

DR EIRINI KOSTOPOULOU (Orcid ID : 0000-0002-7051-7537) DR ANTONIA DASTAMANI (Orcid ID : 0000-0002-6332-3136)

Article type : 1 Original Article - UK, Europe

Syndromic Forms of Hyperinsulinaemic Hypoglycaemia – A 15-year follow-up Study

Running title: Hyperinsulinaemic Hypoglycaemia and syndromes

Eirini Kostopoulou^{1*#}, Antonia Dastamani^{1*}, Maria Güemes^{1,2#}, Emma Clement³, Silvana Caiulo^{1#}, Prateek Shanmugananda¹, Mehul Dattani^{1,2}, Clare Gilbert¹, Jane A Hurst³, Pratik Shah^{1,2#}

1. Department of Pediatric Endocrinology, Great Ormond Street Hospital for Children, London, WC1N 3JH ,UK

2. Genetics and Genomic Medicine Program, UCL Great Ormond Street Institute of Child Health, London, WC1N 1EH, UK

3. Department of Genetics, Great Ormond Street Hospital for Children, London, WC1N 3JH, UK*These authors contributed equally to this work.

#Present address:

-Eirini Kostopoulou: Division of Paediatric Endocrinology, Department of Paediatrics, University of Patras School of Medicine, Patras, 26504, Greece.

-Maria Güemes: Endocrinology Service, Hospital Infantil Universitario Niño Jesús, Madrid, Spain.

-Silvana Caiulo: Department of Pediatrics, IRCCS San Raffaele Hospital, Milan, Italy

-Pratik Shah: Department of Paediatric Endocrinology and Diabetes, Royal London Children's Hospital, Barts Health NHS Trust, London.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the <u>Version of Record</u>. Please cite this article as <u>doi:</u> <u>10.1111/CEN.14393</u>

This article is protected by copyright. All rights reserved

Corresponding author name and address to whom reprint requests should be addressed

Dr Pratik Shah

Consultant Paediatric Endocrinologist and Honorary Senior Lecturer

Department of Paediatric Endocrinology, The Royal London Childrens Hospital, Barts Health NHS Trust and Queen Mary University of London

London E1 1FR

Email: pratik.shah6@nhs.net; drshahp@gmail.com

Phone number: +447704639358

ORCID: 0000-0002-4402-8297

Acknowledgments:

-Sarah Flanagan and Jayne Houghton from Institute of Biomedical and Clinical Science, University of Exeter Medical School, UK.

-Khalid Hussain, Professor of Pediatrics and Division chief (Endocrinology), Sidra Medicine, Doha, Qatar.

-The research team acknowledges the support of the National Institute for Health Research, through the Comprehensive Clinical Research Network.

-Some of the variants found in the patients were provided by the DDD study, an independent research commissioned by the Health Innovation Challenge Fund [grant number HICF-1009-003], a parallel funding partnership between Wellcome and the Department of Health, and the Wellcome Sanger Institute [grant number WT098051]. The views expressed in this publication are those of the author(s) and not necessarily those of Wellcome or the Department of Health. The study has UK Research Ethics Committee approval (10/H0305/83, granted by the Cambridge South REC, and GEN/284/12 granted by the Republic of Ireland REC). The research team acknowledges the support of the National Institute for Health Research, through the

Comprehensive Clinical Research Network.

The funding sources had no involvement in the study design, the collection, analysis and interpretation of data, in the writing of the report and in the decision to submit the article for publication.

Summary:

Objective: Hyperinsulinaemic hypoglycaemia (HH) is one of the commonest causes of hypoglycaemia in children. The molecular basis includes defects in pathways that regulate insulin release. Syndromic conditions like Beckwith-Wiedemann (BWS), Kabuki (KS) and Turner (TS) are known to be associated with a higher risk for HH. This systematic review of children with HH referred to a tertiary centre aims at estimating the frequency of a syndromic/multisystem condition to help address stratification of genetic analysis in infants with HH.

Methods: We performed a retrospective study of 69 patients with syndromic features and hypoglycaemia in a specialist centre from 2004 to 2018.

Results: Biochemical investigations confirmed HH in all the cases and several genetic diagnoses were established. Responsiveness to medications and the final outcome following medical treatment or surgery were studied.

Conclusions: This study highlights the association of HH with a wide spectrum of syndromic diagnoses and that children with features suggestive of HH-associated syndromes should be monitored for hypoglycaemia. If hypoglycaemia is documented, they should also be screened for possible HH. Our data indicate that most syndromic forms of HH are diazoxide-responsive and that HH resolves over time; however a significant percentage continues to require medications years after the onset of the disease. Early diagnosis of hyperinsulinism and initiation of treatment is important for preventing hypoglycaemic brain injury and intellectual disability.

Keywords: Hyperinsulininaemic hypoglycaemia, syndromes, Beckwith-Wiedemann syndrome, Kabuki syndrome, Turner syndrome.

Introduction

Hyperinsulinaemic hypoglycaemia (HH) (MIM: 602485) is the commonest cause of persistent hypoglycaemia in infancy. It is a rare disorder, defined as inappropriate insulin secretion at the time of hypoglycaemia and presents in its more severe form in the neonatal period or in a milder form in infancy or childhood¹. HH is a genetically and phenotypically heterogeneous disease. The underlying pathogenetic mechanism is dysregulated insulin secretion secondary to mutations in different genes that are involved in the regulation of insulin secretion from the β -cells. In up to 50% of cases a monogenic aetiology is identified. The ATP-sensitive potassium channel (K_{ATP}), encoded by *ABCC8* and *KCNJ11* genes, plays an essential role in controlling insulin exocytosis from the pancreatic β -cell. Mutations in these two genes account for the vast majority of HH cases in which a genetic cause is identified². However, in the remaining 50% of HH cases, the underlying (molecular) mechanism remains unknown and epigenetic, polygenic or environmental causes have been suggested².

HH has been reported in syndromes, including Beckwith-Wiedemann syndrome (BWS) (MIM: 130650), Kabuki syndrome (KS) (MIM: 147920), Simpson-Golabi-Behmel syndrome (MIM: 312870), Usher-Congenital Hyperinsulinism Syndrome (in patients who have a contiguous gene deletion at 11p15 which includes ABCC8) (MIM: 276904), homozygous 11p14-15 deletion syndrome (MIM: 606528), Sotos syndrome (SS) (MIM: 117550), Costello syndrome (MIM: 218040), Trisomy 13, Perlman syndrome (MIM: 267000), Timothy syndrome (MIM: 601005), Poland syndrome (MIM: 173800) and Turner syndrome (TS), particularly mosaic X loss³⁻⁸. The present study reports children with syndromic features diagnosed with HH over a consecutive period of 15 years in a specialist quaternary centre. The clinical presentation and the genotype-phenotype correlation of syndromic forms of HH are described. The aim of this study was to highlight the variability in the syndromes associated with HH in terms of clinical characteristics, response to treatment and long-term outcome.

Materials and Methods:

69 children presenting with hypoglycaemia and syndromic features and diagnosed with HH over a period of 15 years, were retrospectively studied. All the patients were managed at Great Ormond Street Hospital for Children NHS Foundation Trust from 2004 to 2018.

HH was diagnosed according to well-established criteria (5), including plasma glucose concentrations <2.7 mmol/L or <50 mg/dl, detectable insulin and elevated c-peptide at the time of hypoglycaemia, glucose requirements >6-8 mg/kg/min to maintain normoglycaemia (>3.5 mmol/L), inappropriately low non-esterified fatty acids (NEFA) and ketone body concentrations in the blood at the time of hypoglycaemia and positive glycaemic response (>1.5 mmol/L) to intramuscular or intravenous glucagon. Patient data were obtained from medical records review. A patient was deemed responsive to medical therapy if intravenous support and glucagon could be discontinued, and euglycaemia maintained on an age-appropriate enteral feeding regime with ageappropriate fasting tolerance. Complete responsiveness to diazoxide was defined as achievement of glycaemic control and age-appropriate fasting tolerance with diazoxide only, whereas partial responsiveness as achievement of glycaemic stability with concomitant use of more than one agents and feeds. The absence of glycaemic improvement despite combination of medications defined unresponsiveness. Genetic testing for clinically suspected syndromes was performed, as well as HH genetic testing for known genes in diazoxide unresponsive cases or in cases that needed a high diazoxide dose. Parental genotyping was performed when a causative variant was detected.

Genetic testing was directed by clinical phenotype and included microarray, methylation studies, targeted single gene or targeted next generation sequencing undertaken in an accredited UK diagnostic laboratory.

Results:

69 patients (37 females) who presented with hypoglycaemia were included in the study. 30% were born prematurely (gestational age: 31-37 weeks), 8% were born small for gestational age (SGA) (birth weight <-2SDS) and 41% were born large for gestational age (LGA) (birth weight >2SDS). Among the patients who were born LGA, 48.1% had BWS. The percentage of LGA in the different cohorts was 56.5% for the BWS patients (13 of the 23 patients), 44.4% for the Kabuki patients (4 of the 9 patients) and 16.7% for the TS patients (1 of the 6 patients). Two patients with KS (22.2%) and 1 patient with TS (16.7%) were born SGA. 81% of the cases presented with hypoglycaemia at birth or within the first month of life. Of the remaining patients, the majority exhibited hypoglycaemia during the first year of life, whereas the oldest age at presentation of

hypoglycaemia was 9 years old. HH was confirmed in all the cases. One of the patients died due to multiple co-morbidities but did respond to Diazoxide.

The underlying syndromes/syndromic features related to HH are shown in Table 1, where BWS represents the biggest group (n=23), followed by KS (n=9) and TS (n=6). Two patients with syndromic features and one suspected to have CHARGE syndrome (MIM: 214800) (due to hemihypertrophy, ventricular septal defect, choanal stenosis, right pyriform aperture stenosis, rib anomalies, scoliosis, sacral agenesis and developmental delay) had further genetic testing that confirmed a diagnosis of *ABCC8*-related HH.

The clinical characteristics, genetic findings, and management of the 3 most frequently observed syndromes (BWS, KS, TS) associated with HH are shown in Tables 2-4. Responsiveness to diazoxide was found in 72.2% of BWS (13 of the 18 patients who were trialed on diazoxide), 87.5% of KS patients (7 of the 8 patients who were trialed on Diazoxide) and 100% of TS patients. Pancreatectomy was required in 13% (3/23) of BWS and 22% (2/9) of KS. The dose of diazoxide (mg/kg/day) to which response was observed (median +/- interquartile range (IQR)) was: 10 (10) for BWS, 5 (0) in KS and 8.1 (2.8) in TS. HH resolved in 74% (17/23) of BWS patients by age of 0.9 (2.2) years, 55% (5/9) of KS patients by a median+/-IQR age of 1.2 (3.5) years and 66% (4/6) of TS patients by age of 2.6 (3.2) years, respectively. The initial effective dose of diazoxide was not related to a lower rate of resolution. Specifically, approximately 73% of the patients who did not exhibit resolution of HH and 69% of the patients who exhibited resolution of HH were administered the lowest initial dose of 5 mg/kg/day of diazoxide. Furthermore, of the patients who are still on treatment for HH, the initial effective diazoxide dose ranged from 5 to 21 mg/kg/day and the later dose ranged from 10 to 15 mg/kg/day, whereas of the patients who exhibited resolution of HH, the initial dose ranged from 5 to 20 mg/kg/day and the later dose ranged from 10 to 15 mg/kg/day.

On the whole, fifty-six cases (\approx 88.9%) were responsive to diazoxide, at a dose ranging from 3 to 20 mg/kg/day. Chlorothiazide was given in conjunction with diazoxide in the majority of the cases, whereas in rare cases (\approx 2%) furosemide and spironolactone were used for stronger diuretic effect. Frequent feed boluses or continuous feeding were used as adjuvant measures for prevention of hypoglycaemia in 22% of the patients.

Side effects were noted in one patient with BWS who developed pulmonary hypertension and in two more patients who developed fluid retention. One case was proven partially responsive to diazoxide and unresponsiveness to diazoxide was noted in 5 patients. Five cases were treated with Octreotide and two with Sirolimus.

Pancreatectomy was performed in 7 patients (5 subtotal and 2 partial pancreatectomy), 5 patients who were not responding to medical treatment (2 patients with BWS, 1 patient with KS, 1 patient with Costello and 1 patient with Usher syndrome) and 2 patients who had a suspected focal lesion (1 with BWS and 1 with KS) but continued to have HH post-pancreatectomy. The two subjects who had partial pancreatectomy (one with BWS and one with X-linked Kabuki syndrome) were partially responsive to Diazoxide and 18F-DOPA PET scan showed a possible focal lesion. Post-surgery, these two children are effectively treated with diazoxide (4-7 mg/kg/day) and able to fast age-appropriately. Four children who had subtotal pancreatectomy were euglycaemic soon after surgery, confirmed by age-appropriate fasting tolerance without medical therapy. The remaining one patient required octreotide/sirolimus and prednisolone, which was subsequently stopped.

The clinical presentation and additional features of the patients who underwent pancreatectomy are shown in Table 5.

At the last follow-up visit, HH had resolved in 41 patients ($\approx 60\%$): 3 patients (4.3% of the total population) had immediate resolution of HH post subtotal pancreatectomy, 2 patients were not surgical responders, but had resolution approximately 3 and 15 years post-pancreatectomy, respectively, and 22 patients (33%) are still on treatment for HH (15 on diazoxide; 3 on octreotide; 3 on lanreotide; 1 on acarbose). None of the two patients who had partial pancreatectomy exhibited resolution of HH.

Discussion

Recurrent syndromic diagnoses

BWS is the most common syndrome causing HH with almost half of affected individuals presenting with hypoglycaemia, usually from the first day of life. Hypoglycaemia is mild and transient in the majority of the cases, but less frequently it can be severe and persistent⁹. There are

a number of different genetic aetiologies for BWS but severe forms are associated with paternal uniparental isodisomy at 11p15 (UPD 11p15). Analysis of the methylation status at two 11p15.5 imprinting control centres (IC1 and IC2) detects the majority (80%) of BWS cases (10). Approximately 5% of children with BWS have a CDKN1C mutation that is not detected by methylation studies. Focal forms of HH due to pathogenic variants in KATP genes involve paternal 11pUPD and are limited to a small area of islet overgrowth. The typical 11pUPD BWS form of HH is associated with a larger area of islet adenomatosis involving half or more of the pancreas and is usually accompanied by manifestations in other organs (eg hemihypertrophy, macroglossia). There have been reports of patients with BWS and HH due to paternal UPD of chromosome 11, extending from the BWS locus at 11p15.5 to the K_{ATP} channel genes 11p15.1 unmasking an autosomal recessive mutation in ABCC8 or KCNJ11 within the pancreatic tissue (11, 12). Clinical features of BWS can be variable and should be considered in patients with HH with hemihypertrophy or even subtle lateralized overgrowth of a single limb/organ, without other clinical manifestations of BWS. This was also noted in our study and Tables 2a, 2b, and 2c describe in detail the genetic, clinical findings and responsiveness to treatment. In our experience, only about half of the patients with BWS responded to diazoxide, given at a moderate dose (mean dose: 10 mg/kg/day) and in the majority of those cases HH usually resolves within the first two years of life.

Kabuki syndrome is caused by pathogenic variants in lysine-specific methyltransferase 2D (MLL2, encoded by *KMT2D*) and lysine-specific demethylase 6A (*KDM6A* on Xp11.3 which escapes X inactivation). Hypoglycaemia in KS can be caused by combined pituitary hormone deficiency, isolated growth hormone deficiency or isolated adrenal insufficiency (13, 14) or due to HH, possibly as a result of epigenetic changes in causative genes (15, 16). The *KMT2D* and *KDM6A* genes are histone modifiers and, as such, they are implicated in molecular processes including methylation, acetylation, phosphorylation and ubiquitination. All these processes may have an impact on K_{ATP} channel function or pancreatic β -cell development (17). Transient hypoglycaemia has been documented to be more common than HH, albeit those with pathogenic variants in *KDM6A* seem to be at higher risk of HH (18). Our data (Table 3 highlights the clinical characteristics of patients with KS) shows that over 75% of KS patients with HH responded to diazoxide, requiring a low dose (mean dose: 5 mg/kg/day) and HH resolved within the first couple of years of life in half of our cases.

It has been reported that infants with Turner syndrome (monosomy of the X chromosome) present with HH at a higher incidence than normal children (19), however the underlying mechanism leading to HH remains obscure. It might involve a locus on the X chromosome where anomalies may be associated with excessive insulin secretion (20). Another study suggested that haploinsufficiency for *KDM6A* (a gene implicated in Kabuki syndrome) on the X chromosome may be responsible for hyperinsulinism in Turner syndrome (19), which has also been proposed as the causative mechanism for individuals with HH and Ring X. Most of our TS patients, as shown in Table 4, responded to diazoxide, most of them at a dose of around 8 mg/kg/day, however none required pancreatectomy. Up to 66% of TS in our study HH has resolved by the age of 2.5 years.

Comparing KS, TS and BWS, patients with BWS required higher doses of diazoxide and exhibited earlier resolution of HH. A previous nationwide survey in Japan by Toda et al (21) regarding the correlation between the three syndromes (BWS, KS, SS) and HH, identified 28 cases and showed that syndromic infants with HH had shorter duration of HH than non-dysmorphic infants with transient HH.

Other rare syndromic associations with HH

Sotos syndrome is characterised by overgrowth, distinctive facial features and intellectual disability, and has been associated with transient HH in the neonatal period. It is caused by loss-of-function mutations or deletions of *NSD1*. However, one of the hypotheses proposed is that the 5q35 region may also include additional genes that could be implicated in HH (22, 23, 24). It has been reported that major anomalies are associated more frequently with 5q35 deletions compared to point mutations in *NSD1* (25). *NSD1* gene encodes a histone methyltransferase that is involved in the opening and closing of chromatin. Disrupted interaction between *NSD1* and cofactors or histones could lead to abnormal expression of insulin, or perhaps the association of *NSD1* and certain β -cell transcription factors could suppress the expression of the insulin gene (25, 26).

CHARGE syndrome, trisomy 13 and Rubinstein-Taybi syndrome (MIM: 180849) have previously been associated with HH (27-29) without a clear understanding of the underlying responsible mechanism for HH.

It is reported that infants with Prader-Willi syndrome (MIM: 176270), may be susceptible to hypoglycaemia due to adrenal and growth hormone deficiency. However, hyperinsulinism has not been proposed as the underlying mechanism (30).

There have been case reports of single individuals with Coffin-Siris syndrome (MIM: 617808) and hypoglycaemia, but the cause of hypoglycaemia was never identified (31) and 1 patient with megalencephaly-polymicrogyria syndrome (MIM: 615938) and hypoglycaemia in whom no connection was made with inappropriate insulin secretion (32). Our team has recently reported two cases of 16p11.2 deletion syndrome and HH (33). 22q11.2 syndrome (MIM: 611867), Alagille syndrome (MIK: 118450) and trisomy 21 have not been directly associated with hypoglycaemia.

Usher syndrome is yet another syndrome that has been associated with HH (35). It is caused by mutations in *USH1C*, a gene localized next to the *ABCC8* gene on chromosome 11p15.1. A rare homozygous contiguous gene deletion including *USH1C* and *ABCC8* has been reported, causing severe HH, deafness, vestibular hypofunction, severe enteropathy and renal tubular dysfunction (34).

Hypoglycaemia is also common in Costello syndrome. HH has been reported in an individual with HRAS p.Gln22Lys mutation. A discrete pancreatic nodule, identical to a focal lesion of congenital hyperinsulinism, was identified by autopsy. However, no *KCNJ11* or *ABCC8* mutation was detected, but paternal uniparental disomy was found within the lesion, similar to the pUPD11p15.5 in Beckwith-Wiedemann syndrome (35).

In our cohort, 88.9% (56/63) of the patients were diazoxide-responsive and 60% (41/69) of the cases resolved within the first two years of life.

Of note, besides the 69 patients included in our cohort who were diagnosed with HH, we identified 8 additional patients that were diagnosed with hypoglycaemia and syndromic features, but hyperinsulinism was never confirmed (Table 6). We hypothesise that these patients with hypoglycaemia either represented transient forms of HH, that resolved before testing was performed, or idiopathic ketotic hypoglycaemia that gradually improved. Two of them had growth

hormone deficiency causing hypoglycaemia. Diagnostic criteria for ketotic hypoglycaemia included: fasting appropriately for age and the presence of ketone levels in blood of more than 2mmol/L at the time of hypoglycaemia as well as at the end of the fast. Children that were presumed to have ketotic hypoglycaemia showed no evidence of hyperinsulinism on diagnostic fast provocation test and they only presented with hypoglycaemia at the time of illness.

In conclusion, we propose that all children with features suggestive of syndromes associated with HH must be closely monitored for hypoglycaemia and when detected be screened for possible hyperinsulinism. Conversely, the presence of additional comorbidities in patients with HH is of particular interest, highlighting the importance of a very thorough clinical assessment and a close follow-up of each individual patient with HH. Early diagnosis of hyperinsulinism and initiation of treatment is important for preventing hypoglycaemic brain injury and aggravation of the pre-existing intellectual disability in some of these syndromes. From the available treatment options, diazoxide historically represents a first line medication and our patients exhibited a high response rate to it. Further studies including prospective and long-term follow-up data are warranted in order to elucidate the possible underlying mechanisms involved in the pathogenesis of HH in each one of the associated syndromes and monitor disease progression into adulthood.

Conflict of interest: The authors have no conflict of interest.

Funding: No funding was received.

Data Availability Statement: The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References:

Arnoux JB, Verkarre V, Saint-Martin C, et al. Congenital hyperinsulinism: current trends in diagnosis and therapy. *Orphanet J Rare Dis.* 2011; 6:63. https://doi.org/10.1186/1750-1172-6-63.
Stanley CA. Perspective on the genetics and diagnosis of congenital hyperinsulinism disorders.

J Clin Endocrinol Metab. 2016; 101:815–826.

3) Kapoor RR, James C, Hussain K. Hyperinsulinism in developmental syndromes. *Endocr Dev.* 2009; 14:95-113.

4) Rozenkova K, Guemes M, Shah P, Hussain K. The diagnosis and management of hyperinsulinaemic hypoglycaemia. *J Clin Res Pediatr Endocrinol.* 2015; 7:86-97.

5) Banerjee I, Avatapalle B, Padidela R, et al. Integrating genetic and imaging investigations into the clinical management of congenital hyperinsulinism. *Clin Endocrinol.* 2013; 78:803-813.

6) Galcheva S, Demirbilek H, Al-Khawaga A, Hussain K. The genetic and molecular mechanisms of congenital hyperinsulinism. *Front Endocrinol (Lauzanne)*. 2019; 10:111.

7) Giri D, Patil P, Hart R, Didi M, Senniappan S. Congenital hyperinsulinism and Poland syndrome in association with 10p13-14 duplication. *Endocrinol Diabetes Metab Case Rep.* 2017; 2017:16-0125.

8) Gibson CE, Boodhansingh KE, Li C, et al. Congenital Hyperinsulinism in Infants with Turner Syndrome: Possible Association with Monosomy X and KDM6A Haploinsufficiency. *Horm Res Paediatr*. 2018; 89:413–422.

9. Munns CFJ, Batch JA. Hyperinsulinism and Beckwith-Wiedemann syndrome. *Arch Dis Child Fetal Neonatal Ed.* 2001; 84:67–69.

10) Ibrahim A, Kirby G, Hardy C, et al. Methylation analysis and diagnostics of Beckwith-Wiedemann syndrome in 1,000 subjects. *Clin Epigenetics*. 2014; 6:11.

11) Kalish JM, Boodhansingh KE, Bhatti TR, et al. Congenital hyperinsulinism in children with paternal 11p uniparental isodisomy and Beckwith-Wiedemann syndrome. *J Med Genet*. 2016; 53:53–61.

12) Calton EA, Temple IK, Mackay DJ, et al. Hepatoblastoma in a child with a paternallyinherited ABCC8 mutation and mosaic paternal uniparental disomy 11p causing focal congenital hyperinsulinism. *Eur J Med Genet*. 2013; 56:114–117.

13) Kocaay P, Siklar Z, Ellard S, et al. Coexistence of Mosaic Uniparental Isodisomy and a KCNJ11 Mutation Presenting as Diffuse Congenital Hyperinsulinism and Hemihypertrophy. *Horm Res Paediatr.* 2016; 85:421-425.

14) Banka S, Veeramachaneni R, Reardon W, et al. How genetically heterogeneous is Kabuki syndrome? MLL2 testing in 116 patients, review and analyses of mutation and phenotypic spectrum. *EJHG*. 2012; 20:381-388.

15) Subbarayan A, Hussain K. Hypoglycaemia in Kabuki syndrome. *Am J Med Genet A*. 2014; 164:467-471.

16) Gole H, Chuk R, Coman D. Persistent Hyperinsulinism in Kabuki syndrome 2: Case Report and Literature Review. *Clin Pract.* 2016; 6:848.

This article is protected by copyright. All rights reserved

17) Lederer D, Grisart B, Digilio MC, et al. Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. *AJHG*. 2012; 90:119-124.

18) Yap KL, Johnson AEK, Fischer D, et al. Congenital hyperinsulinism as the presenting feature of Kabuki syndrome: clinical and molecular characterization of 10 affected individuals. *Genet Med.* 2019; 21:233-242.

19) Gibson CE, Boodhansingh KE, Li C, et al. Congenital Hyperinsulinism in Infants with Turner Syndrome: Possible Association with Monosomy X and KDM6A Haploinsufficiency. *Horm Res Paediatr*. 2018; 89:413–422.

20) Alkhayyat H, Christesen HB, Steer J, Stewart H, Brusgaard K, Hussain K. Mosaic Turner syndrome and hyperinsulinaemic hypoglycaemia. *J Pediatr Endocrinol Metab.* 2006; 19:1451–1457.

21) Toda N, Ihara K, Kojima-Ishii K, et al. Hyperinsulinemic hypoglycemia in Beckwith-Wiedemann, Sotos, and Kabuki syndromes: A nationwide survey in Japan. *Am J Med Gebet A*. 2017; 173:360-367.

22) Nakamura Y, Takagi M, Yoshihashi H, et al. A case with neonatal hyperinsulinemic hypoglycaemia: It is a characteristic complication of Sotos syndrome. *Am J Med Genet A*. 2015; 167:1171-1174.

23) Cerbone M, Clement E, McClatchey M, et al. Sotos syndrome presenting with neonatal hyperinsulinaemic hypoglycaemia, extensive thrombosis, and multisystem involvement. *Horm Res Paediatr.* 2019; 15:1-7.

24) Matsuo T, Ihara K, Ochiai M, et al. Hyperinsulinemic hypoglycaemia of infancy in Sotos syndrome. *Am J Med Genet A*. 2013; 161:34-37.

25) Grand K, Gonzalez-Gandolfi C, Ackermann AM, et al. Hyperinsulinemic hypoglycemia in seven patients with de novo NSD1 mutations. *Am J Med Genet A*. 2019; 179:542-551.

26) Tatton-Brown K, Douglas J, Coleman K, et al. Childhood Overgrowth Collaboration. Genotype-phenotype associations in Sotos syndrome: an analysis of 266 individuals with NSD1 aberrations. *Am J Hum Genet.* 2005; 77:193-204.

27) Sekigushi K, Itonaga T, Maeda T, Fukami M, Yorifuji T, Ihara K. A case of CHARGE syndrome associated with hyperinsulinaemic hypoglycaemia in infancy. *Eur J Med Genet.* 2018; 61:312-314.

28) Smith VS, Giacoia GP. Hyperinsulinaemic hypoglycaemia in an infant with mosaic trisomy

13. J Med Genet. 1985; 22:228-230.

29) Wyatt D. Transient hypoglycaemia with hyperinsulinemia in a newborn infant with Rubinstein-Taybi syndrome. *Am J Med Genet*. 1990; 37:103-105.

30) Harrington RA, Weinstein DA, Miller JL. Hypoglycaemia in Prader –Willi syndrome. *Am J Med Genet A*. 2014; 164:1127-1129.

31) Imaizumi K, Nakamura M, Masuno M, Makita Y, Kuroki Y. Hypoglycaemia in Coffin-Siris syndrome. *Am J Med Genet.* 1995; 59:49-50.

32) Nellist M, Schot R, Hoogeveen-Westerveld M, et al. Germline activating AKT3 mutation associated with megalencephaly, polymicrogyria, epilepsy and hypoglycaemia. *Mol Genet Metab.* 2015; 114:467-473.

33) Kostopoulou E, Dastamani A, Caiulo S, Antell H, Flanagan SE, Shah P. Hyperinsulinaemic hypoglycaemia: A new presentation of 16p11.2 deletion syndrome. *Clin Endocrinol.* 2019; 90:766-769.

34) Al Mutair AN, Brusgaard K, Bin-Abbas B, et al. Heterogeneity in phenotype of Usher-Congenital Hyperinsulinism Syndrome. *Diabetes Care*. 2013; 36:557-561.

35) Gripp KW, Robbins KM, Sheffield BS, et al. Paternal uniparental disomy 11p15.5 in the pancreatic nodule of an infant with Costello syndrome: Shared mechanism for hyperinsulinemic hypoglycemia in neonates with Costello and Beckwith-Wiedemann syndrome and somatic loss of heterozygosity in Costello syndrome driving clonal expansion. *Am J Genet A*. 2016; 170:559-564.

Table Titles:

Table 1. Syndromes associated with HH

Table 2a. HH and Beckwith Wiedemann syndrome.

Table 2b. HH and Beckwith Wiedemann syndrome

Table 2c. HH and Beckwith Wiedemann syndrome.

Table 3. HH and Kabuki syndrome.

Table 4. HH and Turner syndrome.

Table 5: Patients who underwent pancreatic surgery for HH.

Table 6. Patients with non-hyperinsulinaemic hypoglycaemia.

This article is protected by copyright. All rights reserved

Table Legends:

Table 1. Clinical and genetic diagnosis of patients with HH.

Table 2a. Clinical features and genetic findings in patients with HH and Beckwith Wiedemann syndrome.

Table 2b. Clinical features and genetic findings in patients with HH and Beckwith Wiedemann syndrome.

Table 2c. Clinical features and genetic findings in patients with CHI and Beckwith Wiedemann syndrome.

Table 3. Clinical features and genetic findings in patients with HH and Kabuki syndrome.

Table 4. Clinical features and genetic findings in patients with HH and Turner syndrome.

Table 5. Clinical characteristics, management, outcome and comorbidities of patients who underwent pancreatectomy.

Table 6. Genetic diagnosis and clinical characteristics of 8 patients with non-hyperinsulinaemic hypoglycaemia.

Table 1. Syndromes associated with HH

Syndrome	Number of		Number of
	patients		patients
Beckwith Wiedemann syndrome	23	Coffin Siris syndrome	1
Kabuki syndrome	9	22q11.2 syndrome	1
Turner syndrome	6	Sotos syndrome	1
16p11.2 deletion syndrome	2	Trisomy 21	1
CHARGE syndrome	1	Trisomy 13	1
Costello Syndrome	2	45X0/XY	1
Prader-Willi Syndrome	1	Usher syndrome type 1	1
Rubinstein Taybi syndrome	2	Autosomal recessive polycystic	1
		kidney disease	
Alagille syndrome	1	Syndromic Features (no diagnosis)	5
Megalencephaly-polymicrogyria	1	Other chromosomal anomalies	8
syndrome		(duplication/deletion)	

Table 1. Clinical and genetic diagnoses of patients with HH

Patient No/Sex	1/M	2/F	3/F	4/M	5/F	6/M	7/F	8/F	9/M
Genetic Report	Pat UPD11 (ratio of 1.52 to 1, 1.22 to 1 and 1.66 to 1, in favour of the paternal allele markers TH, D11S318 and D11S1984).	Pat UPD chr 11p	Pat UPD11 (ratio of 2.23 to 1 {TH} and 2.42 to 1 {D11S4177) in favour of the paternal allele).	H19 and KvDMR: normal meth; normal MS-MLPA analysis. Negative genetics for HH	KvDMR1 hypometh	H19 and KvDMR: normal meth. No mosaic pat isodisomy. No copy changes in 11p15. 80% BWS excluded*	Pat UPD11	KvDMR loss of meth	KvDMR decreased meth
Hypoglycaemia presentation, age	D1	D 1	D 1	5 m	D 1	D 1	1 st m	D 1	D 2
HH diagnosis, age	D 1	D1	D 2	5 m	D 1	D1	1 st year	1 st m	1 st m
Clinical phenotype/ Comorbidities	Hemihyp, Liver cyst Raised AFP ASD, VPS, Hypertension	Hemihyp Epilepsy, LGA	Hemihyp Epilepsy, LGA	Macrog GDD Epilepsy Umbilical hernia	Macrog Epilepsy Small anterior pituitary, GHD, TSHD, LGA	Macrog Umbilical hernia	Macrog Hemihyp, LGA	Macrog Exomphalos Hemihyp, LGA	Macrog, LGA
Diazoxide Dose/range (mg/kg/d) Duration	Yes 21 From 7th d to 3 m	No Resolved 1 st m. Did not require treatment	No Resolved 1 st m	Yes 5-14 From 5m to 3years	Yes 5-13.2 From 12 d to 2.3 years	Yes 5 From 11 d to 10m	Yes 5-15 From 1 st m to 5 years	No (spontaneo usly resolved)	Yes 5 From 12 d to 5 m
Diazoxide responsiveness	No	-	-	Yes	Yes	Yes	Yes, partial	-	Yes
Other HH medications or medications used to manage the side effects of diazoxide	Octreotide 20 mcg/kg/day since 14 d, Chlor (7.5 mg/kg/day)	-	-	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day) Octreotide (max 25 mcg/kg/d)	No	Chlor (7.5 mg/kg/day)
PET scan	No	No	No	No	No	No	No	No	No
Pancreatectomy Type and age Pathology	Yes, subtotal 2m	No	No	No	No	No	Yes, subtotal 2 m Atypical HH	No	No
Age at last visit	16.5 years	13.42years	12.93years	10.5 years	8.85years	2.16years	8.29 years	7.2 years	1.2 years

Medications at	Nil	Levet,	Levet,	Nil	GH, LT4,	Nil	Melatonin	Nil	Nil
last visit		Lamotrigine	Lamotrigine		Levet				
Feeds at last visit	On demand	On demand	On demand	On demand	On demand	On demand	On demand	On demand	On
									demand

Table 2a. Clinical features and genetic findings in patients with HH and Beckwith Wiedemann syndrome.

D: day. m: month. Pat: paternal. Meth: methylation. Hemihyp: Hemihypertrophy. Macrog: Macroglossia. ASD: atrial septal defect. VPS: valvular pulmonary stenosis. Valvular pulmonary stenosis. GHD: Growth hormone deficiency. GDD: Global developmental delay. TSHD: TSH deficiency. Chlor: Chlorothiazide. Levet: levetiracetam. LT4: Levothyroxine. GH: Growth hormone. *Genetic testing was not comprehensive and BWS was not confirmed molecularly by the genetic testing done. Table 2b. Clinical features and genetic findings in patients with HH and Beckwith Wiedemann syndrome.

Patient No/Sex	10/F	11/M	12/M	13/F	14/M	15/F	16/M	17/F	18/F
Genetic Report	Pat UPD11 (Increased methylatio n of H190DMR and decreased methylatio n of KvDMR imprinting control centres of chr11p15. 5).	MLPA 11p15.5 normal pattern BWS 85% excluded*. Negative HH genes	KvDMR1 hypometh	KvDMR1 hypometh	Pat UPD11 (Increased methylation of H19DMR and decreased methylation of KvDMR imprinting control centres on chromosome 11p15).	11p15 H109 5' region deletion Variant found in ARID1B in child and mother, likely not to be significant	Meth and dosage analysis 11p15 normal. BWS 85% excluded*.	Pat UPD11 (Increased dosage of paternally derived alleles at both ICR1 and ICR2).	KVDMR1 hypometh
Hypoglycaemia presentation, age	D 1	D 1	D 1	D 1	D 1	D 1	D 1	D 1	D 1
HH diagnosis, age	D 1	D 1	D 1	D 16	D 1	D 1	D 1	D1	D 1
Clinical phenotype/ Comorbidities	Macrog Hepatobla stoma, LGA	Hemihyp GDD Epilepsy Thin corpus callosum+optic chiasm	Macrog Hemihyp	Macrog Tracheomalaci a Umbilical hernia, LGA	Macrog Nephromegaly Hepatospleno megaly HIE grade 3	Protein sensitive HH Seizures Septal + right ventricular hypertrophy Macrog	ASD, PDA Splenic cyst Hemihyp, LGA	Bilateral adrenal abnormalities Liver lesions Renal pelvi-calyceal dilatation Macrog+tongue cyst, LGA	Macrog, LGA
Diazoxide	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Dose/range (mg/kg/d) Duration	5-10 From 7 d to 2 years	5 From 7d to 30 d	5 From 25 d to 3m	5-10 From 16 d to 2 years	5-15 From 1 st m to 2.5 years	5-10 From 1 st m ongoing	Spontaneous resolution of HH before 12m	5-15 From 15d to 45d	5 From 1 st m to 3 years
Diazoxide responsiveness	Yes	Yes	Yes	Yes	Yes	Yes	-	No Sirolimus responsive	Yes
Other HH medications or medications used to manage the side effects of diazoxide	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day)	Spironolactone+ Furosemide	No	Chlor (7.5 mg/kg/day), Octreotide 30 mcg/kg/d Sirolimus 8 mg/m ² /d	Chlor (7.5 mg/kg/day)

PET scan	No	No	No	No	No	No	No	No	No
Pancreatectomy	No	No	No	No	No	No	No	No	No
Age at last visit	2.09 years	8.4 years	0.54 years	7.3	5.43years	0.72years	4years	3.36years	3.07years
Medications at last visit	Nil	Baclofen Valproate	Nil	Nil	Nil	Diazoxide 3.3mg/kg/d	Nil	Lanreotide 60 mg/5weekly	Nil
Feeds at last visit	On demand	On demand	On demand	On demand	On demand	On demand	On demand	On demand	On demand

HIE: hypoxic-ischemic encephalopathy, ASD: Atrial septal defect, PDA: Patent ductus arteriosus. D: day. M: month. Pat: paternal. Meth: methylation. Hemihyp: Hemihypertrophy. Macrog: Macroglossia. ASD: atrial septal defect. VPS: Valvular pulmonary stenosis. GHD: Growth hormone deficiency. GDD: Global developmental delay. TSHD: TSH deficiency. Chlor: Chlorothiazide. Levet: levetiracetam. LT4: Levothyroxine. GH: Growth hormone. *Genetic testing was not comprehensive and BWS was not confirmed molecularly by the genetic testing done. *Responsiveness could not be assessed because diazoxide was not trialled at the maximum dose of 15g/kg/day. Table 2c. HH and Beckwith Wiedemann syndrome

Patient No/Sex	19/F	20/F	21/M	22/F	23/F
Syndrome/ Chromosomal anomaly	Negative genetics for BWS Negative HH genetics	KvDMR hypometh	Mosaic Pat UPD11	Pat UPD11 Negative HH genetics	Mosaic Pat UPD11
Hypoglycaemia presentation, age	D 1	D1	D 1	D 1	D 1
HH diagnosis, age	D1	D 1	4 m	D8	D1
Clinical phenotype/Comorbidities	Exomphalos	Tall stature Rapid weight gain	Macrog, Adrenal mass, liver lesions, Bladder polyps, Hemihyp, Neck haemangioma, Intermittent neutropenia, LGA	Macrog, PFO, Left ventricular hypertrophy, Hemihyp, Pancreatic cyst, Raised AFP, Lesions in the liver	Macrog, LGA, Bilateral nephromegaly, Hepatomegaly PFO, LGA
Diazoxide	Yes	No	Yes	Yes	Yes
Dose/range (mg/kg/d) Duration	15 From 43 d to 68 d	Resolved 1 st m	5 From 4 m On-going	10	5-15 From 50 d to 75 d
Diazoxide responsiveness	No	-	Yes	No	No
Other HH medications or medications used to manage the side effects of diazoxide	- Chlor (7.5 mg/kg/day) -Unresponsive to Nifedipine. -Responsive to Octreotide 35mcg/kg/d (QDS sc inj) Sirolimus 2mg/m²/d	No	Chlor (7.5 mg/kg/day)	Chlorthiazide (7.5 mg/kg/day)	Chlor (7.5 mg/kg/day), Responsive to Octreotide 30mcg/kg/d
PET scan	No	No	No	Yes Large pancreatic head cystic lesion	No
Pancreatectomy Type and age Pathology	No	No	No	Yes, partial Focal HH	No
Age at last visit	3.09 years	2.2 years	0.8 years	2.5 years	12 m
Medications at last visit	Octreotide (22mcg/kg/d, QDS sc inj)	Nil	Diazoxide (4.5mg/kg/d) Chlor (6mg/kg/d)	Diazoxide (4 mg/kg/day) Ondasetron, Esomeprazole	Octreotide 16mcg/kg/d QDS sc inj
Feeds at last visit	On demand	On demand	On demand	On bolus feeds	Daytime 4hourly Overnight continuous gastrostomy feeds

D: day. M: month. Pat: paternal. Meth: methylation. Hemihyp: Hemihypertrophy. Macrog: Macroglossia. ASD: atrial septal defect. VPS: valvular pulmonary stenosis. Valvular pulmonary stenosis. GHD: Growth hormone deficiency. GDD: Global developmental delay. TSHD: TSH deficiency. Chlor: Chlorothiazide. Levet: levetiracetam. LT4: Levothyroxine. GH: Growth hormone. QDS: 4 times per day, LGA: large for gestational age, PFO: patent foramen ovale. Inj: Injection

Patient No/Sex	1/M	2/M	3/M	4/F	5/F	6/F	7/F	8/F	9/F
Genetic report	KDM6A	KMT2D	KMT2D	KMT2D	KMT2D	KDM6A	KMT2D	Sequencing+MLPA:	KDM6A
	c.3878+3A	c.6595 delT		c.13689C>T	Duplicati	c.2074-	mutation	no mutation for	c.357C>G
	>C				on exon	2075delCA;pGln692Gly		KMT2D +KDM6A	
					11 to 14	fsTer37).		Negative HH	
						Negative HH genetics.		genetics	
						Microarray: loss of ch		Microarray: normal	
						10q21.1 pat inherited			
Hypoglycaemia	D 1	D 1	D 1	D 1	D 1	D 1	4 m	D 7	D 1
HH	D 1	D 1	D 30	D 1	D 1	D 3	4 m	D 7	D 15
Clinical phenotype/	GDD	Tetralogy	GHD, GDD	GDD	GDD,	Facial features of KS	Dysmorphic	Facial features of	Dysmorphic
Comorbidities	Leg	Fallot	Diaphragmatic		LGA	PDA, PFO,	features	KS	features
	asymmetry	Renal pelvic	hernia. Cleft palate			Bilateral thelarche	Dislocated	Behavioural issues	Failure to thrive
	Retinal	dilatation,	Trigonocephaly			Abnormal clotting with	femoral head	Hypoglycaemic	IUGR
	dystrophy	LGA	Dysplastic kidney			low von Willebrand	IUGR, FTT	seizures	Truncal
			Dysmorphic features,			antigen levels /activity,	Factor IX	Liver haematoma	hypotonia
			SGA			LGA	deficiency	ASD, PFO, LGA	
							GDD, SGA		
Diazoxide	Yes	Yes	Yes	Yes	No	Yes	Yes	Yes	Yes
Dose/range	5	5	3	10	Spont	9	5	15	5
(mg/kg/day)	From 25 d	From 30d to	From 6 m to	From 30 d to	resolutio	From 15 d On-going	From 4 m		From 15 d On-
Duration	to 5 years	1.25years	4.5 years	12 m	n 1 st m		On going		going
Diazoxide	Yes	Yes	Yes	Yes	-	Partial response	Yes	No	Yes
responsiveness									
Other HH	Chlor (7.5	Chlor (7.5	Chlor (7.5 mg/kg/day)	Chlor (7.5	-	Chlor (7.5 mg/kg/day)	Chlor (7.5	No	No/ Chlor (7.5
medications op	mg/kg/day)	mg/kg/day)		mg/kg/day)			mg/kg/day)		mg/kg/day)
medications used to									
manage the side									
effects of diazoxide									
PET scan	No	No	No	No	No	Yes (Focal head)	No	No	No

Table 3. Clinical features and genetic findings in patients with HH and Kabuki syndrome.

	Pancreatectomy,	No
	Tyoe and age	
	Pathology	
	Age last visit	5 years
	Medications, last	Nil
F	visit	
	Feeds at last visit	On
		demand
	Ch: chromosome. IUGF	R: Intrauterine
	paternal. Meth: methyla	ation. ASD: a
	developmental delay. F	
	Overnight continuous g	jastrostomy f
D		
Y		

Pancreatectomy No Yes, 90% Yes, 50% No No No No No No DiffuseHH Histology unknow n 8 years 9.5 years 2 years 11.5 years 7 years 4 m 14 m 9 m Diazoxide (2.25 GH Diazoxide (7mg/kg/d) Nil Nil Nil Diazoxide Diazoxide Chlor mg/kg/d) (10mg/kg/d) (2.5 mg/kg/d) Furosemide Chlor Chlor Spironolactone On demand On demand Demand On Daytime 4hourly 4 hourly oral On demand On demand daytime. demand feeds OCGF

Ch: chromosome. IUGR: Intrauterine grow th retardation. GDD: Global Developmental Delay, GOR: Gastroesophageal reflux, GH: recombinant human grow th hormone D: day. M: month. Pat: paternal. Meth: methylation. ASD: atrial septal defect. VPS: valvular pulmonary stenosis. PDA: Patent ductus arteriosus. PFO: Patent foramen ovale. GHD: Grow th hormone deficiency. GDD: Global developmental delay. FTT: Failure to thrive. TSHD: TSH deficiency. Chlor: Chlorothiazide. Levet: levetiracetam. LT4: Levothyroxine. GH: Grow th hormone. PFO: patent foramen ovale. OCGF: Overnight continuous gastrostomy feeds Table 4. Clinical features and genetic findings in patients with HH and Turner syndrome.

Patient No/Sex	1/F	2/F	3/F	4/F	5/F	6/F
Genetic report	45,X,15/46,X,i(X)/	45X0	46,X,r(X)	46X, deletion (X)	46, X, R (X)	Three cell lines, the majority show ing 46, Xr(X). The
	50		(p11q13)[22]/45,X[(p11.2)	(p11.2q13.3)	ring is comprised after deletion of the terminal
			8]		24/45, X (6)	components of the short arm of the X and long arm
					Negative HH	of the X, contains genes KDM6A, XIST and
					genetics	additional genes duplicated, lead to functional
						disomy
Hypoglycaemia	First year of life	D 1	4 m	D 1	12 m	D1
presentation, age						
HH diagnosis, age	First year of life	D 1	0.4 years	D 1	12 m	D 2
Clinical	GHD,	ADHD	GHD, Epilepsy	Group B streptococcal	Absence	ASD, PDA
phenotype/Comorbidit	Glue ears,	Autoimmune	GDD,	meningitis-septicaemia,	Epilepsy, SGA	Left superior vena cava, no bridging vein
ies	Horseshoe-	hypothyroidism	Hydrocephalus,	cerebral necrosis,		Diazoxide induced PH
	shaped kidneys,	Alopecia	Spina bifida,	hydrocephalous, GDD,		
	Absence seizures	Rapid weight gain,	Myelomeningocele	ventricular hypertrophy,		
	with Autism/ADHD	LGA	Vit B12 deficiency	Asymmetric septal defect		
Diazoxide	Yes	Yes	Yes	Yes	Yes	Yes
Dose/range(mg/kg/d)	9.3	7	20	5	7	5-10
Duration	From 1 st year to	From 2 years	From 4 m to 2.3	From 5 d, On-going	From 12 m,	From 7d to 43 days (PH)
	2.85 years	to 11.43 years	years		On-going	
Diazoxide	Yes	Yes	Yes, Partial	Yes	Yes	Yes
responsiveness						
Other HH medications	Chlorothiazide (7.5	Chlorothiazide (7.5	Chlorothiazide (7.5	Chlorothiazide (7.5	Chlorothiazide	Glucagon sc infusion max 5mcg/kg/hr,
or medications used	mg/kg/day)	mg/kg/day)	mg/kg/day)	mg/kg/day)	(7.5	Octreotide 40mcg/kg/day (in 4 daily sc inj) Changed
to manage the side					mg/kg/day)	to lanreotide 30mg /4 w eeks at 7 m
effects of diazoxide						
PET scan	No	No	Yes, low grade	No	No	Yes
			uptake throughout			Diffuse
			the pancreas			
Pancreatectomy	No	No	No	No	No	No

This article is protected by copyright. All rights reserved

Age at last visit	9.24 years	12.43 years	5.2 years	2.67 years	2.6 years	10 m
Medications at last	GH	GH, L-T4,	GH, Oxybutinin,	Nil	Diazoxide	Sw itched to Lanreotide 30mg /4w eeks (7months)
visit		Melatonin,	Carbamazepin,		(3mg/kg/day)	
		Loperamide	Omeprazole		Chlorothiazide	
Feeds at last visit	On demand	On demand	On demand	On demand	On demand	Continuous PEG-J feeds

ASD: Atrial septal defect, PDA: Patent ductus arteriosus, PH: Pulmonar hypertension. GHD: grow th hormone deficiency. GDD: Global developmental delay. ADHD: attention deficit hyperactivity disorder. D: day. M: month. GH: recombinant human grow th hormone. L-T4: Levothyroxine. Vit: vitamin. Inj: injections.

This article is protected by copyright. All rights reserved

Table 5. Clinical characteristics, management, outcome and comorbidities of patients who underwent pancreatectomy.

1	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7
Genetic di	agnosis Usher	BWS –	BWS –	BWS –	Costello –	X-linked	Facial
	syndrome	paternal	paternal	UPD11p1	HRAS	Kabuki	features
	type 1	disomy	disomy	5	mutation	syndrome -	Kabuki
	(homozygo	u (UPD11)	(UPD11)		(c466T>p,	KDM6A	syndrom
	sdeletion of	-			Phe 156	c.2074-	– negati
	Chr 11p14-				Leu)	2075delCA;	genetic
	15)					pGln692Glyf	testing
						sTer37	(KMT2D
							KDM6A)
Ageat	At birth	At birth	1 st	At birth	At birth	At birth	At birth
presentati			month				
Gestationa		Term	Term	31 w eeks	Term	Term	30 w eek
Birth w eig	-	3.72/(0,77)	5 /(3.89)	2.2/(2.19)	3.5/(-0.15)	5.1/(3.17)	2.58/(3.3
SDS	(itg)/ 0.2/(0.44)	3.72/(0,77)	07(0.00)	2.2/(2.10)	0.0/(0.10)	3.1/(3.17)	2.00/(0.0
	nocio Athirth	At birth	1 month	At birth	2 months	14 months	At birth
Age of dia	-	At birth		At birth	3 months	14 months	
18F-DOPA		No	No	Large	No	Focal lesion	No
PET/CT so	can			cystic		in 	
				focal		pancreatic	
				lesion in		head	
				pancreatic			
				head			
Medical	Diazoxide	Diazoxide,	Diazoxid	-	Diazoxide	Diazoxide-	Diazoxid
manageme		octreotide	е			Chlorthiazid	octreotid
the time of						е	
diagnosis							
Age at sur	gery 19 days	2.5 months	2.5	6 months	6 months	16 months	3 months
		old	months	old	old		
Pancreate	ctomy Subtotal	Subtotal	Subtotal	Partial	Near-total	Partial	Near-tota
(resection	(70%)/	(70%)/	(70%)/	(50%)/	(95%)/	(50%)/	(95%)/
%)/histolo	gical					pancreatic	
findings	Diffuse	Diffuse	Diffuse	Possibly	Diffuse	head	Diffuse
				atypical		Possibly	
						atypical	
Medical	-	Octreotide	-	Diazoxide	Prednisolo	Diazoxide	-
manageme	ent	(20		5mg/kg/da	ne,	9mg/kg/day	
post-surge	ery	mcg/kg/day)		у	lansopraz		
					ole		
Resolution	of HH Post-surger	ry 16 years	Post-	-	Post-	-	Post-
		-	surgery		surgery		surgery
Current ag	e 18 years	16.5 years	8.29	2.5	4 years	4.5 years	10.5
			years		. ,		
Current		-	-	Diazoxide	-	Diazoxide	Diazoxid
manageme				4mg/kg/da		7mg/kg/day	2.25
manageme	// K					/ Hg/Ng/uay	z.25 mg/kg/d
Co marhid			Homiburg	y Macrogles	Huportrop	PDA, PFO,	ASD,
Co-morbid			Hemihyp	Macroglos	Hypertrop		
	al deafness	s, ophy, liver	ertrophy,	sia, patent	hic	LVH,	PFO, liv

retinitis	cyst, ASD,	macrogl	foramen	cardiomyo	abnormal	haematom
pigmentosa,	mild valvular	ossia	ovale,	pathy,	clotting,	a,
gallstones,	pulmonary	requiring	LVH,	tracheoma	bilateral	behavioral
diabetes PP	stenosis,	tongue	hamartom	lacia,	thelarche,	problems
	resolved	reductio	a or	macroglos	cow 's milk	
	hypertension	n	hepatobla	sia, GORD	allergy,	
			stoma		pancreatic	
					exocrine	
					insufficiency	
					PP	

ASD: Atrial septal defect. LVH: Left ventricular hyperplasia. PDA: Patent ductus arteriosus. PFO: Patent foramen ovale. PP: Postpancreatectomy. Sc: subcutaneous. GORD: gastroesophaegeal reflux disease

	Patient 1	Patient 2	Patient 3	Patient 4	Patient 5	Patient 6	Patient 7	Patient 8
Genetic	CHARGE	Kabuki syndrome	Kabuki syndrome	600 kb of 3q22.1	Del in	De novo	No genetic	16p11.2
diagnosis	syndrome			and de novo del of	chromosome 9	chromosome 6p	diagnosis	microdel
				chromosome 6	and de novo dup	del and a		
					in chromosome 2	paternally		
						inherited		
						chromosome 3q		
						dup		
Ageat	6 months	6 years	6 months	4 years	15 months		18 months	22 months
presentation								
Clinical	Ketotic	Hypoglycaemia during	Hypoglycaemia during	Hypoglycaemia	Ketotic	Ketotic	Cardiorespirator	Hypoglycaemi
presentation	hypoglycaemia	illness	illness	during illness	hypoglycaemia.	hypoglycaemia.	y arrest during	c seizures at
							hypoglycaemia	22 months,
							at 18 months.	hypoglycaemi
							Hypoglycaemia	a w hen illness
							during illness	
Medical	Nil	Nil	Grow th Hormone	Nil	Nil	Nil	Nil	Growth
Management								Hormone
Co-morbidities	Short stature,	GDD, cleft palate,	High arched palate,	Epilepsy, GDD,	Microcephaly,	Epilepsy, GDD,	Dyslexia,	Pyloric
	bilateral hearing	severe GORD, mild	generalised hypotonia,	short stature,	GDD, speech	short stature.	excessive body	stenosis,
	impairment and	mitral stenosis and	skin over the dorsum of	small anterior	delay, central		w eight.	failure to
	bilateral	mitral regurgitation, IgA	hands and feet, gross	pituitary gland.	hypotonia, visual			thrive, short
	vestibular	deficiency,	motor delay,		impairment.			stature due to
	hypofunction.	hypothyroidism,	immunodeficiency, food					GHD, speech
		hypertension, SLE and	allergies, GHD, GORD					delay.
		small scarred left kidney.	and eczema. Small					
			corpus callosum.					

Table 6. Genetic diagnosis and clinical characteristics of 8 patients with no confirmed hyperinsulinaemic hypoglycaemia.

GORD: gastroesophageal reflux. Del: deletion. Dup: duplication. GDD: Global developmental delay. SLE: Systemic Lupus Erythematosus. GHD: grow th hormone deficiency