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Abstract. Mobility data is a proxy of di↵erent social dynamics and its
analysis enables a wide range of user services. Unfortunately, mobility
data are very sensitive because the sharing of people’s whereabouts may
arise serious privacy concerns. Existing frameworks for privacy risk as-
sessment provide tools to identify and measure privacy risks, but they
often (i) have high computational complexity; and (ii) are not able to
provide users with a justification of the reported risks. In this paper, we
propose expert, a new framework for the prediction and explanation of
privacy risk on mobility data. We empirically evaluate privacy risk on
real data, simulating a privacy attack with a state-of-the-art privacy risk
assessment framework. We then extract individual mobility profiles from
the data for predicting their risk. We compare the performance of several
machine learning algorithms in order to identify the best approach for
our task. Finally, we show how it is possible to explain privacy risk pre-
diction on real data, using two algorithms: Shap, a feature importance-
based method and Lore, a rule-based method. Overall, expert is able to
provide a user with the privacy risk and an explanation of the risk itself.
The experiments show excellent performance for the prediction task.
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1 Introduction

There is a growing research interest in mobility data analysis, since it is a key en-
abler of a new wave of knowledge-based services and applications. However, the
use of human mobility data raises concerns associated to the potential leakage
of personal sensitive information as mobility data analysis might reveal details
of people’s private life. For example, de Montjoye et al. [17] showed that four
spatio-temporal points can be enough to uniquely identify 95% of the individuals
in a mobility dataset. The existence of these privacy issues has led researchers
to develop techniques to mitigate the privacy risks while preserving mobility
data [4, 15, 26]. For enabling a practical application of these techniques, Pratesi



et al. proposed PRUDEnce [21], a framework for a systematic assessment of
individual privacy risk in a mobility dataset. PRUDEnce helps data controllers
being compliant with the new EU General Data Protection Regulation (GDPR)6.
However, PRUDEnce is characterized by a high computational complexity, be-
cause it requires the computation of the maximum risk of re-identification (or
privacy risk) given an external knowledge that a malicious adversary might use
for an attack [20]. The high computational complexity becomes a non-negligible
practical limitation in some online user-centric applications where it is useful
to have a continuously up-to-date indicator of privacy exposure. In user-centric
applications, providing users with an explanation of the reasons of the identified
privacy risk might contribute to raise their self-awareness.

In this paper, to overcome the computational complexity drawback and to
increase users’ awareness, we propose expert, an EXplainable Privacy Expo-
suRe predicTion framework that exploits (i) machine learning (ML) models for
predicting a user’s individual privacy risk and (ii) local explainers for producing
explanations of the predicted risk. First, expert extracts from human mobility
data an individual mobility profile describing the mobility behavior of any user.
Second, for each user it exploits PRUDEnce to compute the associated privacy
risk. Third, it uses the mobility profiles of the users with their associated privacy
risks to train a ML model. For the prediction task, expert exploits tree-based
ensemble models to e↵ectively handle the class-imbalance problem, i.e., a high
number of risky users vs a low number of non-risky ones, that is typical of the
data in this context. The aim is to have a predictor that preserves the privacy
of risky users while providing the freedom of using data-driven services to users
with low privacy risk. For a new user, along with the prediction of risk, expert
also provides an explanation of the predicted risk. expert exploits two state-of-
the-art explanation techniques, i.e., Shap [13] and Lore [11]. The two methods
produce explanations based on feature importance and logic rules, respectively.
The goal of explanations is to provide users with insights on which mobility
behavior contributes to their privacy risk. We evaluate expert on real-world
mobility data showing the e↵ectiveness of the framework. Results show that the
proposed framework is able to classify the privacy risk level of unseen users in the
urban areas. Moreover, we observe a high recall on the high-risk users, meaning
that the probability of misclassifying a high-risk user as low-risk is negligible,
while achieving good performance in classifying low-risk users.

The paper is organized as follows. Section 2 discusses related work. In Section
3, we briefly discuss PRUDEnce, the framework we used for the privacy risk
assessment. Section 4 introduces our novel expert framework. In Section 5,
we report the results of a comprehensive experimental evaluation of expert on
mobility data. Finally, Section 6 concludes the work and discusses future work.

6 EU GDPR can be found at the following link: http://bit.ly/1TlgbjI.



2 Related Work

Our framework leverages the privacy risk assessment framework PRUDEnce [21],
which allows for the systematic calculation of the empirical privacy risk. An-
other risk management framework is Linddun [8] useful for modeling privacy
threats in software-based systems, but lacks a quantitative evaluation of privacy
risk. Some works [23, 25] propose to evaluate the privacy risk by a unicity mea-
sure computed as the number of records uniquely identified. Armando et al. [2]
proposed a risk-aware framework for information disclosure supporting runtime
risk assessment where access-control decisions are based on the disclosure-risk
associated with a data access request and adaptive anonymization is used as a
risk-mitigation method.

In the context of mobility analysis, an overview on problems, techniques
and methodologies can be found in [28]. Human mobility analysis can reveal
personal sensitive information and habits leading to possible privacy violation.
Thus, many techniques for privacy-preserving analysis have shown that we can
design data-driven mobility services where the quality of results coexists with the
privacy protection. Some works, e.g., [4,16], are based on the di↵erential privacy
model [9] while others, e.g., [15, 26], are based on the k-anonymity model [24].

Our work can be seen as an extension of the prediction methodology proposed
by Pellungrini et al. [20], showing how it is possible to predict privacy risk in
mobility data with a feature based approach. We extend it by providing a unified
framework that provides both prediction and explanation about the individual
privacy risk. Moreover, our proposal is based on a prediction module that is able
to handle the high class imbalance of the data typical of this domain [29].

The importance of interpretability in machine learning has led to an increas-
ing research work in this field. An overview of explainable machine learning mod-
els can be found in [12]. This survey identifies two main families of approaches:
local and global explainers. The first category aims at explaining the reason for
a specific instance classification [11, 13, 22], while the goal of the second one is
to explain the logic of the “machine learning black-box” as a whole [5–7].

3 Background

Human mobility data contain information about the movement of individuals
during a given period of observation. They are typically collected by electronic
devices, such as mobile phones and GPS devices installed in vehicles [28]. All the
movements of a user in the period of observation are described using a sequence
of spatio-temporal data points, i.e., a trajectory. In other words, each sequence
item is a pair composed of a geographic location, often expressed in coordinates
(generally latitude and longitude), and a timestamp indicating when the user
stopped in or went through that location.

Definition 1 (Trajectory). A human mobility trajectory is a temporally or-
dered sequence of pairs, Tu = (l1, t1), (l2, t2), . . . , (lm, tm), where li = hxi, yii is



the location identified by the latitude xi and longitude yi, while ti (i = 1, . . . ,m)
denotes the corresponding timestamp such that 81  i  m ti < ti+1.

We denote by D = T1, . . . , Tn the mobility dataset that describes the complete
history of movements of n individuals, in a specific period of observation.

3.1 Privacy Risk Assessment Framework

In this paper, we consider the framework PRUDEnce [21], which allows for a
systematic assessment of the privacy risk inherent to human mobility data. It
considers a scenario where a Service Developer (SD) requests data from a Data
Provider (DP) to develop services or perform an analysis. In order to guaran-
tee the right to privacy of individuals, the DP has to assess their privacy risk
before the data sharing. Once assessed the privacy risk, the DP can choose how
to protect the data before sharing them, selecting the most appropriate privacy-
preserving technology. Taking into account the data requirements of the SD,
the DP aggregates, selects, and filters the dataset D to meet its requirements
and on top of it performs a privacy risk assessment. This operation requires the
definition of a set of possible attacks that an adversary might conduct on the
data, and their simulation. The user’s privacy risk is related to her probability
of re-identification in a dataset with respect to a set of attacks. An attack as-
sumes that an adversary gets access to a dataset, then, using some previously
obtained background knowledge, i.e., the knowledge of a portion of an indi-
vidual’s mobility data, the adversary tries to re-identify all the records in the
dataset regarding that individual. An attack is defined by a matching function,
which represents the process with which an adversary exploits the background
knowledge to find the corresponding individual in the data. As far as the at-
tack definition is concerned, PRUDEnce is based on the notions of background
knowledge category, configuration and instance. The first one denotes the type
of information known by the adversary about a specific set of dimensions of
an individual’s mobility data: e.g., a subset of the locations visited by a user
(spatial dimension) or the specific times a user visited those locations (spatial
and temporal dimensions). The number of the elements known by the adver-
sary is called background knowledge configuration. An example is the adversary
knowledge of h = 2 locations visited by an individual. Finally, an instance of
background knowledge is defined as the specific information known by the ad-
versary, such as a visit in a specific location. Consider a trajectory from D:
Tu = h(l1, t1), (l2, t2), (l3, t3), (l4, t4)i of an individual u. Based on Tu the DP can
generate all the possible instances of a background knowledge configuration that
an adversary might use to re-identify the whole Tu. If the adversary knows the
ordered subsequences of locations and h = 2, we obtain the background knowl-
edge configuration: B2 = {((l1, t1), (l2, t2)), ((l1, t1), (l3, t3)), ((l1, t1), (l4, t4)),
((l2, t2), (l3, t3)), ((l2, t2), (l4, t4)), ((l3, t3), (l4, t4))}. The adversary might know
instance b = ((l1, t1), (l4, t4)) 2 Bh=2 and aims at detecting all the records in D
regarding u, in order to reconstruct the whole trajectory Tu.
The definition of privacy risk is based on these notions and on the following
definition of probability of re-identification.



Definition 2. Given an attack and its function matching(T, b) indicating if
a record T 2 D matches the instance of background knowledge configuration
b 2 Bh, and a function M(D, b) = {T2D|matching(T, b) = True}, we define
the probability of re-identification of an individual u in dataset D as: PRD(T =
u|b) = 1

|M(D,b)| that is the probability to associate a record T 2 D to an individual
u, given instance b 2 Bh.

Since each instance b 2 Bh has its own probability of re-identification, the risk
of re-identification of an individual is defined as the maximum probability of re-
identification over the set of instances of a background knowledge configuration:

Definition 3. The risk of re-identification (or privacy risk) of an individual u
given a background knowledge configuration Bh is her maximum probability of
re-identification Risk(u,D) = maxPRD(T = u|b) for each b 2 Bh.

4 Explainable Privacy Risk Prediction Framework

PRUDEnce [21] assumes a worst case scenario approach for the privacy risk
computation and therefore, it evaluates all the possible background knowledge
configurations for a potential adversary generating them with a combinatorial
approach directly from the data of a user. While the framework provides a com-
prehensive methodology for worst-case privacy risk assessment, its computa-
tional complexity is high. Moreover, PRUDEnce is designed for supporting data
providers (companies) in identifying portions of data with high privacy risk by
simulations of the attacks. The computation requires the availability of the en-
tire dataset, like that stored in the servers of the companies. In other words,
PRUDEnce is not suited for providing personalized recommendations in terms
of risks associated to sharing personal trajectories. Indeed, for any new user re-
quiring risk evaluation, the system should re-compute the privacy risk against
the whole dataset. Moreover, it does not provide any explanation of the privacy
risk derived by the system. In this paper we present an explainable framework
for the individual prediction of a user’s privacy risk, in order to increase privacy
risk awareness, by also providing an explanation of the derivation of the risk
associated to sharing sensitive location information. The idea is inspired by the
explainable privacy-preserving system theorized in [3]. To this end, we propose
expert which, given a user’s trajectory, predicts the privacy risk associated
with it. The explanation provided to the users is based on their trajectory given
in input. Figure 1 depicts the architecture of expert which is composed of
two main modules: the privacy risk prediction module which takes as input the
user’s trajectory and, exploiting a trained ML model, predicts the privacy risk
level of that user, and the explanation module which produces the explanation of
the predicted risk. The ML model is the result of several steps: (i) the empirical
computation of the individual privacy risk, (ii) the extraction of individual mo-
bility profiles from human mobility data, summarizing users’ mobility behavior,
and (iii) the training of a ML model.



Fig. 1: The general structure of the proposed framework expert.

4.1 Learning a Prediction Model for Individual Privacy Risk

The basic idea is to train a ML model to predict the privacy risk level of users
based solely on their individual mobility profile. Thus, given a human mobility
dataset of n user trajectories, we propose to derive the training dataset hM,� i,
where M is a set of n individual mobility profiles, and � is the vector of their
associated privacy risk levels. Since, the privacy risk is related to a specific at-
tack (see Section 3.1), the procedure for building a training dataset depends on
the adversary attack modelling. As a consequence, given a specific attack, char-
acterized by a background knowledge configuration Bh, the procedure performs
the following two steps:

– Mobility Profile Extraction: Given a mobility dataset D, for every user tra-
jectory Tu we propose to extract a mobility profile in order to characterize
her mobility behavior. To this end, we propose to derive a set of well-known
mobility features (presented in the next section). We denote by Mu 2 M the
mobility feature vector of a user.

– Privacy Risk Computation: For each user u a privacy risk value is computed
by simulating an attack with background knowledge configuration Bh on the
mobility dataset D. Since the goal is to predict the privacy risk level, the
privacy risk vector is discretized to get a set of risk classes7, and the vector
of n user’s privacy risk levels � .

After the execution of the above two steps, we get a training set hM,� i. The
derived training dataset hM,� i is used to train a predictive model which will be
used within expert to immediately estimate the privacy risk level of previously
unseen users, whose data were not used in the learning process. Clearly, in pre-
diction time, in order to predict the privacy risk of a new trajectory instance the
process requires, first the computation of the mobility profile for that user and
then, the application of the predictive model. Among the di↵erent ML methods,
we propose to employ models able to handle classification tasks with imbalanced
data. Indeed, as we show in our experiments, one of the characteristics of our
training data is that most of the users have high privacy risk. Our goal is to
get a predictor able to guarantee the privacy protection of risky users while
providing the freedom of using data-driven services to users with low privacy

7 In our experiments we discretize the risk in two main classes: low risk (privacy risk
 0.5) and high risk (privacy risk > 0.5).



risk. Thus, the optimal predictor should be characterized by a low probability
of misclassifying a high risk user as a low risk one, while maintaining also good
performance with respect to the classification of low risk users. In this paper, we
propose to apply the gcForest model [29], a decision tree ensemble approach
with performance highly competitive to deep neural networks in a broad range
of tasks. It is especially suitable to handle highly extra-imbalanced data [27].
gcForest relies on multiple layers of parallel forests of trees whose output is
then concatenated to re-represent data to subsequent layers. In our experiments
we compare gcForest against models such as decision tree, logistic regression,
and random forest.

Mobility Profile Extraction. The goal of this step is to construct the ma-
trix M representing the set of individual mobility profiles, expressed by a set of
mobility features that describe and summarize the mobility behavior of an indi-
vidual. In our setting, we employ measures widely used in the literature [18,20].
Some of them describe only the mobility behaviour of an individual, while oth-
ers describe an individual mobility behaviour in relation to collective mobility
characteristics. Table 1 reports all the mobility measures used in the study. First
of all, we define V as the number of visits of a user, it corresponds to the total
number of locations in the user’s trajectory. To quantify the erratic behaviour of
a user during the day we compute the average number of daily visits V , dividing
V by the total number of days in the period of observation. Locs, instead, is
the number of distinct locations visited by a user during the period of observa-
tion, while Locsratio represents the fraction of locations covered by a user. We
compute it by dividing Locs by the total number of locations available in the
territory. We also evaluated some measures about the distances travelled by the
users. We define Dmax as the maximum distance travelled by each user, i.e. the
longest trip for each user. This measure is then employed for the computation
of Dtrip

max
: it is the ratio between the maximum distance travelled Dmax and the

maximum distance that is possible to travel in the area of observation. We also
consider Dsum, i.e., the sum of all the distances travelled by a user. This value
is then used in the definition of Dsum, which is the average of Dsum over the
period of observation (expressed in days). We also consider the radius of gyra-
tion [19] representing the characteristic distance travelled by a user during the

period of observation and is defined as rg =
q

1
N

P
i2L

wi(ri � rcm)2, in which

i 2 L is the visited location by a user, wi represents a user’s frequency of visits
at a location i, ri denotes the geographical description of the location i and it is
a bi-dimensional vector, while rcm is the center of mass of the user under con-
sideration. Mathematically, the latter is defined as rcm = 1

V

P
12L

ri. We also
measure the mobility entropy E as the predictability of a user’s trajectory. We
employ the Shannon entropy measure [10]: E = �

P
i2L

pi log2 pi, in which pi
is the probability of the location i for the user under analysis. For each user,
we also consider three locations that characterize a user’s mobility: the most
visited location, the second most visited location and the least visited location.
Typically, the most visited location corresponds to user’s home, while the sec-
ond most visited location is users’ work place. For each one of these locations,



Notation Description Notation Description
V visits V daily visits

Dmax max distance Dsum sum distances

D
tot
max

max distance over total
max distance for a user

Dsum Dsum per day

D
trip
max Dmax over area Locs distinct locations

Locsratio Locs over area Rg radius of gyration
E mobility entropy Ei location entropy
Ui individuals per location U

ratio
i Ui over individuals

wi location frequency w
pop
i wi over the total frequency of location i

wi daily location frequency PTj Path time per user

Table 1: Mobility features of the individual mobility profile.

we evaluate the frequency of visits during the period of observation wi, where
i represents the specific location under analysis. We also define wi as the daily
average of the frequency of visits at the location i for the user under analy-
sis. Then, we denote by wpop

i
the frequency of visits divided by the popularity

of the location, i.e. the total frequency of the location in the dataset. In this
way, we normalize the frequency of the user for a particular location considering
the behaviour of all the users in the dataset. For these three locations, we also
consider Ui, i.e., the number of distinct users that visited the location i in the
period of observation. Out of Ui, we also compute Uratio

i
, in which the number

of distinct users that visited the location i is divided by the total number of
users in the dataset. The last measure we consider for each of the three locations
is the entropy. In this case, we compute a location entropy Ei, that represents
the predictability of a visit at the location i defined as: E = �

P
u2Ui

pu log2 pu,
where Ui is the set of users that visited the location i and pu is the probability
that a user u visited the location i. When working with trajectories, we have
also a temporal information: each trajectory is composed by hli, tii, in which ti
is the timestamp corresponding to time of arrival of a user at a location li. We
exploit this information to compute the path time [18], i.e., the time occurring
between the first and last visit of a trajectory.
Privacy risk computation. The goal of this module is to compute for each
user trajectory in D a privacy risk value by using a re-identification algorithm.
We propose to apply the PRUDEnce framework (Section 3.1) that enables the
definition and simulation of any desired privacy attacks over the entire dataset.
Several attacks might be defined on the basis of the type of background knowl-
edge possessed by an adversary [20, 21]. In this paper we instantiate our risk
computation using the location sequence attack, introduced in [14, 15], where
the adversary knows a subset of the locations visited by the individual and the
temporal ordering of the visits. Given an individual u, we denote by L(Tu) the
sequence of locations li 2 Tu visited by u. The background knowledge category
of a location sequence attack is defined as follows:

Definition 4. Let h be the number of locations li of an individual u known by the
adversary. The Location Sequence background knowledge is a set of configurations
based on h locations, defined as Bh = L(Tu)[h], where L(Tu)[h] denotes the set
of all the possible h-subsequences of the elements in the set L(Tu).



We indicate with a � b that a is a subsequence of b. Each instance b 2 Bh is a
location subsequence Xu � L(Tu) of length h. Given a record T 2 D we define
the matching function as: matching(T, b) = true if b � L(T ), false otherwise.
PRUDEnce uses this function to compute the probability of re-identification
for any instance of background knowledge (Def. 2) enabling the privacy risk
computation for each trajectory (Def. 3).

4.2 Risk Explanation Module

The last module of expert is the explainer aiming at providing the end-user
with an explanation for the predicted risk label. The objective is to increase
users’ awareness about the privacy risks. expert is modular with respect to the
explainer allowing the use of any explanation method suitable to tabular data.
Since the goal is to explain a specific decision, local methods [11,13,22] are more
suitable for this task. The main di↵erence between them is the type of explana-
tion returned. Lime [22] and Shap [13] are mainly based on the notion of feature
importance and Lore [11] instead provides a logical rule-based explanation for
the prediction. In our experiments we considered Lore and Shap as explainers.
Given our ML model and an individual trajectory belonging to a user u, trans-
formed into the mobility profile Mu and labeled with a specific privacy risk level
ru by our model, Lore (LOcal Rule-based Explanation) builds a simple, inter-
pretable predictor by first generating a balanced set of neighbor instances of the
given Mu through an ad-hoc genetic algorithm, and then extracting from such
a set a decision tree classifier. A local explanation is then extracted from the ob-
tained decision tree. The local explanation is a pair composed by (i) a logic rule,
corresponding to the path in the tree that explains why Mu has been labeled
as ru by the predictor, and (ii) a set of counterfactual rules, explaining which
changes in Mu would invert the risk class assigned. Shap (SHapley Additive ex-
Planations) is a local approach for interpreting model predictions that assigns to
each feature an importance value for a particular prediction. Moreover, for each
model’s prediction Shap defines an explanation model. The main idea is that the
explanation model is an interpretable approximation of the original model and
works with simplified input data. Shap exploits the collaborative game theory
to determine the importance value of a feature for the instance prediction.

5 Experiments

We experimentally validate the di↵erent components of our framework by ana-
lyzing the performance of: i) the prediction module implemented with di↵erent
machine learning models by varying their complexity; and ii) the explanation
module by comparing two state-of-the-art approaches.

Data. We use data containing GPS tracks of private vehicles in Tuscany (Italy)
provided by Octo Telematics. We selected trajectories from an area comprising
two major urban centers, Prato and Pistoia, considering the period from 1st May



to 31st May 2011, for a total of 8651 distinct vehicles. We performed two di↵er-
ent transformations of the original data in order to obtain two di↵erent datasets.
In the first dataset, called istat, trajectory points are generalized according to
the geographical tessellation provided by the Italian National Statistics Bureau
(ISTAT): each point is substituted with the centroid of the geographical cell to
which it belongs. We then remove redundant points, i.e., points mapped to the
same cell at the same time, obtaining 2274 di↵erent locations with an average
length of 31.9 points per trajectory. With respect to the second dataset, called
voronoi, we first apply a data-driven Voronoi tessellation of the territory [1],
taking into consideration the tra�c density of an area, and then we used the cells
of this tessellation to increase the granularity of the original trajectories. The al-
gorithm also performs interpolation between non adjacent points8. We obtained
1473 di↵erent locations with an average length of 240.2 points per trajectory.
For both datasets we computed the mobility features M for extracting the users’
mobility profiles and the privacy risk according to the simulation of the location
sequence attack (Section 4.1) with four background knowledge configurations Bh

using h = 2, 3, 4, 5, getting four di↵erent risk datasets, �h=2,3,4,5. We discretized
the risk values in intervals: [0, 0.5] and (0.5, 1] named low and high risk class,
respectively. Then, we built our classification datasets merging each risk dataset
with the feature-based mobility profiles: hM,�hi, as explained in Section 4.1.
To better handle the imbalance in the data, we learned our predictive models
using stratified sampling, undersampling and 5-fold cross-validation. Tables 3
& 2 report the class balance after under-sampling the majority class. We also
performed hyper-parameter tuning by grid search in the parameter space9.

Predicting Risk. We validate the e↵ectiveness of the prediction module of
expert by comparing four di↵erent ML models: Decision Tree (DT), Logistic
Regression (LR), Random Forest (RF)10, and gcForest (GC)11. Decision Tree
and Logistic Regression are two well-known, white-box models. Random Forest
and gcForest [29] are ensemble models proven to be e↵ective when dealing
with imbalanced data. This task is characterized by strong imbalance of the
two risk classes, therefore being a challenging machine learning problem, where
the classifier performance in terms of accuracy is less significant due to the
dominance of the majority class on the metric. Indeed, as discussed in Section
4.1, our desiderata is a classifier with a conservative approach with respect to
high risk users, to avoid their misclassification as low risk users. On the other
hand, we aim at achieving high precision and recall for both high and low risk
users. As a consequence, for the performance evaluation of the machine learning
models, we select the following indicators: i) precision (Phigh) and recall (Rhigh)
on high risk; ii) precision (Plow) and recall (Rlow) on low risk; and iii) the
two corresponding F1-Score for low (F1low) and high (F1high) risk. In a setting
where the size of high risk class is larger than that of the low risk one, achieving

8 Voronoi tessellation obtained by using: http://geoanalytics.net/V-Analytics/
9 Hyper-parameter settings: https://github.com/francescanaretto/prp

10 https://scikit-learn.org/stable/
11 https://github.com/kingfengji/gcForest



Bh
Class

Balance
Under-

sampling
Metric DT LR RF GC

h=2
High=77
Low=23

High=40
Low=60

F1high
0.92 (0.00) 0.92 (0.00) 0.94 (0.00) 0.94 (0.02)

Phigh 0.90 (0.01) 0.91 (0.01) 0.91 (0.00) 0.92 (0.01)
Rhigh 0.93 (0.01) 0.96 (0.00) 0.95 (0.00) 0.96 (0.00)
F1low

0.69 (0.02) 0.71 (0.01) 0.75 (0.01) 0.75 (0.01)
Plow 0.73 (0.02) 0.77 (0.01) 0.81 (0.01) 0.82 (0.01)
Rlow 0.66 (0.02) 0.42 (0.03) 0.70 (0.09) 0.70 (0.02)

h=3
High=93
Low=7

No under-
sampling

F1high
0.96 (0.00) 0.92 (0.00) 0.97 (0.00) 0.97 (0.03)

Phigh 0.95 (0.01) 0.94 (0.01) 0.96 (0.00) 0.96 (0.00)
Rhigh 0.96 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
F1low

0.70 (0.02) 0.71 (0.01) 0.75 (0.01) 0.79 (0.03)
Plow 0.72 (0.02) 0.77 (0.03) 0.83 (0.03) 0.84 (0.03)
Rlow 0.70 (0.06) 0.41 (0.03) 0.70 (0.04) 0.74 (0.05)

h=4
High=95
Low=5

No under-
sampling

F1high
0.96 (0.00) 0.96 (0.00) 0.97 (0.00) 0.97 (0.00)

Phigh 0.96 (0.05) 0.95 (0.00) 0.96 (0.00) 0.97 (0.00)
Rhigh 0.97 (0.00) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
F1low

0.73 (0.02) 0.70 (0.02) 0.77 (0.02) 0.80 (0.02)
Plow 0.75 (0.02) 0.80 (0.01) 0.85 (0.02) 0.85 (0.09)
Rlow 0.70 (0.01) 0.45 (0.03) 0.74 (0.05) 0.76 (0.03)

h=5
High=96
Low=4

No under-
sampling

F1high
0.96 (0.04) 0.96 (0.00) 0.97 (0.00) 0.97 (0.00)

Phigh 0.96 (0.04) 0.95 (0.00) 0.97 (0.00) 0.97 (0.00)
Rhigh 0.96 (0.01) 0.98 (0.00) 0.98 (0.00) 0.98 (0.00)
F1low

0.73 (0.03) 0.70 (0.03) 0.78 (0.02) 0.80 (0.02)
Plow 0.72 (0.03) 0.80 (0.05) 0.83 (0.02) 0.85 (0.02)
Rlow 0.70 (0.03) 0.46 (0.03) 0.75 (0.04) 0.76 (0.03)

Table 2: Predictive models evaluation on mobility profiles derived from istat.

good performance for the low risk users is di�cult. The results for the two
datasets are shown in Tables 2 and 3. We note that istat represents a typical
situation in the privacy context, where a high number of risky users exists. We
also built voronoi to present a balanced situation and to verify how our models
behave in such a case. In general, we found that the ensemble methods have
good performance in terms of both F1-Score on high risk and F1-Score on low
risk. This means that these models are suitable for our target. More precisely,
we observe that, although GC and RF have comparable performance, for istat,
that is extra imbalanced, GC performs slightly better than RF on the low risk
class. Moreover, ensemble methods also outperform the white-box classifiers and
again, their advantage is more evident in istat; especially, they considerably
improve the classification scores for the more di�cult category of low-risk users.
Indeed, we found that GC increases of 0.04–0.06 (0.09–0.13) points the Rlow

(Plow) of DT and of 0.28–0.33 (0.05–0.07) points the Rlow (Plow) of LR. Clearly,
these results contribute to have GC with the best F1low for every value of h,
while still maintaining a conservative behaviour highlighted by the high values
of recall on high risk class (Rhigh). Regarding voronoi, we further notice that,
although the data are more balanced, the ensemble methods always maintain
the conservative approach for high risk users (high Rhigh) while improving the
overall classification for low risk users (F1low). Overall, these results suggest that
GC is the most suitable option for our specific predictive task with RF as a close
second one.

Explaining Risk. Regarding the explanation task in our experiments, we em-
ployed Lore [11] and Shap [13]. We followed the experimental methodology
proposed in [11]: we selected the best models from the k-fold validation pre-
sented in Section 5 and its associated train and test datasets. In particular, we
used a RF and a GC model for h = 2 on the istat dataset. For Shap we trained



Bh
Class

Balance
Under-

sampling
Metric DT LR RF GC

h=2
High=28
Low=72

High=30
Low=70

F1high
0.71 (0.02) 0.65 (0.07) 0.75 (0.02) 0.80 (0.01)

Phigh 0.73 (0.01) 0.73 (0.02) 0.78 (0.01) 0.79 (0.01)
Rhigh 0.74 (0.04) 0.77 (0.03) 0.72 (0.02) 0.80 (0.03)
F1low

0.87 (0.00) 0.86 (0.01) 0.89 (0.01) 0.89 (0.00)
Plow 0.70 (0.01) 0.89 (0.01) 0.87 (0.01) 0.90 (0.02)
Rlow 0.85 (0.01) 0.82 (0.02) 0.91 (0.01) 0.86 (0.01)

h=3
High=55
Low=45

No under-
sampling

F1high
0.88 (0.01) 0.88 (0.01) 0.92 (0.01) 0.92 (0.01)

Phigh 0.89 (0.01) 0.88 (0.01) 0.91 (0.00) 0.91 (0.00)
Rhigh 0.86 (0.02) 0.89 (0.03) 0.92 (0.01) 0.92 (0.01)
F1low

0.84 (0.02) 0.82 (0.01) 0.87 (0.01) 0.87 (0.01)
Plow 0.80 (0.02) 0.83 (0.03) 0.88 (0.09) 0.88 (0.01)
Rlow 0.89 (0.02) 0.81 (0.02) 0.87 (0.01) 0.86 (0.01)

h=4
High=57
Low=43

High=40
Low=60

F1high
0.91 (0.00) 0.90 (0.00) 0.93 (0.00) 0.93 (0.00)

Phigh 0.91 (0.01) 0.88 (0.00) 0.92 (0.00) 0.94 (0.01)
Rhigh 0.91 (0.02) 0.92 (0.01) 0.92 (0.01) 0.91 (0.01)
F1low 0.84 (0.01) 0.80 (0.01) 0.87 (0.01) 0.87 (0.01)
Plow 0.84 (0.03) 0.84 (0.01) 0.85 (0.01) 0.85 (0.01)
Rlow 0.84 (0.02) 0.77 (0.03) 0.88 (0.01) 0.88 (0.02)

h=5
High=62
Low=38

High=50
Low=50

F1high
0.93 (0.01) 0.93 (0.01) 0.94 (0.00) 0.94 (0.01)

Phigh 0.92 (0.03) 0.90 (0.01) 0.94 (0.01) 0.95 (0.02)
Rhigh 0.93 (0.02) 0.93 (0.02) 0.94 (0.01) 0.94 (0.01)
F1low

0.83 (0.01) 0.80 (0.03) 0.86 (0.01) 0.86 (0.02)
Plow 0.83 (0.03) 0.83 (0.03) 0.86 (0.03) 0.86 (0.02)
Rlow 0.84 (0.03) 0.84 (0.03) 0.87 (0.02) 0.86 (0.03)

Table 3: Predictive models evaluation on mobility profiles derived from voronoi.

Setting Jaccard Coherence
Top-k

Features
RF 0.133 ± 0.063 0.472 ± 0.381
GC 0.096 ± 0.101 0.393 ± 0.038

No-zero
Features

RF 0.133 ± 0.063 0.816 ± 0.250
GC 0.165 ± 0.072 0.767 ± 0.232

Table 4: Shap vs Lore in the istat
dataset with h = 2.

LORE w
pop
home  0.36, Uhome  1722, E 

1.09, wwork  0.82 =) HighRisk

Fig. 2: Shap vs Lore: Table 4 quantifies the similarity between the two explanations.
Shap visualization (right) and the Lore rule (left) represent the explanations for a
specific record classified as high risk by gcForest.

the Kernel Explainer on the training dataset. For Lore, we chose a genetic gen-
eration of the neighborhood and the Euclidean distance as distance among the
neighbors. We performed a comparative analysis to evaluate the compactness
and comprehensibility of returned explanations. To this end, we considered the
diversity of the explanation structure provided by the two methods: Lore out-
puts rules with premises of variable lengths, while Shap, outputs the importance
of each feature in the data. Thus, we considered two di↵erent settings: i) no-zero
features, where in the Shap result we only keep features with importance values



di↵erent from zero; and, ii) top-k features, that tries to automatically identify the
k features with highest importance values. The value k depends on the record
explanation under analysis. To detect the best k for each explanation, we used
an elbow-like approach which, given the Shap result, first sorts in descending
order the importance values and then, calculates the segment s bounded by
the biggest and the smallest importance values. At this point, it selects the im-
portance value m with the maximum distance from the segment s. Thus, only
features with importance values greater than or equal to m are kept. For ana-
lyzing the compactness of the explanations we considered their average lengths:
Lore explanations have an average length of 2.9 ± 1.3 (RF) and 3.8 ± 1.4 (GC),
against the average lenghts of paths of the decision tree of 7.8 ± 1.5. Shap ex-
planations have an average length of 17.1 ± 3.1(RF) and 16.2 ± 3.2 (GC) for the
no-zero features setting, which decrease to 9.8 ± 6.3 (RF) and 8.3 ± 7.1 (GC)
for the top-k features setting. Hence, Lore provides more compact explanations
with respect to the paths of the decision tree and the Shap importance values.
We also compare the two explanation types in terms of semantic coherence. To
this end, we propose to use the Jaccard similarity to highlight the degree of
common features used for the explanations and coherence measure aiming at
capturing the percentage of features used in Lore explanations which are im-
portant also in Shap explanations. The Jaccard similarity measure, is defined as
1
n

P
n

i=1
F

lore
i \F

shap
i

F
lore
i [F

shap
i

while the coherence is defined as 1
n

P
n

i=1
F

lore
i \F

shap
i

|F lore
i | . Here,

Fi refers to the set of features included in the explanation for the record i.

Table 4 reports the results of the coherence analysis. Regarding the no-zero
features setting, we found out that the Jaccard similarity is close to zero, high-
lighting that the intersection of the two feature sets is quite small compared to
their union. Concerning the coherence, a value equal to 1 means that all the
features of Lore are also in Shap explanations. Results highlight that Shap
explanations contain the majority of the features used by Lore. In the top-k
features setting, we observe a general decrease in the values of both measures.
This means that the majority of the features that Lore uses in its rules are
actually among the least important features of Shap. Thus, when considering
only the top-k features the discrepancy between Shap important values and
Lore increases. Our analysis highlights that the two methods consider di↵erent
important features for providing explanations. Lore explanations tend to be
more compact and easy to understand due to the logic structure of the rules.
Shap outputs a visualization and a large amount of information, which might
potentially be di�cult for a user to navigate. Indeed, a large number of the
values of the importance features are close to zero. Moreover, given a feature
used in an explanation, Lore provides a richer information that could help in
understanding more about certain mobility habits that contribute to a specific
risk value. For example, let us analyze Figure 2, where we provide Shap (right)
and Lore (left) explanations for a high risky user according to gcForest. With
Shap a user can only understand which feature (with its specific value indicated
between parentheses) is important or not for classification, while the Lore rule
provides a user with a more detailed motivation, which includes the set of condi-



DT LR RF GC
Locs (0.45) Locs (0.35) Dsum (0.15) Locs (0.07)
Dmax (0.10) Ehome (0.14) Locs (0.13) Uwork (0.04)
Uwork (0.06) Ework (0.12) Locsratio (0.08) Locsratio (0.03)
Dsum (0.06) Wwork (0.10) Dsum (0.07) Uhome (0.03)
Uhome (0.06) Dsum (0.08) Uwork (0.07) D

trip
max (0.02)

Table 5: Global top-5 most important features of machine learning models.

tions on features that a user satisfies. For example, for the Lore explanation a
user can understand that their risk depends on the fact that she travelled more
than 0.09 km (Dmax), their home location is visited by less than 1772 distinct
users, and their work location is not enough popular in the data. This reasoning
is not supported by the Shap result. After the local explanation evaluation, we
also performed a comparative analysis of global feature importance among all
the ML models (Table 5). An interesting result is that the number of locations
(Locs) is the most important feature for LR, DT and GC, while for RF it is in
the second position. Moreover, LR is the only one which considers the entropy
of locations (home and work) as important features.

6 Conclusions
We have presented expert, a framework for predicting and explaining users’
privacy risk associated to the analysis of mobility data. expert exploits ML
techniques that are suitable to handle extra-imbalanced data and local explain-
ers to provide users with meaningful explanations about the predicted privacy
risk. The empirical evaluation of expert using real-world data demonstrate its
e↵ectiveness in predicting privacy risk and in increasing users’ self-awareness
in relation to potentially risky mobility behavior. The main limitation of the
framework is that it requires domain expertise for extracting users’ profiles for
the prediction. Our future research agenda includes the substantiation of the pre-
diction module by a ML model that does not require the extraction of mobility
features. This work could also be extended to generic sequential data.
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