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ABSTRACT
Automatic speech recognition (ASR) is a crucial technology for man-machine interaction. End-to-end
models have been studied recently in deep learning for ASR. However, these models are not suitable
for the practical application of ASR due to their large model sizes and computation costs. To address
this issue, we propose a novel mutual-learning sequence-level knowledge distillation framework en-
joying distinct student structures for ASR. Trained mutually and simultaneously, each student learns
not only from the pre-trained teacher but also from its distinct peers, which can improve the general-
ization capability of the whole network, through making up for the insufficiency of each student and
bridging the gap between each student and the teacher. Extensive experiments on the TIMIT and large
LibriSpeech corpuses show that, compared with the state-of-the-art methods, the proposed method
achieves an excellent balance between recognition accuracy and model compression.

1. Introduction
With the advances of deep learning technology, end-to-

end networks have significantly improved the performance
of automatic speech recognition (ASR). The end-to-endASR
models based on recurrent neural network (RNN), such as
connectionist temporal classification (CTC) [1, 2], recurrent
neural network transducer (RNN-T) [3, 4] and attention-based
model [5, 6], can bypass the label alignment stage to model
from input acoustic features to output labels directly. How-
ever, the outstanding recognition accuracy of end-to-endmod-
els comes with a massive amount of parameters, computa-
tional costs and significantly redundant representations. Hence,
end-to-end models are not suitable for practical ASR.

Model compression is a technique to reduce the model
size with negligible accuracy loss. Several types of model
compression approaches have been proposed, such as quan-
tization [7, 8], matrix factorization [9, 10], pruning [11, 12]
and knowledge distillation [13]. The knowledge distillation
basedmethods can significantly reducemodel sizes and com-
putational costs, as well as combining with other compres-
sion methods to reduce footprint and runtime latency [14]. It
uses a teacher-student framework to distill knowledge from a
larger teacher model to guide a smaller student model. How-
ever, conventional knowledge distillation methods often lack
the exploration of student models with distinct structures,
which can provide distinct and complementary learning ca-
pabilities for ASR: a deep structure has a greater general-
ization capability and a wide structure is easier to build a
long-term temporal dependence.

Therefore, in this paper, we propose a novel approach to
ASR: mutual learning for sequence-level knowledge distil-
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lation with distinct student structures. We focus on improv-
ing the abilities of student models through mutual learning
among distinct students. Instead of training a single stu-
dent model, we simultaneously train a set of student mod-
els with distinct structures. That is, students not only learn
knowledge from the teacher model, but also learn from other
students. On the one hand, due to structural differences,
each student can get different knowledge transferred from the
teacher network; on the other hand, mutual learning among
students allows them to complement each other andmake the
best of knowledge from the teacher. Trained in this way, each
student becomes more generalized than when learning alone
or with all the same structure. To demonstrate the effective-
ness of our proposed method, we shall conduct extensive ex-
periments on the TIMIT and large LibriSpeech corpuses.

Our main contributions are three-fold:
• We propose an approach tomutual-learning sequence-

level knowledge distillationwith distinct student struc-
tures, to train compact and accurate ASR networks,
enabling students to learn from their peers and make
up for their structural deficiencies.

• We extend our proposed approach to a multi-teacher
knowledge distillation framework, which simultane-
ously transfers the knowledge of multiple teachers to
different students.

• Through extensive experiments on the TIMIT and large
scale LibriSpeech corpuses, we demonstrate that our
proposed method can significantly reduce the model
size and computation cost with slight recognition ac-
curacy decrease.

The rest of this paper is organized as follows: Section 2
reviews the relatedwork, Section 3 revisits the CTC approach
and knowledge distillation. Section 4 describes the proposed
approach to mutual-learning sequence-level knowledge dis-
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tillation. The implementation details, experimental results
and analysis are presented in Section 5, and the paper is con-
cluded in Section 6.

2. Related Work
Model compression methods can be roughly divided into

three types: neural architecture search (NAS), parameter com-
pression and knowledge distillation.
NAS aims at automatically designing neural network archi-
tectures [15–18]. For example, He et al. [17] proposed the
AutoML for Model Compression (AMC) method and intro-
duced reinforcement learning to learn the optimal parame-
ters of pruning; Dudziak et al. [18] used reinforcement learn-
ing to select the per-layer compression ratios based onmatrix
approximation. However, such a method requires massive
computation during the search.
Parameter compression removes redundant information
from complex trainedmodels by, for example, pruning, quan-
tization and matrix factorization. Takeda et at. [19] designed
a score function to judge the importance of each node and
proposed node-pruning to prune unimportant nodes. Dai et
al. [20] proposed a hidden-layer LSTM and grow-and-prune
training method to address the problems of model redun-
dancy and runtime delay. Qian et al. [21] introduced bi-
nary neural network for acoustic modeling in speech recog-
nition. Mori et al. [22] performed Tensor-Train decomposi-
tion on the weight matrix of the recurrent network to reduce
the number of ASR parameters. Although these methods
have achieved high parameter compression ratio with low-
performance decrease, they require additional retraining.
Knowledge distillation was introduced byHinton et al. [23]
based on a teacher-student framework. The knowledge dis-
tillation based methods can transfer knowledge from a large
teacher model to a small student model. Other compres-
sion techniques such as pruning and quantization can also
be combined with knowledge distillation for further acceler-
ation and compression. Our work is a knowledge distillation
method, so here we focus on reviewing related knowledge
distillation methods.

Romero et al. [24] extended knowledge distillation to in-
termediate representation and verified that the intermediate
representation could improve the performance of the student
model. Lee et al. [25] proposed a method to combine knowl-
edge distillation and singular value decomposition with im-
proving the quality of the knowledge transferred. Jiang et
al. [26] proposed discriminant logit loss and category-aware
attention loss to optimize the knowledge transferring pro-
cess. Previous methods independently extract instance fea-
tures from the teachermodel as the distilled knowledgewhile
ignoring the correlation between multiple instances. Liu et
al. [27] introduced instance relationship graph for knowledge
distillation to model not only instance features but also in-
stance relationships as knowledge. Peng et al. [28] proposed
correlation congruence for knowledge distillation to trans-

fer the correlation between instance features. Wu et al. [29]
proposed a multi-teacher knowledge distillation framework
to compress the model by transferring the knowledge from
multiple teachers to a single student model. Wong et al. [30]
proposed to train the student by an ensemble with a diversity
of state cluster sets. Simultaneous distillation algorithms [31]
trained simultaneously a set of models that learn from each
other in a peer-teaching manner. Zhang et al. [32] proposed
mutual learning to improve the performance of deep neu-
ral networks. Thoker et al. [33] proposed an approach that
uses knowledge distillation for cross-modal action recogni-
tionwithmutual learning to train a small ensemble of student
networks.

Li et al. [34] trained a large-size DNN and used its out-
put distribution to teach the small-size DNN by minimizing
the Kullback–Leibler (KL) divergence of the output distri-
bution between them in ASR. Kurata et al. [35] proposed to
transfer the knowledge of the high-latency BiLSTM model
to the low-latency UniLSTM model to improve the accu-
racy of streaming recognition. As such, output differences
between teacher and student are minimized for each frame,
called frame-level knowledge distillation [36]. Takashima
et al. [37] found that the conventional knowledge distillation
method based on frame-level cross-entropy made the perfor-
mance of the student model worse. For standard ASR train-
ing, it is often found that the sequence-level training per-
forms better than the framework-level training, and frame-
level posteriorsmay not adequately convey information about
the sequential nature of speech data. The sequence-level
knowledge distillation has been proposed to ASR [38]. The
sequence-level knowledge distillation uses the output of the
teacher network to generate sequences with the k-best beam
search and saves them as pseudo targets to train the student
network. Takashima et al. [39] investigated the implementa-
tion of sequence-level knowledge distillation for CTC mod-
els and proposed a lattice-based sequence-level knowledge
distillation method. Mun’im et al. [40] investigated the fea-
sibility of sequence-level knowledge distillation for the se-
quence to sequence models. Moreover, penalizing teach-
ers with higher WERs can reduce the accuracy of recogni-
tion results. Kim et at. [41] added an exponential weight
to the sequence-level knowledge distillation method, which
reflects the quality of the teacher model output by the weigh-
ing scheme to minimize the knowledge distillation loss func-
tion. Meng et al. [42] proposed conditional teacher-student
framework, in which the student model selectively chooses
to learn from either the ground truth labels or the outputs of
the teacher model.

In contrast to the above methods, our method focuses on
the structural differences between models in mutual learn-
ing. We propose an approach to mutual-learning sequence-
level knowledge distillation with distinct student structures
for ASR, aiming to learn more knowledge from the teacher
by exploring the differences between the structures to in-
crease recognition accuracy.
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3. Knowledge Distillation for CTC-based
Model
In this section, we first revisit the connectionist temporal

classification (CTC) approach. Then, we introduce a gen-
eral form of knowledge distillation and the sequence-level
knowledge distillation in ASR.
3.1. Connectionist Temporal Classification

The CTC method is an objective function essentially for
sequence labeling problems that brings significant benefits
to the acoustic modeling of ASR. Generally, the length of
input features is often longer than the length of output se-
quences in ASR. In order to deal with this problem in train-
ing, the key idea of CTC is to allow duplications of output
labels and extend an additional blank symbol �, which indi-
cates that no labels are transmitted at a specific time step [43].
Thus, the CTC-basedmodel can automatically infer the align-
ment of speech frames and labels, and does not require pre-
alignments between input acoustic features and output char-
acters. TheCTC-basedmodel addresses the problem of context-
dependent statemismatch, makingmodeling simpler and eas-
ier. Moreover, the presence of a large number of blank sym-
bols allows the model to use frame skipping during the de-
coding process, thus considerably speeding up the decoding
process.

In the CTC framework, the intermediate label represen-
tation � = (�1,… , �T ) (called a path) is converted into out-put sequence by deleting repeated and blank labels. CTC
trains the model to maximize the sum of the probabilities of
all possible paths [44]:

p(y|x) =
∑

�∈B(y)
p(�|x), (1)

where y denotes the label sequence, x is the input sequence
and B(y) is the set of CTC paths for label sequence y. The
probability of label sequence p(�|x) is calculated as

p(�|x) =
T
∏

t=1
p(�t|x), (2)

where p(�t|x) is the posterior probability of label �t at time
t given the input x.

Then the loss function LCTC of CTC is defined as the
sum of negative log probability of correct labelings for each
training sequence:

LCTC = −
∑

x,y
ln p(y|x). (3)

The model is trained by minimizing LCTC .
3.2. Knowledge Distillation

Knowledge distillation is a model compression method
for deep neural networks. Themain idea of knowledge distil-
lation is to use the soft target obtained through a well-trained
teacher model to guide the training of the student model. In
the knowledge distillation framework, the teacher model is
trained by the ground truth labels. Then the student model is

trained by both the soft targets from the well-trained teacher
model and the ground truth labels, by using the following
loss function:

LKD(�) = �LCTC (�) + (1 − �)LKLD(�), (4)
where LCTC is the CTC loss, LKLD is the KL divergence, �
is the hyper-parameters to balance LCTC and LKLD, and �denotes the student model. The KL divergence of the student
output distribution to the teacher output distribution can be
formulated as

LKLD =
∑

P (x) log(P (x)∕Q(x)), (5)
where Q(x) is the output distribution of the student model
and P (x) is the output distribution of the teacher model. Be-
cause P (x) logP (x) is constant as the teacher model is fixed,
minimizing the loss function is equivalent to minimizing the
following equation:

LKLD = −
∑

P (x) logQ(x). (6)
The output distributionP(x) is represented as a softmax prob-
ability with the temperature index.
3.3. Sequence-level Knowledge Distillation

In the previous work of knowledge distillation, Eq.(4)
is calculated for each frame, which we call the frame-level
knowledge distillation. The frame-level information propa-
gated in speech recognition may not effectively capture the
behaviors of the teacher at the sequence level. Instead, it may
be better for the student to learn from the teacher’s sequence-
level behaviors directly. Thus, a sequence-level knowledge
distillation has been used in ASR [38], which uses the output
of the teacher model to generate sequences with the k-best
beam search and saves them as pseudo targets to train the
student network model.

Following [39], we use the output sequences from teacher
model as pseudo labels to train student models. The pseudo
targets are similar to soft targets in the frame-level knowl-
edge distillation. Even if there are some errors in pseudo tar-
gets, the student is supposed to achieve better performance
with sequence-level knowledge distillation, because the stu-
dent tries to imitate the distribution of teacher instead of
modeling the distribution of training data directly. Then,
using the pseudo targets, we train a student model under
sequence-level knowledge distillation [40]:
LseqKD = −

∑

t∈T
1{t = ŷ} log p(t|x) = − log p(t = ŷ|x), (7)

where x is the input sequence, T denotes an approxima-
tion of the all possible sequences, 1{} is the indicator func-
tion and ŷ is the output hypothesis estimated by the teacher
model.

4. Mutual-learning Sequence-level Knowledge
Distillation
In this section, we first propose our framework, themutual-

learning sequence-level knowledge distillation, and then ex-
tend it to a multi-teacher knowledge distillation framework.
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Figure 1: Mutual-learning sequence-level knowledge distillation with distinct structures. The framework consists of three
models: Teacher A, Student A and Student B. Student A has a deeper network, and Student B has a wider network. The output
predictions are denoted by ℎ and hypotheses labels are denoted by �.

4.1. Mutual Learning for Knowledge Distillation
The original knowledge distillation method is to train a

single small student model by using the soft targets obtained
from a well-trained teacher model. In contrast, in mutual
learning, a group of students can learn through collabora-
tion and the students learn from each other throughout the
training process to solve the task together.

Deep neural network training is a non-convex problem
and there may be local optimal value problems. Because of
this, the final trained model is often sensitive to the param-
eter initialization. Starting from different random parameter
initializations, it is possible that the models may converge to
different local optima after training and therefore may show
diversity in their outputs. It is this different initialization
information that provides additional information in mutual
learning for knowledge distillation.

In mutual learning, the students usefully pool their col-
lective estimates of the next most possible labels. According
to their partner, finding out and matching the most possible
labels for each input feature increases the posterior probabil-
ity of each student. Mutual learning provides a simple and
efficient method to improve the generalization capability of
the model through collaborative learning with other models.
The student models trained with mutual learning outperform
the students who are individually trained by a single sizeable
well-trained teacher.
4.2. Mutual Learning with Distinct Structures

In our proposed framework ofmutual-learning sequence-
level knowledge distillation, we choose student models with
distinct structures because the learning capabilities of dif-
ferent structure models are different. One student model
is deeper and the other model is wider. The deeper struc-
ture can improve network expressiveness and correct some

wrong samples, helping the shallow network learn easier.
On the contrary, the wider structure can more effectively ob-
tain contextual relationships of time series, helping the deep
network learn the long-term dependence. The collaboration
of these distinct student models would introduce more diver-
sity in the students’ outputs and achieve a better performance
of ASR by using multiple forms of diversities.

Therefore, we focus on the differences in student network
structures and aim to overcome each student’s drawback in
structure with mutual learning. Similar to the different ini-
tializations, since each student has a different network struc-
ture, their probability estimates for the most likely labels will
differ. If all the studentsmake the errors in their outputs, then
little can be gained from mutual learning; in contrast, if the
models make different errors in their outputs, the students
may be able to correct their errors through mutual learning.
That is, the mutual learning among students can be regarded
as a learning group, where the student models complement
each other by exploring the structural differences between
each other to obtain better performance. Thus, each student
can make the best of rich and correct knowledge transferred
by the teacher, while avoiding receiving incorrect knowl-
edge, through learning and interactions with other students.

The overall framework of the proposed method is illus-
trated in Figure 1. Specifically, each student (e.g. stu1) is
trained with three losses: a sequence-level knowledge distil-
lation loss between teacher and student LseqKD, a CTC loss
LCTC and a mimicry loss LKL−stu2 that aligns class pos-
terior of the student stu1 with the class probabilities of the
other student stu2. This can be expressed as

Lstu1 = (1 − �)LCTC + �
(

LseqKD + �LKL−stu2
)

, (8)
where LCTC denotes the CTC loss function, LKL−stu2 is theKL divergence between the two student networks, and � is
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the weight of the KL divergence.
4.3. Extension to Multi-teacher Framework

As group knowledge from a group of teachers can also
be compressed into a single student by using teacher-student
learning, to further improve the recognition accuracy, we ex-
tend the proposed approach to multiple teachers, leading to
a multi-teacher mutual-learning sequence-level knowledge
distillation framework for ASR. The extended loss function
for the jth student stuj becomes

Lstuj =(1−�)LCTC+�

(

∑

tea
LseqKD+�

∑

i≠j
LKL−stui

)

, (9)

where tea denotes the group of teachers. In this way, a group
of student networks learns knowledge from the output proba-
bility distributions of their peers and a group of the teachers,
as well as the ground truth labels.

5. Experimental Studies
In this section, we first introduce the evaluation datasets

and models. Then we evaluate our proposed approach on
the TIMIT and LibriSpeech corpuses and compare its per-
formance with state-of-the-art methods.
5.1. Experiments Setup
5.1.1. Datasets and setup

The speech recognition experiments were conducted on
the TIMIT and LibriSpeech datasets. The TIMIT corpus is
the mainstream datasets in ASR experiments. It contains
6,300 sentences in total, including 630 speakers, and the to-
tal time is five hours. The training set is about 70% of the
total, and the test set is approximately 30%. At the same
time, we used the 1,000-hours LibriSpeech corpus to verify
our proposed method on large data sets. LibriSpeech is a
large corpus developed for ASR. It consists of 1000 hours
of reading English speech, based on public domain audio-
books of the LibriVox project. The training set is about 95%
of the total and the rest dataset is for validation and test. In
LibriSpeech, the validation data and test data are split into
‘clean’ and ‘other’ subsets.

Commonly used features in speech include LSF [45–47],
LPC [48], MFCC [49], FBank [50] and spectrogram. We
sampled all audio data at 16kHz. In our experiment, all the
models were trained on the log spectrogram features. The in-
put features can be depicted as 2-dimensional spectrograms
with time and frequency axes, extracted from a 25ms win-
dow and shifted every 10ms. The dimension on the fre-
quency axes is 201 dimensions and the dimension on the
time axes depends on the input sequence length. We applied
standard mean and deviation normalization to audio tensor.
We select training samples longer than 1 second and shorter
than 15 seconds as the model input. We chose 29 distinct
characters (including 26 capital English letters, space, sin-
gle quote character and blank token) as model units. We
used Stochastic Gradient Descent (SGD) with mini-batch of
32, and the learning rate started at 0.0003. At the end of

each epoch, the learning rate was multiplied by a factor of
0.95. The training would be continued until the recognition
error on the development set increased, in order to select
the best model. For decoding, the greedy decoding proce-
dure (no complex beam search decoder or external language
model) was used. This makes our end-to-end ASR systems
all-neural.
5.1.2. Model structures

Figure 2: Model Structure. We choose DeepSpeech2 and
CRNN as our teacher models.

Weadopt DeepSpeech2 [2] andCRNN [51] as Teacher A
and Teacher B, respectively. The DeepSpeech2 and CRNN
based on the Connectionist Temporal Classification (CTC)
criterion are natural end-to-end (E2E) systems directly tar-
geting word as the output unit. We use spectrogram as the
input feature, and it is necessary to extract higher-level fea-
ture representations using CNNs. As shown in Figure 2, the
DeepSpeech2 network has two convolution layers and five
layers of bidirectional long short-term memory (BLSTM),
with 1024 hidden units in each layer; the CRNN consists of
three parts: seven convolutional layers, two recurrent layers,
and one transcription layer, from bottom to top.

For student networks, we choose two differently-structured
LSTMnetworks, one studentmodel is deeper and the other is
wider. The divergence between the two models will provide
more extra information for mutual-learning sequence-level
knowledge distillation. One has two LSTM hidden layers
with 512 hidden units for each layer, and the other has five
LSTM hidden layers with 256 hidden units for each layer.
The output layer of all models is linearly projected to 29 di-
mensions.

As shown in Table 1, the numbers of model parameters
of Teacher A, Teacher B, Student A, and Student B models
are 58.3 million, 54.5 million, 11.9 million and 7.8 million,
respectively. We can see that the student model can achieve
more than five times the compression of the teacher model.
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Table 1
The number of parameters of teacher and student models

Model parameters
Teacher LSTM 58.3M
Teacher CRNN 54.5M

Student A 11.9M
Student B 7.8M

Table 2
Results (CER) from training with mutual learning for knowl-
edge distillation on TIMIT

Size CER
Teacher A - 20.348
Student A 20.4% 28.393

Student A + seqKD 20.4% 25.836
A+MLKD(with Student B) 20.4% 24.757

Student B 13.4% 27.818
Student B + seqKD 13.4% 26.064

B+MLKD(with Student A) 13.4% 24.733

5.2. Results and Analysis
5.2.1. Mutual-learning sequence-level knowledge

distillation with distinct structures (MLKD)
Wefirst validate the performance of the proposedmethod

on TIMIT. The results in terms of character error rate (CER)
are shown in Table 2, where Teacher A, Student A and Stu-
dent B are trained from scratch; Student A + seqKD means
that Student A learns from Teacher A in a sequence-level
knowledge distillation way; A+MLKD(with Student B) in-
dicates that Student A and Student B learn in the proposed
mutual-learning sequence-level knowledge distillation way.
Similarly, for the block of Student B in Table 2.

We can observe the following patterns fromTable 2. First,
the size of student models and knowledge distillation mod-
els are much smaller than the teacher model; for example, for
Student A, the number of parameters is only about 20% of
Teacher A. Secondly, with the knowledge distillation train-
ing, the studentmodels (e.g. Student A+ seqKD) can achieve
better CER than it training directly without knowledge distil-
lation (e.g. Student A). Thirdly, because of the benefit from
using mutual learning with distinct student models, the pro-
posed model (e.g. A+MLKD(with Student B)) achieved the
best CER (24.757%).

Moreover, we show in Figure 3 the performance of dif-
ferent models on the TIMIT corpus, from which we can also
see that the mutual learning models (Student AwithMLKD)
outperform individual student models (Student A and Stu-
dent A with seqKD).

We further evaluate the models on the LibriSpeech cor-
pus under four scenarios: dev-clean, dev-other, test-clean
and test-other. In this work, we have not used a separate lan-
guage model for further reduction of word error rate (WER).
Table 3 shows theWER of the teacher model and the student
models. The observations from Table 3 are generally con-
sistent with those of Table 2. In particular, the WER of the

Figure 3: The performance, in terms of character error rate
(CER), of different methods on TIMIT

proposed mutual learning models result in remarkable im-
provement in WER: for example, A+MLKD(with Student
B) on dev-clean is 15.862%, a 4.854% reduction of the Stu-
dent A baseline (20.716%); the WER of 13.829% on dev-
clean for Student B was achieved for our proposed method
B+MLKD(with Student A), yielding a reduction of 4.442%
over the Student B baseline (18.271%). The same pattern can
be seen from Figure 4 that the mutual learning models (Stu-
dent A with MLKD) outperform individual student models
(Student A and Student A with seqKD).

Figure 4: The performance, in terms of word error rate
(WER), of different methods on LibriSpeech

Mutual learning improves upon the single student perfor-
mances over single conventional training. The results may
suggest that mutual learning knowledge distillation slightly
increases the ensemble diversity and improves the learning
ability. Another benefit of the ability to learn from different
models is to make up for structural defects. The deep model
can learn to capture longer span temporal dependencies in
the data and the wide model can learn generalization ability
from the deep model. The Student B performs better than
Student A with much less number of parameters. This may
be because Student B has a deeper network structure and
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Table 3
Results (WER) from training with mutual learning for knowledge distillation on LibriSpeech

Size dev-clean dev-other test-clean test-other
Teacher A - 10.285 28.015 10.716 28.896
Student A 20.4% 20.716 42.930 20.701 44.705

Student A + seqKD 20.4% 17.578 38.745 17.744 39.684
A+MLKD(with Student B) 20.4% 15.862 37.065 16.222 38.557

Student B 13.4% 18.271 38.826 18.050 40.124
Student B + seqKD 20.4% 16.748 36.832 16.500 38.040

B+MLKD(with Student A) 13.4% 13.829 32.667 13.655 34.020

Table 4
Results (CER) of multi-teacher MLKD on TIMIT

Size CER
Teacher A - 20.348
Teacher B - 20.104

Student A + Mutli-teacher 20.4% 25.103
A+MLKD(with Student B) 20.4% 24.757

A+MLKD(with Student B & Mutli-teacher) 20.4% 23.685
Student B + Mutli-teacher 13.4% 24.984
B+MLKD(with Student A) 13.4% 24.733

B+MLKD(with Student A & Mutli-teacher) 13.4% 22.496

better generalization ability. With the help of Student A, the
ability to capture longer time span dependencies has been
further improved. The experiments show that mutual learn-
ing with different structures helps students learn more from
the teacher than the conventional knowledge distillation.
5.2.2. Multi-teacher MLKD framework

In the previous experiments, the students only learn from
a single teacher. Fukuda et al. [52] leverage information
from multiple teachers by training student networks with a
group of teachers. As presented in section 4.3, we extend
our proposed method, the mutual-learning sequence-level
knowledge distillation with distinct structures (MLKD), to
a multi-teacher MLKD framework.

The evaluation procedure and results of various combi-
nations of student models and teacher models on the TIMIT
corpus are listed in Table 4.

We first train a single Student A with multiple teach-
ers (Student A + Multi-teacher), the result of which (with
CER of 25.103%) show that leveraging the output of multi-
ple teachers for training student models is better than train-
ing with a single teacher (Student A + seqKD with CER of
25.836% as shown in Table 2).

Then we further illustrate the efficacy of our proposed
mutual learning knowledge framework: comparedwith train-
ing with multiple teachers, Student A+MLKD (with Student
B) leads to a 0.346% CER reduction (25.103% to 24.757%)
from Student A + Multi-teacher; Student B+MLKD (with
Student A) also achieves a 0.251% CER reduction (24.984%
to 24.733%) from Student B + Multi-teacher. The patterns
on the LibriSpeech dataset are consistent with the patterns
on the TIMIT (as shown in the Table 5). The performance

of distinct students with mutual learning is more competitive
than a single student with multiple teachers.

Finally, as we can from Table 4, MLKD combined with
two teachers produces the best performance: Student A with
multi-teacherMLKD (i.e. A+MLKD (with Student B&Multi-
teacher)) achieves 23.685%CER; Student Bwithmulti-teacher
MLKD also achieves the best performance at 22.496% CER.
This pattern can also be clearly observed in Figure 3 on the
TIMIT corpus.

As shown in the Table 5 and Figure 4, a similar pat-
tern can be observed for Student A to support multi-teacher
MLKD on the LibriSpeech corpus. However, this pattern is
only observed for Student B on the dev-clean case but not
the other three scenarios. This may be because the WER of
Student B with MLKD is already close to that of Teacher B.
5.2.3. Computation cost

The purpose of our method is to use small models to
save storage space and computational consumption. We save
more than half storage space by reducing 80% of parame-
ters and boost computation by decreasing about 81% FLOPs
comparedwith TeacherA. The proposedmethod has achieved
the notable result on Student B, by removing 86.6% param-
eters and 84.4% FLOPs compared with Teacher A. That is,
our methods reduce both the FLOPs and the memory con-
sumption of the network, whilemaintaining high recognition
accuracy rate.
5.2.4. Comparison with state-of-the-art methods

The comparison results on TIMIT and LibriSpeech of
our proposedmethodwith state-of-the-art methods are shown
in Table 7. Takashima et al. [37] investigated sequence-level
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Table 5
Results (WER) of multi-teacher MLKD on LibriSpeech

Size dev-clean dev-other test-clean test-other
Teacher A - 10.285 28.015 10.716 28.896
Teacher B - 13.365 31.870 13.468 32.658

Student A + Mutli-teacher 20.4% 17.062 38.227 16.713 39.440
A+MLKD(with Student B) 20.4% 15.862 37.065 16.222 38.557

A+MLKD (with Student B & Mutli-teacher) 20.4% 15.152 35.752 15.106 37.237
Student B + Mutli-teacher 20.4% 15.049 35.052 14.952 36.455
B+MLKD(with Student A) 13.4% 13.829 32.667 13.655 34.020

B+MLKD(with Student A & Mutli-teacher) 13.4% 13.810 33.199 13.727 34.287

Table 6
Computation costs

Model Parameters FLOPs
The reduction of
FLOPs compared
with Teacher A

DeepSpeech 58.3M 16.49G -
CRNN 54.5M 22.19G -

Student A 11.9M 3.11G 81%
Student B 7.8M 2.57G 84.4%

Table 7
Evaluation results on TIMIT and LibriSpeech compared with
the state-of-the-art methods

Method CER on TIMIT WER on LibriSpeech
Sequence-level KD [37] 25.836 17.578

Essence KD [53] 25.890 17.163
ERR-KD [41] 25.869 17.251
Our MLKD 24.757 15.862

Our MLKD + multi-teacher 23.685 15.152

knowledge distillation to train a CTC-based model. Essence
knowledge distillation [53] only selected the top k values
(the essence knowledge) from the teacher model. Kim et
al. [41] proposed to add an exponential weight coefficient
to the sequence-level knowledge distillation method to bal-
ance the recognition quality of the teacher model. We chose
the DeepSpeech2 as the teacher model, selected two lay-
ers of LSTM as the student model, and experimented them
with the Sequence-level KD, Essence KD and ERR-KD. We
carried out speech recognition experiments on the methods
mentioned above and our MLKD method. As can be seen
from Table 7, our MLKD is superior to these methods, re-
markably improving the error rate on both TIMIT and Lib-
riSpeech, which benefits from mutual learning from other
students. Therefore, we can conclude that we obtain the
competitive performance, proving the effectiveness of our
proposedmethod. Furthermore, the performance of students
trained with our proposed method is about the same as their
teacher model.
5.2.5. Ablation study

Here we an ablation study to prove the effectiveness of
using distinct student structures by comparing it with the

Table 8
Results (CER) of ablation study on TIMIT

Size CER
A+MLKD(with Student A) 20.4% 25.217
A+MLKD(with Student B) 20.4% 24.757
B+MLKD(with Student B) 13.4% 25.086
B+MLKD(with Student A) 13.4% 24.733

Table 9
Results (WER) of ablation study on LibriSpeech

Size dev-clean dev-other test-clean test-other
A+MLKD(with Student A) 20.4% 17.135 37.723 16.998 39.190
A+MLKD(with Student B) 20.4% 15.862 37.065 16.222 38.557
B+MLKD(with Student B) 13.4% 15.979 36.153 16.089 37.214
B+MLKD(with Student A) 13.4% 13.829 32.667 13.655 34.020

same student structure. The results are shown in Table 8
and Table 9. On TIMIT, compared with the mutual learning
of the same structure, MLKD with different student struc-
tures can reduce CER by 0.46% (from 25.217% to 24.757%)
for Student A and by 0.353% (from 25.086% to 24.733%)
for Student B. The results of LibriSpeech shown in Table 9
also suggest the same pattern: the mutual learning knowl-
edge distillation with different student structures is superior
to that with the same student structure.

6. Conclusion
In this paper, we investigate themutual-learning sequence-

level knowledge distillation framework with distinct student
structures in automatic speech recognition. By exploring
structural differences, the students canmake up for the short-
comings of their structures and learn better from the teacher.
Experiments on the TIMIT and LibriSpeech corpuses demon-
strate that the proposed mutual learning method can produce
a remarkable performance improvement, compared with the
student models learning alone. Moreover, the extension of
the proposedmethod to themulti-teacher framework can gen-
erally further improve the performance. Moreover, com-
pared with the large teacher model, the proposed model re-
duces a significant amount in model size and manages no
much decrease in recognition accuracy.

We choose sentences longer than 1 second and shorter
Z. Li, Y. Ming, L. Yang and J.-H. Xue : Preprint submitted to Elsevier Page 8 of 10
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than 15 seconds to train and validate the models. In future
work, to solve the mismatch between training with short-
form audio and inference for long-form audio, we will inves-
tigate and evaluate the performance of various models under
long-form audio.
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