r [95% CI] p

Brain age .38 ± .11 3.86 ± 0.36 3.11 ± 0.33 .63 [0.58, 0.68] <.001

Cognitive age .09 ± .10 4.70 ± 0.45 3.84 ± 0.39 .31 [0.23, 0.38] <.001

Abbreviations: MAE, mean absolute error; RMSE, root mean square error; SD, standard deviation.

TABLE 4 Average R2, RMSE, and MAE ± SDs using the top 20 PCA components as input for each of the models, explaining 43.63% of the
variance in the MRI data, and 100% of the variance in the cognitive data. 95% confidence intervals are indicated in square brackets. RMSE and
MAE are reported in years

Model R2 RMSE MAE r [95% CI] p

Brain age .28 ± .10 4.15 ± 0.35 3.32 ± 0.31 .55 [0.49, 0.61] <.001

Cognitive age .07 ± .10 4.73 ± 0.41 3.86 ± 0.37 .33 [0.25, 0.40] <.001

Abbreviations: MAE, mean absolute error; PCA, principal component analysis; RMSE, root mean square error; SD, standard deviation.

TABLE 5 Associations between CAG/BAG estimates and education, premorbid IQ, and cumulative healthy lifestyle scores. 95% confidence
intervals are indicated in square brackets. Model 1 was adjusted for chronological age only. Associations that were significant (before multiple
comparison corrections) were submitted to linear regression with additional covariates (i.e., Model 2). Model 2 was adjusted for age, sex,
education, ethnicity, BMI, and mutual adjustments between BAG and CAG. Note, where education and premorbid IQ were the independent
variables of interest, mutual adjustments were also included in Model 2 (with BMI excluded from the list of covariates). Confidence intervals are
indicated in square brackets. P-values are provided before and after FDR-correction.

Model 1 Model 2

DV IV β [95% CI] p pcorr β [95% CI] p pcorr

CAG Education −.06 [−0.09, −0.02] .001 .005 −.01 [−0.06, 0.03] .559 .559

Premorbid IQ −.08 [−0.11, −0.04] <.001 <.001 −.07 [−0.12, −0.02] .004 .015

Cumulative lifestyle −.01 [−0.05, 0.02] .473 .526 — —

Lifestyle: Mod vs. low −.01 [−0.10, 0.07] .765 .765 — —

Lifestyle: High vs. low −.07 [−0.16, 0.02] .126 .253 — —

BAG Education −.03, [−0.09, 0.02] .208 .347 — —

Premorbid IQ .02 [−0.03, 0.08] .372 .526 — —

Cumulative lifestyle −.06 [−0.12, −0.01] .018 .058 −.06 [−0.12, −0.01] .029 .064

Lifestyle: Mod vs. low −.05 [−0.19, 0.08] .435 .526 — —

Lifestyle: High vs. low −.14 [−0.29, −0.00] .045 .114 −.13 [−0.28, 0.01] .065 .087

Abbreviations: BAG, brain age gap; BMI, body mass index; CAG, cognitive age gap; DV, dependent variable; FDR, false discovery rate; IV, independent

variable.

TABLE 6 Difference between the BAG and CAG associations with premorbid IQ and cumulative lifestyles (adjusting for all covariates). For
the calculation used to compare the difference between associations, see Equation (1) (Section 2). Confidence intervals are indicated in square
brackets. P-values are provided before and after FDR-correction

Variable βCAG βBAG Z p pcorr

Premorbid IQ −.07 [−0.12, −0.02] .08 [0.00, 0.16] −3.24 <.001 .002

Cumulative lifestyle −.01 [−0.05, 0.02] −.06 [−0.12, −0.01] 1.398 .162 .162

Abbreviations: BAG, brain age gap; CAG, cognitive age gap; FDR, false discovery rate.
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−.08, 95% CI = [−0.11, −0.04], p < .001, pcorr < .001; β = −.06 95%

CI = [−0.09, −0.02], p = .001, pcorr = .005, respectively). After covari-

ate adjustments, the association between premorbid IQ and CAG sur-

vived, while the association between education and CAG was

nonsignificant. No associations were found between BAG and

premorbid IQ or education, as shown in Table 5. Z-tests for correlated

samples (using Equation (1)) showed that premorbid IQ related more

strongly to CAG relative to BAG (Z = −3.13, p < .001, pcorr = .472) as

shown in Table 6.

3.3 | Lifestyle trajectories

The results of the LCGA are provided in SI Table S6 and Figure 3. A

three-class quadratic solution provided the best fit (AIC = 6,098.21,

BIC = 6,166.79, aBIC = 6,116.00, BLRT p = <.001, VLMR p = .04). The

class description and percentages per class were: High but declining

lifestyles (Class 2, n = 130, 24.2%), Moderate and consistent lifestyles

(Class 3, n = 186, 34.6%) and Low but improving lifestyles (Class

1, n = 221, 41.2%).

The CAG/BAG associations with lifestyle trajectories are pro-

vided in Table 5. After adjusting for chronological age, a significant

association was observed for high and decreasing lifestyle trajectories

with BAG (β = −.14, 95% CI = [−0.29, −0.00], p = .045). However, this

association did not survive further covariate adjustments and correc-

tions for multiple comparisons (β = −.13, 95% CI = [−0.28, −0.01],

p = .065, pcorr = .087). No associations with BAG were identified for

moderate and consistent lifestyle trajectories, as compared to low and

increasing lifestyle (the reference group). No significant associations

were identified for CAG, as shown in Table 5.

3.4 | Associations with cumulative lifestyle scores

The CAG/BAG associations with cumulative lifestyle scores are pro-

vided in Table 5. Cumulative lifestyle scores associated negatively

with BAG (β = −.06, 95% CI = [−0.12, −0.01], p = .01). However, this

association did not survive corrections for multiple comparisons, as

shown in Table 5. No relationship was observed between cumulative

lifestyle scores and CAG (β = −.01, 95% CI = [−0.05, 0.02], p = .473,

pcorr = .526). The results showed no difference between the BAG and

CAG associations with cumulative lifestyle scores (Z = 0.23, p = .234,

pcorr = .234), as shown in Table 6.

3.5 | Sensitivity analyses

After the exclusion of extreme outliers (n of remaining sample = 532),

the age-adjusted associations between CAG and premorbid IQ (β =

−.07, 95% CI = [−0.10, −0.03], p < .001, pcorr = .004) and education

(β = −.06, 95% CI = [−0.09, −0.03], p = .001, pcorr = .001) were repli-

cated. The trend between cumulative lifestyle scores and BAG was

also detected (β = −.06, 95% CI = [−0.12, −0.01], p = .019,

pcorr = .155). The relationship between high and decreasing lifestyles

and BAG was reduced to nonsignificant (β = −.14, 95% CI = [−0.28,

0.00], p = .054, pcorr = .135).

Adjusting for age and other covariates (Model 2), the negative

association between premorbid IQ and CAG remained significant (β =

−.06, 95% CI = [−0.10, −0.01], p = .029, pcorr = .045), while the associ-

ation between education and CAG was no longer detected (β = −.03,

95% CI = [−0.07, 0.02], p = .233, pcorr = .233). The trend between

cumulative lifestyle scores and BAG (Model 1) was significant after

further covariate adjustments (β = −.06, 95% CI = [−0.12, −0.01],

p = .030, pcorr = .045). Premorbid IQ was more strongly associated

with CAG compared to BAG (Z = −3.03, p = .234, pcorr = .002), while

no difference was found between the BAG/CAG associations with

cumulative lifestyle scores (Z = 1.15, p = .234, pcorr = .252).

3.6 | Post-hoc analyses

Given the significant association for cumulative lifestyle indices (prior

to multiple comparison corrections; p = .029, pcorr = .064), we investi-

gated whether the use of binarized indices to compute our lifestyle

score may have attenuated our ability to detect the associations of

interest. Specifically, a cumulative lifestyle measure based on continu-

ous versions of the variables (where available) was examined in a

series of post hoc analyses. As shown in SI Table S7, a negative asso-

ciation between cumulative lifestyle scores and BAG was detected in

F IGURE 3 Trajectories of the three-class solution that was
identified as the best fit, which are described in Section 3.3. Shaded
areas reflect 95% confidence intervals
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both Model 1 (β = −.24, 95% CI = [−0.35, −0.13], p = <.001,

pcorr = <.001) and Model 2 (β = −.23, 95% CI = [−0.34–0.13],

p = <.001, pcorr = <.001). No significant associations were found for

CAG (SI Table S7, p's > .05). Cumulative lifestyle scores were more

strongly associated with BAG than CAG (Z = 2.813, p = .005,

pcorr = .015), SI Table S8.

In addition, we investigated the associations between BAG/CAG

and each of the lifestyle variables independently. A significant associa-

tion was found between BAG and smoker status over time

(i.e., individuals who reported being a “current smoker” for 3+ phases

were coded as 1); Model 2 β = .3, 95% CI = [0.01, 0.59], p = .045,

pcorr = <.045) and cumulative alcohol consumption (Model 2 β = .08,

95% CI = [0.03, 0.15], p = .003, pcorr = .004). None of the lifestyle vari-

ables were significantly associated with CAG (SI Table S7, p's > .05).

Additionally, cumulative alcohol consumption was more strongly asso-

ciated with BAG than CAG (Z = −2.456, p = .014, pcorr = .021),

whereas for smoker status over time, there was no difference in the

strength of associations (Z = −1.566, p = .117, pcorr = .117, SI

Table S8).

4 | DISCUSSION

The present study is the first to demonstrate that by combining

machine learning, MRI, and cognitive data, it is possible to quantify

the concepts of brain maintenance (i.e., BAG) and cognitive mainte-

nance (i.e., CAG) in parallel. Overall, we found no significant associa-

tion between BAG and CAG. While this potentially supports the idea

that there is limited correspondence between brain and cognitive

maintenance in older age (Stern, 2002), the accuracy of the cognitive

age prediction was relatively low, which may have limited sensitivity

to detecting BAG and CAG relationships. However, the lack of associ-

ation was also replicated when BAG was tested against measures of

global and domain-specific cognitive function. Moreover, premorbid

IQ was related to CAG independent of BAG, in line with established

literature highlighting IQ as a potential proxy for cognitive reserve

(Anthony & Lin, 2018). Our results are, however, in contradiction with

other studies showing consistent links between BAG and cognitive

performance (e.g., Boyle et al., 2020; Cole et al., 2018; Elliott

et al., 2019). This discrepancy could potentially be attributed to dis-

parities between the cognitive tests administered, or differences in

sample characteristics.

4.1 | Brain maintenance versus cognitive
maintenance: Potential utility of machine learning

While brain age prediction is frequently used as a metric of brain pres-

ervation in aging (Franke & Gaser, 2019), there is currently no

established method for capturing preserved cognitive function relative

to degree of brain decline in cross-sectional studies. To date, the mea-

surement of cognitive reserve remains a controversial topic (Jones

et al., 2011; Satz, Cole, Hardy, & Rassovsky, 2011), particularly given

the lack of interstudy agreement in the type or number of

indices used.

Measures of cognitive reserve have traditionally consisted of

either a stand-alone measure of education or premorbid IQ, or a com-

bination of these indices (alongside occupational complexity and

engagement in leisure activities (Valenzuela & Sachdev, 2006a; Vale-

nzuela & Sachdev, 2006b)). The most commonly used index of reserve

is education, with the rationale being that education may contribute

to reserve by promoting cognitive flexibility (Stern, 2002) or accumu-

lation of neural resources (Cabeza et al., 2018). Despite evidence to

suggest that education is consistently linked to a lower risk of demen-

tia (Anstey, Ee, Eramudugolla, Jagger, & Peters, 2019), and may mod-

erate the relationship between neuropathology and cognitive

performance (Bennett et al., 2003; Rentz et al., 2010), the use of edu-

cation as a “proxy” of cognitive reserve is conceptually problematic:

although cognitive activity may promote cognitive reserve, such

mechanisms are unlikely to represent the only pathway between edu-

cation and late-life cognition. Genetics and early life factors such as

birth weight, childhood IQ, and parental education have been shown

to influence brain and cognition continuously across the lifespan

(Finkel, Reynolds, McArdle, & Pedersen, 2005; Lyons et al., 2009;

Walhovd et al., 2016), and associations between education and cogni-

tive function may be further mediated by socioeconomic status, risk

of disease (e.g., heart disease, stroke and diabetes (Jones et al., 2011;

Reed et al., 2010)), lifestyle factors, as well as individual potential for

neural compensation and plasticity (Cabeza et al., 2018; Fjell

et al., 2014). Educational attainment may therefore be better regarded

as one of several predictors of cognitive maintenance in aging.

Another important consideration is that cognitive reserve refers

to the deviation between observed cognitive function and what is

expected based on the degree of age- or disease-related brain

changes (Stern, 2002). Therefore, any measure of cognitive reserve

needs to take into account the disparity between observed cogni-

tive performance and underlying brain structure. In line with this,

some efforts to improve measurements of this construct have

defined cognitive reserve as the residual variance in episodic mem-

ory, after adjusting for demographic variables and structural MRI

abnormalities (Reed et al., 2010). This approach to characterizing

cognitive reserve as model “residuals” appears promising (Reed

et al., 2010; Zahodne et al., 2013). For example, the residual term

has been linked to risk of conversion from mild cognitive impairment

to dementia, and has been shown to modify the relationship

between brain atrophy and cognitive decline (Reed et al., 2010).

However, this body of evidence has focused exclusively on a single

cognitive domain (memory), and considered only a handful of MRI

markers of brain integrity, including global and hippocampal GM and

WMHs. While the approach in the current study also utilizes model

residuals, the use of machine learning provides the advantage of

integrating a substantially greater number of MRI variables, as well

as a large body of tests measuring performance across multiple cog-

nitive domains. Furthermore, the age prediction models add a

dimension to cross-sectional studies by capturing deviations from

normative aging trajectories.

10 ANATÜRK ET AL.



By generating separate measures of brain and cognitive mainte-

nance, we are able to shed light on cognitive reserve mechanisms by

(a) examining the relationship between brain and cognitive mainte-

nance, (b) identifying discrepancies between their associations with

variables of interest, and (c) mutually adjusting for these variables in

the same model. In this way, our approach may contribute to

addressing crucial questions in the aging field, including whether life-

style factors predominately contribute to brain maintenance or cogni-

tive reserve in late life.

4.2 | Favorable lifestyles are linked to higher brain
maintenance

The extent to which brain maintenance and cognitive reserve form

pathways between favorable lifestyles and cognitive maintenance in

aging is currently unclear. In our main analyses, only a weak associa-

tion was found between more favorable lifestyles between midlife

and late life and brain maintenance, and the association did not statis-

tically differ from the (insignificant) association between lifestyles and

cognitive maintenance. However, post hoc analyses suggested that

the method used to compute lifestyle scores (as the average number

of health behaviors an individual participated in over time, ranging

from 0 to 3) may have attenuated our ability to detect the associa-

tions of interest. When a cumulative lifestyle score based on continu-

ous measures of PA and alcohol consumption was instead used, the

relationship with brain maintenance appeared to strengthen and sur-

vive covariate and multiple comparison corrections. While our original

method for estimating lifestyle engagement is in line with previous

studies (i.e., count of unhealthy/healthy behaviors, (Lourida

et al., 2019; Sabia et al., 2009) and the health behaviors were

thresholded based on established guidelines and recommendations,

our findings suggest that when brain and cognitive maintenance is of

focus, lifestyle indices should integrate health behaviors in their con-

tinuous forms, where available, as this may improve sensitivity to the

small effects often reported for lifestyle variables (Corley, Cox, &

Deary, 2018). Using longitudinal assessments of BAG and CAG may

also provide further information about how lifestyle affects brain and

cognitive trajectories over time, as only cross-sectional estimates of

these constructs were available in the current study.

Examining how genetic variability (Lee, 2013) mediates the

associations of interest is also an important “next step” for future

studies, to better capture interactions between genes and environ-

ment. For example, Lourida et al. (2019)) found that favorable life-

styles were linked to reduced dementia risk, specifically in

individuals with a genetic risk of dementia. IQ is also known as a

heritable trait (Plomin & Deary, 2015), and a possible genetic corre-

lation between this trait and cognitive reserve could indicate that

the phenotypic relationship observed between these factors

reflects common underlying genetic architecture (Lee et al., 2018).

Future studies may therefore consider integrating polygenic risk

scores and genetic pleiotropy to further capture the variance in

CAG and BAG.

4.3 | Strengths and limitations

The multimodal MRI and detailed cognitive battery administered to

most participants allowed us to generate a large number of MRI and

cognitive features to be used in the estimation of brain/cognitive age.

While it is possible that measurement error introduced by cognitive

tests may account for the reduced prediction accuracy of our cogni-

tive model when compared to the MRI-based predictions, re-running

these analyses with latent factors did not substantially modify the pre-

diction accuracy of cognitive age. Although the brain-age model

included a larger number of input features than the cognitive model,

the relative model performances were similar when 20 PCA-

transformed components were used as input for each model. This dis-

crepancy in prediction accuracy may thus reflect that the cognitive

measures were less related to chronological age compared to the MRI

measures in the current sample.

As model performance has been shown to depend on sample

characteristics (de Lange, Anatürk, et al., 2020), utilizing larger cohorts

with an extended age range may help to improve the accuracy of cog-

nitive age predictions. Moreover, our cognitive age model utilized the

full sample to estimate normative patterns of cognitive aging with

cross-validation. A model trained exclusively on cognitively typical

individuals (performance within 1 or 2 SDs of age and sex norms) and

applied to a test set with a wider range of cognitive scores could

potentially improve the sensitivity to variation in cognitive age esti-

mates. Given that a train/test split of the current sample (n = 537)

would lower the sample size, this approach would reduce the model

performance (Walhovd et al., 2016) as well as the statistical power to

detect associations with the predictors of interest. Hence, prospective

studies utilizing larger cohorts with a wider age range would also be

more suitable for investigating how modifying the composition of

training sets influences model performance.

Due to the relatively low accuracy of the cognitive age prediction

in the current study, the weak association between the BAG and CAG

estimates should be interpreted with caution. However, BAG did not

correlate with measures of global or domain-specific cognitive func-

tion (SI Table S5), indicating that the lower accuracy of the cognitive

age prediction could not fully explain the lack of association between

the BAG and CAG estimates.

As compared to more traditional measures such as total GM vol-

ume and general scores of cognitive function, age prediction models

distill a rich variety of brain characteristics and cognitive performance

scores into single estimates per individual, which can be compared to

normative age trajectories. However, summarizing measures across

brain regions and cognitive domains cannot provide information about

specialized cognitive networks potentially linked to regional brain

characteristics. Combined with models that estimate regional brain

aging patterns (de Lange, Anatürk, et al., 2020; Eavani et al., 2018;

Kaufmann et al., 2019; Smith et al., 2020), a development of process-

specific cognitive models may provide a more detailed and accurate

estimate of the relationship between brain and cognitive mainte-

nance. Furthermore, dynamic brain processes that are not captured by

structural measures may play an important role in reserve mechanisms
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(Franzmeier et al., 2017; Sala-Llonch et al., 2012). Future studies

including models based on functional MRI data may thus help to fur-

ther elucidate the mechanisms involved in cognitive maintenance in

aging.

One main strength of this study is the longitudinal and repeat

data available on lifestyle indices (over a mean of 17 years), which

was provided by a large and highly characterized sample. However,

only smoker status, alcohol intake, and PA were included in the life-

style indices, and a several other factors, including diet (Lourida

et al., 2019) and sleep patterns (Tanaka & Shirakawa, 2004), may form

part of a healthy lifestyle. A more comprehensive characterization of

lifestyle trajectories could thus potentially increase their explanatory

value.

Another consideration is that only 17.5% of the sample were

female, reflecting sex distributions in the British civil service at the

time of initial recruitment (1980s), which limits the generalizability of

the reported results. Consistent with previous studies investigating

the WHII imaging sub-sample (Demnitz et al., 2017; Sexton

et al., 2017), a “healthy volunteer effect” was further observed

(SI Table S9), such that included individuals were significantly younger

and had higher MoCA scores than excluded individuals. Participants in

our study further appeared to be more educated, more physically

active, less overweight, and less likely to smoke than the general pop-

ulation, based on nationally representative data sources

(SI Table S10). However, no statistical comparisons were conducted

due to substantial differences in the methods used to collect this

information. As these sample characteristics are likely to limit the gen-

eralizability of our results, replication in more representative samples

are required. Lastly, no causal conclusions can be drawn due to the

observational nature of the study.

5 | CONCLUSION

In conclusion, this study describes a novel method for characterizing

brain and cognitive maintenance relative to normative trajectories in

aging. While prospective studies are required to validate these metrics

in other cohorts with different sample characteristics, the presented

approach provides a method for quantifying and comparing brain and

cognitive age estimates, which may be valuable for future studies

seeking to investigate factors underlying maintenance and reserve

mechanisms in older age.
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