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ABSTRACT
In 2010 the Conference of the Parties (COP) for the Convention on Biological
Diversity revised and updated a Strategic Plan for Biodiversity 2011–2020, which
included the Aichi Biodiversity Targets. Here a group of early career researchers
mentored by senior scientists, convened as part of the 4th World Conference on
Marine Biodiversity, reflects on the accomplishments and shortfalls under four of
the Aichi Targets considered highly relevant to marine conservation: target 6
(sustainable fisheries), 11 (protection measures), 15 (ecosystem restoration and
resilience) and 19 (knowledge, science and technology). We conclude that although
progress has been made towards the targets, these have not been fully achieved for
the marine environment by the 2020 deadline. The progress made, however, lays
the foundations for further work beyond 2020 to work towards the 2050 Vision for
Biodiversity. We identify key priorities that must be addressed to better enable
marine biodiversity conservation efforts moving forward.

Subjects Conservation Biology, Marine Biology, Science Policy
Keywords Aichi, Biodiversity, Target, 2020, Marine, Conservation, Priorities

INTRODUCTION
Human well-being depends on protecting and preserving the functioning of oceans
and coastal ecosystems. Over three billion people rely on these incredibly biodiverse
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ecosystems for their livelihoods, and even more depend on the services healthy ocean and
coastal ecosystems provide, including food, storm surge protection, and cultural resources.
Healthy marine ecosystems are essential for maintaining life on Earth; however, the
ocean faces unprecedented anthropogenic threats, reducing its ability to provide crucial
benefits to humans and other species that depend on it.

To achieve global sustainability and effective ocean stewardship, the international
community has pledged to conserve global marine ecosystems, notably through the United
Nations Convention on Biological Diversity (CBD) and the United Nations 2030 Agenda
for Sustainable Development (2030 Agenda). In 2010, in Nagoya, Japan, the Parties
to the CBD adopted the Strategic Plan for Biodiversity 2011–2020 (Strategic Plan).
The Strategic Plan is an overarching framework of 20 aspirational benchmarks—termed
the “Aichi Biodiversity Targets”—that countries and stakeholders should meet in order to
safeguard biodiversity by 2020. In 2015 UN Member States adopted the Sustainable
Development Goals (SDGs) which set the direction for achieving global development while
protecting the environment we rely on. These are linked closely to the Aichi Biodiversity
Targets and Goal 14, which focuses on the need to conserve the ocean and its resources,
is of particular relevance to marine conservation efforts.

In the mid-term assessment of progress towards the implementation of the Strategic
Plan, the fourth edition of the Global Biodiversity Outlook (GBO-4, Secretariat of the
Convention on Biological Diversity, 2014) concluded that although good progress had been
made in some areas, it was unlikely that many of the Aichi Biodiversity Targets would be
reached by 2020. The report on SDG 14 progress (United Nations, 2017) underlined
that existing policies and treaties are still insufficient to combat the adverse effects of
climate change, overexploitation of resources, and pollution.

With 2020 on the horizon, the 4th World Conference on Marine Biodiversity (WCMB)
in 2018 in Montreal, Canada, implemented a mentoring program to bring together early
career researchers with more senior scientists in working groups during the conference
to synthesize the achievements of a decade of work on “Strategies for conservation of
marine biodiversity”. One of the working groups focused on critically evaluating the role of
conservation paradigms and technology in achieving the Aichi Biodiversity Targets.
While recognizing that many targets overlap and that all 20 targets are linked to marine
conservation, the group identified the most relevant targets to four core themes of marine
conservation: restoration (Aichi target 15), protection (Aichi target 11), monitoring
(Aichi target 19), and sustainable use (Aichi target 6) (Table 1). In this review paper, the
group discusses both the accomplishments towards and shortfalls of achieving these
four targets and suggests priorities for marine biodiversity conservation to be considered in
the post-2020 Global Biodiversity Framework (“post-2020 Framework”).

As the CBD contracting parties continue discussing how to meet the 2050 Vision for
Biodiversity (CBD, 2020), numerous resulting assessments stress the need to build off the
past decade’s achievements by critically evaluating implementation of the Strategic Plan
and demonstrating concrete examples of success. Consultation groups also emphasize
need for including input from diverse perspectives, including youth, in the post-2020
Framework (CBD, 2019a, 2019b). Our synthesis of progress made towards Aichi targets 6,
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11, 15, and 19, and respective future priorities, can serve as guidance for future CBD
Working Group discussions.

REVIEW
Aichi target 6—By 2020 all fish and invertebrate stocks and aquatic plants are managed and
harvested sustainably, legally and applying ecosystem based approaches, so that overfishing
is avoided, recovery plans and measures are in place for all depleted species, fisheries have
no significant adverse impacts on threatened species and vulnerable ecosystems and the
impacts of fisheries on stocks, species and ecosystems are within safe ecological limits.

There have been some successes over the last decade against Aichi target 6.
The number of stocks fished within biologically sustainable levels has increased in the

Northeast Atlantic, Australia, and broadly across the Pacific. However, the general trend
for global fisheries remains negative as the percentage of stocks fished at biologically
unsustainable levels increases (FAO, 2018). Challenges to achieving sustainable fisheries
include insufficient data, habitat loss, and a disconnect between humans and the
environment (Hazen et al., 2016). Spatial constraints and jurisdictional boundaries can
also pose challenges to taking ecosystem-based management (EBM) approaches to
fisheries and requires spatial management units that recognize both local ecological and
socio-economic benefits (Sanchirico & Wilen, 2005; Kenny et al., 2018). Implementing a
holistic ecosystem-based approach to management is complex, especially because views vary
on the fundamental principles of such an approach (Long, Charles & Stephenson, 2015).

Different considerations for developing vs developed countries can also make
governance challenging; for example engaging multiple stakeholders, adopting
decentralized governance strategies, and achieving long term sustainability through EBM

Table 1 Reviewed Aichi Biodiversity Targets (SCBD, 2010).

Target Strategic goal Description

6 B: Reduce the direct pressures on biodiversity and
promote sustainable use

By 2020 all fish and invertebrate stocks and aquatic plants are managed and
harvested sustainably, legally and applying ecosystem based approaches, so that
overfishing is avoided, recovery plans and measures are in place for all depleted
species, fisheries have no significant adverse impacts on threatened species and
vulnerable ecosystems and the impacts of fisheries on stocks, species and
ecosystems are within safe ecological limits

11 C: Improve the status of biodiversity by safeguarding
ecosystems, species and genetic diversity

By 2020, at least 17% of terrestrial and inland water, and 10% of coastal and
marine areas, especially areas of particular importance for biodiversity and
ecosystem services, are conserved through effectively and equitably managed,
ecologically representative and well-connected systems of protected areas and
other effective area-based conservation measures, and integrated into the wider
landscape and seascapes

15 D: Enhance the benefits to all from biodiversity and
ecosystem services

By 2020, ecosystem resilience and the contribution of biodiversity to carbon
stocks has been enhanced, through conservation and restoration, including
restoration of at least 15% of degraded ecosystems, thereby contributing to
climate change mitigation and adaptation and to combating desertification

19 E: Enhance implementation through participatory
planning, knowledge management and capacity building

By 2020, knowledge, the science base and technologies relating to biodiversity, its
values, functioning, status and trends, and the consequences of its loss, are
improved, widely shared and transferred, and applied
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approaches can be easier in wealthy developed countries with greater resources (Gutierrez,
Hilborn & Defeo, 2011; DuBois & Zografos, 2012; Cinner et al., 2016; Kenny et al., 2018;
Teh et al., 2018). In addition, fishing access agreements with wealthy countries permitting the
harvesting of demersal and highly migratory species within the Exclusive Economic Zones
(EEZ) of developing countries (Gagern & Van den, 2013) can create a challenge for
sustainable fisheries within these developing countries’ waters.

At the local level, sustainable management of smaller artisanal fisheries can be realized
through place-based strategies and an increased awareness of socio-economic and cultural
benefits such as enhanced food security (Kittinger et al., 2015; Stuart et al., 2019).
Communities with strong cultural connections to coastal resources are, however often data
limited and lack resources for combating the knowledge gap in applying market-based
approaches and industrial supply chains to small-scale fisheries (Smith, 2008; O’Rourke,
2014; Kittinger et al., 2015).

Although many preventative actions have been implemented at various scales to address
overfishing and depleted stocks (European Union, 2008; Papaioannou, 2016; FAO, 2018;
Oozeki et al., 2018; Satria et al., 2018), illegal, unreported, and unregulated (IUU)
fishing remains a threat globally for marine conservation efforts. Improved technological,
enforcement, and/or compliance measures are needed to tackle this challenge across and
beyond national jurisdictions.

While some regional fish stocks have shown recovery (OSPAR Commission, 2017;
Van Gemert & Andersen, 2018) through improved management, many are still in decline.
Climate change poses a growing challenge to developing and implementing recovery plans
in addition to predicting optimum sustainable yield (Vert-pre et al., 2013; Britten et al.,
2017; Teh et al., 2018). As ocean temperatures continue to rise, low latitude or warm-water
species are projected to migrate poleward (Jones & Cheung, 2015; Morley et al., 2018)
leading to increased catch at higher latitudes and decreased catch in lower latitudes
(Cheung, Watson & Pauly, 2013; Cheung et al., 2016; Blanchard et al., 2012). Changes
in marine fish stock distribution occur on local and regional scales, with decreasing
harvests predicted in the tropics and regions nutritionally and economically dependent
on fisheries (Bell et al., 2016; Barange et al., 2014). For all fisheries, EBM, including
science-based recovery plans, stakeholder agreements, and human behavioral change, are
critical for sustainable harvesting of fish, shellfish and aquatic plants within safe ecological
limits for future generations.

Greater success in meeting the aims of Aichi Target 6 can be achieved through
identifying priority areas of focus and attainable outcomes for sustainable, EBM using
long-term adaptive approaches (Teh et al., 2018) which consider climate change.
For instance, recent reviews on shark and ray conservation have illustrated the knowledge
gap in the coupled dynamics of human dimensions (e.g., socio-economic status, political
stakeholders, market demands, enforcement capacity) and natural population drivers
(e.g., life history traits, habitat availability) (Gaymer et al., 2014; Dent & Clarke, 2015;
Jaiteh, Loneragan &Warren, 2017;Martin, Maris & Simberloff, 2016;Martins et al., 2018),
which could be targeted as a priority area for research. Adaptive conservation solutions
and policies should be adopted in the face of global disparities, such as governance,
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resource dependance, and monitoring and enforcement capacity (Lucifora et al., 2019;
Mizrahi et al., 2019) that often stifle progress.

The post-2020 Framework should consider a few priority areas. Recovery plans and
avoidance of overfishing of stocks should focus on flexible solutions at different scales
that target knowledge gaps and the address the challenges posed by the highly mobile,
transboundary nature of many fish stocks. The negative impacts environmental impacts of
fishing needs to continue to be addressed with a focus on adverse impacts on vulnerable
ecosystems and threatened species, along with IUU. Cross-boundary, governmental,
and institutional sharing of data and best management practices should be improved to
help develop a more transparent, adaptive, resilient, and robust framework for sustainable
EBM fishing practices.

Effective implementation of recovery plans and ending overexploitation of current
stocks require a greater understanding of the parallel components of species life history
and gear-related mortality. Life history traits often explain demographic characteristics
that drive stock dynamics, such as size at maturity, age of recruitment, and maximum
sustainable yield. These characteristics are even more important in data-poor habitats
such as the deep sea, where organisms are slow growing, long living, and often have
lower reproduction potential, making these ecosystems highly vulnerable to overfishing
(Koslow, 1997; FAO, 2009). Long-term, flexible management planning for highly
vulnerable ecosystems should therefore include realistic timespans to distinguish natural
fluctuations in population dynamics from impacts of overfishing (Clark et al., 2016).
Incorporating knowledge of fish physiology, spatial behavior of stocks, gear interactions,
and economic values into stock assessments at the global scale can also improve recovery
efforts (Lynch, Shertzer & Latour, 2012; Poloczanska et al., 2013; Lagasse et al., 2015;
Horodysky et al., 2016). Managers should therefore develop flexible and adaptive recovery
plans that incorporate information on life history traits and population dynamics,
measures for stochastic biological and environmental events (Pershing et al., 2015; Britten
et al., 2017), as well as strategic spatial plans for monitoring and enforcement (Costa et al.,
2018). Implementing these strategies will allow policy makers to address changes in
global fisheries as a result of climate-driven stressors. Target-based spatial planning
software such as Marxan (Ball, Possingham & Watts, 2009) or Zonation (Moilanen, 2007)
can facilitate an adaptative framework, allowing resource managers to use an array of
biological information along with fishing effort data to improve time-space management
approaches in addition to addressing economic and political insecurities for developing
nations (Kathijotes, 2013) or nations at risk from climate-induced stressors (Mercer et al.,
2012; Mamauag et al., 2013).

Current efforts to reduce negative fisheries impacts on a global scale include approaches
such as bycatch reduction strategies (Swimmer et al., 2011; O’Neill & Mutch, 2017;
Veiga-Malta et al., 2018), bans on harvests of certain species (Sherman et al., 2018),
elimination of discards (European Union, 2013), regulating exports related to
non-sustainable fisheries (Shiffman & Hueter, 2017), fishing regulatory closures for
Vulnerable Marine Ecosystems (VME) in Areas Beyond National Jurisdiction (ABNJ)
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(NEAFC, 2018), prohibition of destructive gear types for VMEs (Auster et al., 2011), marine
protected areas (Hameed et al., 2017; Hastings, Gaines & Costello, 2017), and increased
aquaculture production (FAO, 2018; Froehlich, Gentry & Halpern, 2017). Implementation of
conservation measures such as large-scale marine protected areas can pose challenges for
nations that close off areas of their waters; however cross-jurisdictional management with
transferable fishing rights has been proposed as a potentially viable market-based solution to
promote transboundary cooperation in these situations (Villaseñor-Derbez, Lynham &
Costello, 2020). Major concern remains, however, for sustainable management of fish stocks
in ABNJ (Cullis-Suzuki & Pauly, 2010) and about the impacts of fishing activities to deep-sea
ecosystems (Koslow et al., 2000; FAO, 2008; Brock et al., 2009; Ramirez-Llodra et al.,
2011), as well as IUU fishing in polar areas (Ainley & Pauly, 2014; Österblom, Bodin &
Rashid Sumaila, 2014; Nyman, 2018).

Understanding adverse impacts from overfishing should include historical, present,
and projected priority areas to inform better implementation of global ecosystem-based
practices. Future practices for regions that have multiple fisheries and/or rely on potentially
harmful gear types (e.g., bottom trawls, bottom longline) (Clark & Koslow, 2008; Halpern
et al., 2007) should be critically evaluated at an ecosystem level. As deep-sea fisheries become
more prevalent because of recent advances in gear technology, precautionary measures
should be put in place to assess damage and recovery potential. Long term impacts of gear
interactions in the deep sea can have delayed responses reflected in a degraded seabed
environment and remaining fauna (Clark et al., 2010; Williams et al., 2010). A feedback
mechanism formanagement that includes historical data and periodically updatedmodels or
rapid assessments would provide a process for extensive review and integration of new
information.

The sharing of management outcomes, information on species life history across
regions (e.g., ontogenetic shifts, foraging behavior), and guidelines and best practices
across boundaries (disciplinary, political, governmental, institutional, sectoral) could be
improved through the use of information sharing frameworks. For example, regional
guidelines and approved practices for global issues such as invasive species and highly
migratory fish stocks have been successful in coordinating common language and
strategies across political and regional boundaries (Lascelles et al., 2014; Morris, 2012;
Serdy, 2016). Governance of fish stocks between communities at local scales would also
benefit from sharing resources (e.g., biological sampling, analytical modeling), use of
traditional ecological knowledge, and active engagement of the public (Tallman, Roux &
Martin, 2019). Open communication and flexible solutions may allow for better
decision-making and cooperation among stakeholders that differ in socio-economic status.
Cross-boundary, governmental, and institutional sharing of best management practices
will also enhance the capacity to holistically evaluate the efficacy of current recovery plans
and fisheries mitigation impacts. The use of a more robust, collaborative framework,
inclusive of climate change impacts, population drivers, and socio-economic information
across regions will aid in assessing how to achieve sustainable harvest of fish stocks within
safe ecological limits for all marine fauna and their living environment.
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Aichi target 11—By 2020, at least 17% of terrestrial and inland water, and 10% of
coastal and marine areas, especially areas of particular importance for biodiversity
and ecosystem services, are conserved through effectively and equitably managed,
ecologically representative and well-connected systems of protected areas and other
effective area-based conservation measures, and integrated into the wider landscape and
seascapes.

As a target obligating Contracting Parties to meet measurable commitments by 2020
(Campbell et al., 2014), and as the most intensively studied of the Aichi targets (Green et al.,
2019), Target 11 should have proven a relatively easy target to assess in terms of
achievements for marine conservation and associated future priorities. However, work
towards this target to date appears to have had complex, and sometimes conflicting,
outcomes. For instance, progress towards area-based protection seems to have resulted in
less attention being paid to the management, representativeness, broader integration,
and connectivity of conservation measures (i.e., qualitative measures), which are also
specified components of Target 11.

Progress towards the quantitative part of the target—for 10% of coastal and marine
areas to be protected (Convention on Biological Diversity, 2011)—has been much slower
than progress towards the terrestrial equivalent, which aims for protection of at least
17% of inland areas (Watson et al., 2014). The total ocean area covered by marine
protected areas (MPAs) increased from 2.3% in 2011 (Leadley et al., 2014) to 7.91% in 2020
(UNEP-WCMC & IUCN, 2020a). However, protected area coverage is uneven, with
most MPAs restricted to national waters, covering around 18.45% of exclusive economic
zones (EEZ), and only 1.18% of Areas Beyond National Jurisdiction (ABNJ; UNEP-
WCMC & IUCN, 2020a). To be ecologically representative, MPAs need to protect the full
range of habitats found within our ocean, both nearshore and away from the coast. There
is also socioeconomic disparity in achieving this target. For instance, while 40% of
high-income countries already exceed the 10% minimum for protected national marine
surface area, 75% of the waters of developing nations protect less than 2% (Failler,
Touron-Gardic & Traore, 2019). Further work still needs to be undertaken to understand the
contribution that other effective area-based conservation measures could make to the
achievement of the target (ICUN WCPA, 2018).

Furthermore, it has been argued that a recent focus on area-based measures of progress
towards Aichi targets has not resulted in the protection of a diverse range of habitats
(Fischer et al., 2019) nor of the most threatened areas (Kuempel et al., 2019). For instance,
despite the contributions of ABNJ to marine biodiversity and ocean health (Barbier et al.,
2014), and the relatively higher vulnerability of life in this area (O’Hara et al., 2019),
high seas habitats remain underrepresented in current protected areas. Steps have been
made towards conserving deep-sea ecosystems via various protected-area-oriented policies
and projects (Calado et al., 2011; DFO, 2017; OSPAR Commission, 2017), but most of
the active hydrothermal vent environments that have been protected to date fall within
country jurisdictions across the globe (Menini & Van Dover, 2019; Van Dover et al., 2012)
and spreading ridges are particularly underrepresented in MPAs globally (Fischer et al.,
2019).
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The recent acceleration towards the establishment of very large MPAs (Boonzaier &
Pauly, 2016), such as the Ross Sea Protected Area and the Papahānaumokuākea Marine
National Monument, has resulted in a rapid increase in percentage of global oceans
within MPAs. An analysis in 2014 found that ten MPAs (existing or under creation)
accounted for more than 53% of the world’s total MPA coverage in 2014 (Devillers et al.,
2015;Watson et al., 2014); since then many others have been created (Marine Conservation
Institute (MCI), 2020). Therefore, without these large MPAs, the 10% target would be even
further from being reached. Moreover, MPAs within Large Marine Ecosystems do not
represent the majority of geomorphic features and habitats found within them (Fischer
et al., 2019).

Although some progress is being made towards the quantitative element of the target, it
is widely recognized that further work is required on its qualitative components
(Campbell & Gray, 2019; Green et al., 2019; Lemieux et al., 2019). Carr et al. (2017) elaborate
on the importance of various types of ecological spatial connectivity—population, genetic,
community, and ecosystem—that refer to the movement of genes, individuals, species,
nutrients, and materials between areas. Considering biodiversity representation and
connectivity within MPA networks can enhance biodiversity persistence and efficiency of
conservation (Magris et al., 2018). Thus, design and implementation strategies have
changed from designating single, unrepresentative MPAs to establishing large and
inclusive MPAs and important networks of MPAs, such as on the California coast and in
the Northeast Atlantic (OSPAR, 2006; California Department of Fish and Wildlife, 2016).
Despite increasing efforts to create MPA networks and improve ecological connectivity,
few MPAs (11% of 746 MPAs) explicitly mentioned connectivity as an ecological criterion
as of 2019 (Balbar & Metaxas, 2019). In particular, there is a real paucity of research
on larval ecology and dispersal in VMEs, such as deep-sea habitats (Hilário et al., 2015),
where species are strongly adapted to specific conditions. For example, chemosynthetic
habitats are so distinct that so-called “stepping-stone environments” might be far apart
from one another, limiting connectivity among distant MPAs and requiring protection
spanning large “metacommunities” (Mullineaux et al., 2018; Suzuki et al., 2018). While the
importance of connectivity in conservation planning strategies is still under debate
(Costello & Connor, 2019), this concept should still be considered in MPA planning for all
ecosystems, especially in cases over longer distances (Manel, Loiseau & Puebla, 2019) and
should increasingly use genetic data sources (Xuereb et al., 2019; Zeng et al., 2019).

Information on MPAmanagement measures is lacking globally, and the effectiveness of
these measures at maintaining or restoring biodiversity is still under great debate (EEA,
2015; MedPAN & UNEP-MAP-SPA/RAC, 2016; Rees et al., 2018; Sala et al., 2018;
Campbell & Gray, 2019). Currently only 1% (UNEP-WCMC & IUCN, 2020b) to 4.8% of
global MPAs are considered fully implemented and managed (Marine Conservation
Institute (MCI), 2020). The rest of the designated MPAs either have not implemented or
evaluated existing management strategies (UNEP-WCMC & IUCN, 2020b) or still
allow significant extractive activities (Giakoumi et al., 2017). For coral reefs, 47% of MPAs
were ineffective, 38% partially effective, and only 15% fully effective (Burke et al., 2011).
In this case, the lack of effectiveness was a result of the management framework being

Carr et al. (2020), PeerJ, DOI 10.7717/peerj.9743 8/35

http://dx.doi.org/10.7717/peerj.9743
https://peerj.com/


ignored or not enforced; insufficiently addressing threats within borders of MPAs via
regulation; and the location of MPAs failing to address real threats to reefs (Burke et al.,
2011). Meanwhile, Lyme Bay MPA in the UK provides a contrasting example of the
benefits of addressing qualitative measures, where involving stakeholders in conservation
decisions facilitated ecological recovery and improvements to equity amongst different
fishing groups (Johnson et al., 2019). This is also done within the MPA network in
California, where a commitment to monitoring, coordination, public education,
and enforcement, along with strong public and stakeholder engagement, has led to
demonstrated success (Murray & Hee, 2019). Overall, beyond size, these studies emphasize
how the equitable management of MPAs shapes conservation effectiveness.

The qualitative components of Target 11 are also affected by complex socio-economic and
environmental trade-offs (Zafra-Calvo et al., 2019). On larger scales, the implementation of
coastal or large MPAs in developed and developing countries is hampered by economic
forces (Amengual & Alvarez-Berastegui, 2018; Driscoll et al., 2018), which can lead to
instances where the government proposes the removal of protections, for example against
mining (Pinheiro et al., 2019). In high-income countries of the Mediterranean, most
long-term MPA monitoring programs have been carried out with the support of research
projects and were only occasionally financed by the MPA management body (Rilov et al.,
2019). By contrast, in developing countries, economic development remains the main public
policy concern, which is insufficiently geared towards environmental protection (World
Bank, 2017). Thus, we suggest that a future research priority should involve the investigation
of the values humans place on different aspects of biodiversity and ecosystem
functioning, as well as improved communication on the benefits provided by MPAs, as
there have been cases illustrating the potential improvements to MPA effectiveness
facilitated by incorporating social outcomes in MPA design (MacKeracher, Diedrich &
Simpfendorfer, 2018; Folkersen, Fleming & Hasan, 2019).

Looking to the future, we propose that experiences, data, and guidelines should be
shared across political boundaries. Technological advancements and accumulated baseline
data should improve identification of ecosystems in critical need of protection, while
international communication among managers and researchers can facilitate global
information exchange, leading to the early identification and protection of at-risk
ecosystems. Building a platform for this knowledge exchange should be a key priority of the
post-2020 Framework and could build on existing data-sharing platforms (such as Ocean
Biogeographic Information System (www.obis.org) or Global Biodiversity Information
Facility (www.gbif.org), and will be necessary to prevent confusing contradictions (Gownaris
et al., 2019) and to ensure conservation strategies can be effective in both national and
international waters, across a variety of habitats.

The effective implementation of conservation strategies is a crucial part of achieving
conservation success. Proper implementation requires identifying the most effective
conservation strategies, optimizing regulations to promote sustainable use of marine
resources, involving local dependent communities, and using more efficient and effective
monitoring and enforcement methods (Lemieux et al., 2019). Identifying the best methods
for each component will require collaboration among multiple stakeholders, as well as the
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appropriate resources to implement these strategies, which has proved challenging thus
far. Since the ocean is an interconnected and dynamic system, there is a critical need to
ensure effective management of all ocean areas and uses. Thus, we propose that less
well-known areas, such as deep-sea ecosystems and ecosystems in countries with limited
financial and technological capacity, should be prioritized for data collection and
capacity-building within the post-2020 Framework, as comprehensive datasets are
required to minimize bias in protected-area representation (Roberts, Duffy & Cook, 2019).
This will require collaboration between scientists, managers, civil associations, and
policymakers (Juniper et al., 2019). Novel approaches for more efficient data collection,
dissemination, and re-use should also be an urgent priority (Edgar et al., 2016), as well as the
incorporation of volunteer-contributed data and local and traditional knowledge into
conservation decision making. Newmetrics may be required to incorporate data from such a
variety of sources and to assess the effectiveness of conservationmeasures (Jantke et al., 2018;
McQuatters-Gollop et al., 2019).

Finally, even within effectively managed MPAs, another great challenge remains for
marine conservation—climate change (Bruno et al., 2018). Already, elevated temperatures
have led to the collapse of coral reefs, which are some of the most biodiverse ecosystems in
tropical regions (Hughes et al., 2017). Expanding our understanding of climate-driven
changes to the ocean is a key priority to better comprehend and anticipate their impacts on
marine biodiversity. Appropriate baseline data is fundamental to this, and past and present
data must be used to model future scenarios (Nicholson et al., 2019). Incorporation of
these data and models into coastal and ocean planning is essential (Legg & Nagy, 2006;
Nicholson et al., 2019) within MPA network design guidelines (Munguia-Vega et al., 2018),
or in protection and restoration plans for habitats vital for carbon sequestration and
storage. Protection from anthropogenic stressors through MPAs may improve the
resilience of fauna ahead of climate change impacts (Bates et al., 2014). Species sensitive to
ocean warming, however, are not guaranteed protection even by the most effectively
managed MPA. For example, due to the warming of coastal waters, sea urchin populations
have totally disappeared from a marine reserve in the southeastern Mediterranean that has
been protected for more than two decades (Rilov, 2016). Additionally, species ranges
may change as a result of climate change impacts, moving populations outside of MPA
boundaries. As such, a flexible, adaptive approach needs to be taken that allows for
boundary modifications of MPAs in response to these changes.

Recent developments in discussions informing the post-2020 Framework have called for
the 10% quantitative element of this target to increase to 30% (CBD, 2020). Whether
we consider the Aichi Target of 10%, or the ambitious new 30% target, the result is the
same: we still have far to go as a global community to ensure that protected areas
adequately conserve the ocean and its valuable resources.

Aichi target 15—By 2020, ecosystem resilience and the contribution of biodiversity to
carbon stocks has been enhanced, through conservation and restoration, including
restoration of at least 15% of degraded ecosystems, thereby contributing to climate change
mitigation and adaptation and to combating desertification.
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Anthropogenic impacts have eroded the resilience of many ecosystems across the globe,
triggering significant declines and losses of many of them (UNEP, 2006), resulting in a
reduction of the services they provide, and negatively impacting human well-being.
In order to improve ecosystem resilience, there is increasing interest in not just
conservation but also restoration. In this section, we review six highly valuable global
marine and coastal habitats to illustrate the services they provide (Table 2), their status,
and the efforts to restore them.

Coral reefs have declined worldwide, with 50% of Great Barrier Reef corals dying in
2016 and 2017 alone (Hughes et al., 2019). Reef restoration has been attempted via
culturing of asexually produced coral fragments and occasionally the rearing and settling
of coral larvae (Guest et al., 2014); however, coral restoration is still in its infancy. Some
small-scale successes have occurred in recent years (Guest et al., 2014; Cruz & Harrison,
2017); for example, a breeding population of one coral species (i.e., Acropora tenuis)
was re-established in 3 years by deploying coral larvae into mesh enclosures in the reefs
(Cruz & Harrison, 2017).

Similarly, nearly 50% of the world’s mangrove forests have disappeared since the 1960s
(Giri et al., 2011). Restoration attempts have been made, but at a smaller scale and success
rate than depletion has occurred (Romañach et al., 2018). For example, half of the 67
planting efforts in Sri Lanka since 2004 showed no surviving plants; only 200–220 hectares
have been successfully restored (Kodikara et al., 2017).

Despite the fact that global declines of seaweed forests are small on average, significant
declines have been confirmed at the local scale in 38% of ecoregions (Krumhansl et al.,
2016). Although seaweed restoration is gaining recognition (Gianni et al., 2013), there have
only been a few long-term (Verdura et al., 2018) and large-scale successful restoration
projects (Campbell et al., 2014). Seagrass beds are also declining, and almost 28% of their
global extent has been lost since 1879 (Orth et al., 2006; Waycott et al., 2009). Since the
1970s, seagrass restoration trials have rapidly increased worldwide (Paling et al., 2009;

Table 2 Examples of the ecosystem services provided by coral reef, mangrove, seagrass, seaweed forest, saltmarsh, and oyster reef habitats.

Habitat Services

Coral reefs Coastal protection (Ferrario et al., 2014; Spalding et al., 2014); climate change mitigation (Spalding et al., 2014); food provision
(Teh, Teh & Sumaila, 2013); nutrient cycling; primary productivity; habitat provision (McWilliam et al., 2018); support of high
biodiversity (Bellwood, Hoey & Choat, 2003; Fisher et al., 2015).

Mangroves Carbon sequestration (Duarte, Middelburg & Caraco, 2005; Gress et al., 2017); coastal protection and climate change mitigation
(Spalding et al., 2014); habitat provision (Nagelkerken et al., 2008; Kimirei et al., 2013).

Seaweed
forests

Primary production; nutrient cycling; habitat provision; food provision; coastal defense (Dayton, 1985; Steneck et al., 2002; Smale et al.,
2013); and potentially carbon sequestration (Krause-Jensen & Duarte, 2016).

Seagrass beds Carbon sequestration (Duarte, Middelburg & Caraco, 2005; Fourqurean et al., 2012); coastal protection (Fonseca & Cahalan, 1992);
primary productivity; food provision; habitat provision; support of high biodiversity (Duarte & Chiscano, 1999).

Saltmarshes Carbon sequestration (Chmura et al., 2003; Duarte, Middelburg & Caraco, 2005; Drake et al., 2015); coastal protection (Möller et al.,
1999; Shepard, Crain & Beck, 2011; Spalding et al., 2014); climate change mitigation (Spalding et al., 2014); habitat provision (Barbier
et al., 2011).

Oyster reefs Coastal protection and sediment stabilization (Rodriguez et al., 2014; La Peyre et al., 2015); nutrient cycling and water filtration
(Zu Ermgassen et al., 2012; Kellogg et al., 2014); food and habitat provision (Peterson, Grabowski & Powers, 2003; Grabowski et al.,
2012; Gilby et al., 2018); commercial and recreational harvest (NMFS, 2017).
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Van Katwijk et al., 2016), but only a few successful projects have been reported, mainly
due to low performance rates and small-scale efforts of the restoration actions
(Bayraktarov et al., 2016; Van Katwijk et al., 2016). Similarly, saltmarshes are severely
threatened; approximately 50% of salt marshes worldwide have been lost or degraded due
to environmental stress and human disturbances (Adam, 2002; Valiela et al., 2009).
In denuded areas, natural regeneration might be difficult (Laegdsgaard, 2002), and despite
salt marsh restoration’s receiving more attention and having higher success rates than other
marine coastal habitats, large-scale restoration projects (of more than a few hectares) are
still needed (Bayraktarov et al., 2016).

Substantial historical and continued extraction of oysters via fishing has led to >85%
loss in oyster reefs worldwide and declines in oysters due to overharvest have been
exacerbated by degraded water and habitat quality (Beck et al., 2011; Diggles, 2013; Peters
et al., 2017). Several small- and medium-scale restoration efforts have taken place in
response to this decline with mixed success (Schulte, Burke & Lipcius, 2009; Powers et al.,
2009; Beck et al., 2011; Puckett & Eggleston, 2012; La Peyre et al., 2014; Hernandez et al.,
2018); most of these restoration efforts were in the US, even though oyster reefs occur
in both temperate and tropical locations globally. Aquaculture of native oyster species has
also become a focus, providing oysters for harvest and delivering additional ecosystem
services like those provided via restoration, but the benefits and extent to which
aquaculture provides these additional ecosystem services has not yet been thoroughly
reviewed (Higgins, Stephenson & Brown, 2011; Alleway et al., 2019).

Restoring and managing these crucial habitats will continue to be a challenge (La Peyre
et al., 2014), especially due to shifting baselines because of climate change (Lemasson et al.,
2017; Van Oppen et al., 2017; Wood et al., 2019). Of the 62 countries assessed in 2016,
only 50% had set national goals with clear alignment with Target 15, and fewer had set
quantitative targets (Secretariat of the Convention on Biological Diversity, 2019). Despite
many countries taking positive steps, efforts have not been enough to reach the 15% target
and further development of methods and techniques for successful restoration is
essential for the post-2020 Framework. This includes developing and using indicators of
ecosystem degradation and restoration, such as water quality, carbon stocks, fish stocks,
and species diversity (Secretariat of the Convention on Biological Diversity, 2019).

Generally, the failure of restoration plans is mainly linked to low survival rates (<52%
mean survival during the first 2 years post restoration) and to the small scale (a few
hectares or less) that restoration plans normally span (Bayraktarov et al., 2016). Moreover,
filling the knowledge gaps that have limited restoration of these ecosystems on a global
scale to date should be prioritized. For instance, acquiring and synthesizing information on
the historical and present distribution, species-specific population demographics, habitat
requirements (Bayraktarov et al., 2016; Hernandez et al., 2018; Puckett et al., 2018;
Theuerkauf, Eggleston & Puckett, 2019), and habitat pre-degradation state (Secretariat of
the Convention on Biological Diversity, 2019) will be essential. Additionally, restoration
success could be enhanced by better understanding how the spatially explicit distribution
and heterogeneity of habitats can affect the occurrence and strength of between-species
interactions, habitat connectivity, or favorable environmental conditions
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(Boström et al., 2011). The establishment of systematic monitoring and habitat mapping
initiatives will be crucial in supporting restoration through the adoption of a seascape or
context-appropriate approach at multiple scales.

Due to the important role the habitats discussed here can play in maintenance of
biodiversity, climate regulation, and climate change adaptation and mitigation, further
efforts to restore these habitats will be vital (IPCC, 2018). To preserve marine biodiversity
and promote ecosystem resilience to mitigate or adapt to future threats, restoration should
be linked to the increasing understanding of the response of marine ecosystems to
climate change and its interaction with other stressors. In this context, we suggest that
global information exchange of baseline data together with technologically advanced tools
(e.g., modeling) will be key for managers and researchers to identify best practices for
ecosystem restoration and conservation. This also includes understanding past and present
data, the natural/unimpacted state of the ecosystem prior to perturbations, and responses
of ecosystems to different threats based on experimental and observational data, and
on modeling and prediction. Such knowledge will allow managers and researchers to
identify the most suitable areas for restoration or conservation. Specific examples include
areas with less severe predicted climate change scenarios; already affected areas where
restoration could mitigate future threats; or areas of special interest, such as those
harboring high local or regional diversity and/or valuable ecosystems.

Aichi target 19—By 2020, knowledge, the science base and technologies relating to
biodiversity, its values, functioning, status and trends, and the consequences of its loss, are
improved, widely shared and transferred, and applied.

Scientific knowledge of biodiversity and ecosystem functioning has significantly
increased in the past decade through increased capacity, implementation, and awareness of
the benefits of monitoring at a higher spatial and temporal resolution. The development
and increasingly widespread use of innovative technologies and informatics has allowed
for non-invasive and low-cost methods for long-term, continuous measurements of
biodiversity. These technologies include automated monitoring systems such as passive
and active acoustic monitoring (Buscaino et al., 2016; McWilliam et al., 2017; Monczak
et al., 2017; Egerton et al., 2018), autonomous underwater vehicles (Griffin et al., 2017;
Ferrari et al., 2016, 2018), and high-resolution models of critical habitats for biodiversity
(e.g., Allen Coral Atlas https://allencoralatlas.org/, structure-from-motion and benthic
imagery models) (Asaad et al., 2019; Friedman et al., 2012; Burns et al., 2015; Ismail,
Huvenne & Masson, 2015; González-Rivero et al., 2017).

The establishment of expansive monitoring network programs has enabled greater
coverage for biodiversity monitoring and a platform for data sharing among scientists
at local (LTER Network, 2018), regional (SponGES, 2018), and even global scales
(e.g., OBIS, Global OceanObserving System (GOOS),MarineGEO (https://marinegeo.si.edu/))
(Saeedi et al., 2019). The increasing use of citizen science, through app-based
programs such as SeagrassSpotter (https://seagrassspotter.org/) and iNaturalist
(https://www.inaturalist.org/), has also facilitated quick and widespread data collection
and processing, which are crucial for rapid biodiversity assessments (Dickinson et al., 2012;
Marshall, Kleine & Dean, 2012; Zenetos et al., 2013). Long-term citizen science projects can
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also document ecosystem change, which is especially important for data-poor regions with
limited resources, such as the coral reef systems in Indonesia (Gouraguine et al., 2019).

Despite dramatic increases in data collection over the past decade, these resources have
yet to be fully extended to and applied in marine biodiversity policy and management
(Heck, Dearden & McDonald, 2012; Petes et al., 2014). Translating data into conservation
requires that data repositories contain high quality and widely accessible biodiversity
resources, which can inform implementation of EBM. Additional research must be done to
understand the effectiveness of big, unstructured datasets associated with mass sampling
and citizen science (Bayraktarov et al., 2019) to address biodiversity questions.

Increased efforts to standardize the collection of relevant, targeted biological data
(e.g., Essential Ocean Variables and Essential Biological Variables), sampling methods,
and paired environmental and metadata has already enabled better data sharing among
scientific groups and between scientists and managers, which can promote more rapid
and efficient legislative and management action (De Pooter et al., 2017; Muller-Karger
et al., 2018; Klein et al., 2019). Protocols aimed at shifting current benefit-sharing and
accessibility paradigms among governments, stakeholders, and scientists would also ensure
resource databases better serve greater societal needs such as interdisciplinary knowledge
exchange, scientific capacity-building, and resource equity. Future guidelines should
highlight the increased societal value of databases that remove barriers to sharing and
accessing resources (i.e., that are user-friendly and openly accessible). Such guidelines could
elicit use of indigenous knowledge and stakeholder engagement, especially at a local scale,
which are an important part of improved conservation outcomes (e.g., in MPA design)
(Saarman et al., 2013; Burt et al., 2014).

As technology continues to rapidly outpace policy reform, the post-2020 Framework
must also address protocols for handling emerging issues with data collection, sharing,
and application. Specific guidelines should address marine genetic resources and their
impact on biodiversity and conservation going forward. Such guidelines should thoroughly
outline protocols for current and future scientific and private-sector acquisition and
distribution of genetic resources, including how to address future technological advancements
surrounding biodiversity genetics. Although many nations are still developing policy
around genetic resources—and/or participating in the Nagoya Protocol on Access and
Benefit Sharing—this international framework should communicate benefits and
responsibilities of resource sharing among stakeholders, governments, and scientific
communities (Harden-Davies & Gjerde, 2019). The biodiversity framework should work
in conjunction with policy resulting from early 2020 Nagoya Protocol meetings to
establish applicable and actionable guidelines for access and benefit sharing as it pertains
to marine biodiversity resources.

Incomplete application of science-informed policy means that despite advances in
knowledge, data, and technology, this target has only been partially achieved in the marine
environment. The post-2020 Framework should prioritize research on the efficiency of
unstructured data, citizen science, and other tools or strategies to inform implementation
of EBM. Increasing societal participation in and awareness of biodiversity conservation
should also be prioritized, in order to address outstanding knowledge gaps and contribute
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to an integrated solution for applying science to marine policy and management (Hyder
et al., 2015; Jarvis et al., 2015; Theobald et al., 2015). Priority should also be given to
developing a framework for cross-boundary resource and benefit sharing as it relates to
current biodiversity data and future resources arising from technology and genetic data
advancements. Prioritizing these three areas will maximize the impact and longevity of
guidelines going forward. Specifically, new legislation regarding biodiversity targets should
be created within an adaptive framework that relies on frequent reporting and review of
existing policy, both globally and within contracting party countries. This adaptive
framework will require discussion among multiple stakeholders and institutions that
monitor biodiversity status and will encourage cross-boundary cooperation among groups
by holding them accountable for reliable and up-to-date reporting. It will also provide
opportunities for the incorporation of emerging data and technologies into policy, and for
flexibility of policy in response to unstable conditions driven by climate change. Increased
reliance on globally accessible databases and data management frameworks, such as
OBIS, by scientists and managers will be required (Klein et al., 2019). Clear metrics for
policy evaluation should also be outlined to streamline efficient reporting and review and
encourage a common language across sectors. At the global level, successful strategies for
EBM should be shared to provide examples for regions struggling with effective and
sustainable management; at the local level, positive incentives should be created for EBM
to engage multiple stakeholders and partnerships among local communities and managers.

Incorporating a human-perspective approach will be key to addressing biodiversity
challenges related to applying science-informed policy moving forward. Mainstreaming
biodiversity in policy and the private sector will promote further sustainable development.
Linking the post-2020 Framework to other societal challenges such as climate change,
human health, and disaster risk reduction, will better connect biodiversity to goals of
other goals and commitments, in turn strengthening the use of common language and
information sharing across boundaries. Mainstreaming biodiversity in communications
and encouraging ocean literacy will help individuals see value in nature and encourage
involvement in nature-related decisions that may directly affect them and their
communities. One approach to this is incorporating a nature-based curriculum in schools
(Lawson et al., 2019). Clear communication of the benefits provided by, and cost of
inaction towards, biodiversity targets in terms of ecological, social, economic, and political
stability is necessary to increase societal awareness of these issues. Providing tangible
alternatives that integrate sustainable actions with social benefits will also be important to
encourage a shift in human behavior. Governance systems should also be more transparent
and inclusive, which will build trust between local communities and government, and
provide opportunities for involvement by indigenous and local groups.

CONCLUSION
Although progress has been made towards achieving the goals of the Strategic Plan for
Biodiversity for the marine environment, the Aichi targets reviewed have not been fully
achieved. This substantiates the predictions of GBO-4 and is unsurprising given the
aspirations of the targets and the complexity of implementation. Ongoing discussions
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within CBD on the development of the Zero Draft of the Post-2020 Global Biodiversity
Framework will set out the approach to address some of these shortfalls and provide
continuing momentum towards the 2050 vision. To deliver this vision, it is important that
the new targets and actions that come out of this agreed framework are fostered and
implemented at a range of scales, highlighting the key need for stakeholder involvement,
including local communities and youth. The UN Decade of Ocean Science for Sustainable
Development (2021–2030) (“the Decade”) also provides a great opportunity to build on
existing foundations to better understand changes and reverse the declines observed in our
ocean. Climate change and the mainstreaming of biodiversity into policy, the economy,
and society will be major challenges for marine conservation strategies and should set the
context for conservation work, even—or especially—in the face of uncertainty. The rising
importance of the climate change agenda and increasing recognition within sectors
such as finance of the very real risk that impacts of climate change pose to the environment,
economy, and community stability, could lead to more governments proactively tackling
this issue. Implementing an adaptive approach to the post-2020 Framework that
incorporates a range of feedback mechanisms frommultiple sectors, including youth and
indigenous and local communities, will be necessary to enhance marine conservation
efforts while promoting economic sustainability, as well as to support the resilience of
coastal communities in the face of climate change.

A common theme across the priorities identified here is the need for better recognition
of global economic disparities and calls for flexible solutions in the context of
socio-economic trade-offs. Critically addressing priorities to decrease overfishing, increase
area-based protection, and enhance enforcement capacity—especially in cross-boundary
fisheries and critical habitats—will require stakeholders to modify their perspectives on
social or market-based incentives for conservation. The value of marine biodiversity varies
across regions, where some nations are solely dependent on coastal waters for their citizens’
livelihoods. Appropriate measures include area-based management, restoration, and
protection and fisheries recovery plans; current international fisheries should also consider
economic constraints in regions projected to be less capable of tackling climate or other
anthropogenic stressors. Future decision-making processes should include bioeconomics to
assess capacity and the feasibility of implementing conservation strategies.

Another common theme is the need for improved sharing of data, information, and
experiences among scientists, stakeholders, the public, and policy makers and improving
these connections. Having sufficient baseline data and scientific understanding of
marine ecosystems is essential for successful conservation efforts; therefore, the collection
of useful data using a range of mechanisms (including citizen science), and data in areas
with less coverage is also paramount. The knowledge and views of the public should be
more readily and consistently considered in management, and novel approaches for
gaining this intelligence/human capital explored. Collecting and synthesizing multiple data
types using a systematic approach will be imperative. Sharing of scientific, local, and
traditional knowledge coupled with equitable funding mechanisms will enable less
developed countries lacking resources to implement conservation measures in their waters.
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Better communication, sharing experiences, and exchanging knowledge among groups,
sectors, and nations will be key and should be fostered in part by encouraging
accountability across these different networks.

As discussions progress on the legally binding global treaty on the conservation and
sustainable use of ABNJ, there is a huge potential for a significant win for marine
biodiversity and humanity alike. Coupled with the new 2050 Vision for Biodiversity; the
Decade; the UNFCCC COP 26 and upcoming revisions to nations’ nationally determined
contributions to addressing climate change; and the SDGs, this would offer a much
brighter outlook for the future of marine biodiversity.

With the stark challenges facing global biodiversity recently highlighted by experts with
regards to climate change (IPCC, 2018) and unprecedented biodiversity loss (IPBES, 2019)
it is imperative now more than ever that actions are taken to implement conservation
strategies in the most effective ways possible to optimize the chances of their success and of
making a positive impact on the health of our marine ecosystems. We hope that focusing
efforts on the priorities set out here at all scales and across all sectors will facilitate
achieving this goal.
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