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Abstract

A wireless-powered mobile edge computing (MEC) architecture with the cooperation between an

access point (AP) and an unmanned aerial vehicle (UAV) is studied in this paper. The AP, powered by

the grid, is integrated with a high-performance processing server to help compute the user equipments’

(UEs) offloaded tasks while also performing high-power laser-like energy charging for the UAV. The

UAV serves as (1) an information relay to help the UEs offload/download their computation tasks/results,

(2) an energy relay to broadcast energy from the AP to the UEs, as well as (3) an MEC server to

help the UEs compute their tasks. We aim at maximizing the weighted sum completed task-input bits

(WSCTB) of UEs under the task and time allocation, information-causality, energy-causality, and the

UAV’s trajectory constraints, by jointly optimizing the task and time allocation as well as the UAV’s

energy transmit power and trajectory. The formulated WSCTB maximization problem is non-convex, and

we propose a three-step block coordinate descending algorithm to address three sub-problems iteratively

for obtaining a proper solution. Simulation results show that the UAV’s trajectories highly depend on the

AP’s location and the UEs’ weight values. In addition, significant performance improvement is achieved

by the proposed algorithm compared to some practical benchmarks.

I. INTRODUCTION
A. Motivation and Prior Work

The upcoming 5G wireless communication technologies and the rapidly growing Internet-of-

things (IoT) result in the explosive growth in the number of mobile and intelligent devices. New

mobile applications are also transforming people’s life, such as self-driving cars, smart home,

virtual and augmented reality, and etc. All of these applications demand a large amount of

computing resources, and some may exceed the capability of resource-limited user equipments
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(UEs). Recently, mobile edge computing (MEC) has emerged as a promising way to deal with this

issue [2–4]. The idea is to shift the cloud computing capability to the edge of the communication

networks. In so doing, UEs’ computation tasks can be offloaded and completed at the edge, e.g.,

the access points (APs), and even less abled UEs can enjoy low-latency services.

MEC, as a means to improve computing performance, has been actively investigated in recent

years [5–10]. Resource allocation for a multiuser MEC system was considered in [6], where the

weighted sum energy consumption of UEs was minimized using an offloading priority function.

In [7], an energy-aware offloading scheme was proposed to tradeoff between users’ energy

consumption and the execution latency. Later in [8], joint task offloading and resource allocation

was considered to maximize the task offloading gain. A two-tier heterogeneous cloud computing

network was studied in [9], where the benefits of coexisting edge and central clouds were

investigated. A blockchain based platform was considered for video streaming with MEC in

[10], and an incentive mechanism was proposed to facilitate the cooperation of different nodes.

Though MEC lifts the computation capability of UEs, the energy of UEs can greatly limit the

overall performance. To address this, [11–14] introduced energy harvesting and wireless power

transfer (WPT) into MEC systems, to ensure that sustainable energy is available at the UEs. In

[11], WPT was used to maximize the computing probability while [12] employed WPT in a

cooperation-assisted MEC system and obtained the optimal task and power allocation in closed

form. Energy transmit beamforming at the AP was studied in [13] to improve the computing

performance. Also, in [14], the execution cost was minimized by the Lyapunov optimization.

To reduce the APs’ burden and improve the computing experience of UEs, unmanned aerial

vehicle (UAV)-assisted MEC has become a promising solution. The UAV-enabled MEC has

many advantages, such as easy deployment, flexible locations, line-of-sight (LoS) connections,

and moderate computing and caching capabilities, etc. [15], and is a powerful tool to enhance the

flexibility and resilience of MEC in handling computation-intensive latency-critical tasks [16].

Joint offloading optimization and trajectory design is a typical problem for the UAV-enabled

MEC architecture and has been studied in [17–21]. A UAV-mounted mobile cloud computing

was studied in [18], where the UAV helped the UEs compute their offloaded tasks and the total

mobile energy consumption was minimized by applying the successive convex approximation

(SCA) methods. Later in [19], a UAV-aided offloading scenario was considered at the edges of

multiple cells, in which the sum rate of edge users was maximized by optimizing the UAV’s



trajectory and user scheduling. In [20], a two-stage alternative algorithm was applied to solve

the problem of maximizing the computation efficiency in a UAV-enabled MEC system. A UAV-

assisted MEC architecture was investigated in [21], where the UAV acted as a task information

relay and an MEC server, and joint optimization on task and bandwidth allocation and UAV’s

trajectory was investigated to enhance the system performance.

In [22] and [23], the UAV broadcast radio frequency (RF) energy to the UEs and helped

them compute offloaded tasks, for maximizing the computation rate of UEs and minimizing the

transmitted energy of the UAV, respectively. However, RF energy harvesting may be severely

degraded by path loss in practical scenarios. To take advantage of the dominated LoS air-ground

links provided by UAVs, a more energy-efficient laser-beamed WPT technology has been utilized

in recent wireless-powered UAV-enabled architectures [24, 25]. Through narrower energy laser

beams, hundred of watts can be harvested at the laser power receiver [26], and the feasibility

for laser-charged UAV has been verified by field tests in [27].

B. Our Contributions

In the UAV-enabled MEC architecture, UEs can relay their data to the UAV to handle their

offloaded tasks. Cooperation between the APs and UAVs is sometimes necessary for completing

the UEs’ tasks when the AP cannot provide reliable connections to some edge users and the

size-constrained UAV is resource-limited. Cooperation is even more important in task offloading

operated in the millimeter wave (mmWave) bands as large-scale antenna arrays are unlikely to

be available due to cost consideration. The blockage issue of mmWave communications can be

easily addressed with the assistance of UAVs, for their flexibility and LoS air-ground channel

characteristics. To ensure sustainable LoS air-ground UAV links, WPT can be leveraged. In this

context, this paper is motivated to propose a wireless-powered UAV-assisted MEC architecture

that synergizes the use of AP and UAV via cooperation. In particular, the UAV harvests energy

from the AP through laser charging and the UEs harvest energy from the UAV through RF

charging. This architecture is especially beneficial to the cases operating in mmWave bands. To

our best knowledge, this is the first MEC work considering the wireless-powered cooperation

between AP and UAV, where both laser and RF WPT are utilized.

Our main contributions are summarized as follows:

• Wireless-Powered and UAV-Assisted MEC System with Cooperation between UAV and



AP: A wireless-powered and UAV-assisted MEC system is considered, where the UAV

cooperates with the AP to compute UEs’ task-input data with sustainable energy supply.

The WPT technology of laser charging is used to provide sustainable energy supply from

the AP to UAV, while the WPT technology of RF charging is leveraged for UEs to further

harvest energy from the UAV. Here, the UAV plays a key role for serving as an energy

relay to provide energy supply for UEs, a moving MEC server to help the UEs compute

their tasks, and an information relay to offload the UEs’s tasks to the AP.

• Weighted Sum Completed Task-input Bits (WSCTB) Maximization Problem under the

Information Causality, Energy Causality, Task and Time Allocation, and UAV’s Trajectory

Constraints: We provide a WSCTB maximization formulation by jointly considering the op-

timization of the computation task allocation, time allocation, UAV’s energy transmit power

and its trajectory, subject to two information causality constraints, two energy causality

constraints, the task and time allocation constraints and the UAV’s trajectory constraints.

• Three-step Block Coordinate Descending Algorithm: A three-step block coordinate de-

scending algorithm is devised to tackle the non-convex WSCTB maximization problem,

by solving three sub-problems iteratively to optimize the task and UAV’s energy transmit

power allocation, the time allocation, and the UAV’s trajectory. In the first sub-problem, the

task and UAV’s energy transmit power allocation are obtained by leveraging the Lagrange

method. In addition, the sub-problem of time allocation is convex and can be solved by

standard tools such as CVX [28], while the sub-problem of UAV’s trajectory design is also

solved by CVX with the aid of the successive convex approximation (SCA) method.

• UAV’s Trajectory and Great Performance Improvement: Simulation results are presented

to evaluate the performance of the proposed algorithm and illustrate the optimized trajec-

tories of the UAV in different scenarios. The results confirm that the UAV’s trajectory and

performance highly depend on the AP’s location and the UE weights. Besides, the proposed

algorithm can achieve great performance gain compared to conventional schemes.

The rest of this paper is organized as follows. Section II first introduces the system model

and presents the WSCTB maximization problem. The three-step block coordinate descending

algorithm is proposed in Section III. Section IV provides the simulation results to evaluate the

proposed algorithm under different scenarios, and we conclude the paper in Section V.
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Fig. 1. The wireless-powered MEC architecture with a cooperative UAV, where the UAV harvests laser energy wirelessly from

the AP. Besides, the UAV acts as an energy transmitter to offer sustainable RF energy for UEs, and serves as an MEC server

and a relay to help the resource-limited UEs compute their offloaded computation tasks or further forward their offloaded tasks

to the more powerful processing server at the AP for computing.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a wireless-powered MEC system with a cooperative UAV, which consists of an

AP, a cellular-connected UAV, and K ground UEs, as shown in Fig. 1, where all the nodes have

single antenna. It is assumed that the UAV and UEs are equipped with wireless energy-harvesting

circuits, communication circuits and computing processors with limited computing capability.

In contrast, the grid-powered AP is equipped with an ultra-high performance processing server,

capable of high-speed transmission and computation. The AP is also endowed with a laser

transmitter for producing high-power laser-like energy beams to the UAV to provide sustainable

energy supply for the UAV. Part of the UAV’s harvested energy may be broadcast as RF energy

to the UEs, while the remaining part is utilized for computing and radio transmissions.

In this paper, each UE is assumed to have a large amount of bit-wise-independent computation

task-input data (e.g., for the augmented reality (AR) applications [3]), and the UAV acts as an

MEC server as well as a relay to help the UEs compute their task-input data and sometimes

further offload their data to the more powerful server at the AP for computing.

We assume that the energy transmissions and the computation task-related information trans-

missions are operated simultaneously over orthogonal frequency bands. In contrast, different

kinds of task-related information transmissions, including the task-input data offloading from

UEs to the UAV, from the UAV to the AP, and the task-output data downloading from the UAV



to UEs, are operated over the same frequency band, with the bandwidth B. We further assume

that task-related transmissions take place in the mmWave bands. Due to severe blockage for

mmWave transmissions, however, the direct links between the UEs and AP are broken, and the

UEs cannot harvest energy from the AP or offload their task-input bits to the AP without UAV.
A. Node Locations and Channel Model

We consider a scenario in which the UAV flies at a constant altitude, denoted as H meters
(m), during the task completion time.1 The locations of the AP and all the UEs are fixed on the
ground with zero altitude. Hence, we can adopt a two-dimensional (2D) Euclidean coordinate
system to model the horizontal locations of the UEs, the AP and the UAV, whose coordinates are
also measured in meters. Let K = {1, . . . , K} denote the set of the UEs, and the corresponding
horizontal location of UE k ∈ K is written as sk = (xk, yk). In addition, we use s0 = (x0, y0)

to represent the AP’s location. In our considered scenario, the UAV’s initial and final horizontal
locations are assumed to be preset as uI = (xI, yI) and uF = (xF, yF), respectively. The total
task completion time T seconds (s) is composed of N equal time slots each with a duration of
τ = T/N , where τ is chosen to be sufficiently small such that the UAV’s location can be assumed
approximately unchanged during each slot. Let N = {1, . . . , N} denote the set of the N time
slots, and the UAV’s horizontal location can be further denoted as u[n] = u(nτ) = (x[n], y[n])

at the n-th time slot with u[0] = uI and u[N ] = uF. The maximum speed of the UAV is preset
as Vmax (m/s) with Vmax ≥ ‖uF− uI‖/T to guarantee that at least one feasible trajectory of the
UAV exists. The corresponding maximum speed constraint is expressed as2

‖v[n]‖ =
1

τ
‖u[n]− u[n− 1]‖ ≤ Vmax, ∀n, (1)

where the UAV is assumed to fly at a constant velocity v[n] = (u[n]−u[n− 1])/τ during each

time slot n ∈ N .
The wireless channels between the UAV and ground nodes are assumed to be dominated by

LoS links [29]3, and channel reciprocity holds. Given h0 as the channel power gain at a reference
distance of d0 = 1 m, the channel power gains for the channels between the UAV and the AP
as well as UE k ∈ K at time slot n can be respectively expressed as

hAP[n] =
h0

d2
AP[n]

=
h0

‖u[n]− s0‖2 +H2
, ∀n, (2)

1H is chosen as the minimum altitude that is appropriate to the work terrain and can avoid buildings without frequent

descending and ascending during the task completion time [18–22].
2Without loss of generality, the ∀n and ∀k correspond to ∀n ∈ N and ∀k ∈ K in this paper.
3The recent field experiments operated by Qualcomm have verified that the air-ground channels of UAV are dominated by

LoS links if proper altitudes are chosen [30], which is applicable in our considered scenario within a short frame T .



hk[n] =
h0

d2
k[n]

=
h0

‖u[n]− sk‖2 +H2
, ∀k, n, (3)

where dAP[n] and dk[n] are the corresponding distances.

B. Computing Methods for UEs’ Task-Input Data

The computation tasks at the UEs involve a large amount of task-input data (e.g., program

codes and input parameters), measured by bits. We use the notation Ck to represent the amount of

required computing resource for computing 1-bit of UE k’s input data (i.e., the number of CPU

cycles required). Also, Ok ∈ (0, 1) represents the ratio of UE k’s task-output data size to that of

the task-input data, which means that computing Ik bits of task-input data will generate OkIk bits

of task-output data for UE k ∈ K. Note that the UEs’ task-input data are bit-wise independent

and can be arbitrarily divided to facilitate parallel trade-offs between local computing at the UEs

and computation offloading to the UAV or further to the AP with the help of the UAV.
In summary, the UEs can compute their task-input data in a partial offloading fashion with the

following three ways: data computed locally at the UEs, data computed remotely at the UAV by
offloading, and data computed remotely at the AP by further offloading. To avoid interference
among the UEs during the input data offloading or output data downloading processes by using
the latter two offloading methods, we adopt the time-division multiple access (TDMA) protocol.
Each slot n ∈ N is further divided into K durations, and the operations related to UE k are all
executed in the k-th duration tk[n] ∈ [0, τ ] for k ∈ K, satisfying the following constraint

K∑
k=1

tk[n] ≤ τ, ∀n. (4)

1) Data Computed Locally at the UEs: The dynamic voltage and frequency scaling (DVFS)

technique is adopted at all the UEs for computing [31]. Denoting the CPU frequency of UE

k during slot n as fk[n] (cycles/s), its corresponding computation bits Lloc
k [n] and the energy

consumption Eloc
k [n] during time slot n can be respectively described as

Lloc
k [n] = τfk[n]/Ck, ∀k, n, (5)

Eloc
k [n] = τκkf

3
k [n] ≡ κkC

3
k

τ2
(Lloc

k [n])3, ∀k, n, (6)

where κk is the effective capacitance coefficient of UE k. From the above expressions, we can

observe that optimizing fk[n] for DVFS can be equivalently recast into optimizing Lloc
k [n].



2) Data Computed Remotely at the UAV by Offloading: The UEs can resort to the UAV for
help by offloading their computation task-input data to the UAV, and part of the offloaded data
will be computed at the UAV. Let P off

k [n] and toff
k [n] ∈ [0, tk[n]] denote the transmit power for

UE k and the allocated time for offloading its task-input data to the UAV at time slot n. Then
the offloaded task-input bits and the energy consumption of UE k can be calculated as

Loff
k [n] = toff

k [n]B log2

(
1 +

P off
k [n]hk[n]

N0

)
, ∀k, n, (7)

Eoff
k [n] = P off

k [n]toff
k [n] (8a)

≡ N0

hk[n]

(
2
Loff
k [n]/toffk [n]

B − 1

)
toff
k [n], ∀k, n (8b)

where N0 denotes the noise power.
Note that the UAV can help compute UE k’s task for the whole duration allocated to UE k, i.e.,

tk[n], for n ∈ N , by using its own CPU resources. Assume that the UAV also adopts the DVFS
technique to improve its energy efficiency for computing, and the corresponding adjustable CPU
frequency is denoted as fU,k[n]. Hence, the completed computation bits and the related energy
consumption of UAV for helping UE k during the time slot n can be respectively expressed as

LU,k[n] = tk[n]fU,k[n]/Ck, ∀k, n, (9)

EU,k[n] = tk[n]κUf
3
U,k[n] (10a)

≡ κUC
3
ktk[n]

(
LU,k[n]

tk[n]

)3

, ∀k, n, (10b)

where κU is the effective capacitance coefficient of the UAV. It should be noted that computing

LU,k[n] bits of UE k’s task-input data will induce OkLU,k[n] bits of task-output data, which

should be downloaded from the UAV to UE k later.
3) Data Computed Remotely at the AP by Further Offloading: Due to limited resources, the

UAV may further offload part of the UEs’ offloaded task-input data to the more powerful AP.
Let P off

U,k[n] and toff
U,k[n] ∈ [0, tk[n]] denote the UAV’s transmit power and the allocated time for

offloading UE k’s task-input data from the UAV to the AP at time slot n. Thus, the corresponding
further offloaded task-input bits and energy consumption of the UAV at time slot n are given as

Loff
U,k[n] = toff

U,k[n]B log2

(
1 +

P off
U,k[n]hAP[n]

N0

)
, ∀k, n, (11)

Eoff
U,k[n] = P off

U,k[n]toff
U,k[n] (12a)

≡ N0

hAP[n]

(
2
Loff
U,k[n]/toffU,k[n]

B − 1

)
toff
U,k[n], ∀k, n. (12b)

After computing Loff
U,k[n] bits of the UE k’s task-input data at the AP, OkL

off
U,k[n] bits of

task-output data will be generated for UE k. We assume that the computing time at the AP

is negligible. After that, the AP will send UE k’s task-output data back to the UAV also with
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negligible time. In other words, the UAV can receive the task-output data from the AP in the

same duration of its offloading process, i.e., toff
U,k[n].

The generated task-output data at the UAV by applying the latter two offloading methods
will then be downloaded back to the corresponding UEs. Let P down

U,k [n] and tdown
U,k [n] ∈ [0, tk[n]]

denote the UAV’s transmit power and the allocated time for downloading the task-output data
from the UAV to UE k at time slot n. Hence, the corresponding downloaded task-output bits
and the energy consumption of the UAV are found as

Ldown
U,k [n] = tdown

U,k [n]B log2

(
1 +

P down
U,k [n]hk[n]

N0

)
, ∀k, n, (13)

Edown
U,k [n] = P down

U,k [n]tdown
U,k [n] (14a)

≡ N0

hk[n]

(
2
Ldown
U,k [n]/tdown

U,k [n]

B − 1

)
tdown
U,k [n], ∀k, n. (14b)

According to the previous analysis, we have the following time allocation constraint for UE
k at time slot n

toff
k [n] + toff

U,k[n] + tdown
U,k [n] ≤ tk[n], ∀k, n, (15)

which guarantees that no interference exists among UEs during the task-related information

transmissions by leveraging the aforementioned TDMA protocol as shown in Fig. 2.
Assuming that the UAV requires one time slot to process the received data, including the task-

input data from the UEs and the task-output data from the AP. Hence, two information-causality
constraints related to the UEs’ task-input data and the task-output data should be satisfied. Note
that the UAV can only compute or offload UEs’ task-input data that has already been received
in the previous time slots, which leads to the first information-causality constraint

n∑
i=2

(
LU,k[i] + Loff

U,k[i]
)
≤
n−1∑
i=1

Loff
k [i], (16)

for n ∈ N2 = {2, . . . , N − 1} and k ∈ K. In a similar way, the UAV can only download the
task-output data that has already been generated in the previous time slots, either at the UAV or
downloaded from the AP, which gives the second information-causality constraint



n∑
i=3

Ldown
U,k [i] ≤ Ok

n−1∑
i=2

(
LU,k[i] + Loff

U,k[i]
)
, (17)

for n ∈ N3 = {3, . . . , N} and k ∈ K. Note that the UEs should not offload the task-input data

at the last two slots, while the UAV should not compute or further offload the input data at the

first and the last slots, nor download the output data to the UEs in the first two slots.

C. Energy Harvesting Model and Energy Constraints

The energy consumed by the UEs is harvested from the RF charging WPT of the UAV, while
the energy consumed by the UAV is fueled from the laser charging WPT of the AP. Assume
that a laser transmitter is installed at the AP for transferring laser energy to the UAV with a
constant power, denoted as P0, and thus the UAV’s harvested energy at time slot n through a
linear energy harvesting model is given as

ÊU[n] = ηUgAP[n]P0τ, ∀n, (18)

where ηU ∈ (0, 1] is the energy conversion efficiency for the UAV. Here, gAP[n] =
Aϑe−αdAP[n]

(D+βdAP[n])2

is the equivalent channel for laser charing WPT from the AP to the UAV4, where A denotes the
area of the laser receiver’s telescope or collection lens, ϑ is the combined transmission receiver
optical efficiency, α is the attenuation coefficient of the channel medium in m−1, D indicates the
size of the initial laser beam, and β is the angular spread [25, 26]. Suppose that the RF energy
transmit power of the UAV at time slot n is PU[n]. Thus the energy consumption of the UAV
for WPT and the corresponding harvested energy at UE k ∈ K can be expressed as5

EWPT
U [n] = PU[n]τ, ∀n, (19)

Êk[n] = ηkhk[n]PU[n]τ, ∀k, n, (20)

where ηk ∈ (0, 1] is the energy conversion efficiency of UE k.
The energy consumption of the UEs and the UAV for task computation, offloading and down-

loading has been obtained in Section II-B. Apart from this, the propulsion energy consumption
of the UAV should also be taken into consideration. Supposing that the time slot duration τ is
sufficiently small, the UAV’s flying during each slot can be regarded as a straight-and-level flight
with constant speed v[n]. Hence, taking a fixed-wing UAV as an example [29, 32], its propulsion
energy consumption at time slot n can be expressed as

Eprop
U [n] = τ

(
ζ1‖v[n]‖3 +

ζ2
‖v[n]‖

)
, ∀n, (21)

4Here gAP[n] = hAP[n] if the RF charging is adopted for WPT from the AP to the UAV.
5We assume that the input RF power of UEs are within the linear regime of the rectifier, so the linear energy harvesting

model is adopted as in [22].



where ζ1 and ζ2 are some fixed parameters related to the UAV specifications.
As a result, we can obtain the total energy consumption of UE k ∈ K and the UAV in each

time slot n ∈ N as
Ek[n] =Eloc

k [n] + Eoff
k [n], ∀k, n, (22)

EU[n] =

K∑
k=1

(
EU,k[n] + Eoff

U,k[n] + Edown
U,k [n]

)
+ EWPT

U [n] + Eprop
U [n], ∀n. (23)

Hence, we can respectively obtain the following energy harvesting causality constraints for UE
k and the UAV as n∑

i=1

Ek[i] ≤
n∑
i=1

Êk[i], ∀k, n, (24)

n∑
i=1

EU[i] ≤
n∑
i=1

ÊU[i], ∀n. (25)

D. Problem Formulation

We aim at improving the computing performance by maximizing the WSCTB of UEs, which
is equivalent to maximizing the corresponding energy efficiency of the AP. In our model, the
UAV’s energy transmit power {PU[n]} at each time slot, the UEs’ local computing task sizes
{Lloc

k [n]}, offloading task sizes {Loff
k [n]} and the corresponding allocated time {toff

k [n]} at each
time slot, the UAV’s computing task sizes {LU,k[n]}, further offloading task sizes {Loff

U,k[n]},
downloading task sizes {Ldown

U,k [n]}, and the corresponding allocated time {tk[n]}, {toff
U,k[n]},

{tdown
U,k [n]} at each time slot, along with the UAV’s trajectory {u[n]} will be optimized jointly

to maximize the WSCTB. The problem is formulated as

max
L,t,PU,u

K∑
k=1

wk

(
N∑
n=1

Lloc
k [n] +

N−2∑
n=1

Loff
k [n]

)
(26a)

s.t.
K∑
k=1

tk[n] ≤ τ, ∀n, tk[n] ≥ 0, ∀n, k, (26b)

toff
k [n] + toff

U,k[n] + tdown
U,k [n] ≤ tk[n],∀n, k, (26c)

n∑
i=2

(
LU,k[i] + Loff

U,k[i]
)
≤
n−1∑
i=1

Loff
k [i], ∀n ∈ N2,∀k, (26d)

n∑
i=3

Ldown
U,k [i] ≤ Ok

n−1∑
i=2

(
LU,k[i] + Loff

U,k[i]
)
,∀n ∈ N3,∀k, (26e)

N−1∑
n=2

(
LU,k[n] + Loff

U,k[n]
)

=

N−2∑
n=1

Loff
k [n], ∀k, (26f)

N∑
n=3

Ldown
U,k [n] = Ok

N−1∑
n=2

(
LU,k[n] + Loff

U,k[n]
)
, ∀k, (26g)

n∑
i=1

Ek[i](L, t,u) ≤ ηkτ
n∑
i=1

hk[i]PU[i], ∀n, k, (26h)



n∑
i=1

EU[i](L, t,PU,u) ≤ ηUτP0

n∑
i=1

gAP[i], ∀n, (26i)

PU[n] ≥ 0, ∀n, (26j)

Lloc
k [n] ≥ 0, ∀n, k, (26k)

Loff
k [N − 1] = Loff

k [N ] = 0, Loff
k [n] ≥ 0, ∀n ∈ N1,∀k, (26l)

LU,k[1] = LU,k[N ] = 0, LU,k[n] ≥ 0, ∀n ∈ N2,∀k, (26m)

Loff
U,k[1] = Loff

U,k[N ] = 0, Loff
U,k[n] ≥ 0, ∀n ∈ N2,∀k, (26n)

Ldown
U,k [1] = Ldown

U,k [2] = 0, Ldown
U,k [n] ≥ 0, ∀n ∈ N3,∀k, (26o)

toff
k [N − 1] = toff

k [N ] = 0, toff
k [n] ≥ 0, ∀n ∈ N1,∀k, (26p)

toff
U,k[1] = toff

U,k[N ] = 0, toff
U,k[n] ≥ 0, ∀n ∈ N2,∀k, (26q)

tdown
U,k [1] = tdown

U,k [2] = 0, tdown
U,k [n] ≥ 0, ∀n ∈ N3,∀k, (26r)

u[0] = uI, u[N ] = uF, (26s)

‖u[n]− u[n− 1]‖ ≤ Vmaxτ, ∀n, (26t)

where {wk ≥ 0}k∈K denotes the set of UEs’ weights for their completed task-input bits and

N1 = {1, . . . , N − 2}. The optimization variables include L , {Lloc
k [n], Loff

k [n], LU,k[n], L
off
U,k[n],

Ldown
U,k [n]}k∈K,n∈N and t , {tk[n], toff

k [n], toff
U,k[n], t

down
U,k [n]} k∈K,n∈N respectively denoting the sets

of the computation task allocation variables and the time allocation variables, PU , {PU[n]}n∈N
being the set of the UAV’s energy transmit power at each time slot, and u , {u[n]}n∈N indicating

the set of UAV’s horizontal locations, i.e., the trajectory of UAV.

III. ALGORITHM DESIGN

The problem (26) is non-convex because of the energy causality constraints (26h) and (26i),

where the variables L, t, PU are strongly coupled with the UAV’s trajectory u. Besides, the

computation task allocation variables {Loff
k [n]}, {LU,k[n]}, {Loff

U,k[n]}, {Ldown
U,k [n]} in L are highly

coupled with the corresponding time allocation variables {toff
k [n]}, {tk[n]}, {toff

U,k[n]}, {tdown
U,k [n]}

in t, respectively. To tackle the challenges, we propose a three-step block coordinate descending

algorithm to optimize the computational task allocation variables in L and the UAV’s energy

transmit power in PU, the time allocation variables in t, and the UAV’s trajectory u iteratively.

In the (χ + 1)-th (χ = 0, 1, 2, . . . ) iteration, we first optimize L and PU with t and u fixed

as the optimized values achieved in the χ-th iteration, denoted as tχ and uχ, and the obtained



solutions are written as Lχ+1 and PU,χ+1, where the task allocation parameters obtained in Lχ+1

are temporary given tχ and uχ. Then we optimize the time allocation t with the given uχ and

Lχ+1, PU,χ+1, to obtain the solution tχ+1. Finally, the UAV’s trajectory u is optimized with

the given Lχ+1, PU,χ+1 and tχ+1, and the obtained solution is denoted as uχ+1. The final Lχ+1

for the (χ + 1)-th iteration can be obtained with tχ+1 and uχ+1. The details of the three-step

block coordinate descending algorithm for solving the WSCTB maximization problem (26) at

the (χ+ 1)-th iteration with tχ and uχ are presented in the following subsections.

A. Computation Task and UAV’s WPT Power Allocation

Here, we consider a sub-problem of the original WSCTB maximization problem (26) by fixing
the time allocation t and the UAV’s trajectory u as tχ and uχ, denoted as the computation task
and UAV’s power allocation (CTUPA) problem. With the given uχ, the time-dependent channels
defined in (2), (3) and (18) are known as {hAP,χ[n]}n∈N , {hk,χ[n]}k∈K,n∈N and {gAP,χ[n]}n∈N .
Hence, the CTUPA problem (P1) can be expressed as

(P1) : max
L,PU

K∑
k=1

wk

(
N∑
n=1

Lloc
k [n] +

N−2∑
n=1

Loff
k [n]

)
(27a)

s.t. (26d)− (26o). (27b)

By fixing tχ and uχ, the energy-causality constraints (26h) and (26i) have been turned into

convex forms, making (P1) a convex optimization problem with respect to (w.r.t.) L and PU.

Here, the Lagrange method [33] is leveraged to solve problem (P1).

Theorem 1. The optimal solution of problem (P1) corresponding to UE k ∈ K is given in

(28)-(33) (where P low
U,χ+1[n] given by (34) and P up

U,χ+1[n] given by (35) respectively denote a lower

bound and an upper bound solution of the UAV’s energy transmit power in (33)).

Lloc
k,χ+1[n] =

τ

Ck

√
wk

3κkCk
∑N
i=n ξ

∗
k,i

, n ∈ N , (28)

Loff
k,χ+1[n] =


Btoff

k,χ[n]

[
log2

[
Bhk,χ[n]

(
wk + λ∗k +

N−1∑
i=n+1

γ∗k,i

)]+

− log2

(
N0 ln 2

N∑
i=n

ξ∗k,i

)]+

, n ∈ N1,

0, n = N − 1 or N,

(29)

LU,k,χ+1[n] =


tk,χ[n]

√√√√ 1

3κUC3
k

∑N
i=n ρ

∗
i

[
Ok

N∑
i=n+1

µ∗k,i −
N−1∑
i=n

γ∗k,i −Okν∗k − λ∗k

]+

, n ∈ N2,

0, n = 1 or N,

(30)



Loff
U,k,χ+1[n] =



Btoff
U,k,χ[n]

[
log2

[
BhAP,χ[n]

(
Ok

N∑
i=n+1

µ∗k,i −
N−1∑
i=n

γ∗k,i −Okν∗k − λ∗k
)]+

− log2

(
N0 ln 2

N∑
i=n

ρ∗i

)]+

, n ∈ N2,

0, n = 1 or N,

(31)

Ldown
U,k,χ+1[n] =


Btdown

U,k,χ[n]

[
log2

[
Bhk,χ[n]

(
ν∗k −

N∑
i=n

µ∗k,i

)]+

− log2

(
N0 ln 2

N∑
i=n

ρ∗i

)]+

, n ∈ N3,

0, n = 1 or 2,

(32)

PU,χ+1[n] =


P up

U,χ+1[n], if

N∑
i=n

ρ∗i <

K∑
k=1

(
ηkhk,χ[n]

N∑
i=n

ξ∗k,i

)
, n ∈ N ,

P low
U,χ+1[n], otherwie, n ∈ N ,

(33)

P low
U,χ+1[n] = max

{[ n∑
i=1

Ek[i](Lχ+1, tχ,uχ)

ηkτhk,χ[n]
−

n−1∑
i=1

hk,χ[i]P low
U,χ+1[i]

hk,χ[n]

]+
}
k∈K

, (34)

P up
U,χ+1[n] =

[
1

τ

n∑
i=1

(
ηUτP0gAP,χ[i]− Eself

U [i](Lχ+1, tχ,uχ)
)
−
n−1∑
i=1

P up
U,χ+1[i]

]+

, (35)

Eself
U [n](Lχ+1, tχ,uχ) =

K∑
k=1

(
EU,k[n] + Eoff

U,k[n] + Edown
U,k [n]

)
+ Eprop

U [n]. (36)

Here, γ∗k,n ≥ 0, µ∗k,n ≥ 0, ξ∗k,n ≥ 0, ρ∗n ≥ 0 for k ∈ K, n ∈ N respectively indicate the optimal

Lagrange multipliers associated with the inequality constraints (26d), (26e), (26h), (26i) in

problem (P1), while λ∗k and ν∗k for k ∈ K are respectively the optimal Lagrange multipliers

associated with the equality constraints (26f) and (26g) in problem (P1). We then have Lχ+1 =

{Lloc
k,χ+1[n], L

off
k,χ+1[n], LU,k,χ+1[n], L

off
U,k,χ+1[n], L

down
U,k,χ+1[n]}, and PU,χ+1 = {PU,χ+1[n]}.

Proof. See Appendix A.

Remark 1. The expressions of Lloc
k,χ+1[n] and Loff

k,χ+1[n] in Theorem 1 indicate that the weight

values of UEs, i.e., {wk}k∈K, play an important role in determining the completed UEs’ task-

input data. The UEs with larger weight values are more likely to complete more task-input data

through both local computing and computation offloading.

Remark 2. The expressions of Loff
k,χ+1[n] and Loff

U,k,χ+1[n] in Theorem 1 further show that the

UEs with good offloading (or downloading) channels at any time slot, i.e., hk,χ[n], are more

likely to offload more computation bits for remote computing at the UAV or the AP.

Next, we will utilize the subgradient method [34] to obtain the Lagrange multipliers in γ∗ =

{γ∗k,n}, µ∗ = {µ∗k,n}, ξ
∗ = {ξ∗k,n} and ρ∗ = {ρ∗n}, related to the inequality constraints (26d),



(26e), (26h) and (26i), as described in the following Lemma 1. Furthermore, the optimal Lagrange

multipliers in λ∗ = {λ∗k} and ν∗ = {ν∗k} related to the equality constraints (26f) and (26g) can

be obtained by leveraging the bi-section search method, as summarized in Lemma 2.

Lemma 1. At the (j + 1)-th (j = 1, 2, . . . ) iteration of the subgradient algorithm, the

corresponding Lagrange multipliers {γk,n}, {µk,n}, {ξk,n}, {ρn} are given as6

γk,n,j+1 = [γk,n,j − ε(γ)
j ∆γk,n,j ]

+, ∀n ∈ N2,∀k, (37)

µk,n,j+1 = [µk,n,j − ε(µ)
j ∆µk,n,j ]

+, ∀n ∈ N3,∀k, (38)

ξk,n,j+1 = [ξk,n,j − ε(ξ)
j ∆ξk,n,j ]

+, ∀n ∈ N ,∀k, (39)

ρn,j+1 = [ρn,j − ε(ρ)
j ∆ρn,j ]

+, ∀n, (40)

where ε(λ)
j , ε(µ)

j , ε(ξ)
j and ε(ρ)

j respectively denote the iterative steps for obtaining the Lagrange

multipliers in γ, µ, ξ and ρ at the j-th iteration, and the subgradients are expressed as

∆γk,n,j =

n−1∑
i=1

Loff
k,j [i]−

n∑
i=2

(
LU,k,j [i] + Loff

U,k,j [i]
)
, (41)

∆µk,n,j = Ok

n−1∑
i=2

(
LU,k,j [i] + Loff

U,k,j [i]
)
−

n∑
i=3

Ldown
U,k,j [i], (42)

∆ξk,n,j = ηkτ

n∑
i=1

hk,χ[i]PU,j [i]−
n∑
i=1

Ek[i](Lj , tχ,uχ), (43)

∆ρn,j = ηUτP0

n∑
i=1

gAP,χ[i]−
n∑
i=1

EU[i](Lj ,PU,j , tχ,uχ). (44)

Note that {Lloc
k,j[n]}, {Loff

k,j[n]}, {LU,k,j[n]}, {Loff
U,k,j[n]}, {Ldown

U,k,j[n]}, and {PU,j[n]} are the task

allocation and the UAV’s energy transmit power obtained from Theorem 1 with the Lagrange

multipliers obtained at the j-th iteration.

Remark 3. During each iteration of the subgradient method, the UAV’s energy transmit power

{PU,j+1[n]} plays an important role in trading off maximizing the WSCTB and satisfying the

constraints. If the value of
∑N

i=n ξk,i,j is relatively large, leading to small values of Lloc
k,j+1[n]

and Loff
k,j+1[n], PU,j+1[n] prefers to choose its upper bound according to (33) to maximize the

WSCTB of UEs. If the value of
∑N

i=n ρi,j is relatively large, leading to small values of LU,k,j+1[n],

Loff
U,k,j+1[n] and Ldown

U,k,j[n], PU,j+1[n] tends to choose its lower bound according to (33), where

more UAV’s energy will be used to improve these three values to satisfy the task allocation

constraints (26d)-(26g).

6In Lemma 1, Lemma 2 and the corresponding proofs, we omit the index χ + 1 at the subscripts of Lχ+1 and PU,χ+1 as

well as the individual optimized parameters in Lχ+1 and PU,χ+1 for conciseness.



Lemma 2. Based on the obtained γj+1, µj+1, ξj+1 and ρj+1 in Lemma 1, we can then obtain

λj+1 and νj+1 by bi-section search of
{∑N−2

n=1 L
off
k,j+1[n] ∈ [L

min

k,j+1, L
max

k,j+1]
}
k∈K

at the iteration.

For a given
∑N−2

n=1 L
off
k,j+1[n], the corresponding λk,j+1 and νk,j+1 can be achieved with another

two bi-section searches within λk,j+1 ∈ [λmin
k,j+1, λ

max
k,j+1] and νk,j+1 ∈ [νmin

k,j+1, ν
max
k,j+1] with

λmin
k,j+1 = −wk − γ̂k,1,j+1, (45)

λmax
k,j+1 = −γk,N−1,j+1 +Okµ̂k,2,j+1, (46)

νmin
k,j+1 = µk,N,j+1, (47)

νmax
k,j+1 = µ̂k,2,j+1 + (wk + γ̂k,1,j+1)/Ok, (48)

where γ̂k,n =
∑N−1

i=n+1 γk,i and µ̂k,n =
∑N

i=n+1 µk,i. In fact, we have L
min

k,j+1 = min{V C1
k,j+1(λ

min
k,j+1),

V C2
k,j+1(ν

min
k,j+1), V

C3
k,j+1(λ

max
k,j+1, ν

max
k,j+1)}, L

max

k,j+1 = max{V C1
k,j+1(λ

max
k,j+1), V

C2
k,j+1(ν

max
k,j+1), V

C3
k,j+1(λ

min
k,j+1,

νmin
k,j+1)}, in which the V C1

k,j+1, V C2
k,j+1 and V C3

k,j+1 are the right side values of (B.1), (B.2) and

(B.3) in Appendix B w.r.t. λk,j+1 and νk,j+1.

The finally obtained λk,j+1 and νk,j+1 corresponding to the optimal
∑N−2

n=1 L
off
k,j+1[n] should

satisfy that
∑N−2

n=1 L
off
k,j+1[n] = Vk,C1(λk,j+1) = Vk,C2(νk,j+1) = Vk,C3(λk,j+1, νk,j+1), which

indicates the termination of the bi-section searches.

Proof. See Appendix B.

Through Lemma 1 and Lemma 2, we can finally obtain the optimal dual variables γ∗,µ∗, ξ∗,ρ∗

and λ∗,ν∗, when the subgradient algorithm converges and the bi-section searches terminate,

leading to a guaranteed convergence [33].

Lemma 3. With the computation task allocation parameters {Loff

k,χ+1[n]}, {L
off

U,k,χ+1[n]}, and

{Ldown

U,k,χ+1[n]} in Theorem 1, we can further obtain the corresponding transmit power according

to (8), (12) and (14), which are given by7

P off
k,χ+1[n] =

N0

hk[n]

(
2
Loff
k,χ+1[n]/toffk,χ[n]

B − 1

)
, (49)

P off
U,k,χ+1[n] =

N0

hAP[n]

(
2
Loff
U,k,χ+1[n]/toffU,k,χ[n]

B − 1

)
, (50)

P down
U,k,χ+1[n] =

N0

hk[n]

(
2
Ldown
U,k,χ+1[n]/tdown

U,k,χ[n]

B − 1

)
. (51)

Besides, with {LU,k,χ+1[n]}, we can further obtain the corresponding CPU frequency of the

UAV through (9) as

7We omit ∀n ∈ N1, ∀k in (49), ∀n ∈ N2, ∀k in (50), and ∀n ∈ N3, ∀k in (51) for the sake of space limitation. Similarly,

this rule also applies to the equations (58), (59), (60).



fU,k,χ+1[n] = Ck
LU,k,χ+1[n]

tk,χ[n]
, ∀n ∈ N2,∀k. (52)

To help our discussion, we split the parameters in Lχ+1 into two sets as Lloc
χ+1 = {Lloc

k,χ+1[n]}

and Rres
χ+1 = {P off

k,χ+1[n], P
off
U,k,χ+1[n], P

down
U,k,χ+1[n], fU,k,χ+1[n]}, which are respectively the pa-

rameter sets related to task-input data sizes for local computing as well as the radio/computing

resources required for remote computation offloading. In the next sub-section, the time allocation

will be optimized with the fixed Lloc
χ+1, Rres

χ+1, PU,χ+1 and uχ to obtain tχ+1.

B. Time Allocation

In this section, another sub-problem of the original WSCTB maximization problem (26) in
the (χ+1)-th iteration is addressed to optimize t, denoted as the time allocation problem, with
the UAV’s trajectory uχ, the optimized task allocation related parameters in Lloc

χ+1 and Rres
χ+1,

and the UAV’s WPT power allocation PU,χ+1. In this case, we can re-express UE k’s offloading
bits, the UAV’s offloading, downloading, and computing bits as functions of t by substituting
{P off

k,χ+1[n]}, {P off
U,k,χ+1[n]}, {P down

U,k,χ+1[n]}, and {fU,k,χ+1[n]} in expressions (49), (50), (51), and
(52) into the expressions (7), (11), (13), and (9) respectively, which are given as

Loff
k [n](toff

k [n]) = toff
k [n]

Loff
k,χ+1[n]

toff
k,χ[n]

, ∀n ∈ N1,∀k, (53)

Loff
U,k[n](toff

U,k[n]) = toff
U,k[n]

Loff
U,k,χ+1[n]

toff
U,k,χ[n]

, ∀n ∈ N2,∀k, (54)

Ldown
U,k [n](tdown

U,k [n]) = tdown
U,k [n]

Ldown
U,k,χ+1[n]

tdown
U,k,χ[n]

,∀n ∈ N3,∀k, (55)

LU,k[n](tk[n]) = tk[n]fU,k,χ+1[n]/Ck, ∀n ∈ N2,∀k. (56)

Hence, the equivalent time allocation subproblem can be expressed as problem (P2) given below

(P2) : max
t

K∑
k=1

wk

N∑
n=1

toff
k [n]

Loff
k,χ+1[n]

toff
k,χ[n]

(57a)

s.t. (26b)− (26i), (26m)− (26r), (57b)

where the functions (53)-(56) are used in constraints (26d)-(26g), and the energy consumption

expressions in (26h) and (26i) are referred to the forms in (6), (8a), (10a), (12a) and (14a) with

the given Lloc
χ+1, Rres

χ+1, PU,χ+1 and uχ. It can be verified that the sub-problem (P2) is a linear

programming w.r.t. t, and thus the optimal solution tχ+1 can be readily solved by CVX [28]. The

completed computation task-input bits at the UAV in the (χ+1)-th iteration, i.e., {LU,k,χ+1[n]},

can be finally achieved by substituting {tk,χ+1[n]} into (56).



C. UAV Trajectory Design

Here, the sub-problem for designing the UAV’s trajectory u in the (χ + 1)-th iteration is
considered, by assuming that the local computing task-input data size, the resource allocation
for computation offloading, the time allocation, and the energy transmit power of the UAV are
fixed as Lloc

χ+1, Rres
χ+1, tχ+1, and PU,χ+1, respectively. Next, we update the computation task sizes

related to offloading as the functions of u as

Loff
k [n](u[n]) = toff

k,χ+1[n]B log2

(
1 +

P off
k,χ+1[n]h0/N0

‖u[n]− sk‖2 +H2

)
, (58)

Loff
U,k[n](u[n]) = toff

U,k,χ+1[n] log2

(
1 +

P off
U,k,χ+1[n]h0/N0

‖u[n]− s0‖2 +H2

)
, (59)

Ldown
U,k [n](u[n]) = tdown

U,k,χ+1[n] log2

(
1 +

P down
U,k,χ+1[n]h0/N0

‖u[n]− sk‖2 +H2

)
. (60)

Hence, the UAV trajectory design problem (P3) is written as

(P3) : max
u

K∑
k=1

wk

N∑
n=1

Loff
k [n](u[n]) (61a)

s.t. (26d)− (26i), (26s), (26t), (61b)

where the functions (58)-(60) and {LU,k,χ+1[n]} are used in constraints (26d)-(26i), and the
energy consumption expressions in (26h) and (26i) are referred to the forms in (6), (8b), (10b),
(12b) and (14b) with the given Lloc

χ+1, PU,χ+1, and tχ+1. Note that the objective function is not
concave and the constraints (26d)-(26i) are not convex w.r.t u. To address this issue, we first
equivalently re-express the problem (P3) as

(P3) : max
u,LW

LW (62a)

s.t. (26d)− (26i), (26s), (26t), (62b)
K∑
k=1

wk

N∑
n=1

Loff
k [n](u[n]) ≥ LW, (62c)

and then leverage the SCA algorithm to achieve an efficient solution of problem (P3).
In the (m+ 1)-th (m = 0, 1, 2, . . . ) iteration of the SCA algorithm, we first approximate the

non-concave items Loff
k [n](u[n]) in (26d), (62c), Loff

U,k[n](u[n]) in (26e), (26f), Ldown
U,k [n](u[n]) in

(26g), hk[n](u[n]) in (26h), and gAP[n](u[n]) in (26i), by their concave lower bounds, respectively
denoted as L̃off

k [n](u[n]), L̃off
U,k[n](u[n]), L̃

down
U,k [n](u[n]), h̃k[n](u[n]), and g̃AP[n](u[n]) as

Loff
k [n](u[n]) ≥ L̃off

k [n](u[n]) = toff
k,χ+1[n]B

{
log2

(
1 +

P off
k,χ+1[n]h0/N0

d2
k(um[n])

)

−
P off
k,χ+1[n]h0

N0 ln 2

‖u[n]− sk‖2 − ‖um[n]− sk‖2

d2
k(um[n])

(
d2
k(um[n]) + P off

k,χ+1[n]h0/N0

)}, (63)

Loff
U,k[n](u[n]) ≥ L̃off

U,k[n](u[n]) = toff
U,k,χ+1[n]B

{
log2

(
1 +

P off
U,k,χ+1[n]h0/N0

d2
AP(um[n])

)



−
P off

U,k,χ+1[n]h0

N0 ln 2

‖u[n]− s0‖2 − ‖um[n]− s0‖2

d2
AP(um[n])

(
d2

AP(um[n]) + P off
U,k,χ+1[n]h0/N0

)}, (64)

Ldown
U,k [n](u[n]) ≥ L̃down

U,k [n](u[n]) = tdown
U,k,χ+1[n]B

{
log2

(
1 +

P down
U,k,χ+1[n]h0/N0

d2
k(um[n])

)

−
P down

U,k,χ+1[n]h0

N0 ln 2

‖u[n]− sk‖2 − ‖um[n]− sk‖2

d2
k(um[n])

(
d2
k(um[n]) + P down

U,k,χ+1[n]h0/N0

)}, (65)

hk[n](u[n]) ≥ h̃k[n](u[n]) = h0
d2
k(um[n]) + ‖um[n]− sk‖2 − ‖u[n]− sk‖2

d4
k(um[n])

, (66)

gAP[n](u[n]) ≥ g̃AP[n](u[n]) = gAP[n](um[n]) + g′AP[n](‖um[n]− s0‖2)(‖u[n]− s0‖2 − ‖um[n]− s0‖2), (67)

which are obtained using the first-order Taylor expansion around the optimized trajectory at the
m-th iteration, denoted as um[n], w.r.t. the convex item ‖u[n] − si‖2, i = 0 or k. Similarly,
the non-convex items Loff

k [n](u[n]) in (26f), Loff
U,k[n](u[n]) in (26d), (26g), and Ldown

U,k [n](u[n])

in (26e), are approximated by their convex upper bounds, respectively denoted as L̂off
k [n](u[n]),

L̂off
U,k[n](u[n]) and L̂down

U,k [n](u[n]) given below

Loff
k [n](u[n]) ≤ L̂off

k [n](u[n]) = toff
k,χ+1[n]B log2

(
1 +

P off
k,χ+1[n]h0/N0

d2
k(um[n]) + 2(um[n]− sk)T (u[n]− um[n])

)
, (68)

Loff
U,k[n](u[n]) ≤ L̂off

U,k[n](u[n]) = toff
U,k,χ+1[n]B log2

(
1 +

P off
U,k,χ+1[n]h0/N0

d2
AP(um[n]) + 2(um[n]− s0)T (u[n]− um[n])

)
, (69)

Ldown
U,k [n](u[n]) ≤ L̂down

U,k [n](u[n]) = tdown
U,k,χ+1[n]B log2

(
1 +

P down
U,k,χ+1[n]h0/N0

d2
k(um[n]) + 2(um[n]− sk)T (u[n]− um[n])

)
, (70)

which are obtained based on the fact that ‖u[n]− si‖2 ≥ ‖um[n]− si‖2 +2(um[n]− si)
T (u[n]−

um[n]), i = 0 or k. To properly deal with the non-linear equality constraints in (26f) and (26g)
in problem (P3), we relax them as the following convex inequality constraints

N−1∑
n=2

(
L̃U,k[n] + L̃off

U,k[n]
)
−
N−2∑
n=1

L̂off
k [n] ≥ −δ, ∀k, (71)

N∑
n=3

L̃down
U,k [n]−Ok

N−1∑
n=2

(
L̂U,k[n] + L̂off

U,k[n]
)
≥ −δ, ∀k, (72)

where δ > 0 is a preset tolerant threshold.
It is further noted that the UAV’s propulsion energy consumption Eprop

U [n] defined in (21) is
not a convex function of u, which makes the energy causality constraints in (26i) non-convex.
In order to deal with this issue, we first define a convex upper bound of Eprop

U [n] as

Êprop
U [n] = τ

(
ζ1‖v[n]‖3 +

ζ2
v[n]

)
, ∀n, (73)

by introducing an auxiliary variable v[n] with a constraint ‖v[n]‖ ≥ v[n], i.e., ‖u[n]−u[n−1]‖2 ≥
v2[n]τ 2. In the m-th iteration of the SCA method, ‖u[n]− u[n− 1]‖2 is then approximated as



its linear lower bound by using the first-order Taylor expansion at a local point um. In this way,
the non-convex additional constraint can be approximated by its convex counterpart as

v2[n]τ2 − 2(um[n]− um[n− 1])T (u[n]− u[n− 1]) + ‖um[n]− um[n− 1]‖2 ≤ 0, ∀n. (74)

With the analysis above, we can formulate an approximated version of (P3) with {L̂off
U,k[n](u[n])}

and {L̃off
k [n](u[n])} in (26d), {L̂down

U,k [n](u[n])} and {L̃off
U,k[n](u[n])} in (26e), {h̃k[n](u[n])} in

(26h), {Êprop
U [n]} and {g̃AP[n](u[n])} in (26i), {L̃off

k [n](u[n])} in (62c), and with the relaxed

convex constraints (71), (72) and (74), in the (m + 1)-th iteration of the SCA method. This

approximated problem are convex w.r.t. the UAV’s location vector u. However, the UAV’s

maximum speed constraint (26t) shows that the UAV’s locations in different slots are coupled

with each other, and thus it is difficult to obtain a closed-form solution of u. Hence, we resort

to CVX [28] to solve (P3) using SCA, and finally we can obtain the UAV’s trajectory in the

(χ+ 1)-th iteration, i.e., uχ+1.
After obtaining Lloc

χ+1, Rres
χ+1, PU,χ+1, tχ+1, and uχ+1, we can finally achieve the task al-

location parameters in the (χ + 1)-th iteration, i.e., Lχ+1 = {Lloc
k,χ+1[n], L

off
k,χ+1[n], LU,k,χ+1[n],

Loff
U,k,χ+1[n], L

down
U,k,χ+1[n]}k∈K,n∈N . Here, the task parameters Loff

k,χ+1[n], L
off
U,k,χ+1[n] and Ldown

U,k,χ+1[n]

are obtained by substituting uχ+1 into (58), (59) and (60), respectively. Hence, the objective value
of (26), i.e., the value of the UEs’ WSCTB, in the (χ+ 1)-th iteration can be found as

Lχ+1 =

K∑
k=1

wk

(
N∑
n=1

Lloc
k,χ+1[n] +

N−2∑
n=1

Loff
k,χ+1[n]

)
. (75)

D. Algorithm, Convergence, and Complexity

The three-step block coordinate descending algorithm is summarized in Algorithm 1, where

the WSCTB maximization problem (26) is solved in an iterative fashion with guaranteed conver-

gence. In the first iteration of the algorithm, with a given initial solution of t and u, the WSCTB

can be obtained after optimizing L and PU through solving the computation task and the UAV’s

WPT power allocation problem (P1), which is convex and can be optimally solved through the

proposed Lagrange method (step 1) with guaranteed convergence [33]; then the WSCTB will

increase after obtaining a better solution of t through optimally solving the linear time allocation

problem (P2) with CVX (step 2); and the WSCTB will further increase after obtaining a better

solution of u by solving the UAV trajectory design problem (P3) through the proposed SCA

method (step 3). Although (P3) is non-convex, we can always find a better solution than the initial

one based on the SCA method also with guaranteed convergence [33]. Then we can obtain the



Algorithm 1 Three-Step Block Coordinate Descending Algorithm for Solving the WSCTB

Maximization Problem (26)
1: Set T , N , K, B, h0, N0, P0, H , Vmax, A, ϑ, D, β, α, s0, uI, uF, ηU, κU, ζ1, ζ2, {sk, wk, Ck, Ok, ηk, κk}k∈K,

the iterative steps of the subgradient method: {ε(γ)
j }, {ε

(µ)
j }, {ε

(ξ)
j }, {ε

(ρ)
j }, and the tolerant thresholds ε, ε;

2: Initialize the iteration index χ = 1 and t1, u1;

3: Repeat 1

4: Step 1: Initialize j = 1, as well as γ1, µ1, ξ1 and ρ1;

5: Repeat 1.1

6: a) Obtain λj , νj with γj , µj , ξj , ρj using Lemma 2;

b) Obtain Lχ,j =
{
Lloc
k,j [n], Loff

k,j [n], LU,k,j [n], Loff
U,k,j [n], Ldown

U,k,j [n]
}

, PU,χ,j = {PU,j [n]} from Theorem 1

with γj , µj , ξj , ρj , λj , νj and tχ, uχ;

c) Calculate the WSCTB, denoted as Lj , by substituting Lχ,j into the objective function of problem (P1);

d) Update γj+1, µj+1, ξj+1, ρj+1 through Lemma 1;

e) j = j + 1;

7: End Repeat 1.1 until convergence, i.e., |Lj − Lj−1| < ε (j > 1), and obtain Lχ+1 = Lχ,j (i.e., Lloc
χ+1 and

Rres
χ+1), PU,χ+1 = PU,χ,j with the obtained γχ, µχ, ξχ, ρχ, and λχ, νχ at the convergence;

8: Step 2: Solve the problem (P2) by CVX with the given Lloc
χ+1, Rres

χ+1, PU,χ+1 and uχ; Then obtain the

optimal solution, i.e., tχ+1, and {LU,k,χ+1[n]}.

9: Step 3: Solve the problem of (P3) through the SCA method with the help of CVX and the given Lloc
χ+1,

Rres
χ+1, PU,χ+1 and tχ+1; Then obtain the final solution, i.e., uχ+1;

10: Obtain the task allocation at the (χ+1)-th iteration, i.e., Lχ+1, with the obtained Lloc
χ+1, Rres

χ+1, PU,χ+1, tχ+1,

and uχ+1; Then calculate the WSCTB through (75).

11: χ = χ+ 1;

12: End Repeat 1 until convergence, i.e., |Lχ − Lχ−1| < ε (χ > 2), and obtain the maximum WSCTB Lχ with

the solution L∗ = Lχ, P∗U = PU,χ, t∗ = tχ, u∗ = uχ;

corresponding WSCTB, i.e., Lχ=2 with the finally updated task allocation parameters in Lχ=2.

In the subsequent iterations, the WSCTB will continue increasing in the same way described

for the first iteration, which means that the objective function of the WSCTB maximization

problem (26) monotonically increases with the iteration index χ by optimizing L, PU, t and

u alternatingly. Besides, the achieved WSCTB Lχ is upper bounded due to the limited system

energy P0T , further ensuring the convergence of the algorithm.

The proposed three-step block coordinate descending algorithm is easy to implement with



acceptable complexity. In Step 1, the complexity mainly comes from the subgradient method for

obtaining {γk,n}, {µk,n}, {ξk,n}, {ρn}, and the bi-section searches of
{∑N−2

n=1 L
off
k [n]

}
, {λk},

{νk} in each iteration. Let θsub > 0, and θL, θλ, θν > 0 denote the computational accuracies of

the subgradient method and the bisectional searches for
{∑N−2

n=1 L
off
k [n]

}
, {λk}, {νk}. Thus, the

corresponding complexity for Step 1 can be calculated as O(1/θ2
sub+K log2(1/θL)(log2(1/θλ)+

log2(1/θν))). Step 2 focuses on solving the time allocation problem (P2), which is a linear pro-

gramming and can be solved by CVX with an acceptable complexity. In Step 3, the approximated

problem of the UAV’s trajectory design problem (P3) in each iteration of the SCA method, can

also be efficiently solved by CVX, which also has an acceptable complexity.

TABLE I
SIMULATION PARAMETERS

Parameter Symbol Value
The total task completion time T 5 seconds
Number of time slots N 50
Number of ground UEs K 4 and 8
The total system bandwidth B 400 MHz
The channel power gain at a reference distance of d0=1 m h0 −30dB
The noise power N0 −60dBm
The energy transmit power of the AP P0 60dBm
The fixed altitude of the UAV H 10 m
The maximum available speed of the UAV Vmax 20 m/s
The area of the laser receiver’s telescope or collection A 10−2 m2

The size of the initial laser beam D 0.05 m
The combined transmission receiver optical efficiency ϑ 0.2
The angular spread β 3.4 ∗ 10−5

The attenuation coefficient of the channel medium α 10−6/m
The energy conversion efficiencies ηU, ηk, ∀k 0.8
The effective switched capacitance of the UAV and UEs κU, κk, ∀k 10−28

The UAV’s propulsion energy consumption related parameters (ζ1, ζ2) (0.00614,15.976)
Required CPU cycles per bit Ck, ∀k 100 cycles/bit
UEs’ task size ratio of output data to input data Ok, ∀k 0.5
The tolerant thresholds ε, ε 10−4

IV. SIMULATION RESULTS

Here, simulation results are given to evaluate the performance of the proposed algorithm by

comparing with some benchmark schemes. The basic simulation parameters are listed in Table I.8

A. Trajectory of the UAV

In this subsection, numerical results for UAV’s trajectory are given in Figs. 3–5, to shed light

on the impact of the UEs’ weight vector (w), the AP’s location (s0), and the randomness of UEs’

8The parameters related to propulsion energy consumption of fixed-wing UAV, i.e., ζ1, ζ2 in (21), are set based on references

[21, 29], while the parameters of laser charging model, i.e., A, ϑ,D, β, α in (18), are set based on references [25, 26].



and AP’s locations as well as UEs’ weight allocation. In Figs. 3 and 4, 4 UEs are served in a

10m× 10m central area with given locations [s1, s2, s3, s4] = [(5, 5), (−5, 5), (−5,−5), (5,−5)]

and UAV’s initial and final locations uI = (−5,−5), uF = (5,−5). The cases of 6 UEs, 8

UEs, 10 UEs and 12 UEs being served in a 20m× 20m central area with random locations and

weights are considered in Fig. 5, where uI = (−10,−10), uF = (10,−10).
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Fig. 3. The UAV’s trajectories for serving 4 UEs in situations

with different UEs’ weight vectors: w = [0.5,0.3,0.1,0.1] for

(a), w = [0.3,0.4,0.2,0.1] for (b), w = [0.1,0.7,0.1,0.1] for

(c), and w =[0.25,0.25,0.25,0.25] for (d).
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Fig. 4. The UAV’s trajectories for serving 4 UEs in

situations with different AP’s location s0: s0 = (0, 0)

for (a), s0 = (0,−5) for (b), s0 = (5, 0) for (c), and

s0 = (0, 5) for (d).

Fig. 3 depicts the UAV’s trajectories in the scenarios with different UEs’ weight vectors,

where the AP is fixed at the origin, i.e., s0 = (0, 0). It can be seen that the UAV tends to

fly close to the UEs with larger weight values, such as UE 1 and UE 2 in (a), (b), and UE 2

in (c). This coincides with the intuition that the UEs with higher priorities should have higher

qualities considering both the system setting and resource scheduling. However, it is interesting

to see that the UAV does not simply head to these UEs one by one directly, but always try to

find a way being close to the AP. Especially at the several initial time slots, the UAV almost

flies directly to the AP. This is due to the fact that the UAV can harvest and store more energy

when getting closer to the AP, and the stored energy is essential to support the UAV’s further

operations, such as broadcasting energy, offloading UEs’ task-input bits to the AP, downloading

the UEs’ task-output bits to the corresponding UEs as well as flying. Besides, being close to the

AP can save the UAV’s energy used for further offloading UEs’ tasks to the AP.

To further show the effects of AP’s location on the UAV’s trajectory, we investigate the UAV’s

trajectories with different AP’s locations in Fig. 4 with w = [0.4, 0.3, 0.2, 0.1] for 4 UEs. This

figure clearly shows that the UAV’s trajectories highly depend on the AP’s locations. No matter
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Fig. 5. The UAV’s trajectories in situations with randomly distributed AP, UEs and random weights for UEs from left to right:

(a) 6 UEs with w = [0.1901, 0.3245, 0.0043, 0.1634, 0.0465, 0.2712]; (b) 8 UEs with w = [0.1109, 0.2148, 0.1032, 0.1022,

0.1156, 0.0565, 0.2113, 0.0855]; (c) 10 UEs with w =[0.2026, 0.0322, 0.1050, 0.1091, 0.0356, 0.2069, 0.0475, 0.0883, 0.1437,

0.0291]; (d) 12 UEs with w = [0.0605, 0.0715, 0.0939, 0.0148, 0.1267, 0.0847, 0.0733, 0.0862, 0.1612, 0.1340, 0.0401, 0.0531].

where the AP is, the UAV’s trajectories look like a radiation pattern centred at the AP and radiated

to the UEs especially those with larger weight values. The reason behind this phenomenon is

that the AP plays two essential roles in determining UAV’s trajectory, one for being the original

energy source and another for being a powerful MEC server. These two roles incentivize the

UAV to find a way to get close to the AP, as described in the analysis of Fig. 3.

In Fig. 5, we show the trajectories of 4 more practical scenarios with 6, 8, 10 and 12 UEs,

where the locations of AP and UEs are randomly distributed in a 20m × 20m central area.

Also, the UEs’ normalized weights are randomly chosen. Similar observations can be obtained

from Figs. 3 and 4. In addition, the results indicate that In order to achieve a good system

performance for maximizing the WSCTB of UEs, the UAV’s trajectory should be properly

designed by considering the trade-off between its distances to the AP and UEs, especially the

UEs with larger weight values. Getting close to the the AP is beneficial to energy harvesting

and reducing the energy consumption for further computation offloading to the AP. In contrast,

being close to the UEs with larger weight values can help reduce the UEs’ energy consumed

for computation offloading to the UAV and the UAV’s energy used for energy broadcasting and

task-output data downloading to the UEs. The saved energy of the UAV and the UEs can be

utilized to complete more task-input data, resulting in improvement of the WSCTB of UEs. It is

interesting to note that the trade-off between the UAV’s distances to the AP and UEs may lead

to back-and-forth tracks of the UAV between the AP and UEs, which is clearly demonstrated in

Figs. 3(a), (b), Figs. 4(a), (b) and Figs. 5(a), (b), (d).
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Fig. 6. The percentages of WPT energy saving at the UAV and the time scheduling for UEs.

In Fig. 6, we study the relationships between the UAV’s trajectories and the UAV’s energy

saving as well as the UEs’ time scheduling by examining the percentage of UAV’s WPT energy

saving w.r.t. the index of the time slots and the percentage of UEs’ time scheduling in the

whole task completion time T . Two cases of 4 UEs and 8 UEs as in Fig. 4(a) and Fig. 5(b) are

considered. Referring to the trajectories shown in Fig. 4(a) and Fig. 5(b), it can be seen that the

UAV tends to harvest and store more energy when flying close to the AP, leading to two peaks

in the energy saving curves. In addition, the UAV’s energy saving decreases dramatically when

flying close to the UE 2, UE 1 in Fig. 4(a) , and UE 2, UE 7 in Fig. 5(b), indicating that the

UAV consumes more energy for energy broadcasting and data downloading when flying close to

the UEs especially those with larger wights in order to increase the energy harvesting efficiency

and improve the system performance. From the histograms of UEs’ time scheduling, we can

observe that the time scheduling is highly related to the UEs’ weight values but not exactly to

the same ratio. Specifically, the UEs with large weights tend to pull the UAV close to them in

order to increase the WSCTB, and thus more time will be scheduled to these UEs.

B. Performance Improvement

In this section, the performance improvement of the proposed algorithm, i.e., the WSCTB, is

verified by simulation results in comparison with several benchmark schemes. The benchmarks

include the ‘Offloading Only’ scheme where computation offloading is the only way for com-

puting without considering local computing at UEs; the ‘UAV as Relay Only’ scheme where

the UAV acts as an information and an energy relay but not an MEC server; the ‘Equal Time

Allocation’ scheme with fixed equal time allocation for all UEs and their active operations; and

the ‘Semi-circle Trajectory’ scheme where the UAV flies through a fixed semi-circle trajectory

with a constant speed (the semi-circle uses the line segment between UAV’s initial and final



locations as the diameter and goes through the origin). In Figs. 7–9, we also show the results

in two cases, one for 4 UEs as in Fig. 4(a) and one for 8 UEs as in Fig. 5(b).
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Fig. 7. The weighted sum completed task-input bits (WSCTB)

of UEs versus the total task completion time T .
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Fig. 8. The weighted sum completed task-input bits (WSCTB)

of UEs versus the number of time slots N .

In Fig. 7, the UEs’ WSCTB results are plotted against the task completion time T . As we can

see, the WSCTBs of all the schemes increase with T , while the proposed solution outperforms all

the other benchmark schemes considerably in both cases. Also, the gaps between the proposed

solution and the other schemes get larger when T is larger, which means that the advantages of

the proposed algorithm in improving the UEs’ WSCTB become more obvious when the system

resource is more abundant. This is realized by properly leveraging all computing resources in

the system, through jointly optimizing the computation task allocation, time allocation, and the

UAV’s WPT power and its trajectory. Note that the ‘Equal Time Allocation’ and ‘Semi-circle

Trajectory’ schemes are obviously worse than the other schemes, reflecting the great effects of

optimizing the time allocation and the UAV’s trajectory.

Fig. 8 shows the WSCTBs of all the schemes w.r.t. the number of time slots N , which further

indicates that the proposed solution can achieve better performance in comparison with the other

benchmarks. We see that the performance of all the schemes enhances as N increases, and this

owes to the fact that the precision of the algorithm gradually improves with an increasing of N

(smaller time slots with larger N ), but at the cost of increasing the complexity of the algorithm.

Hence, there is a trade-off between the system performance and the algorithm complexity through

N . Particularly, the flexibility of the UAV strengthens as N increases, and thus the negative

effects of fixing the UAV’s trajectory become more obvious, supported by the results that the

WSCTBs of the ‘Semi-circle Trajectory’ scheme increase slower than the other schemes and it

is even worse than the ‘Equal Time Allocation’ scheme in the case of 4 UEs when N is large. In



addition, it is easy to note that the increments of all the schemes decrease and the corresponding

WSCTBs gradually saturate as N increases, due to the limitation of the system resources.
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Fig. 9. The weighted sum completed task-input bits (WSCTB)

of UEs versus the AP’s laser energy transmit power P0.
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Fig. 10. The weighted sum completed task-input bits

(WSCTB) of UEs versus the index of iteration χ.

The effects of the AP’s laser energy transmit power, i.e., P0, on the WSCTB are investigated

by the results in Fig. 9. As above, the proposed solution performs better than all the baseline

schemes. This figure further shows that the WSCTBs of all the schemes increase with P0,

which coincides with the intuition. We can also see that the corresponding increasing rates

of the WSCTBs decrease versus P0, due to the fact the performance may be limited by the

other parameters, such as the processing time and the flying speed of the UAV. The ‘Equal Time

Allocation’ and ‘Semi-circle Trajectory’ schemes are far worse than the other schemes especially

in the case of 4 UEs, for not being able to make good use of the energy.

Results in Fig. 10 examines the convergence of the proposed algorithm by presenting the

WSCTB results for four situations. The results clearly show that the proposed algorithm can

converge to proper solutions in all the situations after 3 (for case of 4 UEs) or 4 (for case of

8UEs) iterations. Besides, the heterogeneity of UEs’ weights can help to improve WSCTB since

higher weights can attract UAV to provide higher level of services. Combining the results with

that in Figs. 7–9, we can observe that the performance of WSCTB in a larger serving area (case

of 8 UEs) is worse than that serving a smaller area (case of 4 UEs), and this is quite reasonable

since not only the harvested energy of UAV and UEs decrease but also the consumed energy of

the UAV and UEs increase in a larger serving area, leading to the shrinking of WSCTBs.

Table II presents the running time of the proposed Algorithm 1, which corresponds to a

computer with 64-bit Intel(R) Core(TM) i5-9600KF CPU @3.7GHz and 16 GB RAM, running

Matlab 2018a on . From the obtained data, we can observe that the algorithm running time



increases with the number of time slots N and the number of UEs K, which coincides with the

intuition that the complexity of the algorithm increases with the two parameters.

TABLE II
ALGORITHM RUNNING TIME

(N,K) (50,4) (60,4) (70,4) (80,4) (50,8) (60,8) (70,8) (80,8)
Running Time (s) 135.32 154.91 181.14 217.49 244.51 274.66 342.24 434.81

V. CONCLUSION

A wireless-powered MEC setup exploiting cooperation between the AP and the UAV has

been investigated, where the UAV serves as a moving MEC server as well as an energy and

information relay. The WSCTB of the UEs was maximized under both the information causality

and energy harvesting causality constraints, by jointly optimizing the computation task allocation,

time allocation and the UAV’s energy transmit power and trajectory. We proposed a three-step

block coordinate descending algorithm to solve the formulated non-convex optimization problem.

The UAV’s trajectories under different settings were studied in the simulation results, verifying

the key roles of the AP’s location and the UEs’ weight values. Results also illustrated that

significant performance improvement can be achieved using the proposed algorithm.

In our future work, it would be interesting to explore the UAV-assisted MEC architecture in

a long-term setting, and a larger serving area with multiple APs, UAVs. In this case, the air-to-

ground channel model considering the LoS and NLoS probabilities [35] should be utilized to

feature the more practical time-varying environment. The optimization of adjusting the UAVs’

flying altitudes, the cooperation strategy between the UAVs, and UAVs’ handover among cells

should also be addressed accordingly. In addition, learning-based methods will be designed to

decrease the algorithm complexity while maintaining a satisfactory performance.

APPENDIX A: PROOF OF THEOREM 1
The partial Lagrange function of problem (P1) is given as

L1(L,PU,γ,µ, ξ,ρ,λ,ν) =

K∑
k=1

{
wk

( N∑
n=1

Lloc
k [n] +

N−2∑
n=1

Loff
k [n]

)
(A.1)

+

N−2∑
n=1

γ̂k,nL
off
k [n]−

N−1∑
n=2

γ̃k,n
(
LU,k[n] + Loff

U,k[n]
)

+Ok

N−1∑
n=2

µ̂k,n
(
LU,k[n] + Loff

U,k[n]
)
−

N∑
n=3

µ̃k,nL
down
U,k [n]

+ λk

(N−2∑
n=1

Loff
k [n]−

N−1∑
n=2

(
LU,k[n] + Loff

U,k[n]
))

+ νk

( N∑
n=3

Ldown
U,k [n]−Ok

N−1∑
n=2

(
LU,k[n] + Loff

U,k[n]
))

+

N∑
n=1

ξ̃k,n

(
ηkτhk[n]PU[n]− Ek[n](L, tχ,uχ)

)}
+

N∑
n=1

ρ̃n
(
ηUτhAP[n]P0 − EU[n](L,PU, tχ,uχ)

)
,



where γ, µ, ξ, ρ, λ, ν respectively denote the sets of γk,n, µk,n, ξk,n, ρn, λk, νk for k ∈ K, n ∈ N .

Besides, γ̃k,n =
∑N−1

i=n γk,i, γ̂k,n =
∑N−1

i=n+1 γk,i, µ̃k,n =
∑N

i=n µk,i, µ̂k,n =
∑N

i=n+1 µk,i, ξ̃k,n =∑N
i=n ξk,i, ρ̃n =

∑N
i=n ρi. The task allocation parameters in Lχ+1 shown in Theorem 1 can be

obtained by applying the Karush-Kuhn-Tucker (KKT) conditions [33] and setting the derivatives

of L1(L,PU,γ,µ, ξ,ρ,λ,ν) w.r.t. Lloc
k [n], Loff

k [n], LU,k[n], Loff
U,k[n], L

down
U,k [n] to zero.

With the obtained computation task allocation Lχ+1, next, we will show how to obtain the
optimal solution of the UAV’s energy transmit power PU,χ+1. It is clear that a lower bound of
PU[n] can be obtained from the constraints in (26h), i.e.,

PU[n] ≥ max
k∈K


n∑
i=1

Ek[i](Lχ+1, tχ,uχ)

ηkτhk,χ[n]
−

n−1∑
i=1

hk,χ[i]PU[i]

hk,χ[n]

 , P low
U [n]. (A.2)

Also, an upper bound of PU[n] can be obtained from (26i) as

PU[n] ≤ 1

τ

n∑
i=1

[
ηUτP0hAP,χ[i]− Eprop

U [i]−
K∑
k=1

(
EU,k[i] + Eoff

U,k[i] + Edown
U,k [i]

)]
−
n−1∑
i=1

PU[i] , P up
U [n], (A.3)

The first derivative of L1 w.r.t. PU[n] is given by
∂L1

∂PU[n]
= τ

(
K∑
k=1

ηkhk,χ[n]ξ̃∗k,n − ρ̃∗n

)
, ∀n. (A.4)

If ∂L1

∂PU[n]
> 0, i.e., ρ̃∗n <

K∑
k=1

ηkhk,χ[n]ξ̃
∗
k,n, the optimal PU[n] should be its maximum, i.e., P up

U [n];

otherwise if ∂L1

∂PU[n]
≤ 0, the optimal PU[n] should be its minimum, i.e., P low

U [n], as shown in

(33) of Theorem 1.

If the given dual variables are optimal, denoted as γ∗, µ∗, ξ∗, ρ∗, λ∗ and ν∗, then the

corresponding solution in Theorem 1 is also optimal, i.e., Lχ+1 and PU,χ+1.

APPENDIX B: PROOF OF LEMMA 2
With the obtained Lagrange multipliers related to the inequality constraints, i.e., γj+1, µj+1,

ξj+1, ρj+1 in Lemma 1, the Lagrange multipliers λj+1 and νj+1 related to the equality constraints
can be achieved through a bi-section search. According to the equality constraints in (26f) and
(26g), the value of

∑N−2
n=1 L

off
k,j+1[n] can be described in three forms as in (B.1)–(B.3) with the

expressions of the optimal solution given in Theorem 1.
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[
log2

[
BhAP,χ[n]

(
Okµ̂k,n,j+1 − γ̃k,n,j+1 −Okνk,j+1 − λk,j+1

)]+

− log2

(
N0 ln 2ρ̃n,j+1

)]+}
, (B.3)

The expression (B.1) is obtained from the expression of Loff
k,j+1[n], (B.2) is derived from the

equation
∑N−2

n=1 L
off
k,j+1[n] = 1

Ok

∑N
n=3 L

down
U,k,j+1[n] between (26f) and (26g), and (B.3) comes

from the right side of (26f).

From equations (B.1) and (B.2), we can see that both λk,j+1 and νk,j+1 are monotonic non-

decreasing implicit functions of
∑N−2

n=1 L
off
k,j+1[n], and thus the function expressed in (B.3) is a

monotonic non-increasing function of
∑N−2

n=1 L
off
k,j+1[n]. Given the value of

∑N−2
n=1 L

off
k,j+1[n], the

corresponding λk,j+1 and νk,j+1 can be obtained through the bi-section search method within

the ranges of λk,j+1 ∈ [λmin
k,j+1, λ

max
k,j+1] and νk,j+1 ∈ [νmin

k,j+1, ν
max
k,j+1]. The obtained λk,j+1 and

νk,j+1 should make sure that the right side values of (B.1) and (B.2), denoted as V C1
k,j+1 and

V C2
k,j+1, satisfy that

∑N−2
n=1 L

off
k,j+1[n] = V C1

k,j+1(λk,j+1) = V C2
k,j+1(νk,j+1). The expressions of λmin

k,j+1,

λmax
k,j+1, νmin

k,j+1, νmax
k,j+1 given in Lemma 2 are obtained from (B.1)–(B.3) considering the monotonic

decreasing property of γ̂k,n,j+1, γ̃k,n,j+1, µ̃k,n,j+1, µ̂k,n,j+1 w.r.t. the slot index n.
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