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Abstract: Vascular endothelial growth factors (VEGFs) bind to membrane receptors on a wide
variety of cells to regulate diverse biological responses. The VEGF-A family member promotes
vasculogenesis and angiogenesis, processes which are essential for vascular development and
physiology. As angiogenesis can be subverted in many disease states, including tumour development
and progression, there is much interest in understanding the mechanistic basis for how VEGF-A
regulates cell and tissue function. VEGF-A binds with high affinity to two VEGF receptor tyrosine
kinases (VEGFR1, VEGFR2) and with lower affinity to co-receptors called neuropilin-1 and neuropilin-2
(NRP1, NRP2). Here, we use a structural viewpoint to summarise our current knowledge of
VEGF-VEGFR activation and signal transduction. As targeting VEGF-VEGFR activation holds much
therapeutic promise, we examine the structural basis for anti-angiogenic therapy using small-molecule
compounds such as tyrosine kinase inhibitors that block VEGFR activation and downstream signalling.
This review provides a rational basis towards reconciling VEGF and VEGFR structure and function in
developing new therapeutics for a diverse range of ailments.

Keywords: angiogenesis; VEGFR; receptor tyrosine kinase; signal transduction; cancer; bevacizumab;
aflibercept; sunitinib

1. Introduction

Vasculogenesis is the de novo formation of a vascular network whereas angiogenesis is sprouting
of new blood vessels from pre-existing ones. Both processes are highly dependent on regulation
by vascular endothelial growth factors (VEGFs) and their interaction with membrane receptors
expressed on different cell types. One class of receptor–ligand interaction occurs on the endothelium,
a specialised cell type that lines all blood vessels in metazoan species from man to fish [1,2].
Physiological angiogenesis is an essential feature of embryogenesis, wound healing and tissue
regeneration. However, abnormal angiogenesis is associated with a variety of diseases such as tumour
neovascularisation, diabetic retinopathy, rheumatoid arthritis and age-related macular degeneration [3].
Tumour neovascularisation is triggered by cancer cells to stimulate supply of nutrients and enable
metastasis. In the absence of a functional blood supply, tumours are either dormant or necrotic [4,5].

Biomolecules 2020, 10, 1673; doi:10.3390/biom10121673 www.mdpi.com/journal/biomolecules

http://www.mdpi.com/journal/biomolecules
http://www.mdpi.com
https://orcid.org/0000-0001-6869-4414
https://orcid.org/0000-0002-4452-7619
http://www.mdpi.com/2218-273X/10/12/1673?type=check_update&version=1
http://dx.doi.org/10.3390/biom10121673
http://www.mdpi.com/journal/biomolecules


Biomolecules 2020, 10, 1673 2 of 25

Angiogenesis is thus a major contributory factor in the growth and spread of a variety of cancers which
cause substantial mortality.

The VEGF family has complexity with multiple isoforms encoded by each VEGF-related gene,
and differences in biological activity between closely related variants [6]. These ligands bind to
VEGFRs which belong to the type IV receptor tyrosine kinase (RTK) family and comprises of VEGFR1
(Flt1), VEGFR2 (KDR, Flk1) and VEGFR3 (Flt4) [7]. VEGFRs possess a cytoplasmic tyrosine kinase
(TK) domain which regulates signal transduction pathways linked to cell proliferation, migration,
metabolism, vasodilation, blood vessel formation and remodelling [7,8]. VEGFR1 and VEGFR2 play
important roles in physiological and pathological angiogenesis, whereas VEGFR3 is mainly involved
in lymphangiogenesis [9,10]. This review focuses on the mechanistic basis for VEGFR activation and
function linked to the current portfolio of the drugs that target such molecules.

2. VEGF Ligands and Receptor Diversity

VEGF ligands regulate embryogenesis, blood vessel development, sprouting and homeostasis [11].
Seven VEGF-related genes encoding numerous splice isoforms have been identified. In most metazoan
species, genes encoding VEGF-A, VEGF-B, VEGF-C, VEGF-D and placental growth factor (PIGF)
are present [12,13]. VEGF-E is encoded by a parapoxvirus genome and VEGF-F is secreted in
some snake venoms [14,15]. VEGFs also interact with heparan sulphate proteoglycans (HSPs),
neuropilin 1 and 2 co-receptors (NRP1 and NRP2). Furthermore, the growth factors are dimeric in vivo
(i.e., divalent molecule), sharing the same basic fold, and can form both homo- and hetero-dimers with
each other [16–19].

2.1. VEGF-A

VEGF-A was also known as vascular permeability factor (VPF) and is usually a homodimer
formed by the arrangement of two anti-parallel VEGF-A monomers with a receptor binding site
at each pole or C-termini. VEGF-A can also form heterodimers with VEGF-B and PIGF [20] and
specifically binds to VEGFR1 and VEGFR2 expressed on endothelial cells, and can also bind the
NRP1 and NRP2 co-receptors expressed on the vascular endothelium and neurons [21] (Figure 1A).
The pattern of VEGF-A expression is dependent on the VEGF-A gene which encodes at least 8 exons.
Alternative splicing of the primary RNA transcript can generate at least 9 VEGF-A splice isoforms such
as VEGF-A121, VEGF-A145, VEGF-A148, VEGF-A162, VEGF-A165, VEGF-A165b, VEGF-A183, VEGF-A189

and VEGF-A206 (Figure 1B). The expression of VEGF-A is known to be upregulated by hypoxia,
p53 allele polymorphisms, thyroid stimulating hormone (TSH) and nitric oxide (NO). The VEGFA
promoter is dependent on activation by the hypoxia inducible factor-1 (HIF-1), which is composed of
α and β subunits [22,23]. All the VEGF-A splice isoforms stimulate VEGFR tyrosine kinase activity
except for VEGF-A165b, which has been proposed to negatively regulate VEGFR activity [23]. VEGF-A
is the most potent pro-angiogenic growth factor compared to other VEGFs and the deletion of the
VEGFA gene in mice shows embryonic lethality even with the loss of only a single allele [24].

2.2. VEGF-B

VEGF-B is encoded by the VEGFB locus and consists of eight exons and six introns. Alternative
splicing of the VEGF-B primary RNA transcript generates two splice isoforms, VEGF-B167 and
VEGF-B186 (Figure 1B). These VEGF-B isoforms only bind to VEGFR1, but not VEGFR2 or VEGFR3.
Upon VEGF-B binding and activation of VEGFR1, it induces poor signalling and is found to have
negligible effect in inducing blood vessel growth [13,25]. The role of VEGF-B is still unclear, but mice
lacking a functional VEGFB locus have smaller hearts, impaired angiogenic response and decreased
capillary density [26]. However, VEGF-B is essential for blood vessel survival [27].
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Figure 1. (A) Schematic representation of vascular endothelial growth factor receptor (VEGFR) 
organisation and ligand specificity. All vascular endothelial growth factors (VEGFs) bind to three 
receptor tyrosine kinases (RTKs): VEGFR1, VEGFR2 and VEGFR3. VEGFRs contain an extracellular 
domain (ECD), transmembrane domain (TMD) and a cytoplasmic domain which is further divided 
into juxtamembrane domain (JMD) and kinase domain (KD). VEGFRs form homo- and hetero-dimers 
upon ligand binding. VEGFR1 and VEGFR2 form heterodimers, whereas VEGFR3 forms a 
heterodimer with VEGFR2.  VEGF-A, placental growth factor (PIGF) and VEGF-B bind to VEGFR1 
homodimers, VEGF-A bind to VEGFR1 homo-, VEGFR2 homo- and VEGFR1/R2 hetero-dimers, 
VEGF-E and VEGF-F recognise VEGFR2 homodimers and VEGF-D and VEGF-D only bind to 
VEGFR3 homodimers. The fifth extracellular immunoglobulin-like domain of VEGFR3 is replaced 
with disulphide bonds. VEGFR1 and VEGFR2 play a major role in angiogenesis, whereas VEGFR3 is 
mainly involved in lymphangiogenesis. (B) Isoforms of VEGF ligands: alternative splicing of VEGFA 
primary RNA transcript can produce at least 9 isoforms if VEGF-A. VEGF-B can exist as two isoforms 
and PlGF can exist as four isoforms. 

Figure 1. (A) Schematic representation of vascular endothelial growth factor receptor (VEGFR)
organisation and ligand specificity. All vascular endothelial growth factors (VEGFs) bind to three
receptor tyrosine kinases (RTKs): VEGFR1, VEGFR2 and VEGFR3. VEGFRs contain an extracellular
domain (ECD), transmembrane domain (TMD) and a cytoplasmic domain which is further divided
into juxtamembrane domain (JMD) and kinase domain (KD). VEGFRs form homo- and hetero-dimers
upon ligand binding. VEGFR1 and VEGFR2 form heterodimers, whereas VEGFR3 forms a heterodimer
with VEGFR2. VEGF-A, placental growth factor (PIGF) and VEGF-B bind to VEGFR1 homodimers,
VEGF-A bind to VEGFR1 homo-, VEGFR2 homo- and VEGFR1/R2 hetero-dimers, VEGF-E and VEGF-F
recognise VEGFR2 homodimers and VEGF-D and VEGF-D only bind to VEGFR3 homodimers. The fifth
extracellular immunoglobulin-like domain of VEGFR3 is replaced with disulphide bonds. VEGFR1 and
VEGFR2 play a major role in angiogenesis, whereas VEGFR3 is mainly involved in lymphangiogenesis.
(B) Isoforms of VEGF ligands: alternative splicing of VEGFA primary RNA transcript can produce at
least 9 isoforms if VEGF-A. VEGF-B can exist as two isoforms and PlGF can exist as four isoforms.
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2.3. VEGF-C and VEGF-D

There are no known isoforms for VEGF-C and VEGF-D, and both growth factors are identical at N-
and C-termini, a feature which is not present in other VEGFs. Unlike VEGF-A and VEGF-B which are
formed by alternative splicing of the primary RNA, VEGF-C and VEGF-D are produced by proteolytic
processing [28,29]. These precursors are cleaved by the furin protease via a two-step process [11,23].
An initial proteolysis step produces premature variants which bind and activate both VEGFR2 and
VEGFR3. However, these VEGFs have higher affinity towards VEGFR3 and very low affinity for
VEGFR2. A second proteolysis step produces the mature VEGF forms that have high affinity for
both VEGFR2 and VEGFR3 [30]. VEGF-C is essential for the sprouting of lymphatic vessels from the
embryonic vein, thereby it is crucial in lymphangiogenesis. However, it is also involved in promoting
lymphangiogenesis in various types of cancers [31]. In VEGF-C knockout mice, embryo lymphatic
lineage was observed but development of lymphatic vessels were not seen, with embryonic lethality at
a late stage due to a lack of lymphatic vessels [32].

Similarly, mature VEGF-D binds to both VEGFR2 and VEGFR3, therefore promoting both
angiogenesis and lymphangiogenesis. Expression of VEGF-D by cancer cells is known to promote
metastasis [33]. There are no known isoforms for VEGF-D, it is present in most tissues but more
adequately in skin and lungs. Interestingly, out of all the VEGFs expressed in humans, VEGF-D is the
only growth factor that is dispensable, as VEGF-D knockout mice were healthy, fertile with normal
body mass and no abnormalities in lymphatic vessel development or function were observed [34].

2.4. PIGF

Placental growth factor (PIGF) is predominantly expressed in placental tissues. The human
PIGF gene has 7 exons, and alternate RNA splicing produces four isoforms, such as PIGF-1 (PIGF131),
PIGF-2 (PIGF152), PIGF-3 (PIGF203) and PIGF-4 (PIGF224) (Figure 1B). All isoforms of PIGF recognise
and bind to VEGFR1, but not VEGFR2 and VEGFR3 [13,35]. Deletion of PIGF impairs angiogenesis,
inflammation and wound healing [35,36]. However, PIGF upregulation is associated with pathological
angiogenesis [37].

2.5. VEGF-E

The VEGFE gene is absent from animal species but is found in parapoxvirus, which infects sheep
(Ovis aries) but rarely Homo sapiens. VEGFE encodes four splice isoforms: VEGF-ENZ-2, VEGF-ENZ-7,
VEGF-ENZ-10 and VEGF-ED1701, which only bind to VEGFR2 and act as pro-angiogenic factors by
promoting pathological angiogenesis in sub-cutaneous lesions infected by the virus [38]. Even though
VEGF-E selectively binds to VEGFR2, the amino acid sequence of VEGF-E is less than 25% identical to
VEGF-A [39]. Unlike VEGF-A, all isoforms of VEGF-E selectively bind to VEGFR2 but not VEGFR1.
Thus, VEGF-E isoforms have the potential to be candidates for selectively targeting VEGFR2-specific
responses towards pro-angiogenic therapy.

2.6. VEGF-F

VEGF-F is present in the venom of some vipers, such as Trimereserus flavoviridis, but not in H.
sapiens. VEGF-F has no isoforms and selectively binds to VEGFR2, which leads to vascular permeability
but very weak cell proliferation. The sequence of VEGF-F is ~50% identical to that of VEGF-A [11].
VEGF-F is however more potent than VEGF-A, with both in vivo and in vitro studies having shown
that the heparin-binding domain at the C-terminus of VEGF-F competitively inhibits VEGF-A binding
to VEGFR2 [40].

2.7. VEGFR1

Human VEGFR1 contains 1312 amino acids and is present as a mature ~180 kDa glycoprotein
expressed in the endothelium, immune cells, epithelial and neural tissues. VEGFR1 binds all isoforms
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of VEGF-A, VEGF-B and PIGF. VEGF-A bind to VEGFR1 with ~2–10 picomolar (pM) affinity (Kd),
which is much higher than VEGFR2, while the binding affinity of PIGF for VEGFR1 is ~170 pM (Kd)
(Figure 1A) [41]. VEGFR1 expression is upregulated by hypoxia involving the HIF-1 complex [42].
The VEGFR1 promoter also contains a hypoxia-responsive element (HRE) sequence which enables
HIF-1 binding to stimulate transcription of the VEGFR1 locus [43]. VEGFR1 knockout mice exhibit
embryonic lethality and die in mid-gestation due to abnormal blood vessel formation and excessive
endothelial cell proliferation [44]. Interestingly, mice carrying a mutant VEGFR1 locus lacking a
functional tyrosine kinase domain show normal development and angiogenesis with no vascular
defects [45]. There is an alternative soluble form (soluble VEGFR1, sFlt1) of VEGFR1, a splice variant
which acts as an inhibitor for VEGFR activity [46]. The soluble splice variant acts as a decoy receptor
and a negative regulator for VEGFR2 by binding to VEGF-A, thereby decreasing local concentrations
of growth factor and limiting VEGF-A binding to VEGFR2 [23].

2.8. VEGFR2

Human VEGFR2 contain 1337 amino acids and the mature protein is a ~200–230 kDa glycoprotein
expressed in both vascular and lymphatic endothelial cells. VEGFR2 binds with high affinity to
VEGF-A, VEGF-C, VEGF-D and VEGF-E. Although VEGFR2 homodimers are implicated in functional
regulation, VEGF-A binding can also promote VEGFR1 and VEGFR2 heterodimer formation [47,48].
A computational study showed that VEGFR heterodimers are formed at the expense of homodimers,
and this also occurs when the VEGFR2 population is in excess compared to VEGFR1, with only 10–50%
of VEGFR1-VEGFR2 heterodimers being functionally active [49]. The binding affinity of VEGF-A
towards VEGFR2 is ~100–400 pM (Kd) which is 10–100-fold lower affinity than VEGFR1 [41]. However,
VEGFR1 levels are relatively low, with tyrosine kinase activity at least ten-fold lower compared to
VEGFR2 in endothelial cells; therefore, it can be argued that VEGFR2 homodimers are the major
signal transducers upon VEGF-A binding [50]. VEGFR2 knockout mice die mid-gestation with no
organised blood vessels observed in the embryo, which are normally seen at the mid-gestation period.
This is unlike VEGFR1 knockout mice, where an abnormal and irregular vascular network also causes
embryonic lethality [51,52]. A soluble form of VEGFR2 (sVEGFR2) has been identified in mouse and
human plasma [53]. The distinct function of sVEGFR2 is still unclear, although recent studies suggest a
connection between breast cancer and sVEGFR2 levels, where higher levels of sVEGFR2 in plasma
could increase the risk of breast cancer [54].

2.9. VEGFR3

Human VEGFR3 comprises 1363 residues, producing a mature ~195 kDa glycoprotein heterodimer
which binds to VEGF-C and VEGF-D with high affinity. The newly translated VEGFR3 polypeptide
undergoes complex processing along the secretory pathway: proteolytic cleavage generates a soluble α

and membrane-bound β subunits that are linked by a disulphide bond (Figure 1A). There are two splice
variants of VEGFR3 which are primarily expressed in lymphatic endothelial cells [55]. VEGFR2-VEGFR3
heterodimers have been implicated in unique signalling outcomes [56]. However, VEGFR1 and VEGFR3
heterodimer formation is unlikely [57]. Unlike VEGFR1 and VEGFR2, VEGFR3 is predominantly
involved in lymphangiogenesis and not known to play a significant role in angiogenesis. VEGFR3 KO
mice exhibit defective blood vessel formation in mouse embryos. Even though vasculogenesis and
angiogenesis were observed in VEGFR3 KO mice, blood vessels were abnormally organised with
defective lumen, which resulted in cardiovascular failure in the mouse embryo [58]. Similar to VEGFR1
and VEGFR2, VEGFR3 exists as a soluble variant [54]. sVEGFR3 is known to be expressed in corneal
endothelial cells: the sVEGFR3 found in the cornea has anti-lymphangiogenic properties and binds to
both VEGF-C and VEGF-D, potentially acting as a decoy receptor for both ligands. This could block
the lymphangiogenesis promoted by VEGFR3 signal transduction [59]. sVEGFR3 is also involved in
supressing allo-sensitization and promoting survival of corneal allografts [60].
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3. Structural Features of VEGFRs and Their Functions

All VEGFRs display a similar primary structure with seven immunoglobulin (Ig)-like extracellular
immunoglobulin domains, a short α-helical transmembrane domain, followed by a cytoplasmic
juxtamembrane region, then a tyrosine kinase (TK) domain linked to a flexible carboxyl-terminus or
tail [61] (Table 1). A generally accepted view is that VEGFR binding to cognate ligands trigger the
formation of homodimers, activating cell signalling pathways that leads to various cellular functions.

Table 1. Classification of different domains of vascular endothelial growth factor (VEGF) receptors.

Details VEGFR1 VEGFR2 VEGFR3

Swiss UniProt ID P17948 P35968 P35916
Full length 1338 1356 1363

Signal peptide 26 (1–26) 19 (1–19) 24 (1–24)
Receptor chain 1312 (27–1338) 1337 (20–1356) 1339 (25–1363)

Extracellular domain 732 (27–758) 745 (20–764) 751 (25–775)
Immunoglobulin

(Ig)-like 1 92 (32–123) 65 (46–110) 98 (30–127)

Immunoglobulin
(Ig)-like 2 64 (151–214) 67 (141–207) 63 (151–213)

Immunoglobulin
(Ig)-like 3 98 (230–327) 97 (224–320) 108 (219–326)

Immunoglobulin
(Ig)-like 4 87 (335–421) 87 (328–414) 85 (331–415)

Immunoglobulin
(Ig)-like 5 126 (428–553) 128 (421–548) 131 (422–552)

Immunoglobulin
(Ig)-like 6 99 (556–654) 110 (551–660) 117 (555–671)

Immunoglobulin
(Ig)-like 7 87 (661–747) 87 (667–753) 87 (678–764)

Transmembrane
domain 22 (759–780) 21 (765–785) 21 (776–796)

Cytoplasmic domain 558 (781–1338) 571 (786–1356) 567 (797–1363)

3.1. VEGFR Extracellular Domain

Non-activated or resting VEGFR molecules are thought to be monomeric polypeptides. However,
mathematical modelling [50] and binding studies [62] postulate the presence of non-activated VEGFR
monomers and dimers. Similar to other RTKs, VEGF binding to the VEGFR extracellular domain
triggers dimer formation, activation and downstream signalling [7]. Dimer formation is associated
with trans-autophosphorylation of specific tyrosine residues within the cytoplasmic domain, including
the juxtamembrane, tyrosine kinase and tail regions [63,64]. The extracellular domain consists of
seven Ig-like extracellular immunoglobulin domains, which are mainly involved in ligand binding and
receptor dimerization, and such interactions have been extensively studied using structural approaches.
Crystal structures of soluble Ig-like domains derived from all three VEGFRs with or without bound
VEGF have been solved (Table 2). Ballmer-Hofer and colleagues recently presented a high-resolution
analysis of the structure of a soluble VEGF-A/VEGFR1 complex revealing ligand-induced dimerization
of the VEGFR1 extracellular domain with homotypic interactions between Ig-like domains 4, 5 and
7 [65]. In both VEGFR1 and VEGFR2, extracellular domains 2 (D2) and 3 (D3) are critical for VEGF-A
recognition: ligand binding triggers conformational changes that are postulated to be transmitted
through the transmembrane region to cause TK activation [66]. For VEGFR2, the interface between
VEGF-A and D2 is hydrophobic, whereas VEGF-A binding to D3 involves hydrophilic interactions [67].
VEGFR3 binding to ligands is similar but the binding sites extend over D1 to D3; furthermore,
D4–D7 contribute to structural rearrangements crucial for VEGFR3 dimerization and activation [68].
Rahimi and colleagues have shown that an RTK chimera comprising the colony-stimulating factor-1
receptor (CSF-1R) extracellular domain fused to the VEGFR2 transmembrane and cytoplasmic domain
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can be activated by CSF-1 with similar signalling outcomes [69]. Thus, VEGF-stimulated TK activation
via ligand binding to the VEGFR extracellular domain is part of a widely conserved mechanism across
the RTK family.

Table 2. Structural studies on VEGFR complexes and/or inhibitors.

Complex Protein Data Bank
(PDB) Code Domains Method Reference

VEGFR1/VEGF-A 1FLT Domain 2 X-ray diffraction [70]
VEGFR1/VEGF-A 1QTY Domain 2 X-ray diffraction [71]

VEGFR1/PIGF 1RV6 Domain 2 X-ray diffraction [67]
VEGFR1/VEGF-B 2XAC Domain 2 X-ray diffraction [72]

VEGFR1/VEGF-A 5T89 Domains 1–6 X-ray diffraction and
negative stain EM [65]

VEGFR2 3KVQ Domain 7 X-ray diffraction [73]
VEGFR2/VEGF-A 3V2A Domains 2 and 3 X-ray diffraction [74]
VEGFR2/VEGF-C 2X1W Domains 2 and 3 X-ray diffraction [75]

VEGFR2/VEGF-C 2X1X Domains 2 and 3 in
tetragonal crystal form X-ray diffraction [75]

VEGFR2 kinase domain 1VR2 Kinase domain X-ray diffraction [76]
VEGFR2 kinase domain

with sunitinib 4AGD Juxta membrane and
kinase domains X-ray diffraction [77]

VEGFR2 kinase domain
with sorafenib 4ASD Juxta membrane and

kinase domains X-ray diffraction [77]

VEGFR2 kinase domain
with axitinib 4AGC Juxta membrane and

Kinase domains X-ray diffraction [77]

VEGFR2 kinase domain
with tivozanib 4ASE Juxta membrane and

kinase domains X-ray diffraction [77]

VEGFR2/VEGF-E 3V6B Domains 2 and 3 X-ray diffraction [74]
VEGFR2/DARPin Db4 5OYJ Domains 4 and 5 X-ray diffraction [78]

VEGFR2 trimeric mutant
transmembrane domain 2MET Transmembrane domain NMR [79]

VEGFR2 mutant dimeric
transmembrane domain 2MEU Transmembrane domain NMR [79]

VEGFR2 dimeric
membrane domain in

DPC micelles
2M59 Transmembrane domain NMR [79]

VEGFR3/VEGF-C 4BSK Domains 1 and 2 X-ray diffraction [68]
VEGFR3 ECD 4BSJ Domains 4 and 5 X-ray diffraction [68]

3.2. VEGFR Transmembrane Domain

The α-helical transmembrane domain (TMD) in VEGFRs undergo non-covalent oligomerisation
within the lipid bilayer, which also influences RTK complex formation and stability. Interestingly,
VEGFR activation is dependent on the orientation of transmembrane α helices. Replacement of the
native VEGFR2 TMD with a synthetic TMD carrying glutamic acid residues promotes TMD dimer
formation, suggesting that TK activation is dependent on orientation and oligomerisation of these
regions within VEGFR2. Further work by Dosch and colleagues showed that VEGFR2 TMD mutants
containing glutamic acid residues spaced at 7 amino acids apart showed ligand-independent activation
and dimerization [80]. Such studies have shown that a ligand is not necessary for activation of VEGFRs;
however, they support the view that VEGF ligand binding causes a change in VEGFR monomer
orientation within a dimeric complex, thus influencing substantial rearrangement of the cytoplasmic
domains relative to each other.

3.3. VEGFR Cytoplasmic Domain

Each VEGFR cytoplasmic domain has a juxtamembrane domain, a ‘split’ tyrosine kinase domain,
followed by flexible carboxyl-terminus or ‘tail’. The VEGFR region located immediately after the TMD
is termed the juxtamembrane domain (JMD). The JMD has been shown to play a role in activation and
repression of TK activity, as replacement of the VEGFR1 JMD with equivalent VEGFR2 JMD caused
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a significant increase in VEGFR1 TK activity [81]. In response to VEGF-A stimulation, this mutant
VEGFR1 now caused increased PI3K activation and endothelial cell migration [81].

The VEGFR tyrosine kinase (TK) domain of ~300 residues display an atypical ‘split’ configuration
into N- and C-terminal lobes caused by the insertion of a ~70 residue sequence within the middle of
this catalytic domain. An engineered VEGFR2 ‘core’ TK module lacking the insert sequence has been
crystallised and a high-resolution structure complexed to different tyrosine kinase inhibitors (TKIs)
has been documented (Table 2). The initial structure of the VEGFR2 TK ‘core’ shows commonality in
the mode of adenosine triphosphate (ATP) binding compared to other RTKs [82]. The ATP-binding
site is located between the juncture of the two N- and C-lobes. The N-lobe mainly consists of an
alpha helix (αC) and five anti-parallel beta strands (β1–β5). The glycine-rich region (841–846) is
present in the N-lobe and has a hydrophobic aromatic residue (F845) which is positioned close to the
ATP-binding site (Figure 2A). The C-lobe is much larger in comparison to the N-lobe and consists of
seven α-alpha helices (αD-αI and αEF), four short β-strands (β6–β9), a catalytic loop and an activation
region. The catalytic loop contains a conserved HRD (H1026–R1027–D1028) motif, whereas the
activation segment starts with the conserved DFG motif (D1046–F1047–G1048) and ends with APE
(A1073–P1074–E1075). For a large majority of protein kinases, the DFG and APE motifs regulate kinase
activity. VEGFR2 also displays the KEDD (K868–E885–D1028–D1046) motif, which modulates TK
activity and TKI binding [83].
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Figure 2. (A) Crystal structure of VEGFR2 kinase, N-lobe is shown in grey, C-lobe in brown, the hinge
region which connects the N- and C-lobes is shown in green, catalytic loop in magenta and the
activation loop in blue, with conserved DFG (D1046–F1047–G1048) motif of activation segment in red.
Both α-helices and β-sheets are labelled from αC–αI and β1–β5, respectively. (PDB code: 4AGD).
(B) Schematic representation of inactive VEGFR kinase showing the adenosine triphosphate (ATP)
binding region (red circle), catalytic loop (magenta), DFG motif (red) and closed activation loop (blue).
The activation loop controls the access to the ATP-binding site.

4. Mechanism of TK Activation

Many studies performed using different approaches have tried to understand how ligand binding
to RTK causes conformational changes which regulate TK activation. Using both generic models [84],
EGFR [85,86] and VEGFRs [30,64,65] structural models, we consider the specific role of ADP/ATP in
directing resting/inactive or active TK states. We sketch 3 hypothetical models in this context (Figure 3).
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In Model 1, the TK domain is ‘empty’ of either ADP or ATP and requires a directed stimulus to load
the adenine nucleotide-binding site with either ADP or ATP. In Model 2, the TK domain is in an
ADP-bound inactive state and requires some form of stimulus and conformational change to exchange
ADP for ATP. This scenario is similar to that for small G-proteins such as Ras, where cycling between
GDP/GTP-bound forms regulates inactive/active signalling [87,88]. In Model 3, due to the 100–200-fold
excess in ATP cytosolic concentration over ADP, the TK domain is in an ATP-bound state, but is held in
an inactive state and requires a stimulus to hydrolyse ATP and transfer the g-phosphate onto a target
site or substrate. The EGFR-L834R oncogenic mutant appears to increase TK activity and enhance
dimer formation [89]. Moreover, one reaction of these patients to EGFR inhibitor cancer therapy is the
T766M mutation that increases the affinity of the EGFR-L834R oncoprotein by more than 10-fold [90].
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Figure 3. Hypothetical schematic models of VEGFR kinase activation. (A) Inactive kinase domain with
vacant adenine nucleotide binding site, activation of receptor stimulates the change in orientation of N-
and C-lobes by allosteric regulation between the hinge region and the activation loop which give access
for adenosine diphosphate/adenosine triphosphate (ADP/ATP) to the binding site, thereby activating
the kinase. (B) Inactive kinase domain bound to ADP, conformational change in kinase domain leads to
exchange of ADP with ATP, similar to the guanosine diphosphate/guanosine triphosphate (GDP/GTP)
exchange by Ras protein. This may potentially lead to the activation of kinase. (C) Inactive kinase
domain with the adenine binding site containing the ATP molecule, stimulation of receptor potentially
leads to hydrolysis of ATP and releases the γ-phosphate to phosphorylate the tyrosine residues, thereby
activating the kinase domain.

Within the VEGFR family, the intervening activation loop that separates the N- and C-lobes is
lengthened by the addition of the 70-residues insert common to all 3 membrane proteins. Sequence
conservation in this kinase domain insert is low; however, there are additional tyrosine residues
within each insert sequence which could enable different modes of TK activation. Spacing of these
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tyrosine residues within the insert sequence is not conserved between the three VEGFRs, suggesting
that the presence of phosphotyrosines in this region could have different consequences for TK activity.
VEGFR2 undergoes phosphorylation at the unique Y951 residue located within the insert region,
which stimulates recruitment of adaptor protein TSAd and downstream activation of c-Src tyrosine
kinase [91].

All individual Ig-like domains’ structures indicate that a VEGF homodimer binds to two VEGFR
chains with a 1:1 stoichiometry. The structure of a soluble truncated VEGFR1 chain bound to
VEGF-A indicates that homotypic interactions between VEGFR1 domains D4, D5 and D7 are likely
to also influence transmission of conformational changes towards the VEGFR cytoplasmic domain,
thus influencing TK activation (Figure 4A) [65]. Ballmer-Hofer and colleagues have used synthetic
protein technology to generate ankyrin repeat proteins (DARPins) that bind to VEGFR2 extracellular
domains [92]. DARPins specific for VEGFR2 domains D4 and D7 can block the TK activation
and downstream signalling but did not prevent VEGF ligand binding nor VEGFR2 homodimer
formation [92]. Another synthetic protein called Affimer has been used to target the VEGFR2
extracellular domain to block VEGF-A-stimulated signal transduction, cell migration and tubulogenesis.
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Figure 4. (A) Schematic representation of mechanism of VEGFR activation and downstream signalling
pathways. A covalently linked VEGF dimer (yellow) binds to second and third extracellular
immunoglobulin (IgG)-like domains of VEGFR that leads to dimerization of receptors with homotypic
contacts between the fifth and seventh IgG-like domains. The complex is also stabilised with additional
contacts at transmembrane and juxtamembrane regions that leads to phosphorylation of various
tyrosine kinase residues that trigger downstream pathways such as the Ras-Raf-MEK-Erk pathway,
p38-MAPK pathway and PI3K-Akt pathway. (B) Location of various tyrosine residues that undergo
phosphorylation in three different VEGFRs. Domains are juxtamembrane domain, JMD; kinase
domain-N-lobe, KD-N; kinase domain insert, KD-I; kinase domain-C-lobe, KD-C; and C-terminal
tail, CT.

Such VEGF ligand-induced VEGFR dimerization linked to torsional changes in the extracellular
domain is likely to bring the TK domain into an active conformation through allosteric regulation,
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which could allow both N- and C-lobes to ‘open’ or flex to either allow ATP access, or stimulate
ADP exchange for ATP. It is unclear whether an inactive, resting or monomeric RTK has an empty
site, or whether this is always occupied by either ADP or ATP. As the cytosolic concentration of ATP
(3–5 mM) is approximately 100–200-fold greater than ADP levels, ATP/ADP exchange for each RTK is
likely dependent on tight regulation of TK conformation, and allowing ATP accessibility to the binding
site within the molecule. An alternative scenario is that a monomeric or dimeric RTK complex such
as VEGFR is largely ATP-bound (driven by the concentration gradient), but the activation of the TK
activity is somehow restricted until the VEGF ligand binds.

Both N-terminal and C-terminal lobes are connected by the flexible insert which acts as a ‘hinge’
with the hydrophobic ATP-binding pocket formed by residues from both the N- and C-lobes [93,94].
There are 5–7 tyrosine phosphorylation sites within each VEGFR which are typically distributed
within the JMD, insert and tail regions, however, some sites do also occur within the N- and C-lobes.
Within the cleft and the ATP-binding site of the VEGFR2 TK ‘core’, the adenine ring of the ATP molecule
forms hydrogen bonds with the hinge region, whereas the ribose sugar and triphosphate moieties are
coordinated via the conserved DFG and APE motifs essential for regulating TK activity [95]. In protein
kinases, the connecting activation loop (VEGFR2 residues 1046–1075) also plays a crucial role in
unblocking the substrate binding site within the cleft, thereby enabling transfer of the g-phosphate
from ATP onto the –OH group of the tyrosine side chain [95]. The expansion of this loop region by ~70
residues within the VEGFR kinase domain suggests a more flexible juxtaposition of N- and C-lobes.
Furthermore, binding of adaptor proteins to the phosphorylated VEGFR2-Y951 epitope indicates that
such interactions could act to stabilise this loop region and may indirectly modulate TK activity [91].

A central feature of protein kinase regulation is the juxtaposition of a C-terminal tail to modulate
kinase activity [84]. The looping of a flexible tail sequence across the kinase domain could potentially
act to stabilise an inactive or active state. A conserved phosphotyrosine epitope within the tail region
in VEGFR1 (Y1169) and VEGFR2 (Y1175) enables recruitment of PLCγ1 to the activated VEGFR.
Furthermore, other phosphorylation sites in the VEGFR1 (Y1213, Y1333) and VEGFR2 (Y1214) may
also function to recruit other effectors. Studies suggest that VEGFR2-mediated recognition of soluble or
extracellular matrix-bound VEGF-A elicits differential phosphorylation of Y1214 and association with
β1 integrin. Furthermore, the phosphorylation of the VEGFR2-Y1214 epitope is linked to downstream
activation of the p38 mitogen-activated protein kinase (MAPK) pathway [96]. In contrast, different
adaptors are postulated to be recruited to activate VEGFR1 upon phosphorylation of residue Y1213 [97].

The flexible carboxyl tail (~200 residues) is the least conserved region within the VEGFR
cytoplasmic domain and may mediate both positive and negative regulation of tyrosine kinase
activity. When the VEGFR1 carboxyl terminal tail is swapped with the VEGFR2 tail, this causes
an increase in ligand-dependent auto-phosphorylation, VEGFR1 downregulation and endothelial
cell proliferation [98]. Furthermore, deletion of the carboxyl-tail of VEGFR2 eliminated its ability
to activate signalling proteins and cell proliferation, therefore inhibiting VEGFR2 tyrosine kinase
activity. However, when the VEGFR2 tail is replaced with the VEGFR1 tail, this VEGFR chimera
showed restoration of ligand-stimulated signalling and cell proliferation [99]. This indicates that the
carboxyl-terminal tail of VEGFR1 acts as a negative regulator of kinase activity, while the VEGFR2 tail
acts as a positive regulator.

By comparison to EGFR, it is postulated that, whether this RTK is in monomeric or dimeric
states, the C-terminal tail is relatively free [86]. However, different studies suggest that inactive EGFR
dimers and tetramers exist [100], and these may require tight packing of the C-terminal tail within
these complexes. One view is that EGFR dimers are inactive and the transition to higher order EGFR
tetramers is required for an active signalling complex which mediates recruitment of adaptors such as
Grb2 [101,102]. It also raises the question of how symmetric or asymmetric arrangement of the kinase
domains within a dimer influences the activated TK state.
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5. VEGFR Signal Transduction

The activated VEGFR recruits and phosphorylates adaptors, enzymes and effectors that affect
a wide variety of cellular responses in different cells and tissues. Although VEGFR1 is largely
postulated to be a negative regulator of VEGF-A-regulated signal transduction, it can undergo
phosphorylation at specific tyrosine residues (Y794, Y1169, Y1213, Y1242, Y1309, Y1333) (Figure 4B),
which enables it to interact with adaptor proteins and phospholipase C gamma-1 (PLCγ1) [103–105].
PLCγ1 recruitment and phosphatidylinositol 4,5-bisphosphate (PIP2) hydrolysis leads to the production
of IP3 (calcium flux) and diacylglycerol (PKC activation), which has a wide variety of effects on cellular
pathways and responses. There is evidence that VEGFR1 activation regulates cell migration and
vascular permeability, and one likely downstream target is the PI3K/Akt pathway [106]. PIGF binding
stimulates VEGFR1-Y1309 phosphorylation, leading to downstream Akt activation [35], suggesting
that different VEGF ligands cause different patterns of VEGFR activation, protein recruitment and
downstream signalling.

VEGFR2 is the major RTK that enables VEGF-regulated angiogenesis. The activation of VEGFR2
leads to multiple phosphorylation sites (Y801, Y951, Y996, Y1054, Y1059, Y1175, Y1214, Y1319)
(Figure 4B). Phosphorylation of Y801 in the JMD is implicated as an early step in stimulating maximal
TK activity of VEGFR2 [107]. Furthermore, phosphorylation of VEGFR2-Y801 is linked to PI3K/Akt
signalling and downstream activation of endothelial nitric oxide synthase (eNOS) [108]. In endothelial
cells, appearance of the VEGFR2-pY1059 is linked to cytosolic Ca2+ flux, MAPK activation and
cell proliferation, whereas the VEGFR2-pY951 epitope is linked to increased cell migration [109].
The VEGFR2-pY1175 epitope is a key signature as a result of VEGF-A binding and creates a binding
site for PLCγ1 [110]. Recruitment of PLCγ1 to the plasma membrane leads to PIP2 hydrolysis, and one
consequence is activation of the canonical MAPK pathway linked to cell proliferation [110,111].

VEGFR3 is responsible for lymphangiogenesis. Activation of VEGFR3 leads to phosphorylation
of residues Y1063, 1068, 1230, 1231, 1265, 1337 and 1363 (Figure 4B) [64]. Residues Y1063 and Y1068 are
located within the TK catalytic region, whereas the remaining phospho-epitopes are within the flexible
tail region. VEGFR3 activation and tyrosine phosphorylation can activate PI3K/Akt, PKC and MAPK
signal transduction pathways [20].

6. Strategies Employed in Inhibition of VEGFR Function

The phenomenon of angiogenesis is not only a physiological process but can also contribute to
pathological conditions such as tumour growth and progression. Targeting pro-angiogenic output
by VEGFRs is thus important in cancer therapy. Different molecules can act as anti-angiogenic drugs
that block VEGFR signal transduction and have also been clinically approved for cancer and wet
age-related macular degeneration (AMD). Here, we discuss the molecular basis of current strategies
for translating VEGFR inhibition towards clinical care.

6.1. Protein-Based Therapies

Humanised monoclonal antibodies that bind to the circulating VEGF-A with high affinity
can prevent interaction with VEGFRs, block endothelial responses and tumour neovascularisation
(Table 3) [112]. Bevacizumab (Avastin) is a humanised IgG1 monoclonal antibody that binds all
VEGF-A isoforms with 58 pM (Kd) affinity to VEGF-A 165 and blocks VEGFR2 signalling [113,114].
Bevacizumab is clinically approved as part of multimodal treatments for advanced non-small cell lung
cancer (NSCLC), advanced colorectal cancer (CRC), metastatic breast cancer, renal cell cancer and
advanced glioblastoma multiforme [115,116]. Ranibizumab is a humanised antibody based on a single
antigen-binding site (Fab) derived from Bevacizumab but has much higher VEGF-A binding affinity
(46 pM (Kd)) [113]. The original Bevacizumab has divalent binding sites for VEGF-A but Ranibizumab
is a monovalent species [114,117]. Ranibizumab (Lucentis) is clinically approved for use in ocular
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diseases involving aberrant angiogenesis such as wet AMD: the smaller monovalent Fab molecules
more easily diffuse into the ocular environment compared to full-size antibodies [117,118].

Table 3. Clinically approved VEGF inhibitors.

Name Target Type Treatment Reference

Bevacizumab
(Avastin) VEGF-A

Human
monoclonal IgG1

antibody

Non-small cell lung cancer (NSCLC),
colorectal cancer, metastatic breast

cancer, renal cell cancer and advanced
glioblastoma multiforme

[115,116]

Ranibizumab
(Lucentis) VEGF-A Antibody Fab

fragment Corneal neovascularisation [117,118]

Ramucirumab
(Cyramza) VEGFR2

Human
monoclonal IgG1

antibody

Advanced gastric cancer and
non-small cell lung cancer (NSCLC) [119,120]

Aflibercept
(Zaltrap)

VEGF-A,
VEGF-B

and PIGF

Soluble decoy
receptor

Neovascular age-related macular
degeneration (AMD), Diabetic

macular edema (DME)
[121–123]

Pegaptanib
(Macugen) VEGF 165 Polynucleotide

aptamer
Neovascular age-related macular

degeneration (AMD) [124,125]

Another approach is to directly target the VEGFR extracellular domain, thus modulating interaction
with VEGF ligand and signalling outcomes. Ramucirumab is a humanised IgG1 monoclonal antibody
that binds to the VEGFR2 and is approved for advanced gastric cancer [119] and NSCLC [120].
Ramucirumab binds at or close to the VEGF-A binding site on VEGFR2 and blocks ligand binding
and VEGFR2 activation [126,127]. Several anti-VEGFR2 humanised antibodies are in pre-clinical
development and clinical trials. Similar to Ramucirumab’s mode of action, Tanibirumab (TTAC-0001)
is an anti-VEGFR2 antibody which also binds to the VEGFR2 extracellular domain and blocks binding
of VEGF-A, VEGF-C, VEGF-D and VEGF-E, with potent anti-angiogenic activity and tumour growth
inhibition in mouse models. Tanibirumab shows effective inhibition of VEGFR2 but not VEGFR1 or
VEGFR3 [128]. Tanibirumab shows positive results in patients with colorectal cancer in phase I clinical
trials, and phase II trials are ongoing [129].

The use of synthetic proteins is being increasingly explored to target angiogenesis in disease
states. One such example is Aflibercept (Zaltrap, VEGF TrapEye), which contains the high-affinity
VEGF-A binding site from VEGFR1, fused to dimerization domains from VEGFR2, with a humanized
Fc portion to recruit the immune system [113,121]. Such a construct in effect acts as a ‘VEGF ligand trap’
that inhibits angiogenesis. Aflibercept also binds to other VEGF family members, including VEGF-A
(Kd ~ 0.49 pM), VEGF-B and PIGF, and reduces activation of both VEGFR1 and VEGFR2. The functional
effects of Aflibercept in decreasing vascular permeability and neovascularisation [121,122] have led to
clinical approval to treat wet AMD [123].

Anti-VEGFR1 therapy has also shown promise with Icrucumab (IMC-18F1), being able to inhibit
human breast tumour xenograft growth in mice [130]. Multimodal treatment combining Icrucumab with
a nucleotide analogue (Capecitabine) is being used in phase II trials on patients with locally advanced
or metastatic breast cancer [131]. Another monoclonal antibody (D7F16) against VEGFR1 [132] has been
shown to inhibit ligand-dependent VEGFR1 homodimerization and activation in human glioblastoma
and glioblastoma stem cells [133]. A VEGFR3-specific monoclonal antibody (HF4-3C5) acts as an
antagonist by inhibiting VEGF-C binding [134]. Furthermore, a bispecific chimera antibody (diabody)
combining VEGFR2-specific (IMC-1121) and VEGFR3-specific (HF4-3C5) binding properties has been
developed. This unique diabody blocks VEGFR2 and VEGFR3 activation simultaneously [135].

The use of a synthetic polynucleotide or protein polymers is also promising. Pegaptanib is a
pegylated nucleic acid polymer that binds with high affinity to VEGF-A isoforms implicated in tumour
neovascularisation and vascular permeability, but does not recognise other VEGF-related family



Biomolecules 2020, 10, 1673 14 of 25

members [124]. Pegaptanib has been clinically approved for treating wet AMD, a leading cause of
age-related blindness [125]. Interestingly, different approaches have identified VEGFR2-specific agents
based on synthetic protein scaffolds called DARPins [92] and Affimers [136]. In both studies, targeting
the VEGFR2 extracellular domain can block ligand-regulated signal transduction and endothelial
cell responses [92,136]. Such studies provide hope for new, more effective cancer therapies based on
selective targeting of ligand or receptor domains that inhibit disease-related outcomes but do not affect
normal physiological function.

6.2. Tyrosine Kinase Inhibitors (TKIs)

Small molecules called tyrosine kinase inhibitors (TKIs), which are water-soluble and have
amphipathic properties, enable passage through the plasma membrane bilayer to reach their target
site within the cell. By binding to the RTK tyrosine kinase domain, such molecules can perturb TK
activity, which is dependent on the ATP/ADP cycle (Figure 5, Table 4). The ATP molecule comprises
of the adenine ring, a ribose sugar and three phosphate groups. Within the TK catalytic domain,
the adenine-binding region is located between hydrophobic pockets 1 and 2, and hydrogen bonds
stabilise contacts between the adenine ring and the hinge region [137]. The hydrophilic ribose moiety
and the negatively charged phosphates bind to conserved residues essential for catalysis. TKIs generally
act by competitive inhibition with ATP for binding to the TK domain. Most TKIs mimic the adenine
moiety by forming hydrogen bonds within the TK hinge region but generally lack the ribose or
phosphate binding properties [95].
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We shall focus on VEGFR-specific TKIs, which can be classified differently based on their
mechanism of action. Type I molecules only recogniae the active TK conformation: they are ATP
mimetics which form between 1 to 3 hydrogen bonds within the adenine-binding site, thereby blocking
ATP binding in a competitive manner. Type I TKIs are generally non-selective and inhibit a broad
range of kinases due to the highly conserved mechanism of action. The majority of ATP competitive



Biomolecules 2020, 10, 1673 15 of 25

inhibitors are type I TKIs. Sunitinib (Sutent) is one such example and is a VEGFR TKI that has been
clinically approved for cancer therapy (Figure 5). In contrast, type II TKIs recognise the inactive TK
conformation. The ‘DFG out’ conformation is an inactive state created by the activation loop, with an
exposed hydrophobic pocket adjacent to the ATP-binding site. Type II TKIs indirectly compete with
ATP by filling this exposed hydrophobic pocket, thereby inhibiting ATP binding by steric hindrance.
In contrast to non-selective type I TKI action, type II TKI displays more selectivity, as the ‘DFG
out’ inactive conformation exhibits variability between TKs [152]. The clinically approved drugs,
Imatinib and Sorafenib, are examples of type II TKIs. Compounds with covalent modification ability
contribute to class III TKIs, with the modification of specific cysteine residues within the catalytic TK
domain causing irreversible changes in RTK function. The class III TKI usually has an electrophilic
group which forms a covalent bond with the electron-rich sulphur moiety within the cysteine side
chain. This irreversible conjugation of the cysteine side chain within the TK domain can block ATP
binding, TK activation and is usually highly selective. Vandetanib (ZD6474) targets VEGFR2 strongly
and VEGFR3 more weakly [95]. This compound can also modify other RTKs such as EGFR and RET,
again indicating that many such drugs lack single target selectivity.

Table 4. Clinically approved small-molecule VEGFR inhibitors.

Inhibitors VEGFR1 VEGFR2 VEGFR3 Treatment Other Targets References

Sunitinib
(Sutent) + + +

Metastatic renal cell carcinoma
(mRCC) and gastrointestinal

stromal tumour (GIST)
PDGFRβ, FLT3 [138,139]

Sorafenib
(Nexavar) +

Advanced renal cell carcinoma,
advanced hepatocellular carcinoma

PDGFR, c-kit, Raf-1,
B-Raf [140,141]

Cabozantinib
(Cabometyx) + Advanced renal cell carcinoma MET, RET [142,143]

Pazopanib
(GW78603) + + + Renal cell carcinoma PDGFR-α, PDGFR-β

and c-kit [144]

Ponatinib
(AP24534) + Chronic myeloid leukaemia FGFR-1, FGFR-2,

FGFR-3, PDGFR-α [145]

Regorafenib
(BAY 73-4506) + + +

Metastatic colorectal cancer
(mCRC), gastrointestinal stromal

tumours (GIST) and
hepatocellular carcinoma

FGFR-1, FGFR-2,
PDGFR-α, PDGFR-β,

KIT, TIE2, TrkA
[146,147]

Axitinib + + + Renal cell carcinoma PDGFRβ, c-Kit [148]

Lenvatinib
(E7080) + + +

Radioactive iodine (RAI)-refractory
thyroid cancer

PDGFR-α, FGFR-1,
FGFR-2, FGFR-3,

FGFR-4, KIT and RET
[149,150]

Vandetanib
(ZD6474) + +

Locally advanced and metastatic
medullary thyroid cancer EGFR, RET [151]

Nintedanib
(BIBF 1120) + + + Idiopathic pulmonary fibrosis (IPF)

FGFR-1, FGFR2, FGFR3,
PDGFR-α, PDGFR-β

and FLT3
[138]

One hope is that new developments in class IV protein kinase inhibitors will allow more
selective targeting of RTK activity and function. Class IV inhibitors behave in an allosteric manner
to negatively regulate protein kinase by distinctly binding outside the ATP-binding site. By such
a mode of action, it should be theoretically possible to obtain selective inhibitors to any protein
kinase. Such compounds have been demonstrated to target canonical MAPK, p38-MAPK pathway
and mammalian target of rapamycin (mTOR) signal transduction pathways (Figure 6). Vemurafenib
(PLX4032) is a B-Raf selective inhibitor that also inhibits both MEK1/2 and ERK1/2. This drug received
US Food and Drug Administration (FDA) approval for treating unresectable or metastatic melanoma
in patients carrying the B-Raf-V600E mutation [153–155]. SB203580 is a pyridinyl imidazole inhibitor
that targets p38 MAPK [156] and PDK1, affecting downstream Akt activation and retinoblastoma
hyperphosphorylation [157]. Perifosine is an anti-cancer molecule that inhibits the Akt pathway [158].
Dactolosib (BEZ235), Bimiralisib (PQR309), BGT226, SF1126 and GSK2126458 are some examples of
class IV inhibitors developed to target the PI3K-Akt-mTOR pathway with dual inhibitory activity
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towards PI3K and mTOR [159]. Everolimus is an mTOR inhibitor which has received FDA approval
for treating advanced or metastatic renal cell carcinoma in combination with Lenvatinib, a multi-kinase
RTK inhibitor for the VEGFR subfamily [160–162]. Alpelisib, which inhibits PI3K, has been approved
for multimodal therapy in some types of breast cancer [163].Biomolecules 2020, 10, x 17 of 26 
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directly by monoclonal antibodies to inhibit VEGF binding to the extracellular domain of the receptor
or using various small-molecule tyrosine kinase inhibitors which block the ATP binding in the kinase
domain, thereby blocking phosphorylation of tyrosine residues. Alternatively, various small-molecule
inhibitors were developed that target cell signalling pathways activated by VEGFRs.

7. Conclusions and Future Directions

The VEGFR-VEGF system plays central roles in embryonic and physiological angiogenesis,
as well as tumour angiogenesis. Understanding how the structure, activation and functional outputs
associate with each VEGFR is important for treating a wide range of human pathologies associated
with this RTK subfamily. Advances in solving the structure of individual domains of VEGFs,
VEGFRs and VEGFR-VEGF complexes have provided invaluable information for designing many
drugs in clinical use. Targeting angiogenesis as an anti-cancer strategy has become increasingly
important with the realisation that tumour growth and metastasis can be simultaneously blocked using
anti-angiogenic therapies. Significant progress has been made by the generation of small-molecule
TKIs, humanised antibodies, synthetic proteins and aptamers that have provided disease remission in
some pathological states.

However, drug resistance continues to be a major obstacle in anti-cancer therapy. Many VEGFR
therapies are multimodal or combination therapies including some type of chemotherapy:
one consequence of chemotherapy is high incidence of genetic mutations that give rise to new
drug-resistant phenotypes. Tumours can develop resistance to anti-angiogenic therapy indirectly
whilst the VEGFR signalling remains inhibited by VEGFR inhibitors [164]. In such cases, combination
therapy with multiple TKIs could overcome drug resistance. For instance, resistance to Bevacizumab
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treatment in colorectal cancer (CRC) due to tolerance of hypoxia can be overcome by combination
with Nintedanib, a multi-kinase inhibitor that targets VEGFRs, FGFRs and PDGFRs [165]. There is a
need to understand the full structural ensemble of ligand, RTK and RTK-ligand complexes in active
and inactive states to design better drugs that ‘switch off’ harmful signals into the cellular interior,
whilst maintaining normal or physiological outputs. Otherwise, side effects and drug resistance will
continue to be major issues that hamper the development of more effective therapeutic compounds for
many ailments where the VEGFR-VEGF axis plays key roles.
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