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Abstract. In this note we consider the scattering of electromagnetic waves (governed by the time-harmonic
Maxwell equations) by a thin periodic layer of perfectly conducting obstacles. The size of the obstacles
and the distance between neighbouring obstacles are of the same small order of magnitude δ. By deriving
homogenized interface conditions for three model configurations, namely (i) discrete obstacles, (ii) parallel
wires, (iii) a wire mesh, we show that the limiting behaviour as δ→ 0 depends strongly on the topology of
the periodic layer, with full shielding (the so-called “Faraday cage effect”) occurring only in the case of a wire
mesh.

Résumé. Dans cette note, nous nous intéressons à la diffraction des ondes électromagnétiques (équations
de Maxwell en régime harmonique) par une nappe perforée plane constituée de petit obstacles parfaitement
conducteurs placée à l’interface entre deux milieux homogènes. La taille des obstacles et la distance sépa-
rant deux obstacles consécutifs sont du même ordre de grandeur δ, δ supposé petit. En étudiant trois confi-
gurations modèles ((i) obstacles « discrets », (ii) fils parallèles, (iii) maillage constitué de deux nappes de fils
parallèles), nous montrons que la limite de la solution quand δ tend vers 0 dépend de la forme des obstacles
constituant la nappe périodique, le phénomène de « cage de Faraday » n’apparaissant que dans le cas du
maillage de fils.
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1. Introduction

The ability of wire meshes to block electromagnetic waves (the celebrated “Faraday cage” effect)
is well known to physicists and engineers. Experimental investigations into the phenomenon
date back over 180 years to the pioneering work of Faraday [5], and the effect is routinely used to
block or contain electromagnetic fields in countless practical applications. (An everyday example
is the wire mesh in the door of a domestic microwave oven, which stops microwaves escaping,
while letting shorter wavelength visible light pass through it.) But, somewhat remarkably, a
rigorous mathematical analysis of the effect does not appear to be available in the literature.

The mathematical richness of the Faraday cage effect was highlighted in an recent article by
one of the authors [2], where a number of different mathematical approaches were applied to
the 2D electrostatic version of the problem. In particular it was shown in [2] how modern tech-
niques of homogenization and matched asymptotic expansions could be used to derive effective
interface conditions that accurately capture the shielding effect. These results were generalised
to the 2D electromagnetic case (TE- and TM polarizations) in [6], and related approximations for
similar problems have also been studied recently by other authors, e.g. [8, 9]. A first result on the
full 3D problem has been obtained in [7], where the authors prove that a mesh of perfectly con-
ducting wires leads to a full shielding effect. We note also that related approximations have been
presented for thin layers of dielectric obstacles in [3, 4].

In this note we consider full 3D electromagnetic scattering by a thin periodic layer of small,
perfectly conducting obstacles. We derive leading-order homogenized interface conditions for
three model configurations, namely where the periodic layer comprises (i) discrete obstacles,
(ii) parallel wires, and (iii) a wire mesh. Our results verify that the effective behaviour depends
strongly on the geometry of the periodic layer, with shielding of arbitrarily polarized waves
occurring only in the case of a wire mesh. We note that analogous observations have been made
in the related setting of volume homogenization in [13].

Our analysis assumes that the obstacles/wires making up the thin periodic layer are of approx-
imately the same size/thickness as the separation between them. The case of very small obsta-
cles/thin wires is expected to produce different interface conditions, analogous to those derived
in [2, 6] in the 2D case. But we leave this case for future work.

2. Statement of the problem

Our objective is to derive effective interface conditions for electromagnetic scattering by a thin
periodic layer of equispaced perfectly-conducting obstacles on the interface Γ= {x = (x1, x2, x3) ∈
R3 : x3 = 0}. Let Ω̂ ∈ R3 be the canonical obstacle described by one of the following three cases
(see Figure 1):

(i) Ω̂ is a simply connected Lipschitz domain whose closure is contained in (0,1)2×(− 1
2 , 1

2

)
.

(ii) Ω̂= [0,1]× ( 3
8 , 5

8

)× (− 1
8 , 1

8

)
, i.e. a wire (of square section) parallel to the direction e1.

(iii) Ω̂= {
[0,1]× ( 3

8 , 5
8

)× (− 1
8 , 1

8

)}∪ {( 3
8 , 5

8

)× [0,1]× (− 1
8 , 1

8

)}
, i.e. a cross-shape domain made

of the union of two perpendicular wires (one parallel to e1 and the other parallel to e2).

We construct the thin layer as a union of scaled and shifted versions of the canonical obstacle
Ω̂. For δ> 0 we define L δ ⊂R2 × [−δ/2,δ/2] by

L δ = int

( ⋃
(i , j )∈Z2

δ
{
Ω̂+ i e1 + j e2

})
.

Our domain of interest is thenΩδ =R3 \L δ (cf. Figure 2), and we define Γδ = ∂Ωδ.
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1

(a) Case (i)

1

(b) Case (ii)

1

(c) Case (iii)

Figure 1. The canonical obstacle Ω̂ in the three cases under consideration.

1

(a) Case (i) - discrete obstacles

1

(b) Case (ii) - parallel wires

1

(c) Case (iii) - wire mesh

Figure 2. The domainΩδ in the three cases under consideration.

On the domainΩδ we consider the solution uδ of the Maxwell equations

curl curl uδ−ω2εuδ = f inΩδ, (1)

where ω> 0 and ε ∈C, subject to the perfectly conducting boundary condition

uδ×n = 0 on Γδ. (2)

For analytical convenience we avoid any complications arising from far-field behaviour by as-
suming that Re[ε] > 0 and Im[ε] > 0. The assumption that Im[ε] > 0 could be relaxed to Im[ε] ≥ 0
at the expense of some technical modifications, including the imposition of an appropriate ra-
diation condition. We also assume that the support of f does not intersect the interface Γ. Then,
given f ∈ (

L2(Ωδ)
)3

, the Lax–Milgram Lemma ensures that Problem (1)–(2) has a unique solution
uδ in the standard function space

H(curl;Ωδ) =
{

v ∈ (L2(Ωδ))3 : curl v ∈ (L2(Ωδ))3
}

, (3)

equipped with the usual graph norm ‖v‖H(curl;Ωδ) =
(‖v‖2

(L2(Ωδ))3 +‖curl v‖2
(L2(Ωδ))3

)1/2. Moreover,
one can prove that there exists C > 0, independent of δ, such that

‖uδ‖H(curl;Ωδ) ≤C‖f‖(L2(Ωδ))3 , for all 0 < δ< 1. (4)

The objective of this work is to identify formally the limit u0 of uδ as δ tends to 0. This limit
solution is defined in the union of two distinct domains Ω± = {x ∈ R3 : ±x3 > 0}, whose common
interface is Γ. Our main result is the following:

Theorem 1. The leading order far field term u0 satisfies the Maxwell equations

curl curl u0 −ω2εu0 = f inΩ+∪Ω−, (5)

together with the following interface conditions on Γ:

(i) [u0 ×e3]Γ = 0 and [curl u0 ×e3]Γ = 0.
(ii) u0 ·e1 = 0 on Γ, [u0 ·e2]Γ = 0, and [(curl u0 ×e3) ·e2]Γ = 0.

(iii) u0 ×e3 = 0 on Γ.

C. R. Mathématique, 2020, 358, n 7, 777-784
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Let us make a few comments on this result. First, we emphasize that the nature of the limit
problem depends strongly on the geometry of the thin layer of obstacles L δ. In case (iii), where
L δ comprises a wire mesh, we observe the “Faraday cage effect”, where the effective interface Γ
is a solid perfectly conducting sheet. Hence if the support of f lies in Ω+ (above the layer L δ),
then u0 = 0 in Ω−. In other words, despite the holes in its structure, the layer L δ shields the
domain Ω− from electromagnetic waves of all polarizations. At the opposite extreme, in case (i),
where L δ comprises discrete obstacles, the interface is transparent and there is no shielding
effect. In the intermediate case (ii), where L δ comprises an array of parallel wires, one observes
polarization-dependent shielding. Fields polarized parallel to the wire axis are shielded, whereas
those polarized perpendicular to the wire axis are not. Note that this case (ii) includes as a subcase
the simpler two-dimensional situation studied in [6, 8, 9] where the fields are invariant in the
direction of the wire axis.

We point out that a similar result has been obtained in [7]. Their approach is also based
on the derivation of an asymptotic expansion (to be more specific, the mutliscale expansion
method) and transmission conditions are then obtained by imposing the near field terms to be
exponentially decaying far from the periodic interfaces (to do so, appropriate integration by parts
are carried out). However, the analysis of existence of the boundary layer correctors has not been
investigated in [7].

The remainder of this note is dedicated to the proof of Theorem 1. The proof is based on
the construction of an asymptotic expansion of uδ using the method of matched asymptotic
expansions (cf. [10]). To simplify the computation, we work with the first order formulation of (1),
introducing the magnetic field hδ = 1

iω curl uδ (see e.g. [11]) and obtaining{
−iωhδ+curl uδ = 0 inΩδ,

−iωuδ−curl hδ =− 1
iω f inΩδ,

uδ×n = 0 and hδ ·n = 0 on Γδ. (6)

Far from the periodic layer L δ, we construct an expansion of hδ and uδ of the form

hδ = h0(x)+δh1(x)+·· · , uδ = u0(x)+δu1(x)+·· · , x = (x1, x2, x3), (7)

and, in the vicinity of L δ,

hδ = H0

(
x1, x2,

x

δ

)
+δH1

(
x1, x2,

x

δ

)
+·· · , uδ = U0

(
x1, x2,

x

δ

)
+δU1

(
x1, x2,

x

δ

)
+·· · , (8)

where, for i ∈ {0,1}, Hi (x1, x2, y1, y2, y3) and Ui (x1, x2, y1, y2, y3) are assumed to be 1-periodic
in both y1 and y2. Near and far field expansions communicate through so-called matching
conditions, which ensure that the far and near field expansions coincide in some intermediate
areas. Since we are only interested in the leading order terms, it is sufficient to consider only the
O(1) matching conditions, namely

lim
x3→0±

h0 = lim
y3→±∞H0 and lim

x3→0±
u0 = lim

y3→±∞U0. (9)

Inserting (7) into (1) and separating the different powers of δ directly gives (5). To obtain the
interface conditions, we have to study the problems satisfied by U0 and H0:

curly U0 = 0 in B∞,

divy U0 = 0 in B∞,

U0 ×n = 0 on ∂B∞,


curly H0 = 0 in B∞,

divy H0 = 0 in B∞,

H0 ·n = 0 on ∂B∞,

B∞ =Ω1 =R3 \L 1. (10)
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3. The spaces KN (B∞) and KT (B∞)

Denoting by B the restriction of B∞ to the strip (0,1)2 × (−∞,∞), we introduce the spaces

HN (B∞) =

u ∈ Hloc(curl;B∞)∩Hloc(div;B∞) :

u is 1-periodic in y1 and y2,
u|Bp
1+(y3)2

∈ (L2(B))3,

curl u|B ∈ (L2(B))3, divu|B ∈ L2(B),
u×n = 0 on ∂B∞

 , (11)

HT (B∞) =

h ∈ Hloc(curl;B∞)∩Hloc(div;B∞) :

h is 1-periodic in y1 and y2,
h|Bp
1+(y3)2

∈ (L2(B))3,

curl h|B ∈ (L2(B))3, divh|B ∈ L2(B),
h ·n = 0 on ∂B∞

 , (12)

both of which include periodic vector fields in Hloc(curl;B∞) ∩ Hloc(div;B∞) that tend to a
constant vector as |y3| → ∞. Investigation of (10) requires the characterization of the so-called
normal and tangential cohomology spaces KN (B∞) and KT (B∞) defined by (see [1])

KN (B∞) = {
u ∈HN (B∞), curl u = 0, divu = 0

}
,

KT (B∞) = {
h ∈HT (B∞), curl h = 0, divh = 0

}
.

(13)

This characterization involves the representation of elements of KN (B∞) and KT (B∞) as gra-
dients of harmonic scalar potentials, constructed by solving certain variational problems in the
space

W1(B∞) =
{

p ∈ H 1
loc(B∞) : p is 1-periodic in y1 and y2,

p|Bp
1+(y3)2

∈ L2(B),∇p|B ∈ L2(B)

}
, (14)

and variants of it. In each case the existence and uniqueness of the potential follows from the
Lax–Milgram Lemma. While we do not reproduce the proofs here, we remark that the unbounded
nature of the domain B requires us, when verifying coercivity of the requisite bilinear forms, to
appeal to the inequality∥∥∥∥∥ p√

1+ (y3)2

∥∥∥∥∥
L2(B+)

≤ 2‖∇p‖L2(B+), B+ =B∩ {y3 > 0}, (15)

valid if p/
√

1+ (y3)2 ∈ L2(B+), ∇p ∈ L2(B+) and p = 0 in a neighbourhood of {y3 = 0}, which is an
elementary consequence of the Hardy inequality [12, Lemma 2.5.7]∫ ∞

0
t−2|ϕ(t )|2 dt ≤ 4

∫ ∞

0
|ϕ′(t )|2 dt , ϕ ∈C∞

0 ((0,∞)). (16)

3.1. Characterization of KN (B∞)

To characterize KN (B∞) we first define two functions p±
3 ∈ H 1

loc(B∞), 1-periodic in y1 and y2,
such that {

−∆p±
3 = 0 in B∞,

p±
3 = 0 on ∂B∞,

lim
y3→±∞∇p±

3 = e3, lim
y3→∓∞∇p±

3 = 0.

Then, in case (i) we introduce the functions p̃1 ∈W1(B∞) and p1 ∈ H 1
loc(B∞), such that{

−∆p̃1 = 0 in B∞,

p̃1 =−PRy1 on ∂B∞,
and p1 = p̃1 + y1.

C. R. Mathématique, 2020, 358, n 7, 777-784
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Here, for any function u ∈ L2
loc(B∞), Ru denotes its restriction to B, while for any function

u ∈ L2
loc(B), Pu denotes its periodic extension to B∞. Similarly, in cases (i) and (ii) we introduce

the functions p̃2 ∈W1(B∞) and p2 ∈ H 1
loc(B∞), such that{

−∆p̃2 = 0 in B∞,

p̃2 =−PRy2 on ∂B∞,
and p2 = p̃2 + y2.

We emphasize that it is not possible to construct p̃1 in cases (ii) and (iii), and it is not possible to
construct p̃2 in case (iii). An adaptation of the proof of [1, Proposition 3.18] leads to the following
result:

Proposition 2.

(i) KN is the space of dimension 4 given by KN (B∞) = span
{∇p1,∇p2,∇p−

3 ,∇p+
3

}
.

(ii) KN is the space of dimension 3 given by KN (B∞) = span
{∇p2,∇p−

3 ,∇p+
3

}
.

(iii) KN is the space of dimension 2 given by KN (B∞) = span
{∇p−

3 ,∇p+
3

}
.

Sketch of the proof in case (ii). First, one can verify directly that the family
{∇p2,∇p−

3 ,∇p+
3

}
is

linearly independent (using the limit of ∇p2 and ∇p±
3 as y3 tends to ±∞). Moreover, it is clear

that ∇p2 and ∇p±
3 belong to KN (B∞). Now, let u ∈ KN (B∞). Since B∞ is connected, there exists

p ∈ H 1
loc(B∞), unique up to the addition of a constant, such that u = ∇p. (This follows e.g. from

applying [11, Theorem 3.37] on an increasing sequence of nested subsets of B∞ after extension
of u by zero inside R3 \ B∞.) Moreover, ∇p is periodic and there exists a real sequence (c j ) j∈Z
such that

−∆p = 0 in B∞, p = c j on ∂B∞, j = ∂B∞∩ { j < y2 < ( j +1)}.

Because ∇p is periodic and
u|Bp
1+(y3)2

∈ (L2(B))3, there exists four constants α1, α2, α±
3 such that

p̃ = p −α1 y1 −α2 y2 −
∑
±
α±

3 p±
3 ∈W1(B∞).

Since p̃ = c j −α1 y1 −α2 y2 on ∂B∞, j , the periodicity of p̃ in y1 implies that α1 = 0, while its
periodicity in y2 leads to c j = c0 +α2 j . As a result,

p̃ = c0 −α2(y2 − j ) on ∂B∞, j .

Since p̃ is harmonic, we deduce that p̃ = c0+α2p̃2, and hence that p = c0+α2p2+∑
±α±

3 p±
3 , which

completes the proof. Cases (i) and (iii) follow similarly. �

3.2. Characterization of KT (B∞)

First, let us define q3 ∈ H 1
loc(B∞) as the unique function such that{

−∆q3 = 0 in B∞,

∂nq3 = 0 on ∂B∞,
lim

y3→±∞∇q3 = e3, lim
y3→+∞q3 − y3 = 0.

Then for i ∈ {1,2} we introduce the functions q̃ i ∈W1(B∞) and qi ∈ H 1
loc(B∞) such that{

−∆q̃i = 0 in B∞,

∂nq̃i =−ei ·n on ∂B∞,
lim

y3→+∞ q̃i = 0, and qi = q̃ i + yi .

In case (ii) we introduce a set of “cuts” Σ defined by

Σ= ⋃
j∈Z
Σ j , where Σ j =Σ0 + j e2, Σ0 = (−∞,∞)×

(
−3

8
,

3

8

)
× {0}.

Similarly, in case (iii) we introduce the cuts

Σ= ⋃
(i , j )∈Z2

Σi j , where Σi j =Σ00 + i e1 + j e2, Σ00 =
(
−3

8
,

3

8

)2

× {0}.
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In both cases, B∞ \Σ is then the union of the two simply connected domains B±∞ = (B∞ \Σ)∩
{±y3 > 0}. We denote by W1(B±∞) the space defined by formula (14) replacing B∞ with B±∞. In
case (ii) we let q̃±

2 = (
(q̃±

2 )+, (q̃±
2 )−

) ∈W1(B+∞)×W1(B−∞) be the unique solutions to
−∆q̃±

2 = 0 in B∞ \Σ,

∂nq̃±
2 =−e2 ·n on ∂B±∞∩∂B∞,

∂nq̃±
2 = 0 on ∂B∓∞∩∂B∞,

{
[q̃±

2 ]Σ j =±( j − y2),

[∂y3 q̃±
2 ]Σ j = 0,

lim
y3→+∞ q̃±

2 = 0, (17)

and we define q±
2 = q̃±

2 + y21B±∞ , 1B±∞ being the indicator function of B±∞. In case (iii) the
functions q±

2 are defined similarly, except that we replace Σ j by Σi j in the jump conditions. In
case (iii) we additionally introduce the functions q̃±

1 = (
(q̃±

1 )+, (q̃±
1 )−

) ∈ W1(B+∞)×W1(B−∞) as the
unique solutions to

−∆q̃±
1 = 0 in B∞ \Σ,

∂nq̃±
1 =−e1 ·n on ∂B±∞∩∂B∞,

∂nq̃±
1 = 0 on ∂B∓∞∩∂B∞,

{
[q̃±

1 ]Σi j =±(i − y1),

[∂y3 q̃±
1 ]Σi j = 0,

lim
y3→+∞ q̃±

1 = 0, (18)

and we define q±
1 = q̃±

1 + y11B±∞ . Then, adapting the proof of [1, Proposition 3.14] one obtains the
following result:

Proposition 3.

(i) KT is the space of dimension 3 given by KT (B∞) = span
{∇q1,∇q2,∇q3

}
.

(ii) KT is the space of dimension 4 given by KT (B∞) = span
{∇q1,∇q+

2 ,∇q−
2 ,∇q3

}
.

(iii) KT is the space of dimension 5 given by KT (B∞) = span
{∇q+

1 ,∇q−
1 ,∇q+

2 ,∇q−
2 ,∇q3

}
.

Sketch of the proof in case (ii). As in the proof of Proposition 2, it is not difficult to prove that
the family {∇q1,∇q+

2 ,∇q−
2 ,∇q3} is linearly independent and that its elements belong to KT (B∞).

Then, let h = (h+,h−) ∈ KT (B∞). Since B±∞ are simply connected, there exists q = (q+, q−) ∈
H 1

loc(B+∞)×H 1
loc(B−∞) and a real sequence (c j ) j∈Z such that

h± =∇q±, ∆q = 0 in B∞ \Σ, ∂nq = 0 on ∂B∞, [q]Σ j = c j , [∂y3 q]Σ j = 0.

Since ∇q is periodic and
h|Bp
1+(y3)2

∈ (L2(B))3, there exist five constants α±
1 , α±

2 and α3 such that

q̃± = q±−α±
1 y1 −α±

2 y2 −α3q3 ∈W1(B±
∞).

Because q̃ = (q̃+, q̃−) satisfies [q̃]Σ j = c j − [α1]y1 − [α2]y2 and q̃ is periodic, we find that [α1] = 0,
and c j = c0 + j [α2] for each j ∈Z. To conclude, it suffices to note that q̂ = q −α1q1 −∑

±α±
2 q2,±−

α3q3 is periodic and satisfies{
−∆q̂ = 0 in B∞ \Σ,

∂nq̂ = 0 in ∂B∞,

{
[q̂]Σ j = c0,

[∂nq̂]Σ j = 0,

∫
Σ j

∂y3 q̂ = 0,

which proves that q̂ is constant in each of B±∞. �

4. Formal proof of Theorem 1

We treat the three cases separately. In case (i), using Propositions 2-3, we have

U0 =
2∑

i=1
ai (x1, x2)∇pi +

∑
±

a±
3 ∇p±

3 and H0 =
3∑

i=1
bi (x1, x2)∇qi .

The behaviour at infinity of the functions pi and qi and the matching conditions (9) then imply

ai = (u0)±i (x1, x2,0) bi = (h0)±i (x1, x2,0) ∀ i ∈ {1,2},

C. R. Mathématique, 2020, 358, n 7, 777-784
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and, consequently (by (6)), that [u0 ×e3]Γ = 0 and [curl u0 ×e3]Γ = 0. In case (ii) we have

U0 = a2(x1, x2)∇p2 +
∑
±

a±
3 ∇p±

3 and H0 = b1(x1, x2)∇q1 +
∑
±

b±
2 (x1, x2)∇q±

2 +b3(x1, x2)∇q3,

which, together with the matching conditions (9), leads to (u0)±1 (x1, x2) = 0, [(u0)2]Γ = 0, [(h0)1]Γ =
0. Finally, in case (iii) we have U0 =∑

± a±
3 ∇p±

3 , which implies that (u0)±i (x1, x2) = 0 for i = 1 or 2.

Remark 4. We point out that our formal proof can be made rigorous by justifying the asymptotic
expansions (7)–(8). This can be done a posteriori by constructing an approximation of uδ on Ωδ

(based on the truncated series (7)–(8)) and using the stability estimate (4) (see [10]). However, this
would require us to identify the terms of order 1 in the expansions, which is beyond the scope of
this note.
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