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Abstract: A model-agnostic data enhancement (MADE)
algorithm is proposed to comprehensively investigate the
circular dichroism (CD) properties in the higher-order dif-
fracted patterns of two-dimensional (2D) chiral meta-
materials possessing different parameters. A remarkable
feature of MADE algorithm is that it leverages substantially
less data from a target problem and some training data
from another already solved topic to generate a domain
adaptation dataset, which is then used for model training
at no expense of abundant computational resources. Spe-
cifically, nine differently shaped 2D chiral metamaterials
with different unit period and one special sample con-
taining multiple chiral parameters are both studied utiliz-
ing the MADE algorithm where three machine learning
models (i.e, artificial neural network, random forest
regression, support vector regression) are applied. The
conventional rigorous coupled wave analysis approach is
adopted to capture CD responses of these metamaterials
and then assist the training of MADE, while the additional
training data are obtained from our previous work. Sig-
nificant evaluations regarding optical chirality in 2D

metamaterials possessing various shape, unit period,
width, bridge length, and separation length are performed
in a fast, accurate, and data-friendly manner. The MADE
framework introduced in this work is extremely important
for the large-scale, efficient design of 2D diffractive meta-
materials and more advanced photonic devices.

Keywords: diffractive chiral metamaterials; machine
learning methods; model-agnostic data enhancement
algorithm; optical chirality; polarization-controllable
devices.

1 Introduction

Optical chirality is viewed as one of the most promising and
alluring aspects pertaining to chirality, a ubiquitous phe-
nomenon in nature. Owning to its significant and striking
characteristics, optical chirality has rapidly spread into the
areas of integrated photonic communications [1], pharma-
ceutics [2], chemistry [3], spectroscopy [4], sensitive detec-
tion [5], quantum computing [6], and nanoscience [7–9].
Understanding the chiroptical response not only assists one
to explore thephysical origins of such effect but also benefits
its futureperspectives.One crucial format of optical chirality,
namely the circular dichroism (CD) [10], which describes the
absorption variation when irradiated by the left circularly
polarized (LCP) and right circularly polarized (RCP) light,
should be acknowledged here. Particularly, the CD spec-
troscopy technique has been widely applied in performance
characterization of the cutting-edge optical chirality-based
nanodevices [11]. Two mirror images of chiral metamaterials
that cannot be superimposed on each other, referred as
enantiomers, behave differently to the LCP and RCP light,
which is attributed to left or right handedness of samples.
Importantly, optical chirality in artificial metallic structures
can be engineered by changing the geometric parameters
[12], demonstrating significant advantages over the natural
materials owning weak chiroptical response [13].
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Recent years have witnessed growing academic in-
terests in chiral metamaterials, considering their excellent
potentials for applications in chiral sensing, filtering,
switching, polarization manipulation, and biological
detection [5, 14, 15]. Particularly, these metallic nano-
structures can give rises to a plethora of remarkable
physical phenomena when arranged into the periodic ar-
rays, in which the adjacent modules will affect the overall
near-field reaction. In contrast to the three-dimensional
(3D) counterparts, two-dimensional (2D) chiral meta-
materials have demonstrated distinguished and excep-
tional performances that can significantly promote the
development of chirality-based photonic devices [16, 17], in
terms of ultracompact footprint, limited losses, control-
lable optical dispersion, and excellent compatibility with
CMOS fabrication [18–22]. One special but remarkable
representative of such materials is 2D diffractive chiral
metamaterial that possesses considerably large optical
chirality in a higher-order diffraction beam than the zeroth
order, which has emerged as a powerful platform for the
exploration of tremendous unrevealed disciplines,
including ultrafast detection, nonlinear chiroptical phe-
nomena, polarization-selective communication devices,
and chirality-relevant quantum optics [23]. While contin-
uous efforts have been spent on the diverse diffractive
metamaterials embracing the G-shaped [24], L-shaped [25],
U-shaped [23] ones, etc., these investigation processes
normally require complicated experimental setups or
abundant computational resources. Therefore, a powerful
and smart designing tool that can leverage previous
research data is in great need, aiming at systematically
exploring enormous 2D chiral metamaterials and other
appealing photonic structures with the least resources,
high accuracy, and ultrafast speed.

Deep learning networks or machine learning (ML)
methods are significant for a wide range of scientific and
industrial processes, covering the aspects of finance
[26, 27], medicine [28–30], transportation [31–33],
communication [34, 35], nanoscience [36–39], and sensors
[40]. Particularly, these learning-based algorithms have
emerged as one of the most successful research routes for
computational physics and photonic device design
[41–46]. In general, the training dataset created by either
numerical simulations or experimental measurements is
usually required in order to facilitate a predesigned artifi-
cial neural network (ANN) or other ML model to learn the
underlying rules, followed by the trained model solving a
target problem. Despite striking progress achieved in this
area, the training process in most photonics-involved
works relies heavily on optical response data from
target devices [47–50], whose size is relatively large.

Unfortunately, it is not easy to acquire a large amount of
data for many cases. Especially, for some topics needing to
perform expensive experiments, this problem turns more
prominent. Meanwhile, such abundant training data may
not be recycled once theMLmodel is trained, leading to the
serious waste of massive computing resources and time.

In this work, we introduce and employ a data
enhancement algorithm associated with different ML
methods to predict the optical chirality of various 2D dif-
fractive chiral metamaterials, aiming at reducing the
amount of training data with the assistance of a formerly
addressed problem, whose key routine is recognized as the
model-agnostic data enhancement (MADE) algorithm.
Instead of consuming expensive computational resources
to generate abundant training data for the target problem
(target domain dataset), the MADE algorithm desires a
relatively small target domain dataset computed by the
rigorous coupledwave analysis (RCWA)method, as well as
certain CD data from alternative already studied meta-
materials (source domain dataset), to develop the domain
adaptation dataset for model training. A vivid illustration
of our proposed framework is shown in Figure 1. Specially,
the source domain datasets are utilized to reduce the size of
target domain datasets. Once the domain adaptation
dataset andmapping dataset are available, the target issue
turns to be the CD response study in the higher-order
diffractionmodes using deep learning network or other ML
techniques. By means of the MADE algorithm, we first
investigate the multiple shaped (e.g., T-like, U-like, and
I-like) chiral metamaterials with diverse unit period and
then look deeper into the impact of various geometric pa-
rameters on CDs for a specific chiral sample, during which
the highly nonlinear dependence of CD response on the
chiral parameters including shape, unit period, width,
separation length, and bridge length is profoundly dis-
closed. Remarkable and significant superiorities of such
algorithm over the traditional numerical methods or pure
ML approaches are also revealed, in consideration of ac-
curacy, computational speed, and resources, as well as the
generalizable and flexible abilities.

2 Results and discussion

2.1 Principles of model-agnostic data
enhancement

The model-agnostic data enhancement (MADE) algorithm
makes use of a limited amount of data from a target issue
together with certain samples from a previously studied
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topic (source domain) to improve prediction accuracy for
the target problem, whose main procedure is illustrated in
Algorithm 1. From the architecture ofMADE in Figure 1, one

can see that two datasets, namely the source domain and
target domain datasets, are needed at the input, which are
extracted from a similar question that already exists and a

Figure 1: The framework of model-agnostic data enhancement (MADE) algorithm.
The MADE algorithm takes target domain samples and source domain samples as input to generate adaptation samples and mapping
samples, which are thereby used for model training and testing, respectively.
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newproblem to be solved, respectively.While at the output
of MADE, the domain adaptation dataset and mapping
dataset are created, which are then used for model training
and prediction. What follows is the application of ML
models in predicting the behaviors of the target problem. It
is worth noting that theMADE algorithm can be considered
as the data preprocessing for neural networks or other ML
models, which indicates that these two types of algorithms
must be utilized (defined as MADE-ML) together to address
a practical target problem. The main idea of MADE is to
enhance the diversity of target domain data through source
domain data, thereby expanding the training dataset. This
is of vital significance since there has been worldwide
recognition that ML methods (including deep learning
networks) need to consume abundant data to learn fea-
tures. In this case, a limited data size is very likely to cause
failure in prediction [51, 52]. Here, the ML model is
expressed as follows, with a function f representing the
training model and the input of x:

f(x) � y + loss (1)

where y is the label corresponding to x, and loss represents
the error between the output and label. Normally, the
model training section optimizes the parameters by
gradient descent, enabling loss to approach zero. In this
way, the final function fwill be themapping from the input
x to the label y, denoted as f: x→y. In our study, the source
domain data is sufficient, whereas the size of target domain
data is limited and not enough to support model training
individually. Consequently, we propose a new function g to
replace function f, which is given as follows:

g(xS, βxT) � yS + βyT + loss (2)

where xS and xT represent the input of source domain data
and target domain data, yS and yT are the label of the cor-
responding data, and β is a hyperparameter. After the

model training, loss is assumed to reach zero, leading to
the simplification of Equation (2),

g(xS, βxT) � yS + βyT (3)

In the prediction phase, xS, yS, and β are known, with
xpred = xT. Then, the predicted value ypred is equal to the
following equation:

ypred � yT � g(xS, βxpred) − yS
β

(4)

Obviously, the difference between these two
methods is whether the source domain data is used. In
our approach, different source domain samples are
combined with certain target domain samples to acquire
different training samples, thereby expanding the size of
whole training dataset. If the number of samples in target
domain and source domain is nT and nS, respectively, the
total size of the training dataset can be up to nT × nS in our
method. Although nT is limited, the training dataset can
still be augmented by the large nS. In particular, each
xpred corresponds to multiple source domain samples in
order to generate the input of function g, and thus, the
final ypred should be the average of multiple ypred.

In other aspects, to avoid the potential data explosion
caused by nS, only partial source domain data are used to
match the target domain data. Particularly, in the MADE
model, we exploit the minimum Euclidean distance as a
measurement standard to select K source domain samples
for each target domain sample, leading to the total training
dataset size of KnT, where K is a hyperparameter (see step 9
in Algorithm 1). In fact, the Euclidean distance captures the
similarity between two samples in our model. A new
concept of superposition is introduced here. As shown in
Figure 2, the sample yS and sample yT have similar distri-
butions, so their superimposed results of yS+yT are also
similar to their distributions, indicating that the original

Figure 2: Superposition of two samples.
The red and orange curves represent the
distribution of samples in target domain
and source domain, respectively, while the
green lines correspond to the superposition
of these two samples.
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features of the data are retained to the greatest extent
during the superimposition. Thus, when selecting K sam-
ples in the source domain that are similar to the target
domain, the K results obtained by their superposition
would follow similar distributions, which is conductive to

model training. On the contrary, for the sample y′S and
sample yT acquire different distributions, their super-

position result yT + y′S would be significantly different from
yT, suggesting that the characteristics of the original data
are lost during the superposition. Therefore, it would be
extremely beneficial to choose samples from source
domain with high similarity to target domain.

Furthermore, both the calculation of Euclidean dis-
tance and the superposition between samples require the
samples in different domains to have the same dimensions.
It is thus necessary to perform domain adaptation on the
source domain dataset to enhance the similarity between
the two datasets (see steps 7–8 in Algorithm 1) and ensure
their same dimensions (see steps 1–4 in Algorithm 1). In
MADE, the domain adaptation is realized using a fully
connected neural network, which can not only avoid the
design of kernel functions but also exhibit the scalability
[53], in contrast to ML methods. Additionally, if the source
domain datasets are varied, the neural network does not
need to retrain the domain adaptation model. The sche-
matic illustration of the domain adaptive neural network is
presented in Figure 3, which contains five key layers,

namely an input layer, an output layer, and three hidden
layers. Notably, the number of neurons in the input layer
depends on the sample size in source domain, while the
neuron numbers in the output layer are dominant by the
dimension of target domain datasets. Next, we denote the
number of neurons in ith hidden layer asNi (i = 1, 2, 3), with
Ni to be a set of hyperparameters. We have to dynamically
adjust Ni according to the samples in two domains. The
activation layer for nonlinear transformation uses the
‘softplus’ function, which is defined as follows:

σ(x) � ln(ex + 1) (5)

where x represents the output in hidden layers or the
output layer. In order to incorporate the source domain
with target domain, the domain adaptive neural network
demands a large training dataset, with themapping format
varying among spectra–spectra, spectra–structure, struc-
ture–spectra, and structure–structure. Importantly, the
domain adaptive neural network is a supervised learning
model, in which each sample from source domain must
have a label to guide training. Considering the big sample
size gap between source domain and target domain, the
one-to-one matching scheme is no longer suitable. To
address this obstacle, we utilize the K-means algorithm to
divide the source domain into nT clusters, with the samples
in each cluster corresponding to a target domain sample.
Secondly, we obtain the one-to-one correspondence

Figure 3: The architecture of the domain adaptive neural network.
The yellow, green, and blue circles stand for the neurons at the input layer, output layer, and hidden layers, respectively. The arrows on the left
and right indicate data flow at the input and output, accordingly.
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between clusters and target domain samples based on their
lowest Euclidean distance (see step 5 of Algorithm 1). If the
dimensions of source domain samples and target domain
samples are inconsistent, the principal component analysis
(PCA) algorithm is employed to reduce the relatively large
dimension to make themmatch. The next step is to create the
labels for source domain samples through the above correla-
tion (step 6 of Algorithm 1). The simplest way is to directly use
the targetdomainsamplesas labels.Nevertheless, thismethod
would cause the neural network overfit, which is not able to
learn the mapping from source domain to target domain well.
To prevent such issues, a new label yDs

(i) for source domain
sample Ds(i) (i = 1, 2,…, nS) is defined as follows:

yDS
(i) � DT + αDT(k)

α + 1
(6)

where α is a hyperparameter, andDT(k) denotes the sample
in target domain corresponding to the cluster where the
sample DS(i) is located. Additionally, DT is the average of
all samples (DT). Compared to the simplest method
mentioned above, the new method adds the global
constraint DT when calculating labels. This allows for
dynamically adjusting the hyperparameter α to control the
proportion of global constraints in the sample label,
thereby avoiding the overfitting [54].

Lastly, the training of the neural network can be
regarded as an optimization problem where the algorithm
minimizes the discrepancy between the model output and
the label for input data. Therefore, during the training
process of the domain adaptive neural network, another
loss function is applied to measure such discrepancy,
which is mathematically expressed as follows:

loss � 1
m

∑
m

i�1

∣∣∣∣ypred(i) − yreal(i)
∣∣∣∣ +

∣∣∣∣∣∣ypred − DT

∣∣∣∣∣∣ (7)

where ypred and yreal represent the output of the neural
network and the label for input data, respectively, and m is
the size of batch data. Here, Adam optimization algorithm is
used to train the domain adaptive neural network [55]. Note
that the trained neural network is equivalent to a mapping
from source domain to target domain, serving as the kernel
function inML algorithms. Hence, we take DS as the input of
the domain adaptive neural network to acquire themapping
result D′

S, which shares more similarities with DT.

2.2 Model validation and performance
comparison

The target theme in this context is the accurate and efficient
prediction of the higher-order diffracted CD response in 2D

diffractive chiral metamaterials, whose vivid schematics
are shown in Figure 4. Thus, two important categories of
such metamaterials are investigated, namely multiple
structures andmultiple geometric parameters. Firstly, nine
types of left-handed chiral metamaterials in Figure 4(a) are
comprehensively studied, with one variable to be unit
period. Particularly, these arrays are denoted as S1–S9,
which possess a length of l and identical width and sepa-
ration (0.2l), with the rest graphic parameters in a specific
proportion to l, just like their shapes in Figure 4(a). This
results in a unit period of a = 2.4l. These metamaterials
share the same depth profiles: from top to bottom, they are
the h = 30 nm gold arrays, a 10 nm Cr layer, a 200 nm SiO2

film, and a Si substrate, respectively, as illustrated in
Figure 4(b). On the other hand, we also focus on the in-
fluence of various geometric parameters on CDs in the
higher-order diffraction beams. Hence, we select S1 meta-
materials for such demonstration (see Figure 4(c)), whose
unit cell consists of several key graphic parameters
embracing a length of l, a bridge length of lb, a width ofw, a
separation between two adjacent nanoparticles of s, and a
gap length of g = 0.5l–1.5w, determining the unit period of
a = 2l+2w. To show the common features of S1–S9 meta-
materials, we employ the RCWA algorithm to compute the
normalized intensities of n = 1–4 diffraction order beams
under irradiation of both LCP and RCP light and illustrate
one LCP result from S1 array (a = 2.4 μm, l = 1 μm,
w= s=0.2 μm, lb=0.4 μm) in Figure 4(d). It can be explicitly
seen from this figure that light intensity in the third-order
diffraction pattern is the weakest compared to other cases.
Though not shown here, its CD response defined as
CD = (IRCP – ILCP)/(ILCP + IRCP) is however the largest, where
ILCP and IRCP are the third-order diffracted beam intensities
induced by LCP and RCP light, respectively. Similar phe-
nomena are also observed in S2–S9 nanostructures.

To assist the training of the MADE model, we first
perform RCWA numerical simulations for the above two
categories of metamaterials. Precisely, the target domain
dataset (DT1) for the first category contains 1899 pairs of the
third-order diffraction IRCP and ILCP spectra for S1–S9 arrays
in different gold lengths (0.8–5 μm), covering awavelength
range of 0.4–1.03 μm. While for the second category, its
target domain dataset (DT2) is extracted from 2785 S1
samples, which consist of diverse gold length (0.8–2 μm),
width (0.1l–0.3l), space (0.2l–l), and bridge length (0.4l–l).
In addition, the source domain datasets are also needed for
the MADE training process. In this work, we use the data
from two published works [41, 42] that employ deep neural
networks in CD response analysis for the source domain.
Particularly, the data in work 1 contain chiroptical re-
sponses from nine different structures [41], while work 2

6 S. Du et al.: Data enhancement algorithm in chiral metamaterial design



provides the different optical responses from a T-like array
with four key graphic parameters [42].

Once the datasets of target domain and source domain
are available,we start to train theMADEmodel incorporated
with ANN, or simply MADE-ANN, aiming at predicting the
third-order diffracted chiroptical responses. Specifically,
regarding the first category, we randomly select 1200 sam-
ples from the target domain dataset DT1 as the input for
MADE,with the remaining 699 samples for testing,while we
acquire the nine-structure data (from work 1) as the source
domain dataset. Hence, the comparisons of the normalized
third-order LCP/RCP intensities calculated by MADE-ANN
and RCWA are shown in Figure 5(a–i), in which the unit
period of S1–S9 is picked randomly to guarantee the high
precision of MADE-ANN. In case of the second category, we
divide the target domain dataset DT2 into the training and
verification parts at random, whose sample sizes are 2000
and 785, respectively, along with T-like structure data (from

work 2) as the source domain dataset. The resulting chi-
roptical responses predicted by MADE-ANN are shown in
Figure 5(j–l), where the RCWA calculated curves are also
provided. Themost eye-catching conclusion fromFigure 5 is
that the MADE-ANN–predicted optical chirality (i.e., pred
curves) matches extremely well with the RCWA simulations
(i.e., label spectra) in all cases, indicating that the MADE
algorithm is feasible to explore the relationship between
chiral parameters and optical chirality.

In order to verify the model-agnostic feature of MADE,
two more ML models in addition to the ANN, namely the
random forest regression (RFR) [56] and support vector
regression (SVR) [57], are implemented in the MADE
framework, accompanied by two target domain datasets
(DT1 and DT2) and two source datasets (nine-structure data-
set [41] and T-like structure dataset [42]). For each target
domain dataset, we use two above source domain datasets
to train these three ML models. Notably, before proceeding

Figure 4: Optical description of various two-dimensional (2D) diffractive chiral metamaterials.
(a) The right panel shows the higher-order diffraction patterns in S1 metamaterial when irradiated by the circularly polarized light. Notably,
shapes of the metallic array can be changed to other eight structures shown on the left, referred as S2–S9. (b) The depth profile for S1–S9
chiral metamaterials: the thickness of gold, Cr, and SiO2 films is h = 30, 10, 200 nm, respectively, with Si layer to be the substrate. (c) The
geometric illustration for S1 metamaterials, which contains a length of l, a width of w, a separation between two adjacent modules of s, a gap
length of g, and a bridge length of lb. (d) The rigorous coupled wave analysis (RCWA)-calculated normalized intensities for the n = 1–4
diffraction order beams in S1 metamaterial, under left circularly polarized (LCP) light excitation.
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to the model training, we need to normalize the RCWA data
to be in the range of [0,1], considering their relatively small
absolute values, which is defined as follows:

y′ � − lg y + 10−10( )
10

(8)

where y represents original label and y′ is normalized label.
One important factor is mean absolute error (MAE), which

characterizes the difference between the MADE model
output and the normalized RCWA label. Moreover, a
baseline method is also defined, in which the model
training only utilizes target domain dataset, without data
from source domain. Thus, the quantitative results for the
two categories of metamaterials are shown in Tables 1 and
2, respectively. From these two tables, we can find that
MADE algorithm has reduced the MAEs of ANN, RFR, and

Figure 5: Comparison of the third-order diffracted chiroptical response calculated by rigorous coupled wave analysis (RCWA) (label) and a
model-agnostic data enhancement (MADE) plus artificial neural network (ANN) model (pred).
(a)–(i) The IRCP/ILCP results for the first category metamaterials, with the source domain dataset from nine similar structure [41] in work 1.
Specially, the unit periods of S1–S9 arrays are randomly selected to ensure the high accuracy, which are (a) 2.94 μm, (b) 1.82 μm, (c) 1.32 μm,
(d) 4.1 μm, (e) 2.6 μm, (f) 2.6 μm, (g) 2.2 μm, (h) 2.8 μm, (i) 2.28 μm, respectively. (j)–(l) The IRCP/ILCP spectra for the second category
metamaterials (S1) comprising different graphic parameters: (j) l = 1.4 μm,w = 0.25l, s = l, lb = 0.7l; (k) l = 2 μm,w = 0.15l, s = 0.2l, lb = 0.9l; (l)
l = 1.2 μm, w = 0.3l, s = l, lb = l. Here, the data of T-like nanostructures [42] in work 2 are utilized as the source domain dataset.
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SVR in various degrees in both cases, provided that the
source domain datasets are employed.

Moreover, it is easily discerned that the dataset types in
the source domain would also affect the MAE perfor-
mances. Precisely, the nine-structure data are more suit-
able to act as the source domain dataset for the first
category metamaterials than the T-like structure data,
which is the opposite case in the second category meta-
materials. This indicates that the similarity of dataset be-
tween the source domain and target domain would largely
contribute to high precision ofMADEmodels, which in turn
confirms the necessity of the domain adaptive neural
network in theMADE framework. Also, it is undeniable that
the ANN acquires the best performances regarding high
predicting precision, while SVR suffers from the worst
MAEs.

Additional insights into the features of the MADE al-
gorithm are provided by the dependence of MAE on the
amount of training data, with the corresponding curves
being exhibited in Figure 6. Notably, the pure ML algo-
rithms and MADE-ML methods are both considered for full
comparison, with the latter algorithm possessing two
source domain datasets. It can be intuitively seen from this
figure that the improvement of predicting precision be-
comes more obvious with a larger amount of training data
and then it turns steady after reaching a certain extent. This
phenomenon means that the significant increase in the
dimension of training data is required to boost the perfor-
mance of the model. This trend highlights the advantages
of the MADE algorithm, which can still enhance the effect
of ML models even if the method of increasing the data

fails. From Y axis of all plots in Figure 6, one can find that
the MADE models can significantly reduce the MAEs
compared to the ANN, with the same size of training data.
Meanwhile, if demanding the same level of MAE condi-
tions, we can clearly discover that the amount of data for
MADE algorithms is much smaller than the case without
MADE. Interestingly, this trend becomes more prominent
at a smaller MAE. Take Figure 6(a) for instance, to achieve
the MAE of 6.678 × 10−3, the pure ANN model needs 600
pairs of samples for training, while for the MADE-ANN al-
gorithm with the nine-structure dataset (source domain),
only 120 pairs of data are desired. When the MAE becomes
even smaller (4.4 × 10−3), the pure ANN uses 1200 pairs of
training samples, whereas the MADE-ANN based on the
nine-structure source dataset only adopts 270 pairs of
samples. Similar trends are discovered in other ML algo-
rithms and other MADE-ML models for two categories of
metamaterials. These results undoubtedly prove that a
MADE-ML algorithm is superior to a non-MADE algorithm
in the prediction of the third-order diffracted chiroptical
response.

Furthermore, the computational time is an alternative
key factor that determines the performance of the MADE
algorithm. Here, RCWA and three MADE-ML methods are
employed for such evaluation, with the ML algorithm to be
ANN, RFR, or SVR. To ensure a fair and efficient compari-
son, the number of training samples in target domain is
fixed at 1000 for all three MADE-ML models. In addition,
the nine-structure source domain dataset is employed in
the first category metamaterials, while the T-like structure
source domain dataset is applied in the second category.

Table : Mean absolute error (MAE) of three machine learning (ML) models for the first category metamaterials.

Method and setup  samples (×−)  samples (×−)  samples (×−)

Baseline MADE() MADE(T) Baseline MADE() MADE(T) Baseline MADE() MADE(T)

ANN . . . . . . . . .
RFR . . . . . . . . .
SVR . . . . . . . . .

“” and “T” indicate nine-structure dataset and T-like structure dataset, used in the source domain, respectively.

Table : Mean absolute error (MAE) of artificial neural network (ANN), random forest regression (RFR), and support vector regression (SVR)
regarding the second category metamaterials.

Method and setup  samples (×−)  samples (×−)  samples (×−)

Baseline MADE() MADE(T) Baseline MADE() MADE(T) Baseline MADE() MADE(T)

ANN . . . . . . . . .
HFH . . . . . . . . .
SVR . . . . . . . . .

“” and “T” indicate nine-structure dataset and T-like structure dataset, used in the source domain, respectively.
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The results under the above circumstances are shown in
Table 3. It is noticeable that each indicator in Table 3 rep-
resents the average central processing unit time consumed
by an algorithm to predict 100 samples. One important
finding is that the MADE-ML models take more computa-
tional time than the baseline methods, regardless of pre-
dicting accuracy. This is reasonable since the consumed
time of MADE mainly comes from two aspects: on the one
hand, the MADE algorithm needs to select K mapping
dataset according to the minimum Euclidean distance,
which means that computational time would be very large
if the source domain contains too many samples; on the
other hand, the overall predicting precision highly relies on

the average of multiple prediction results, which means
multiple CD evaluations by MADE-ML are desired in this
process. Although the prediction time of MADE-ML algo-
rithms turns larger than that of the pure ML algorithm, this
increment is negligible compared to the RCWA method.
Equally important, the intuitive comparison of calculation
accuracy between MADE-ML and RCWA is also presented
in Table 3. Here, the mean absolute percentage error
(MAPE) is the main evaluation factor, which is mathe-
matically expressed as follows:

MAPE � 1
n
∑
n

i�1

∣∣∣∣∣∣∣∣∣

ypredi − yreali

yreali

∣∣∣∣∣∣∣∣∣
× 100% (9)

Table : Average consumed central processing unit (CPU) time and mean absolute percentage error (MAPE) of different methods.

Method and setup Average CPU time(ms) Mean absolute percentage error (%)

First category Second category First category Second category

Baseline MADE() Baseline MADE(T) Baseline MADE() Baseline MADE(T)

RCWA . × 
 / . × 

 /  /  /
ANN . × 

−
. . × 

−
. . . . .

RFR . . . . . . . .
SVR . . . . . . . .

“” and “T” indicate nine-structure dataset and T-like structure dataset, used in the source domain, respectively.

Figure 6:ComparisonofMAEamongdifferentML algorithms and theMADEmodels coupledwith these algorithms, in cases of various numbers
of training samples.
Notably, three pure ML methods encompassing ANN, RFR, and SVR are employed without using MADE framework, whereas in MADE relevant
models the symbols of “9” and “T” indicate that the nine-structure data and T-like structure dataset are adopted as source domain datasets,
respectively. Thepanels of (a)-(c) correspond to the first categorymetamaterials,whilepanels of (d)-(f) stand for the casesof the secondcategory.
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It represents the proportion of prediction error in the ab-
solute value. Notably, all the training data for three ML
models are furnished by RCWA, indicating that the MAPE
of RCWA is zero. It is clearly observed that the ANN ac-
quires the smallest MAPE compared to RFR and SVR,
whose computational accuracy is larger than 99%. While
the MAPE of SVR is the largest, the prediction precision of
which is still over 90%. Although three ML methods lose a
certain degree of accuracy, the MADE algorithm improves
the prediction accuracy to some extent while keeping
substantially small amount of training data.

2.3 Evaluating the third-order diffracted
circular dichroism

Utilizing the MADE algorithm, we can explore the intricate
and nonintuitive dependence of CD characteristics in the
higher-order diffraction beams on geometrical parameters
in an accurate and fast manner. In this context, the shape
and unit period of 2D chiral metamaterials are two chiral
parameters that most significantly affect the optical CD
responses. Accounting for the analogy between the inves-
tigated diffractive metamaterials and a simple grating
where the grating equation of a sinθ = n·λ is applied, the
unit period is assumed to not only cause shifts in the
resonance wavelengths but also influence distributions of
higher-order diffraction beams in real space.

Notably, the unit period is selected to be proportional
to the gold length of S1–S9 metamaterials, namely a = 2.4l.
Thus, for simplicity, we directly investigate the third-order
diffraction CDproperties of S1–S9 nanostructures in case of
various gold length l employing the MADE algorithm, with
the results being presented in Figure 7. One significant
finding from this figure is that the CD responses exhibit
highly nonlinear dependences on both the wavelength λ
and gold length l, in cases of nine differently shaped met-
amaterials. Moreover, the complicated bisignate charac-
teristics of CD responses are observed at first glance for
most l of S1–S9 metamaterials. One salient example is S4
array in which the triple or more sophisticated bisignate
features of CD are discovered. Alternatively, the blue CD
modes play a dominant role across the contour map of S5
nanostructures, while the redmodes turnmuch stronger in
S7 array. As for the other seven metamaterials, a quasi-
balance seems to be reached between these twomodes. On
the other hand, the spatial locations of higher-order
diffraction beams can be altered via the change of unit
period, which enables the angle-resolved optical chirality
detection with a larger flexibility. Equally important, it is
apparent that the CD maps of S1–S9 metamaterials behave

quite distinctively, revealing that these metamaterials
contain diverse electromagnetic modes and then different
electric field distribution at near-field.

It is of vital importance at this stage to look deeper into
the complex relationship between different chiral param-
eters and optical chirality. Thus, we study the third-order
diffracted chiroptical response of S1 metamaterials pos-
sessing various gold width, separation length, bridge
length, and gold length, by means of the MADE method.
The corresponding results are illustrated in Figure 8. It is
noticeable that to ensure the effectiveness of this investi-
gation, only one factor is changed at a time with the other
ones remaining the same. The most obvious finding to
emerge from this figure is that the width, space length,
bridge length, and gold length contribute diversely to op-
tical chirality in the third-order diffracted beams. In gen-
eral, the unit period follows a relation of a = 2l + 2s. Thus,
the variations of space length and gold length would result
in different unit periods. Additionally, diverse width and
bridge length would cause changes in the patterns of
metamaterials, generating a distinctive near-field distri-
bution that determines the far-field chiroptical reaction
[23, 58]. Here, the point sources are no longer suitable to
describe our S1 metamaterials since their dimensions are
not that small compared to the irradiationwavelength. This
suggests that the CD properties of higher-order diffraction
beams are highly dependent on the patterns and far-field
reaction of a chiral module.

Moving on now to the detailed evaluation of each
chiral parameter, from Figure 8(a), one can easily discern
that the light intensity in the third-order diffraction beam
increases with gold width until w = 0.2l, under irradiation
by either LCP or RCP light. However, the LCP intensity
exhibits a clear decay when the width turns larger than
0.2l, unlike the case of RCP light. In the contrary, the
strongest CD response is observed atw = 0.3l of Figure 8(d),
suggesting that to acquire a maximum CD, the relatively
large LCP/RCP intensity is not a requirement. In terms of
space, it is found from Figure 8(b, f) that the peaks of light
intensity and chiroptical response both exhibit redshifts
with space length, which can be explained by the enlarged
unit period. Nevertheless, a larger space length would
cause a weak coupling effect among adjacent nano-
particles, eventually affecting the CDperformance.When it
comes to the bridge length, a surprising observation from
Figure 8(c) is that most the LCP and RCP resonant modes
locate in the range of 1∼1.35 μm, while the big optical CDs
distribute across a much wider wavelength regime (see
Figure 8(g)). Furthermore, the characterization of unit pe-
riod’s influence on optical chirality is performed in S1
metamaterial with graphic parameters of w = 0.3l, s = 0.2l,
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and lb = 0.6l. The main results under the above circum-
stances are summarized in Figure 8(d, h). It is immediately
discovered that the wavelength of LCP/RCP resonance
becomes longer at a larger unit period, so does the wave-
length of CD maximum. Anyhow, this dependence seems
not to obey a fixed rule. Additionally, the strength of CD
response in Figure 8(h) exhibits a highly nonlinear
dependence on the unit period.

In conclusion, we have established aMADE framework
associated with different ML networks to efficiently predict
and evaluate the CD responses of various 2D chiral meta-
materials, accounting for up to the fourth diffraction order
beams. Precisely, the MADE algorithm requires only a
small amount of CD spectra from a target metamaterial for
the CD performance characterization, provided that addi-
tional data frompreviously explored nanostructures can be

utilized to assist the training process, which can address
the data limitation of pure ML algorithms. Particularly, the
MADE algorithm does not necessarily demand the high
similarity of datasets between the source and target do-
mains, and different ML techniques (e.g, ANN, RFR, SVR)
can be perfectly applied in this framework, suggesting its
excellent generalization ability. The traditional RCWA
approach is utilized to furnish a limited amount of training
data for MADE, along with some training data from a
solved problem. Thus, the complicated and nonintuitive
relationships between the higher-order diffracted optical
chirality and the shape, unit period, width, space length,
and bridge length of 2D diffractive chiral metamaterials are
explicitly explored using the MADE framework together
with various ML algorithms. This approach is confirmed to
own remarkably fast computational speed and high

Figure 7: Contour maps of the third-order diffracted circular dichroism (CD) response in S1–S9 chiral metamaterials, accounting for different
wavelength and gold length. All the presented results are computed using the model-agnostic data enhancement (MADE) method.
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accuracy comparable to RCWA toward optical chirality
manipulation in diffractive chiral metamaterials, trans-
forming this rule-based problem into a small data-driven
study. It is significant to mention that the MADE algorithm
can be easily extended to the design of other functional
metamaterials. For instance, our MADE approach can
readily employ a limited amount of training data from 3D
metamaterials, together with some results from an already
solved nanostructure, to achieve the accelerated and effi-
cient characterization of 3D samples. The generalization
and flexibility of the MADE algorithm contribute in several
ways to our understanding of transfer learning in the effi-
cient prediction of chiroptical response inside diffracted
chiral metamaterials and provide a basis for the large-
scale, optimal design of complex photonic devices.

3 Methods

RCWA is viewed as an effective and efficient method to explore the
electromagnetic properties of periodic nanostructures. By leveraging
the RCWA method implemented in Synopsys RSoft DiffractMOD, we
numerically calculate the intensities of higher-order diffraction beams
for various 2D chiral metamaterials under circularly polarized light
irradiation, in order to generate the target domain datasets for MADE
training. Moreover, the most crucial MADE algorithm is implemented
in Python. In particular, the K-means algorithm and PCA algorithm
integrated in the MADE framework come from the ML library, namely
scikit-sklearn [59]. The domain adaptive neural network is built by
TensorFlow2.2-gpu,which is an open-source system for large-scaleML

[60]. Based on the target domain datasets provided by RCWA simu-
lations and source domain datasets from some previously studied
problems, we can generate domain adaptation datasets and mapping
datasets. At this point, the target problem converts into a problem
where the optical chirality of higher-order diffraction patterns is
explored, by means of either a deep learning network or other ML
techniques.
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