Neurocomputing 432 (2021) 70-79

Contents lists available at ScienceDirect

Neurocomputing

journal homepage: www.elsevier.com/locate/neucom

Correlation between Situational Awareness and EEG signals N

Jan Luca Kistle?, Bani Anvari®*, Jakub Krol ¢, Helge A Wurdemann "

Check for
updates

2 Centre for Transport Studies, Department of Civil, Environmental and Geomatic Engineering, University College London, UK
b Department of Mechanical Engineering, University College London, UK

ARTICLE INFO

Article history:

Received 13 July 2020
Revised 11 October 2020
Accepted 10 December 2020

Communicated by Zidong Wang

Keywords:

Situational Awareness
Electroencephalograph (EEG)

Psychology Experiment Building Language
(PEBL) test

Random Forests

Decision trees

ABSTRACT

An important aspect in safety-critical domains is Situational Awareness (SA) where operators consolidate
data into an understanding of the situation that needs to be updated dynamically as the situation changes
over time. Among existing measures of SA, only physiological measures can assess the cognitive pro-
cesses associated with SA in real-time. Some studies showed promise in detecting cognitive states asso-
ciated with SA in complex tasks using brain signals (e.g. electroencephalogram/EEG). In this paper, an
analytical methodology is proposed to identify EEG signatures associated with SA on various regions of
the brain. A new data set from 32 participants completing the SA test in the PEBL is collected using a
32-channel dry-EEG headset. The proposed method is tested on the new data set and a correlation is
identified between the frequency bands of g (12 — 30 Hz) and 7y (30 — 45 Hz) and SA. Also, activation of
neurons in the left and right hemisphere of the parietal and temporal lobe is observed. These regions
are responsible for the visuo-spatial ability and memory and reasoning tasks. Among the presented
results, the highest achieved accuracy on test data is 67%.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CCBY license (http://

Brain computer interface

creativecommons.org/licenses/by/4.0/).

1. Introduction

Understanding how people are acquainted with their environ-
ment, referred to as Situational Awareness (SA), is crucial in com-
plex tasks that involve processing multiplexed information by a
human operator. In order to reduce the cognitive load and undesir-
able and potentially fatal incidents in safety-critical domains,
there is a need to identify the lack of SA in a timely manner [1-
3]. Safety risks have emerged, for instance, from drivers handling
highly automated vehicles that dramatically increase in numbers
on our roads [3]. In this case, drivers are provided with increasingly
sophisticated autonomy features (e.g. cruise control, lane keeping
ability). Changing from a more automated vehicle state to a lower
one requires the driver to regain Situational Awareness in order to
safely conduct their vehicle. Identifying a potential lack of SA and
subsequently giving suitable feedback to the user can prevent
potential collisions.

The most cited approach for defining SA’s processing trajectory
is established by Endsley [4], where SA is divided into three levels:
SA level 1 associated with the subjects’ perception of their environ-
ment; SA level 2 associated with their comprehension; and SA level
3 associated with projection into a future state. It is noted that
sufficient SA at lower levels is required, to reach adequate SA at
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subsequent levels. Only if SA level 3 is achieved, the subject can
adequately act to meet their objectives [4].

Existing measures of SA are categorised into subjective and
objective measures. In the majority of previous studies, SA is
assessed through task performance questionnaires where the
results are mapped onto a certain score for each level of SA
[5-7]. These subjective measures can be inaccurate as the subjects
may misstate their responses [8]. On the other hand, behavioural
and physiological measures give an objective understanding of
the subject’s reflexive emotional response which can be more
accurate in the assessment and analysis of SA [9]. Behavioural sen-
sors, including eye-tracking devices, can give an insight into the
subject’s perception of a situation. Data from physiological sensors
is used to assess certain domains such as stress (EMG' [10], EDA?
[11]), sleepiness and fatigue (EOG®> [12], ECG* [13], and PPG® [14]).
Nonetheless, each of the mentioned sensors is able to detect only a
limited range of emotional responses and consequently none of
them is sensitive to all possible mental states [15-17].

One of the most promising physiological signals are brain
activity recordings, as they simultaneously exhibit signals for all
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sensory inputs and therefore provide a deep insight into a subject’s
physiological response. A widely used sensor to measure brain
activity based on voltage fluctuations is the electroencephalograph
(EEG) [18]. It is commonly used to acquire physiological measure-
ment data in order to predict subject’s mental state, especially to
detect workload [19], mental fatigue [20], sleepiness [21], and
drowsiness [22] in different environments [23,24]. Given close
relationship between the aforementioned mental states and SA
[4], EEG is used in this study to assessment SA.

Few studies have looked into the correlation between SA and
data from physiological measures. Among those, the SA of con-
struction workers was monitored in [25] to identify subjects that
are more prone to accidents and hazardous situations based on
their personality. High SA is hereby was defined based on the fre-
quency of visual scanning of the potential hazardous area. Since
the SA metric in [25] was task-specific, they looked into only
assessing perception of subjects (SA level 1) using eye-tracking
glasses. Another study used fNIRS® to demonstrate the effect of aug-
mented reality on mental workload and SA [26]. Higher SA and less
mental workload was linked to higher scores in two secondary tasks
(1-back auditory task and questions about the environment) and
reduced prefrontal cortex activity, during a real-life walk using
either a handheld display or an augmented reality wearable display.
It is noted that both studies performed comparative analysis
between two subject groups and did not attempt to define an quan-
titative measure of what is considered to be high SA.

Three studies used EEG to link brain activity to SA.In [27] a 128-
channel Geodesic Sensor Net (GSN) with semi-wet electrodes was
used to identify the brain region showing high activity during loss
of SA. This study also used comparative metric of SA, where loss of
SA in subjects was artificially induced and the activity between the
two considered cases were compared. The frequency band was not
stated in this study. An earlier investigation [28] revealed a corre-
lation between certain brain frequencies and SA, however, their
sample size was small (8 participants) and no brain regions were
identified. In [29], brain frequency bands are identified during loss
of SA. The results are based on data collected using a 14-channel
semi-wet EEG headset with a limited number of 10 participants
and for a task-specific application.

Given the promising the results achieved to identify the rela-
tionship between EEG data and SA, the present study focuses on
using brain activity as an objective measure to identify two classes
of SA (high SA and low SA) of a subject. The choice of considering
these two categories for SA is motivated by real-world applications
such as hand-over tasks between humans and autonomous sys-
tems (i.e. shared autonomy). Here, it is of paramount importance
to understand if a human is able to take back control of the auton-
omous system in a timely and safe manner, i.e. if the human has
high or low SA. We propose an analytical methodology for identi-
fying both spatial areas and frequency bands associated with SA in
the brain (see Fig. 1). This is related to the feature definition
employed in this study, where each of them is associated with
unique spatial locations and frequency band. EEG was ultimately
chosen as the objective measurement device in this study, as com-
pared to other sensors available for measuring brain activity (e.g.,
MEG, fMRI and fNIRS), EEG is non-invasive [30], easy to apply
[31], has a high temporal resolution (up to 1000 Hz [32]), and is
portable [33]. However, mapping physiological data to SA is chal-
lenging due to high measurement noise and difficulty of disentan-
gling signals into specific stimuli [31,34].

The contributions of this paper are as follows:

¢ Functional Near-Infrared Spectroscopy.
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Fig. 1. Overview of the procedure used in this study to identify the spatial locations
in a brain and frequency ranges which can be associated with Situation Awareness
(SA).

e A new data set was collected using a 32-channel dry-EEG head-
set from 32 participants completing the well established Psy-
chology Experiment Building Language (PEBL) SA test.

¢ A new analytical methodology is proposed to identify EEG sig-
natures associated with SA levels (see Fig. 1). In the first stage,
labels are defined using the PEBL SA test data. Then, the EEG
data is preprocessed. In the third stage, features are extracted
using Independent Component Analysis and Principal Compo-
nent Analysis to determine new temporal signals and trans-
forming them to frequency space with Fast Fourier Transform
and periodogram. The obtained frequency characteristics allow
classifying experimental runs into two categories of high and
low SA in the fourth stage.

¢ Using our methodology on the new data set, the most important
spatial areas and frequency ranges related to SA are identified.

Section 2 provides technical details of the experimental part of
the procedure, and the detailed description of the employed algo-
rithms for data processing are given in Section 3. The results are
presented in Section 4, followed by the discussion and concluding
remarks in Sections 5 and 6.

2. Experimental procedure
2.1. PEBL’s situational awareness test

PEBL is a framework for psychological assessments [35], which
contains a dynamic visual tracking test, referred to as SA test,
based on the more general Situational Awareness Global Assess-
ment Technique (SAGAT) [36] proposed by Endsley and Garland
[37]. SAGAT is a freeze-probe technique. A simulation is halted
after a randomised amount of time and the participant is asked a
series of questions linked to their acquaintance with the situation
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Fig. 2. The assessments of the PEBL SA test for: (a) identifying the most recent location of animals; (b) highlighting the correct animal type for two locations; (c) identifying
the most recent direction of movement of the animal. The correct direction of movement is shown in red whilst the selected direction is shown in blue.

in that exact moment. For purposes of statistical significance, this
process is repeated several times. Evaluating the participant’s per-
formance towards the ground truth of the simulation gives a mea-
surable SA score [5].

In the PEBL SA test, five animals of different shapes and colours
are moving continuously over a grid. The participants are asked to
monitor the animals’ positions, types and direction of movement
within the grid. Following SAGAT freeze-probe approach, after ran-
domised amount of time the animals disappear from the screen
and participants are asked to answer certain questions about most
recent situation. In order to evaluate participants’ performance
with measurable SA scores, answers to each of the three distinct
set of questions are assessed according to corresponding accuracy
metric:

1. In order to test participant’s perception (SA level 1), they are
asked to mark the last location of all five animals and the aver-
age position error is recorded (see Fig. 2a).

2. To test the degree of participant’s comprehension of the situa-
tion (SA level 2), they are asked to identify the type of animal
located on two given positions (see Fig. 2b). The output includes
two binary values specifying if the animals are identified
correctly.

3. To evaluate the degree of participant’s projection (SA level 3),
they are asked to specify the most recent movement direction
of one of the animals, and the angular error is recorded.

A full experiment consists of five blocks and 90 runs that can be
used for detailed analysis: Block O is a practice session with three
sequential runs of the same assessment. Data from this block is not
taken into account for further analysis. Blocks 1-3 consist of 15
consecutive runs of the same assessment and the participants are
aware of the questions to follow while watching the simulations
(45 runs in total). Block 4 features 15 runs of all three assessments
in a random order and the participant are unaware of the questions
to follow (45 runs in total).

2.2. Participants

Thirty-two subjects (13 female & 19 male) between ages of 18
and 39 participated in the study (Mean = 27.66, SD = 5.46). All
participants reported good health and were not sleep-deprived
while carrying out the experiment.

2.3. EEG equipment and data acquisition

A 32 channel g.tec g.Nautilus wireless EEG headset with gold-
plated dry electrodes was used to measure the brain activity of
all participants with a frequency of 250 Hz (see top left image in
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Fig. 1). The EEG channels were placed according to the Interna-
tional 10-20 system [18]. A high-pass filter is applied to remove
slow frequency drift (> 2 Hz) related to environmental influences.
Also, frequencies between 48 Hz and 52 Hz are removed using a
notch filter in order to avoid interfaces with the power line. The
brain activity was recorded throughout the whole duration of the
SA test.

3. Methodology

The structure of this section is as follows: the data obtained
from the SA test is divided into two categories of high and low SA
in Section 3.1. Subsequently, the SA test labels and EEG data are
time synchronised. The data slices with timestamps corresponding
to assessment instances are retrieved in Section 3.2. The results are
used to obtain spatio-spectral features in Section 3.3. Finally, two
algorithms based on decision trees are employed to classify the
extracted features into two categories of high and low SA in
Section 3.4.

3.1. Label definition with PEBL SA test data

In the first stage, samples corresponding to each type of assess-
ment (explained in Section 2.1) are labelled as either high or low
SA. The definition of high and low SA categories is motivated by
real-world applications such as hand-over tasks between humans
and autonomous systems (e.g., shared autonomy). Here, it is of
paramount importance to understand if a human is able to take
back control of the autonomous system in a timely and safe man-
ner, i.e. if the human has high or low SA. We argue that a human
who does not have high SA would not be able to safely take over
the control of an autonomous system. This concept is in line with
similar approaches by [29, p. 1] stating that “a loss of SA has been
associated with poor human performance, which can lead to mis-
judgement, errors, and life-threatening situations” and distin-
guishing between high and low SA in safety-critical tasks.

For SA levels 1 and 3, the continuous position and angular error
values are normally distributed and are related to the accuracy of
the subject’s response in the respective assessment. For instance,
a higher error corresponds to higher deviation from the ground
truth indicating lower SA. We modelled the probability distribu-
tion of the error values using a two-component Gaussian mixture
model (see Fig. 4). The intersection point of these two Gaussian
distributions results in our definition for high and low SA. It is
worth mentioning that classifiers such as mixtures of beta distribu-
tions and mixtures of uniform and beta distributions resulted in
significant lower classifier accuracy of SA.

For SA level 2, the position and angular error values are not con-
tinuous and, instead, consists of two binary values, signifying if the
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participants chose the correct animal for the two locations. Here,
the subject was considered to have high SA if and only if both ani-
mals were correctly identified. This stems from the fact that the
chance of having at least one animal correct through random selec-
tion is 40%. Two correct answers are classified as high SA. All other
runs are set to low SA.

3.2. Construction of data samples

Both EEG and SA test data are timestamped using one com-
puter, and the EEG data is mapped onto the results of the SA tests.
The maximal offset between the data points recorded from EEG
and the SA test is 2ms, which is based on the temporal resolution
of the EEG equipment. The EEG data covering the time t prior to the
moment when a question was posed and only when the animals
were moving on the screen, was isolated. Assuming that partici-
pants’ SA is independent between the runs, the outcome of each
test is treated as an individual sample. In total 2880 labelled sam-
ples (32 participants x 90 runs) are acquired.

The dimension of the retained data y for a single sample is
y € RPN, where p corresponds to the number of EEG channels
and N is the number of time instances (N = 250t), where t is time
duration in seconds when the animals move prior to posing a ques-
tion such that ¢t ~ U(2,4).

3.3. Feature extraction using ICA and PCA

3.3.1. Component analysis

The cognitive processes are not associated with only one part of
the brain as a single stimuli affects multiple spatial locations of a
brain. Also, the EEG signal of a single channel consists of a super-
position of different stimuli or sources. The goal is to extract fea-
tures which are related primarily to different SA levels and map
them on various regions of the brain. In order to decompose the
superposed signal into its constituent stimuli and provide a spatial
imprint of each source, Independent Component Analysis (ICA)
[38] and Principal Component Analysis (PCA) [39] are used here
to diversify the spatial imprints, maximise variability of features
and, as a result, add components that encompass more than single
channel locations. This allows for identification of more complex
signals which impact multiple brain areas.

For p EEG channels and N time instances, both ICA and PCA aim
to compute matrix W € RP*? so that the EEG measurements y can
be expressed as a linear combination of the underlying source sig-
nals s € RPN, such that

y=Ws. (1)

In (1), the i-th row of y corresponds to a measurement from a single
channel, whilst the i-th row of s corresponds to time series associ-
ated with single source or stimuli. Eq. (1) approximates a single
channel measurement as a weighted summation of all identified
sources. Also, the imprint the i-th source has on brain locations
can be examined using the magnitude of the values in i-th column
of W, which, in essence, gives spatial structure associated with a
specific stimulus. The higher the magnitude of the coefficient in
W, the larger is the impact of a stimuli on the corresponding brain
location.

Both ICA and PCA aim to find values of W and s, which best
approximate given y. Despite similar linear formulation, the two
algorithms use different objectives to identify an appropriate form
of s. ICA relies on the assumption that the signals are non-Gaussian
and statistically independent [38]. The decorrelation technique of
PCA outputs sources such that it minimises the reconstruction
error if r (r < p) components are used, i.e., mins ||y — Ws||z, where
W e RP" s ¢ R™N and || - || denotes the Frobenius norm [39]. The
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principal components can be ranked based on the explained vari-
ance, and for EEG measurements, this results in the first principal
components showing areas of the brain with largest changes in
activation.

Data from all participants is standardised such that:

D)

[

zZ= (2)
Here, p is the mean and ¢ is the standard deviation of the samples
to approximate a standard normally distributed data set. For both
ICA and PCA, the values of W,y and Wy are computed using the
standardised data from all participants, z, whilst s;c4 and spc4 are cal-

culated based on z corresponding to each sample, e.g. Spca = Wpiyz.

3.3.2. Spectral transformation

The most commonly used EEG features are identified based on
the Power Spectral Density (PSD) of different EEG bands which
gives information about the amplitude distribution of different fre-
quency band across the brain [40,41]. In line with [42], the PSDs of
five EEG bands 6 (0-4 Hz), 6 (4-8 Hz), o (8-12 Hz), B (12-30 Hz),
and 7y (30-45Hz) are analysed. In this paper, two different
approaches are used to extract frequency information for different
brain regions: a Fast Fourier Transform (FFT) and periodogram
with a window function. The FFT is based on Discrete Fourier
Transform (DFT) [43] of the original time series which outputs
X, € C giving information about amplitude and phase of the oscil-
lations at frequency . The PSD can be approximated using a mag-
nitude of the output |X,,|>. Periodogram estimates PSD by taking
the Fourier transform of the auto correlation function of the origi-
nal time series [44]. In order to reduce the sensitivity of the output
to small variations in time series, a sequence is multiplied with
window functions to obtain multiple shorter subsequences, and
the periodogram is computed for each of them. The final output
is computed by calculating the average. Here, the flat top window
[45] is used to construct window functions. Although, periodogram
preprocessed with a window function is known to be more robust
to noise, some useful information might be lost through averaging
[46]. Consequently, both datasets obtain using FFT and peri-
odogram are considered in further analysis.

The relationships between different brain areas are included in
sica and spcy which are obtained by taking a weighted sum of time
series corresponding to multiple channels. Both FFT and peri-
odogram are applied to z,s;c4 and Spcs to give \Xw\z. w is assigned
with discrete values for w < 125 Hz (w = 0.2k, where k € 7).

The total magnitude of each band is defined as a sum of [X,,|*
corresponding to constituent frequencies, e.g. |X,|* = zw€a|xw|2.
Additionally, the power spectrum ratio is computed as in Eq. (3)
[30]:

X,

—_— 3
(Xl + 1Xal*) >

This procedure is applied to temporal signals obtained using PCA
and ICA, and to original EEG measurements, i.e. z,Sca and Spca,
resulting in 576 features (6 frequency features x 32 time series x
3 types of signals (ICA, PCA and EEG measurements) for both FFT
and periodogram.

3.3.3. Outlier detection and removal

The EEG measurements recorded using dry electrodes are prone
to noise and artefacts, such as eye blinking and motion artefacts,
which create outliers among features. Many machine learning
algorithms are sensitive to outliers during the training phase, as
a single outlier can affect the classification model. Therefore,
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anomalous values have to be detected and subsequently replaced
or removed before the data set is fed into the training algorithm.

If the samples with big magnitudes are compared with corre-
sponding time series, as shown in Fig. 3, they usually correspond
to high amplitude oscillations characterising artefacts. Instead of
discarding samples where at least one of the features has an
unusually large value, outlier identification is performed individu-
ally for each feature. This is based on the assumption that an arte-
fact does not necessarily impact all frequency ranges and all EEG
channels equally. In fact, in the example presented in Fig. 3, the
PSD is affected by an artefact only for frequencies smaller than
~30 Hz.

The outliers can be identified using statistical or algorithmic
approaches (e.g. Isolation Forest). In this study both approaches
are used. In a statistical method, the threshold A is defined based
on properties of the sample distribution, such as standard devia-
tion, and the values larger than A are denoted as outliers. Three
statistical outlier detection methods are used here with A set to:
1) A=pu+o0,2) A=pu+20 and 3) A=X, where u,o and x are
mean, standard deviation and median of a feature x.

In the Isolation Forest (IF) approach which is used here, a split
value between the minimal and maximal value is randomly chosen
creating two subsets of the data set. This procedure is repeated
until all subsets consist of a single data point or only of identical
data points. The maximum amount of splits required to separate
a data point is used as a parameter to denote outliers, since anoma-
lous points need fewer splits to be isolated [47].

Once the outliers are identified, they can be replaced with sub-
stitute values in the procedure referred to as imputation. In this
study, the outliers are imputed with a missing value token
(NaN), 0, 4, and maxx. Separate classification models are calcu-
lated for each of the possible imputations and data with no outlier
replacement.

3.4. Classification with Random Forest and Boosted Trees

Two algorithms based on Decision Trees are used to classify EEG
data: Random Forest (RF) and Boosted Trees (BT). Decision tree is a
flowchart-like model in which a node represents a conditional test,
branches depict an outcome of a test, and the leaf (lowest branch of
the tree) is associated with one of the classes. The given input is
propagated along the tree based on the result of conditional state-
ments at the nodes until it reaches one of the leaves. The decision
tree-based algorithms allow highly complex, non-linear decision
boundaries between different categories. Also, they are easily
interpretable and allow identification of the most statistically sig-
nificant features where these characteristics are prevalent among
conditional splits in the top nodes of the model [48].

When the number of nodes in a decision tree is left uncon-
strained, the algorithm tends to overfit the training data set. Thus,
RF is used here to create multiple decision trees using a subset of
the original data set. New data points are classified by all created
trees based on a majority vote. The algorithm relies on the assump-
tion that even though constituent trees might overfit to the train-
ing data, the generalisation of the model improves the results
when the average is taken.

The BT algorithm addresses the underfitting issue of a model,
where the classification accuracy is low on the training data. An
example of such a model, is a shallow decision tree with small
number of nodes. Shallow decision tress are referred to as weak
learners and their accuracy is slightly better than classifier which
chooses the output randomly. The underlying idea is to construct
many weak learners and combine them in order to boost the accu-
racy of the overall model and at the same time prevent overfitting
[49].
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Fig. 4. Two-component Gaussian mixtures are fitted on the position and angular
errors in order to identify the threshold for high and low SA.

In both algorithms, it is possible to determine which features
have a higher impact on the classification. One criterion is to calcu-
late how much the impurity of the training data (i.e. ratio of mul-
tiple classes in each leaf) is reduced due to split along a specific
feature. For example, if a feature separates a set of samples into
subsets with no label overlap, this characteristic would be
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considered more important. Furthermore, the criterion is propor-
tional to the amount of samples that are segregated, i.e. the feature
which well isolates n samples has less impact than the feature
which is able to segregate n -+ 1 samples. Thus, features which
determine a conditional split in the top nodes have significantly
higher impact on the impurity in the subsequent trees and usually
are deemed more dominant [48].

4. Results
4.1. PEBL data classification

The histogram of the average error for 1056 runs in the assess-
ment of SA level 1 is shown in Fig. 4(a). The threshold between the
two components of the fitted Gaussian mixture is 0.49 hpx which
is used to distinguish high and low SA. Consequently, 76.2% of
the data set are labelled as high SA and 23.8% are labelled as low
SA.

In the assessment of SA level 2,64.6% of the participants pro-
vided two correct answers and their data points are labelled as high
SA, while the remaining 35.4% are labelled as low SA.

The results of the assessment on SA level 3 are shown in Fig. 4
(b). The threshold between the two components of the fitted Gaus-
sian mixture is 37.43° which splits the data set into 62.3% high SA
and 37.7% low SA.

4.2. Component analysis

The PCA is conducted using data from all participants and based
on the number of EEG channels. 32 principal components are com-
puted. The three most important components for all participants
and a single participant are shown in Fig. 5(a) and (b) respectively.

The most dominant PCA structures in Fig. 5 represent the areas
of largest changes in the brain activity. It can be seen that the acti-
vation patterns for a single participant differ from the average
response, which indicates the effect of individual brain plasticity
that can encumber classification accuracy.

ICA is conducted using data from all participants and the
obtained features are used for classification. Whereas a ranking
of components with respect to explained variance can be con-
structed for PCA, it is worth noting that no equivalent metric is
associated with ICA. Hence, no clear criterion of importance can
be used to choose a few dominant components.

Computing cross-correlation between PCA and ICA features
shows that a low correlation between ICA and PCA characteristics
(maximum value: 0.146, minimum value: —0.059). This means
that the information held by ICA and PCA features is different,
and hence both feature sets can convey statistical information
which is useful to differentiate between high and low SA.

4.3. Outlier detection

The ratio of values identified as outliers for 576 features using
FFT and periodogram are shown in Fig. 6 using boxplots. It can
be seen that the smallest proportion of samples is identified as out-
liers when A = (1t + 20 and the highest when A = 2. Also, a smaller
percentage of samples are identified as outliers when applying
periodogram. Since a more uniform distribution of values are iden-
tified as outliers using IF, the output of this algorithm is used for
further analysis. This also allows to retain a higher percentage of
the original data.
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Component 2  Component 3

Component 1

(a) All participants

Component 2

(b) Single participant

Fig. 5. The magnitude of coefficients in three most important components
identified through PCA for (a) all participants and (b) one participant.

4.4. Classification using Random Forest and Boosted Trees

Considering the data containing outliers and the four data sets
with imputed outliers, five data sets are used as the input to RF
and BT. The data sets are split into a training data set (80%) and
a test data set (20%). The training data set is used to create the
decision trees for identifying the most significant features. The
testing data set is employed to validate the created models.

For BT, three hyperparameters are identified as the most influ-
ential: (1) the maximum depth of the decision trees [, (2) the num-
ber of estimators M, and (3) the learning rate 7, which diminishes
the effect of a new decision tree when added to the ensemble
model and reduces variance [50]. In order to maximise the test
accuracy of the model corresponding to the data set obtained after
using periodogram, the parameters are assigned as
M=100,4=0.1and I =3.

For RF, (1) the number of trees, (2) the minimum amount of
samples in a leaf, (3) the minimum required amount of samples
in a leaf to conduct another split and increase the depth, and (4)
the number of layers in the trees are examined and only the num-
ber of trees is considered as the hyperparameter. The other three
parameters are left unconstrained leading to creation of decision
trees with high number of nodes. This approach provides a balance
between low bias of individual decision trees and variance reduc-
tion when the number of decision trees is increased. The number of
trees is set to 1000 to maximise the test accuracy.

Table 1 shows the train accuracy, test accuracy, precision and
recall for RF and BT, and features identified using FFT and peri-
odogram. Train accuracy and test accuracy describe the percentage
of correctly classified samples for the training data set and testing
data set respectively. Precision shows the ratio of correctly classi-
fied features (true positives, TP) over all retrieved features (includ-
ing false positives, FP) as in (4):

_TIP (4)
TP + FP

Recall describes the ratio of correctly classified features (TP) over all
relevant items (including false negatives, FN) as in (5):

_mw
TP+ FN

Precision =

Recall =

()
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Fig. 6. Percentage of values identified as outliers among 576 features using FFT and periodogram.

Table 1
Train accuracy, test accuracy, precision, and recall for all outlier imputations for BT/RF and periodogram/FFT.
BT NaN BT O BT u BT maxx BT outlier RF 0 RF u RF maxx RF outlier
periodogram train accuracy 0.901 0.753 0.878 0.772 0.791 1.000 1.000 1.000 1.000
test accuracy 0.651 0.655 0.670 0.653 0.653 0.635 0.660 0.656 0.663
precision 0.652 0.644 0.665 0.649 0.646 0.630 0.650 0.656 0.655
recall 0.807 0.854 0.826 0.826 0.839 0.842 0.848 0.811 0.839
FFT train accuracy 0.822 0.902 0.771 0.852 0.750 1.000 1.000 1.000 1.000
test accuracy 0.633 0.627 0.622 0.668 0.653 0.649 0.644 0.649 0.658
precision 0.629 0.630 0.615 0.652 0.643 0.644 0.638 0.649 0.658
recall 0.839 0.804 0.863 0.870 0.854 0.832 0.839 0.814 0.807

It can be seen that the highest test accuracy of 67% is achieved for
BT with outliers replaced by mean values. This method also features
the highest value for precision (66.5%), whereas the highest recall is
reported for BT with outliers replaced by zeros (85.4%). The maxi-
mum values for test accuracy, precision and recall are slightly lower
for features extracted with FFT (66.8%,65.8%,87%). The highest
reported accuracy is achieved for BT with outliers replaced by a
maximal value (66.8%). For RF, all reported test accuracies are
lower compared to BT. Additionally, no analysis has been carried
out with outliers imputed with NaN values, as they are not sup-
ported by the used RF algorithm.

5. Discussion

The division of SA test data into two categories with the thresh-
old set to the intersection of two PDF curves constituting Gaussian
mixture resulted in data imbalance where two thirds of samples
were classified as high SA and one third as low SA (see Fig. 4). Since
no participants reported any tiredness or fatigue prior to the test, a
good overall SA is expected. Fluctuation of SA within a single run
can be explained with momentary distractions and shifts in con-
centration of the subject. For the assessment of SA level 1, the
Gaussian mixture curve fits the data set well (error in Cumulative
Distribution Function (CDF) is 7.49%), however, the two clusters
are not well separated with mean values of PDFygss and
PDF o s4 being close to each other. The Gaussian mixture also fits
well the data points corresponding to the assessment for SA level
3 (error in CDF is 5.09%), and the difference between the mean val-
ues of the PDFs is large indicating that the data set can be easily
separated into two data sets. The approach of assigning labels to
the results of the SA level 2’s test also show a similar ratio between
high and low SA for the assessment of SA levels 1 and 3.
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The data set containing features extracted using a combination
of periodogram with window function mostly achieves a lower
ratio of outliers compared to the one employing FFT (see Fig. 6).
This result is expected since the preprocessing of data using win-
dow function is designed to ensure that the resulting PSD is more
robust to slight changes of timeseries and consequently is less sen-
sitive to noise. In the methodology where A = 2%, for some features
over 60% of the samples are excluded, drastically reducing the
amount of useful information. This can be explained by examining
the distributions of features which in most cases are similar to log-
normal distribution, where the median is always smaller (some-
times significantly) than the mean.

Despite artefacts being known to have a high impact on a broad
range of applications when EEG measurements are used, the out-
liers do not impact the accuracy of the classification in this study.
This is due to the fact that models based on decision trees are sig-
nificantly less sensitive to high absolute values both during train-
ing and testing, when compared to methods where the model
contains terms directly proportional to the input (e.g. logistic
regression). In models based on decision tress, the output is
decided only based on the condition of an input being greater than
a certain threshold value. Thus, for example, replacing a value in
the data set with another value at the upper range of the distribu-
tion, e.g. the maximum of the retained samples, results in the same
output as the original high magnitude input.

It is notable that despite the train accuracy of 100% for classifi-
cation with RF (see Table 1), the model gives a comparable perfor-
mance on the test set to BT algorithm for example (train accuracy
between 75 — 90%). This is because despite each constituent deci-
sion tree overfitting the data, once the average results based on
“vote of majority” is used, the output is more generalisable. Fur-
thermore, models with alternative values of hyperparameters do
not provide better results.
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Fig. 7. The magnitude of coefficients in spatial structures corresponding to six
statistically most significant features in the classifier with the highest test accuracy.

Comparing our results of the accuracy of the classifier to similar
studies such as [29], presenting a classification in the context of
teleoperation of human-swarm teaming, might conclude that our
accuracy of 67% seems not very high. However, looking closer into
the classification, the methodology is fundamentally different:
Whereas we have solely included objective measurements such
as position and angular error values, the study in [29] combines
objective and subjective data (from a SAGAT questionnaire) to
identify low and high SA for borderline cases. Hence, we applied
the methodology using the Linear Discriminant Analysis (LDA)
for classification as proposed in [29] to our dataset using solely
objective measurements to be able to compare accuracy results.
It should be noted that this involved rejection of all features based
on ICA and PCA. We also have used “PO3” and “PO8” channel loca-
tions instead of “O1” and “02” as the latter were not among our
measurements. The accuracy achieved following methodology in
[29] was 61.5%, therefore the methodology proposed here outper-
forms similar studies when considering objective data only.

The obtained RF model gives us insights into the most influen-
tial features. The identified six most important features are shown
in Fig. 7. Four of these features lie in the g band constituting of
higher frequencies (12 — 30 Hz) which indicates an increase of
attention and alertness of the subject with high activation [51].
The other presented features lie in y band (30 — 45 Hz), responsible
for cognitive functioning and information processing [52]. Fig. 7
shows that both left (components 2 and 6) and right hemisphere
(components 1,3,4, and 5) are responsible for SA.

Also, all four main lobes, frontal lobe (component 2), parietal
lobe (components 5 and 6), occipital lobe (components 1 and 3),
and temporal lobe (component 4) are activated in the presented
features in Fig. 7. All of the identified brain regions are known to
carry out tasks needed to acquire SA. The right hemisphere is
known to positively correlate with vigilance for simple tasks
[53], and intuition [54] whereas logical and linear thinking are
attributed to the left hemisphere [55], however, results on brain
lateralisation are not universally agreed on [56]. The frontal lobe
in the brain is, among others, responsible for concentration, spatial
abilities, and short-term memory, while tasks carried out in the
parietal lobe include spatial and visual perception, and memory
tasks [57]. The occipital lobe interprets vision, e.g. colour, light,
and movement, and the temporal lobe sequences and organises
visual and auditory input and carries out reasoning tasks [57].

Looking at a similar study [27], loss of SA showed a strong acti-
vation of neurons in the orbitofrontal cortex. The frequency band is
not stated in this paper. Using a 128-channel GSN EEG sensors, 7
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electrodes are placed on the orbitofrontal cortex which are prone
to artefacts induced by eye movement or blinking. Also, semi-
wet electrodes allow for higher quality signal collection in compar-
ison to dry electrodes. We did not obtain similar results in our
study which can be explained by using dry electrodes and having
two electrodes covering the areas close to the orbitofrontal cortex
(FP1 and FP2).

In [29], activation in 0, o, and 8 band decreased with loss of SA.
This is in line with the results of our study, as we found a correla-
tion between B band and SA. An earlier investigation [28] also
revealed a positive correlation between the power spectrum in
the 6 band and SA, however, their sample size with eight partici-
pants is small and no brain regions are identified.

6. Conclusions and future work

A novel analytical methodology for correlating physiological
signals using EEG to Situational Awareness was presented in this
paper. A new data set from 32 participants completing the SA test
in the PEBL framework was collected using a 32-channel dry-EEG
headset. A correlation has been found between the g
(12—-30Hz) and 7y (30 — 45 Hz) frequency bands and SA. The
observed activation of neurons occurred in the four main lobes of
the brain (frontal, parietal, occipital and temporal cortex). The
combination of these frequencies and brain regions are responsible
for concentration and visuo-spatial abilities, which are known to
be important in order to build up SA. The highest achieved accu-
racy of the classifier is 67%.

In future work, a higher number of participants will be invited
to conduct the experiment in order to construct separate classifiers
for each of SA levels. Thus, the impact of the amount of SA for each
level could also be assessed. It was shown in [58-60] that combi-
nation of eye-tracking and EEG can increase classification accuracy
in multiple contexts similar to SA. Consequently, the alternative
data set, which will include measurements from both sensors, will
be used in future study. This especially will help to understand the
perception of the subject, but is prone to the look-but-failed-to-see
phenomenon [61]. Furthermore, the proposed method relies on the
assumption that data can be split into high and low SA using a
Gaussian mixture. Other methods incorporating different underly-
ing distributions need to be explored that can be used to divide SA
test results into larger number of classes to differentiate between
degree of SA levels. Finally, different machine learning algorithms,
such as Support Vector Machine and neural networks, could be
assessed for improving the classification accuracy.
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