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Abstract

The technological applications of the ferroelectric and antiferroelectric perovskite oxides are
extensive. With use cases ranging from ultrafast read/write memories to high energy density
storage devices, they are the subject of a vast body of research. In particular, these materials
have a rich history of discovery using ab initio techniques based on density functional theory
(DFT). While conventional implementations of DFT can be used to great avail, unfortunately,
calculations become prohibitively computationally expensive for simulations involving more
than a few hundred atoms; a situation often encountered. Many then migrate to lower levels of
theory embracing the mantra of ‘multiscale modelling’. While this in principle can be a good
idea, many move away from DFT too soon; neglectful of the latest advancements in large scale
DFT promising to restore quantum mechanical accuracy over larger length scales.

The scope of this thesis is tripartite. Firstly, we re-examine the Pb(Ti, Zr, Hf)O3 isoelectronic
series and the archetypal piezoelectric solid solution PbZr1−xTixO3 (PZT) by means of a
comparative lattice dynamical study. Dynamical instabilities at q away from high symmetry
points indicate competitive distortions over longer length scales than previously expected.
Studying their condensation with conventional DFT can then become of a prohibitive expense.
Further, a popular method designed to sidestep large scale simulations in some systems - the
virtual crystal approximation - is found to be insufficient to describe the character of these
distortions. Remarkably, when examining the phonon dispersions of antiferroelectric PbZrO3

and PbHfO3, they are found to be dynamically unstable and suggest that a Pnma structure is
more stable than the established Pbam. This stability is corroborated at the LDA, GGA and
meta-GGA levels suggesting a small modification to the known ground state.

Our second goal is to demonstrate the readiness of large scale DFT to accurately simulate
the perovskite oxides. Reformulating DFT in terms of the Kohn-Sham density matrix, we use
the CONQUEST code to study the structural and electronic accuracy resulting from the use of
basis sets of pseudoatomic orbitals (PAOs) compared to plane wave pseudopotential calculations.
Using PbTiO3, PbZrO3, PZT and other technologically important materials as test cases, we find
that a carefully designed basis of PAOs can rival the accuracy of plane wave calculations for
lattice constants, bulk moduli, charge densities and Bader-assigned ionic charges.

Equipped now with a method of proven robustness, we advance to our final goal: to target
otherwise intractable problems for standard DFT. Simulating thousands of atoms, we investigate
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ferroelectric domain morphologies in low-dimensional PbTiO3 films finding properties ripe
for exploitation in new functional devices. When mounted on a SrTiO3 substrate, we see the
emergence of exotic chiral textures as a result of an internal bias field born of the compositionally
broken inversion symmetry present in any film/substrate system. Strong coupling of local
polar modes to surface antiferrodistortions drives a previously unknown p(2 × Λ) surface
reconstruction; demonstrating unequivocally the local compliance of the two order parameters.
Finally, we investigate the interaction of engineered surface trenches with the domain structure
and alignment of domain walls informing advances in domain wall nanoelectronics.
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Impact statement

Solids condensing in the simple perovskite crystal structure give rise to a stunningly broad
array of phenomena. Many such phenomena are suited for exploitation in industry and novel
applications in nanotechnology. The ferroelectric & antiferroelectric perovskites treated in
this thesis are no exception. Lead zirconate promises use in next-generation energy storage
devices and thin films of lead titanate allow researchers to explore the formation and nature of
ferroelectric domains. When combined in an alloy, they form lead zirconate titanate; industry’s
favourite piezoelectric.

Using simulations based on quantum theory, we show that our understanding of these
materials is incomplete. We show that the crystal structure distorts over longer length scales
that was previously thought. Importantly, in the case of lead zirconate and lead hafnate, these
distortions are found to contribute to the stabilisation of the crystal structure. In turn, this informs
a new candidate for the ground state, different to the one reported in the literature (which has
been established since the 1980’s). Some of these distortions can cause problems for the quantum
mechanical simulation method. This is since, conventionally, the calculations take a prohibitively
long time to complete when we increase the amount of material we must study. We find that
adopting a non-conventional implementation of the theory circumvents this problem.

After proving the validity of our new method, we use it to study lead titanate on the nanoscale;
fabricated as an ultrathin film. Our simulations provide new insights for the manipulation of
ferroelectric domains and the domain walls. These findings have clear applications for new
low-dimensional functional devices, especially in the field of domain wall nanoelectronics. In
doing so, we also demonstrate to all that accurate simulations based on quantum theory can be
applied to the perovskites on length scales longer than previously reported. The program for
doing so - CONQUEST - is now, after 20 years of development, freely and publicly available.
This program shows promise to be widely adopted in the community.
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4.1 The structures used for the phonon dispersion calculations of Section 4.3.2.
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4.2 The soft mode phonon dispersion relations for PZT I:VI, the VCA, PTO and
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Since dispersions for PZT IV:VI were calculated on the primitive cell, no folding
takes place thus only one symmetry label is required. . . . . . . . . . . . . . . 113

4.3 Species projected phonon density of states D(ν̄) for PTO, PZO the VCA and the
PZT supercells over the imaginary wavenumber space. For the VCA calculation,
the gold curve is the PDOS of the alchemical 50/50 Ti/Zr atom whilst for the
supercell models it represents the sum of B-site PDOS. . . . . . . . . . . . . . 115

4.4 Visualisation of eigendisplacements described in the text following the same key
as Figure 4.1 but also with grey spheres representing Pb sites. i) The T4 modes
of PTO and PZO. Both Pb and counter-rotating octahedra are removed for clarity.
ii) The Γ+

4 distortion of PZT I (c-axes into page) and the M+
2 distortion of the

VCA from three viewing angles indicating out-of-phase rotation about three
axes of rotation iii) The antipolar ∆4 distortion of PZT III. Arrows indicate the
direction of the local polarisation. iv) The mixed antipolar/AFD M+

3 distortion
of PZT IV. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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4.6 The phonon dispersions of primitive Pbam PZO (blue) and PHO (orange). . . . 125
4.7 The two most important modes comprising the difference between the Pbam

and Pnma crystals for PZO and PHO. The magnitude of the displacement is
exaggerated. a) The T4 mode. ZrO6/HfO6 octahedra rotate in antiphase about
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blue: down, orange: left, green: right). Zr/Hf (inactive in this mode) has been
removed for clarity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

5.1 The crystal structures for all of the test cases in this chapter. We do not explicitly
show C or Ge since they are isostructural with Si in this work. Similarly, we do
not show STO since one only needs to exchange the A site of PTO for Sr. For
PTO and PZO, we also illustrate the paraelectric to ferroelectric and paraelectric
to antiferroelectric phase transitions, respectively. The responsible displacive
soft modes for the transitions are also indicated. . . . . . . . . . . . . . . . . . 141
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5.2 The Birch-Murnaghan equations of state for Fd3̄m Ge using plane waves (PW)
and the default ER PAOs. This test case shows the worst agreement with plane
waves. Each curve is shifted to the origin by the equilibrium energy and volume
as this allows for clearer comparison of the bulk modulus. . . . . . . . . . . . . 148

5.3 The charge density difference between PAO calculations and plane waves for
increasing PAO basis set size for cubic PTO (a) and cubic PZO (b). For each
case, we display the full 3d isosurfaces and slices through the PbO and BO2

planes. Isosurfaces are plotted at the +0.10 (dark red), +0.020 (light red) and
-0.020 (blue) electrons/Å3 levels. . . . . . . . . . . . . . . . . . . . . . . . . . 150
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increasing PAO basis set size for tetragonal PTO (a) and orthorhombic PZO (b).
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5.5 The charge density difference between PAO calculations and plane waves for
increasing PAO basis set size for Fm3̄m cubic PZT 50/50 (a) and Pm3̄m cubic
PZT 50/50 (b). For each case, we display the full 3d isosurfaces and selected
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5.6 The convergence properties of plane wave calculations where PAO calculations
featuring the same error have been overlaid for comparison. Calculations were
performed on the Pm3̄m PTO structure. a) Convergence with respect to the
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∆E, the energy difference between a given calculation and the energy obtained
from the 40Ha plane wave cutoff. . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.7 The phase transition energetics for PTO and PZO as function of normalised
mode amplitude. Points/crosses are calculated data whereas lines are linear
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1 | Introduction

Conventional simulations based on density functional theory (DFT) and plane waves have
undoubtedly accelerated discovery in the ferroelectric and antiferroelectric perovskites. Indeed,
much of their impact can be measured on the grounds that our current understanding of the
microscopic origin of ferroelectricity in the prototypes BaTiO3 and PbTiO3 (previously
understood on the basis of a classical shell model [1, 2]) is based upon the predictions of plane
wave DFT [3]. The long-term success of this conventional method has brought it into a status of
maturity within computational condensed matter physics, chemistry and materials science. With
this maturity has come an ingrained acceptance (within a large portion of the community, at
least) that the technique is not viable for simulations beyond a few hundred atoms; a
consequence of an O(N3) (where N is the number of atoms) asymptotic scaling wall in its
numerical implementation in standard codes [4, 5]. This belief is still held despite the enormous
effort of the past twenty years in breaking this scaling wall, bringing to fruition an
implementation of DFT scaling linearly with the number of atoms, or, O(N) [4, 6–12]. While it
is true that O(N) methods now allow for full DFT calculations involving many thousands to
millions of atoms [13], the method has not yet worked its way into the “simulation tool-box” of
many.

The reason for this is many-faceted. Firstly, DFT practitioners have become experts at fitting
the problem at hand into a supercell comprised of only a small collection of atoms. More often
than not, in the process of doing so they no longer solve precisely the problem they intended, but,
a model of reduced complexity. One may then assert that, more than anything, we have become
comfortable with the limitations of conventional DFT rather than truly circumventing the need
for more atoms in our simulations. The next reason is less psychological and more practical.
Within the vast zoo of conventional DFT codes† exist many with user friendliness at the forefront
[14, 15]. This makes these codes accessible for theorists and dabbling experimentalists alike;
“plug and play” quantum mechanics is realised. While this often obfuscates the inner workings
of the code making it a “black box”, this is most of the time permissible if one simply wishes to
perform standard total energy calculations (provided care has been taken in convergence studies).

On the other hand, O(N) codes have historically not provided such out-of-the-box
functionality. A lot of this is down to problems emerging from the use of a local basis. For

†Although, a lot of the animals in this zoo are remarkably similar.
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Chapter 1: Introduction 28

example, basis sets of pseudoatomic orbitals (PAOs; used for much of this thesis, described in
Chapter 3, Section 3.4.2) cannot be improved in a systematic manner, unlike plane waves, which
can†. This introduces an additional preparatory step where we must make a judicious choice of
basis set and carefully study the parameters of its creation. Addressing this problem is the focus
of Chapter 5 and as we will show, the default basis sets of PAOs which ship with the
CONQUEST (Concurrent O(N) QUantum Electronic STructure) code [7, 17] are now
remarkably accurate, offering near plane wave accuracy in most situations. The last issue we
shall discuss relates to access to ample computational resources. Although conventional DFT
calculations can be (and often are) a task for high performance computing (HPC) centres, useful
O(N) calculations demand HPC. Within the CONQUEST code, we recommend ≈ 10-20

atoms (5 at a push) per physical core for optimal load balancing; quickly making simulations of
tens of thousands of atoms require a few thousand physical cores! This requirement precludes
many from using such a code, leaving these calculations to expert HPC users familiar with the
parallelisation strategies for which the efficiency of O(N) calculations rely. As we detail in
Chapter 3, Section 3.4.5, using the multi-site support function (MSSF) method [18, 19] can
allow access to high accuracy calculations of a few thousand atoms without such a high demand
for computational resources. It is this method which we use for a large part of Chapter 6.

To solve some problems, we have no choice but to use a larger number of atoms. Many of
these scenarios can be realised within the perovskite oxides; the crystal structure central to this
thesis. This class of material, however, is more than a mere vector to exploit the functionality of
large scale DFT. They are highly technologically important. Since the phenomena of
ferroelectricity was observed in BaTiO3 in the 1940’s [20–22] there has been a boom in
exploitative technologies reliant on giant piezoresponses and switchable polarisation states. The
former is responsible for ultrasonic transducers; used in loudspeakers, headphones, microphones
as well as in sonar and many sensors and actuators. The latter is the basis for ferroelectric
memories‡; devices which store the direction of the spontaneous polarisation state of a
ferroelectric as a binary 0 or 1 [23]. These technologies have in recent years faced challenges as
the insatiability of device miniaturisation has continued. It is known that ferroelectric devices of
reduced dimensionality see their spontaneous polarisation degraded, eventually leading to a net
polarisation of zero [23, 24]. While it was originally thought that this signalled a finite size for
the existence of ferroelectricity, it was later realised that the net zero polarisation was the result
of equally sized and antiparallel ferroelectric domains separated by a domain wall [23].

The appearance of multiple domains and domain walls was once believed to be a great
drawback for low-dimensional ferroelectric technologies. While this is true if the device is

†Systematically improvable local basis sets do exist, (like b-splines [16] (blips), period sinc functions [9]
(psincs) and Daubechies wavelets [12]) but, are known to converge slowly and to sometimes require immoderate
optimisation.

‡There are two popular models for non-volatile memory using ferroelectrics. Those which utilize a capacitor set
up for random access memory - FeRAM and those which inform a variation on the field effect transistor - FeFETs.
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reliant upon a stable and unidirectional polarisation, it is not true if the device is intended for use
as a dielectric or piezoelectric. That is, polydomain films are known to give rise to enhanced
piezoelectric coefficients and dielectric properties in comparison to the bulk crystal [25]. The
domain walls themselves have now become an area of intense study. In particular, Seidel showed
that the domain walls in the (otherwise insulating) room temperature multiferroic† BiFeO3 were
conducting [26]. This shows promise to be exploited in new low-dimensional nanocircuits
whereby 2D conducting channels can deliver current to mounted nanocomponents [27–29] or
themselves become nanocomponents [29]. It is for this reason that there is an invested interest in
the field to manipulate and guide ferroelectric domain walls. One approach for doing so is to
temporarily (and reversibly) ‘write’ domains using targeted electric fields; a technique known as
‘domain wall injection’ [30, 31]. Another is to more permanently write domain walls by use of
etched surface trenches. This method is informed by the experimental observation that domain
walls tend to preferentially align to run parallel to surface defects; an effect first observed in thin
films of PbTiO3 in the early 2000’s [32–34].

Now the antiferroelectrics have also become technologically useful, principally as energy
storage materials. That is, when used in a dielectric capacitor, antiferroelectrics can give rise to
higher energy densities as well as higher power and charge release densities in comparison to
standard ferroelectric and linear dielectric capacitors [35]. It is almost surprising that applications
of antiferroelectrics have been realised when one takes into account just how little we know
about the physics of these materials. Despite being discovered nearly 70 years ago [36], the
very definition of the phenomenon remains cloudy [37]. In addition to this, the nature of the
archetypal antiferroelectric PbZrO3 is still a cause for debate and has in recent years undergone
an intense re-examination [37]. Most of this debate is related to the mechanism of the paraelectric
to antiferroelectric phase transition [38–41], but, as we introduce in this thesis, subtle distortions
at low temperatures may even suggest a different crystalline space group assignment to the
established Pbam [42].

It is now appropriate to clearly define the scope and goals of this thesis. These can be divided
into three parts:

1. To demonstrate the need for large scale DFT calculations within the
ferroelectric/antiferroelectric perovskites by establishing the importance of competitive
long range order in technologically important examples.

2. To demonstrate the readiness of large scale DFT to accurately solve problems within the
ferroelectric/antiferroelectric perovskites by use of compact and accurate PAO basis sets.

3. Finally, to deploy large scale DFT simulations to solve problems related to the formation of
ferroelectric domains and their manipulation that are otherwise intractable for conventional

†A multiferroic is a material simultaneously possessing more than one ferroic order parameter. In the case of
BiFeO3, the material is spontaneously ferroelectric and antiferromagnetic - a magnetoelectric.
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methods.

The first goal is addressed in Chapter 4. Using conventional methods, we critically examine
the lattice dynamics of PbTiO3, PbZrO3 and PbHfO3; the Pb(Ti, Zr, Hf)O3 isoelectronic series
[43]. The first two members of this series, in solid solution, form the most well known
piezoelectric material, PbZr1−xTixO3, or, PZT. In the region around x ≈ 0.52 (what is known as
the morphotropic phase boundary) PZT is famous for giving rise to a giant electromechanical
response which has long been exploited in industrial applications [44]. Within this chapter, we
compare the first principles obtained lattice dynamics of several arrangements of near
morphotropic (x = 0.5) PZT to find that phonons with q away from high symmetry points, or,
long wavelength modes, are in most cases dynamically unstable in the high temperature
paraelectric phases [43]. Further, the instability of these modes rival that of the more well known
ferroelectric and Glazer-type [45, 46] antiferrodistortive modes. Supercell calculations
commensurate with these long wavelength modes will consequentially require more and more
atoms. Further, we assess the usefulness of the virtual crystal approximation in simulations of
solid solutions. Historically, this method has been used to circumvent the need for large
supercell calculations [47–49]. We find, however, that the method inaccurately predicts the
character of phonon eigendisplacements. Now shown explicitly, this is a confirmation of the
suspicions of the DFT community that the method cannot accurately describe local atomic
distortions [50]. In a re-examination of PbZrO3 and PbHfO3, we find long wavelength modes
also compete. Informed by this, we analyse the stability of the established Pbam

antiferroelectric phase. Surprisingly, we find that this phase too is dynamically unstable and the
stability can be increased by allowing for a phase transition to the subgroup Pnma.

The second goal is fulfilled in Chapter 5. We carefully compare the default methods for
the generation of PAOs within CONQUEST. We study the effects of basis set completeness
by analysing the lattice constants and bulk moduli of perovskites and other materials [51] in
comparison to plane wave pseudopotential calculations. Then, motivated by the arguments of
Cochran [1, 2] and Anderson [52] on the soft mode theory of ferroelectricity, we assert that errors
in the electronic charge density can propagate to large errors in the description of ferroelectric
phases [53]. We see this come to light for small default basis sets of PAOs (where the error in
the charge density can be large) giving rise to a large super-tetragonality errors in the description
of PbTiO3. We find that larger PAO basis sets see the eradication of this error, which, in many
cases, lead to errors in the structural and electronic properties reducing to less than half a percent
when compared with plane wave pseudopotential calculations.

Now content with the accuracy of the approach taken in CONQUEST, we advance to
the third and final goal. In Chapter 6, we simulate low-dimensional PbTiO3 films using large
scale DFT in CONQUEST [54]. We begin by investigating the effects of broken inversion
symmetry present inherent in any film/substrate system. Using the most popular substrate for
the fabrication of PbTiO3 films, SrTiO3, we unveil a chiral phase transition between striped
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ferroelectric domains and a polar wave phase with cylindrical chiral bubbles. We reason that
this is born from the internal bias field present from the broken inversion symmetry. Since such
a bias field depends very sensitively on the boundary conditions for the film, it can be easily
manipulated allowing control over chiral polar order on the nanoscale. Further, we observe
strong coupling between local polar and antiferrodistortive modes which gives rise to to a surface
reconstruction commensurate with the domain period of the polydomain film. Such a mechanism
offers a promising pathway for the local manipulation of ferroelectricity should one be able to
engineer antiferrodistortions into a heterostructure, or, vice versa. Finally, we use the full force
of the O(N) algorithm to investigate the effects of engineered surface trenches on the alignment
of domain walls in free standing PbTiO3 films. We confirm the experimental observation that the
film geometry is more stable should the domain wall run parallel to the surface trench. We reason
that this stability arises from limited modulations to both the underlying polar texture and surface
strain fields of the pristine film. We also find that the introduction of such trenches gives rise to
giant strain and fields in the vicinity of the trench in line with experimental observations [55];
previously suggested to contribute to the domain wall alignment mechanism for large trenches.

Before delving into the results of this thesis, in Chapter 2, we provide a convenient overview
of many of the important phenomena which appear in the perovskite oxides. We detail the
fundamental theories which underlie much of our understanding of the ferroelectric perovskites
and provide historical accounts for the study of ferroelectricity and antiferroelectricity. Following
this, in Chapter 3, we survey the underpinnings of the quantum many-body problem and the
foundations of DFT. We pay special attention the modes of operation within the CONQUEST
code and methods for the calculation of phonon spectra. In the 7th and final chapter, we evaluate
the impact of this thesis and suggest new avenues for future research including what we believe
to be a logical continuation of this work.
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Chapter abstract

The perovskite oxides are the polymaths of condensed matter physics. They are well known to
draw from a far-reaching repertoire of useful and exotic properties enabled by their complex
and rich pressure-temperature (PT) phase diagrams and their sensitivity to epitaxial strain, small
compositional modulations, dimensionality and interfacial effects. A broad description of these
properties has now been covered in many detailed review articles including references [56–58].
Following these articles, it is the purpose of this chapter to provide an overview of the vast variety
of physical phenomena this materials class are known to give rise to. We pay special attention to
the phenomena of ferroelectricity, antiferroelectricity and the formation of ferroelectric domains
and discuss recent advances in these areas. In doing so we make reference to physical systems
relevant to this thesis. We detail important theories underpinning our understanding of these
materials including the Landau-Devonshire (LD) theory of phase transitions [59–63] and the
Berry-phase theory of electrical polarisation [64–68], (now also known as the modern theory of

polarisation). We describe the fundamentals of lattice dynamics with the goal of describing the
soft mode theory of phase transitions [1, 2, 52, 69, 70] as well as the key concept of dynamical
charge tensors [71–73]. We finish the chapter with remarks upon recent advances related to
ferroelectric domain wall control by means of engineered surface defects. This is a promising
avenue for the development of low-dimensional nanocircuits.

2.1 The ABO3 Factotum and Accomplices

The ABO3 crystal structure (Figure 2.1) is a factotum† of exotic phenomena. Compounds
adopting this crystal structure or its family of similar crystal structures (double perovskites,
hybrid perovskites, layered perovskites etc.) can give rise to distinctly different phenomena
based upon the choice of the A and B-site ions, position on the PT phase diagram, epitaxial
strain, doping conditions and much more. Interfacial phenomena are of a particular technological
relevance. Such phenomena appear at the interface of two different perovskites in systems known
as heterostructures. In the repeated and layered case, these are known as superlattices. At

†Translated from New Latin literally meaning ”do everything”. A factotum is jack-of-all trades.
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the interface of the ABO3 perovskites LaAlO3 (LAO) and SrTiO3 (STO), a two-dimensional
electron gas (2DEG) forms as the result of an electronic reconstruction due to the so called
polar catastrophe [74]. This is surprising seeing as both constituents of the heterostructure
are insulating and non-magnetic when the 2DEG is conducting (even superconducting [75,
76]) and under the right conditions can be ferromagnetic [77], can develop a large in-plane
magnetoresistance [76] and can even become photoconductive [78]. This leads to applications in
field effect devices and photovoltaics as suggested in a study on the similar LaVO3/STO interface
[79]

Many of the exotic properties found within this crystal family (illustrated in Figure 2.1)
are the direct consequence of the competing/coupling degrees of freedom of the system. Such
competitions/couplings are made possible due to the closely related energetics of spin, charge,
orbital and structural degrees of freedom [58]. For this reason we sometimes observe the
cooperative alignment of electric dipoles or spin leading to ferroelectricity (discussed further
in Section 2.2) and ferromagnetism. It is also possible, in some scenarios, to simultaneously
observe different ferroic order parameters in a group of materials known as the multiferroics,
host to valuable magnetoelectric properties [80]. A whole array of new couplings are obtained
when we consider heterostuctures. Take for example the 1:1 (or digital) PbTiO3 (PTO) STO
superlattice, i.e, alternating repeating units of PTO and STO with a period of a single unit
cell. It was found that structural modes otherwise unrelated to the electrical polarisation are
able to support it. In this case, these structural modes were related to rotations of the oxygen
octahedra, or antiferrodistortive (AFD) modes able to couple to the polarisation leading to the
phenomena of hybrid improper ferroelectricity by trilinear coupling [81]. Such effects become
apparent when examining the LD free energy expansion of the system; an expansion discussed
generally in Section 2.4. We are not limited to coupling just AFD modes. It is also possible
to couple Jahn Teller distortions (thus introducing orbital degrees of freedom) to create similar
effects [82–84]. It is possible to observe trilinear couplings in pure ABO3 perovskites, not just
heterostructures. It has been suggested that the paraelectric to antiferroelectric (AFE) phase
transition in PbZrO3 (PZO) is driven by a trilinear coupling of an AFD mode, an antipolar mode
and a mode resembling both antipolar and AFD order [85].

The PTO/STO heterostructure has more to offer. Take the case where we are in a capacitor
heterostructure setup with a dielectric (STO) and ferroelectric (PTO) layer like is shown in Figure
2.2a. Although initially sounding strange, in a certain temperature window, we can observe
a negative capacitance within the ferroelectric layer [87, 88]. How? First, consider the free
energy curves as a function of polarisation for the dielectric and ferroelectric layers in isolation
as shown in Figure 2.2b. For the dielectric layer, this curve is a simple parabola with a minimum
at zero polarisation. For the PTO layer, below the ferroelectric phase transition temperature
T PTO, bulk

0 , this curve has a characteristic double well appearance with a local maximum at zero
polarisation. So long as the combined heterostructure is held at T PTO+STO

0 < T < T PTO,bulk
0
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Figure 2.1: The ABO3 prototype crystal structure (upper centre) and a variety of the possible
order parameters/phases that can arise simply by engineering the A and B site cations. The
VESTA (v3) crystal structure visualisation program [86] is used to create crystal structure
images in this figure. Indeed, this program is used heavily throughout this thesis, so we thank the
developers here at its first use.
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Figure 2.2: The origin of negative capacitance in dielectric/ferroelectric heterostructure
capacitors. a) An illustration of a dielectric/ferroelectric capacitor heterostructure. b) The
free energy as a function of polarisation within the ferroelectric and dielectric layers as well as
the combined heterostructure.

(where T PTO+STO
0 is the temperature at which the entire heterostructure becomes polarised) the

free energy of the joint system must have a minimum at zero polarisation (as shown by the black
curve in Figure 2.2). Importantly, the minimum of the combined heterostructure coincides with
the local maximum of the free energy in the ferroelectric layer. This local maximum is enclosed
by two areas of negative curvature in the directions of positive or negative polarisation. Since
the dielectric stiffness κ is proportional to this curvature, in the ferroelectric layer, it is locally

negative. The formation of ferroelectric domains and domain wall motion are also known to
widen the temperature range that this effect is observed [88]. Also, rather exotically, sheaths

of negative permittivity have recently been found at the peripheries of polar skyrmions in the
PTO/STO system [89].

It has been theoretically proposed that thin films of ferroelectric PTO on dielectric STO
substrates (at a depth > 14 unit cells) are able to form a 2DEG and two dimensional hole gas
(2DHG) pair [90]. Although sharing the polar catastrophe scenario with the LAO/STO interface,
in this case, the polar discontinuity is a result of the ferroelectric polarisation of PTO and not

charged layers as is the case for LAO (nominally, LaO is +1 and AlO2 is -1 whilst PbO and
TiO2 layers are charge neutral). This 2DEG/HG pair has not yet been experimentally observed
since the stabilisation of a ferroelectric monodomain phase in PTO thin films competes with the
formation of ferroelectric domains which strongly reduce the depolarising field and thus remove
the need for the formation of mobile interface screening charges.

Random solid-solutions adopting the general structure of ABxB′1−xO3 are of a great
technological importance. A notable example (and relevant to this thesis) is that of
PbZrxTi1−xO3 (PZT). At a concentration x ≈ 0.52 [90, 91], we have the most abundantly used



37 Chapter 2: An Overview of the Perovskite Oxides

piezoelectric material. That is, a material where lattice strain and the electrical polarisation are
coupled. This electromechanical coupling peaks at x ≈ 0.52 for PZT in a small region known as
the morphotropic phase boundary (MPB). This boundary exhibits complex lattice dynamics
where a flat energy surface for polarisation rotation exists between the ferroelectric tetragonal
(polarisation parallel to [001]) and rhombohedral (polarisation parallel to [111]) phases via
intermediate monoclinic phases [90, 92, 93].

2.2 Ferroelectricity

A substance possessing both a spontaneous and switchable electrical polarisation (the electrical
dipole moment per unit volume of the sample) is considered ferroelectric. The etymology
of the word can be understood when considering its magnetic counterpart; a ferromagnetic
material. Here, the prefix “ferro”, that is, containing iron (sometimes “ferrous”) derives from
the simple fact that many ferromagnetic materials indeed contain iron. Now the prefix “ferro”,
by extrapolation, is used to describe any phenomena relating to an order parameter which is
both spontaneous and switchable by application of a conjugate field. That is, the magnetisation
(the magnetic dipole moment per unit volume of the sample) of a ferromagnetic material is
switchable in orientation through application of a magnetic field while the electrical polarisation
of ferroelectric material is switchable by application of an electric field. We see now that the two
phenomena share the same definition albeit with the replacement of the electrical polarisation
with the magnetisation.

2.2.1 Signatures of ferroelectricity

Here we discuss two reliable signatures which indicate whether the material in question is indeed
a ferroelectric. The first is a trace of the material’s P (E). Examining Figure 2.3, we can see
that the conditions indicated in the definition of a ferroelectric are fulfilled. At E = 0 we see
that there still exists a polarisation in the material. This is the remanent polarisation Pr (or
spontaneous polarisation, Ps). We see that with large E we can increase P further but arrive
at a point where no further advances can be made. This is the saturating polarisation Psat. We
now reduce E eventually entering a region where E becomes antiparallel to P . Not too long
after this, we find that P = 0 then flips sign thereafter†. The field at which this occurs is known
as the coercive field Ec. We see now that the second condition of a ferroelectric has been met;
the polarisation is switchable. We recognise now that the trace of P (E) is that of a hysteresis
curve, a sought-after experimental signature of ferroelectricity. However, one must be careful in
the identification of ferroelectric hysteresis. It has been demonstrated that lossy dielectrics can
show a similar signature in the controversy known as the ‘ferroelectric bananna’ [95]. This effect

†The reader is alerted that this is a much simplified discussion of the switching process. In reality, domain wall
motion drives the switching dynamics. This is a topic of current research [94].
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Figure 2.3: The hysteresis curves for a ferroelectric (a) and antiferroelectric (b) material under
poling by a uniform electric field. Important values of the polarisation and electric field are
labelled: the saturating polarisation Psat, the remenant polarisation Pr and the coercive field Ec.

results in cigar shaped curves which appear to share the features of a real ferroelectric hysteresis
curve but instead display the leakage current in the capacitor setup used in the measurement [95].
Recently, machine learning techniques have been deployed to distinguish non-ferroelectric loops
from ferroelectric ones with some success [96].

The other important signature of ferroelectricity can be appreciated from theoretical
standpoint; a double well in the free energy as a function of electrical polarisation, F (P ). We
touched on this in Section 2.1 when describing the phenomenon of negative capacitance in
dielectric/ferroelectric capacitors [88]. F (P ) should become double welled below the phase
transition temperature, or Curie temperature TC . In either of the two wells in the free energy, the
system should be polarised at a magnitude Pr (or Ps) and be thermodynamically stable. It is also
important that the system is unstable at the local maximum of P = 0, the stable system must be
spontaneously polar. We discuss this concept further in Section 2.6 showing explicitly how such
a free energy surface can lead to a third signature of ferroelectricity; dielectric anomalies.

2.2.2 A brief history

The study of ferroelectric materials has a rich history starting from as early as 1921 when
Valasek observed for the first time a ferroelectric hysteresis loop (and a piezoelectric response,
although previously measured in 1880 by the Curie brothers [97]) in the complex Rochelle salt
crystal structure† [99] (Figure 2.4, lower). In fact, the term ferroelectric had not yet been coined
and was instead referred to as Seignette electricity named after the apothecary who had first

†The crystal structure of the Rochelle salt, or, Potassium sodium tartrate tetrahydrate (KNaC4H4O6·4H2O) is
rather complex and was not discovered until twenty years after the discovery of ferroelectricity in the compound
[98].
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Figure 2.4: A timeline for the early years of ferroelectric research detailing the simplest known
ferroelectric compound versus the year. We see clearly then that the known prototype simplified
with time leaving us with the ABO3 drosophila we have today.

synthesized it in 1665, Elie Seignette, in La Rochelle, France. Its use was originally intended
as a mild purgative medicine which is somewhat at odds with the blockage in the flow of early
ferroelectric research caused by this clearly non-prototypic material. With a unit cell of 112
atoms [98], complex crystal chemistry and difficult experimental conditions, the Rochelle salt
was hardly a drosophila‡. So, from the point of view of wanting to find a physical description
of ferroelectricity, this turned out to be not such a great starting point. It likely slowed the
development of the field in the early years up until the discovery of ferroelectricity in KH2PO4

(KDP; Figure 2.4, middle) in 1935 [101].
KDP has a much simpler structure than the Rochelle salt and its chemistry was already

understood [102]. Because of this, a theory for the onset of ferroelectricity in the compound was

‡The drosophila (particularly D. melanogaster) is a fruit fly used extensively as a model organism in genetics
research due to its simple genome (which has now been fully sequenced [100]). Used metaphorically in the text, the
Rochelle salt was no model system.
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quickly devised related to the different possible arrangements of hydrogen bonds and a preferred
axis for the alignment of the (H2PO4)− dipoles. [103]. What is often overlooked was the role
of the similar compound ammonium dihydrogen phosphate (ADP) in the KDP era. ADP is

not a ferroelectric like KDP but is instead an antiferroelectric, (discussed in Section 2.3). ADP
was found to have a marked piezoelectric response [104] which was exploited for submarine
detection [105] by sonar in World War II, replacing the by now obsolete Rochelle salt transducers
which were never really fit for purpose since the material is deliquescent (has a tendency to
absorb water).

The (admittedly short) age of KDP/ADP application ended shortly after the discovery of the
first ferroelectric ABO3 perovskite [22]: BaTiO3 (BTO; Figure 2.4, upper) [20, 21]. Devoid of
hydrogen bonding, strongly ionic and with only 5 atoms per unit cell, we have finally found
our prototype. The history surrounding the discovery of ferroelectricity in BTO in the midst of
World War II is in itself fascinating and I would recommend reading [106] for a full account. The
theory of the ferroelectric transition and application in piezoelectric ceramics would now flourish
following the explosion of perovskite ferroelectrics in the decade that would follow. Some notable
examples include LiNbO3 [107], KNO3 [108], PbTiO3 [109] and the solid solution families of
PbZr1−xTixO3 (PZT) [110] and Na1−xKxNbO3 [111]. Now equipped with simple ferroelectric
crystals, Devonshire [59, 60] would apply the phenomenological phase transition theory of
Landau and Ginzburg [112] to explain the ferroelectric transition in BTO. The reader is also
referred to the historical musings of Ginzburg [113] regarding the theory and his contributions
behind the iron curtain of the USSR.

Cochran and Anderson would independently and simultaneously develop the soft mode†

theory of ferroelectricity [1, 2, 52]. This theory is rather central to displacive ferroelectric phase
transitions and is described in detail in Section 2.6. This theory would then have the weight
of experimental observation added to it following numerous Raman spectroscopy [114, 115],
inelastic neutron scattering [116] and IR reflectance [117] studies. Indeed, the theory of Cochran
and Anderson would prove to be far more general than describing just the ferroelectric phase
transition, extending to soft phonon modes away from the zone centre [114] and even a theory of
magnetic phase transitions, or, magnon softening [118, 119].

Heading now into late 1960’s and early 1970’s, piezoelectric ceramics were now a commodity
dominated by PZT transducers. An accurate account of the developments in this era can be
found in the seminal book of Jaffe, Piezoelectric Ceramics [44]. It was during this period that
the theory of ferroelectricity would advance once more following the works of Aizu who found
and tabulated all of the spacegroups capable of the ferroelectric phase transition [120–122]. It is
clear now that a centrosymmetric crystal class cannot possess a spontaneous polarisation. When
also considering symmetries which allow for a divertible polarisation in a direction not opposite

†Although the soft mode theory was indeed developed by Cochran and Anderson, the idea of a soft mode was
founded much earlier by Raman studying the α-β transformation in quartz [69].
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to the current direction, there are in total thirty three crystal classes where ferroelectricity is
possible [120].

Also during the 1970’s the first signatures of improper ferroelectrics began to appear in
Gd2(MoO4)3 [123, 124]; classified by the onset of ferrroelectricity being only a secondary order
parameter in the phase transition. In addition, we note that although being discovered in the
1950’s, the 1970’s and 1980’s also produced important studies on the dielectric properties of the
relaxor ferroelectrics. These are crystals with a cubic symmetry condensing polar nano-domains
below a critical temperature known as the Burns temperature [125]. They are known to give rise
to a giant electromechanical response and a peak in the dielectric spectrum much broader than a
standard ferroelectric. The general properties of the relaxor ferroelectrics are described in [126,
127] and references therein.

We turn our attention now to a great advance in the theory of ferroelectric crystals. That is,
before the 1990’s the calculation of a ferroelectric’s intrinsic macroscopic polarisation was not
possible for infinite crystals described with periodic boundary conditions; the most common
setup for simulations of solids. It was only after the work of Vanderbilt, King-Smith [65] and
Resta [66] paired with the Berry-phase formalism [64] that this problem was solved. This work
became known as the modern theory of polarisation and is described in Section 2.5. Now well
into the 1990’s, calculations utilising Density Functional Theory (discussed in great detail in
Chapter 3) exploded onto the scene. In particular, the work of Cohen used the theory to produce
a first principles explanation for the origin of ferroelectricity in the perovskite oxides [3, 128].
Using the prototypical ferroelectrics BTO and PTO, it was found that Oxygen 2p-Titanium 3d
orbital hybridisation is essential for the onset of ferroelectricity [3]. It was also found that the
two perovskites differed in their ground states due to the partially covalent character of Pb-O
bonds versus the nearly completely ionic Ba-O bonds [3].

2.3 Antiferroelectricity

The definition of an antiferroelectric material is not as clear-cut as a ferroelectric one. There
have been several proposed definitions which are discussed and compared in [37]. We proceed
now with what I believe to be the most intuitive definition. That is, much like ferroelectrics,
antiferroelectrics can be considered as being related to their magnetic analogue, antiferromagnets.
In an antiferromagnet, local magnetic dipole moments oppose one another such that the substance
has a net zero magnetisation. In an antiferroelectric, local electrical dipole moments (often due
to the counter-displacements of metal cations as can be seen for PZO in Figure 2.5) oppose one
another resulting in the substance having a net zero electrical polarisation. Further, the reaction
of an antiferroelectric to an applied electric field is rather different to a ferroelectric (Figure 2.3b).
As a result of having zero spontaneous polarisation (P(E = 0) = 0), the hysteresis loop must
take on a pinched shape. There is some energy cost to align the counter-aligned dipoles which is
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overcome at some finite E. Once overcome, the crystal now exists in a poled ferroelectric phase
which defines another criterion for an antiferroelectric material; a competing ferroelectric phase.
The result of this is a double hysteresis curve as shown in Figure 2.3b. Such a property makes
this class of material particularly useful in energy storage devices [35].

2.3.1 An even briefer history

While Kittel’s definition of an antiferroelectric [129] dates back to as early as 1951, comparatively
little is known about these materials in relation to their ferroelectric counterparts. Accompanying
Kittel’s definition, in the same year, were the obseverations made by Shirane et. al [36] of
antiferroelectricity in PZO and in 1952 of antiferroelectricity in (Pb-Ba)ZrO3 and (Pb-Sr)ZrO3

solid solutions [130]. It was here that the definition of this class of compounds was added to
further by suggesting a competing ferroelectric phase: “It is concluded, from these situations,

that the antiferroelectric phase in pure PbZrO3 must be very peculiar, the free energy of this

phase being closely adjacent to those of a ferroelectric phase as well as another antiferroelectric

phase.” [130]. Such is the peculiarity of this phase that the currently accepted spacegroup (Pbam;
the crystal structure is displayed in Figure 2.5) was only decided upon in 1982 by the accurate
XRD/neutron diffraction studies of Fujishita et al. [42] after a number of failed space group
assignments by other studies†. Although it was long expected, it was later found that PZO’s
isoelectronic partner, PbHfO3 (PHO) was also a Pbam antiferroelectric, isostructural with PZO
[131].

Despite the complexity of the PZO and PHO crystal structure, these are still considered the
drosophila of antiferroelectrics. Should we cast our minds back to Section 2.2.2 (and to the
not-so-drosophila Rochelle Salt), it is clear that this complexity would wreak havoc for attempts
to determine the mechanism for the paraelectric to antiferroelectric phase transition. In fact, this
is still a topic for debate. Some argue that the Pbam phase is a ‘missed’ incommensurate phase
driven by the softening of a single lattice mode via flexoelectric coupling [38]. Some regard
this theory as being too exotic and claim that the work of Vales-Castro et. al [39] rules out this
mechanism since neither the flexoelectric or flexocoupling coefficients are anomalously high at
the Curie temperature. Further, the recent first-principles finite-temperature simulations of Xu et.
al [40] suggest that near the paraelectric to antiferroelectric phase transition temperature, no true
soft modes exist at all, suggesting the transition is order-disorder based [40]. This is in contrast to
the first-principles effective Hamiltonian model of Fthenakis and Ponomareva [41] who do find
explicit mode softening. As if there weren’t enough spanners in the works, the first-principles
determined Landau expansions of Íñiguez et. al [85] suggest that PZO (and probably PHO) isn’t
even a proper antiferroelectric, but, an improper one. That is, the antipolar Pb-O mode is only
secondary to the phase transition.

†The road to finding the currently proposed crystal structure of antiferroelectric PZO is documented nicely in
the paper by Fujishita et al. [42].
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Pb

O

Zr/Hf

Figure 2.5: The Pbam crystal structure of PZO/PHO from two different viewing angles. The left
figure has arrows on the Pb sites indicating the two-left two-right antipolar displacement pattern.
The right figure allows one to more easily see the antiphase rotations of the Zr/HfO6 octahedra
about the [11̄0] axis.

It is remarkable that is was only this year (2020) that evidence of a true and ‘proper’ displacive
antiferroelectric transition has emerged within francisite Cu3Bi(SeO3)2O2Cl [132]. This appears
as a single soft mode at the zone boundary (fractional q = (0, 0, 1/2)) measured by X-ray
scattering, Raman spectroscopy and supported with first principles results‡. If the history of
ferroelectricity has taught us anything, the discovery of this archetypal transition will likely
expand our knowledge greatly towards a full understanding of the antiferroelectric phenomenon.

2.4 The phenomenological Landau-Devonshire theory

The work enclosed within this thesis tackles ferroelectric phenomena from an atomistic
perspective. Another treatment, however, exists from a purely macroscopic perspective founded
only upon symmetry considerations and thermodynamics. It is the aim of this section to
introduce the reader to this purely phenomenological theory, presenting a simple picture of the
behaviour of a uniform, bulk ferroelectric near the phase transition temperature. This approach
is known formally as Landau-Devonshire (LD) theory [59, 60]. We note that whilst this theory
generalises for spatial gradients of the polarisation, with and without boundary conditions
(Landau-Ginzburg-Devonshire theory, or, LGD theory) these discussions are beyond the scope
of this section. The reader is instead referred to [61–63] and references therein.

We begin by presenting a postulate of thermodynamics. That is, the free energy F (specifically

‡Although, it is noted in [132] that the displacements predicted by the first-principles model (at 0K) are at odds
with the measured finite temperature displacement pattern.
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the Gibbs free energy) of a system in equilibrium can be specified completely by some special
variables pertaining to the system of interest. In the case of a spatially uniform ferroelectric
these are the temperature T , the polarisation P , the electric field E, the strain η and the stress σ.
In most cases, in fact, the free energy can be specified only by the three Cartesian components
of the polarisation, the six independent elements of the stress tensor and by the temperature.
It is useful here to work instead with the free energy density F (F =

∫
FdV ) which we now

Taylor expand in the vicinity of the phase transition, choosing the origin of the energy for the
unpolarised phase to be zero

FP =
1

2
aP 2 +

1

4
bP 4 +

1

6
cP 6 − EP +O(P 8). (2.1)

See that we have chosen to neglect stress and strain effects in this expansion, but, we will
come back to this later. The equilibrium of Equation 2.1 is found with elementary calculus (by
setting ∂Fp/∂P = 0)

E = aP + bP 3 + cP 5. (2.2)

We then obtain the linear dielectric susceptibility χ of the non-polar phase (i.e, above the
phase transition temperature) by finding the minimum of Equation 2.2 with respect to P and
then setting P = 0

χT>T0 =
1

a
=
P

E
. (2.3)

Within the framework of LD theory we now make the assumption that the quadratic coefficient
a is a linear function of the temperature close to the Curie point

a = a0(T − T0) (2.4)

where a0 is a positive constant. By inspection, then, we see that the reciprocal dielectric
susceptibility (or dielectric stiffness, κ) is the quadratic coefficient a

κT>T0 = χ−1
T>T0

= a0(T − T0). (2.5)

It is clear now that our system follows a Curie-Weiss law, implying some physical motive for
our choice of a(T ). We can now rewrite Equation 2.1 with the additional temperature dependence

FP =
1

2
a0(T − T0)P 2 +

1

4
bP 4 +

1

6
cP 6 − EP +O(P 8). (2.6)

If we then assume that the coefficients b and c are positive (c is in fact positive for all

known ferroelectrics [61]), we can see from Equation 2.6 that the behaviour of FP above T0 is
parabolic but below T0 develops a double well in the free energy density (Figure 2.6i). These
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Figure 2.6: The free energy density (as a function of polarisation), spontaneous polarisation and
dielectric susceptibility/stiffness (all as a function of temperature) for second (i - iii) and first (iv
- vi) order transitions as predicted by LD theory.
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two degenerate minima have finite polarisation in the absence of an applied field so correspond
to the spontaneous polarisation

Ps = ±
[a0

b
(T − T0)

] 1
2
. (2.7)

This gradual and continuous change in P near the Curie point is characteristic of a second

order phase transition. This transition is not common in the perovskite oxides but has been
observed for the onset of ferroelectricity in triglycine sulfate [133]. Given the same conditions,
we can also extract the dielectric susceptibility below T0

†

χT<T0 =
1

2a0(T0 − T )
. (2.8)

We should now consider the case where the quartic coefficient b < 0 and a0 > 0, c > 0. In
this case, we observe some rather different behaviour. We see now that even if T > T0, the
free energy density has multiple minima (Figure 2.6iv). We see a local minimum at P = 0 and
two mirrored minima at finite P . As we reduce temperature, the minima at finite P eventually
become more thermodynamically favoured than P = 0. The point at which this occurs is the
curie temperature, Tc. What separates this behaviour from the second order transition is the
sudden change in P at the phase transition temperature (Figure 2.6v) such that it discontinuously
falls to zero at T = Tc. This is known as a first order transition, describing the onset of
ferroelectricity in many perovskite oxides including the prototype BTO [59, 60]. We can also
derive Ps(T ) (Figure 2.6v), χ(T ) and κ(T ) (Figure 2.6vi) following the same procedure as
before.

We move now to consider the effects of strain (η) on the LD free energy density. This turns
out to be an important effect for most ferroelectrics due to a non-trivial coupling between strain
and polarisation. In fact, if we consider a uniaxial ferroelectric, cubic above Tc, (like P4mm

BTO or PTO) we see the development of tetragonality parallel to the polar axis at zero applied
stress σ. The tetragonal strain is therefore also a spontaneous quantity in a phenomenon known as
ferroelasticity. A simple symmetry argument deduces that the lowest order of strain/polarisation
coupling must be quadratic in P , ηP 2. A linear coupling, for example, would impact the free
energy density differently depending on the sign of P. This must be nonsense since in our
pseudocubic crystal, polarisation can develop along any one of the six symmetry equivalent
directions. Let us then expand the free strain energy density Fη

Fη =
1

2
Kη2 +QηP 2 +O(P 4)− ησ (2.9)

for coefficients K and Q. The first term is Hookean whilst the second is the result of the
symmetry of the transition. In general, other symmetries are allowed although we will continue

†That is, by setting P = Ps in the derivative of Equation 2.2 and solving the resulting quartic equation.
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with our pseudocubic example. Consider now the thermodynamic mimima with respect to both
η and P of the combined free energy density F = FP + Fη

∂F
∂P

=
∂F
∂η

= 0. (2.10)

The minimum with respect to η provides some interesting insight. For example, setting
P = 0 we once more find Hooke’s law, η = σ/K. Another case which is of importance in this
thesis is where we apply a stress to force the strain to zero. This condition occurs when we
mount a thin film upon a substrate, forcing the film to take on the lattice constant of the substrate;
known as a clamped system. Lastly, we apply the condition of zero applied stress to find the
spontaneous ferroelastic strain

ηs = −QP
2

K
(2.11)

confirming that at the lowest possible order of the expansion that ηs ∝ P 2. Should we then
set ηs = η for the combined free energy density, we find that the quartic coefficient (of P ) in the
expansion becomes

b′ =
1

4
(b− 2Q2/K). (2.12)

Recall that for a first order transition we have b < 0. Now with b′, the transition is even
more strongly first order, increasing also T0. We see also that should 2Q2/K > b > 0 a first
order transition now becomes second order for a clamped system. We observe this effect in
clamped BTO [134]. Indeed, choosing a substrate with a different misfit strain allows one to tune
the quartic coefficient of the free energy expansion to either strengthen or dull the ferroelectric
instability. Such an approach is often referred to as epitaxial strain engineering. This approach
has also been used to drive a second order transition in strained PTO [135] as well as driving
in-plane ferroelectricity in the incipient ferroelectric STO [136].

2.5 The modern theory of electrical polarisation

The modern theory of electrical polarisation was born from what was at the time perceived to be
a logical fallacy. Specifically, this fallacy was for the calculation of the macroscopic polarisation
of solids with periodic boundary conditions [67]. This comes about by taking a naive definition
of the polarisation, that is, the dipole moment, d, of a unit cell of the sample divided by the unit
cell volume Ω

P =
d

Ω
(2.13)

where d is defined in the standard way using the positions, ri, of an ensemble point charges
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Cells ⍺ and ⍺'

Cells β and β ' Δ

Figure 2.7: A polar and non-polar infinite 1D ionic lattice. When calculating the polarisation, we
see that it is many valued; dependant on our choice of unit cell.

qi

d =
∑
i

qiri. (2.14)

The reason this definition becomes troublesome is because, against our intuition, it leads to
the polarisation becoming a many valued quantity [65–67, 137]. This strange occurrence is a
consequence of the infinite definitions of a unit cell in any Bravais lattice. Take for example the
case of an infinite 1D perfectly ionic lattice with alternating charges of +1e and -1e (Figure 2.7).
Let us evaluate the polarisation (which in 1D is the dipole moment per unit length) for two valid
unit cells α and β for the non-polar lattice where ions are at the lattice sites a/4 and 3a/4. We
see clearly from Figure 2.7 that Pα = e/2 6= Pβ = −e/2. In fact, if we repeat this process for
other valid unit cells on the same lattice we will find that the polarisation takes on a range of
values constituting what is known as a polarisation lattice: −∞← -5e/2, -3e/2, -e/2, e/2, 3e/2,
5e/2→ ∞, or, ePq/2 ± nePq where Pq is the polarisation quantum†. It is important to note
that in this case the polarisation lattice is symmetrical about the origin which is indicative that
the system is non-polar [68]. This many valued nature of the polarisation greatly troubled the
theoreticians of the time leading to claims that the polarisation is not a valid quantity for systems
with periodic boundaries and that a finite sample must be used to calculate P. This thought is
rather worrisome in itself since then the polarisation would depend on the details of the surface
termination!

†Pq is defined by the change in polarisation for a unit cell by displacing an electron a full unit cell along a
lattice vector. In our 1D lattice, we see then that Pq = −1e [137].
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Some sense can be made from this many valued quantity if we examine how a measurement
of the spontaneous polarisation is taken in experiment. What is usually used is the Sawyer-Tower
configuration [138]. This is setup is rather simple. The material for which we wish to measure the
spontaneous polarisation of is placed between two electrodes. The polarisation of the material
then causes a build-up of surface charge at one electrode (as a mechanism of screening the
depolarising field) and a build-up of holes at the other electrode. If we then switch the direction
of the polarisation of the sample (as is possible by electric field for a ferroelectric), the electrons
and holes flow through a circuit connected across the electrodes such that there are electrons
where there were once holes and vice versa. The current generated from this switching flows
through a reference capacitor which then measures twice the spontaneous polarisation (2Ps). It is
clear from this measurement that what was actually measured was the difference in polarisation
∆P between the up and down polarised states and not the polarisation itself. Let us then extend
this logic to our infinite 1D ionic lattice. Consider now unit cells α′ and β′ in the polarised ionic
lattice of Figure 2.7. The cations have been displaced a small amount ∆ relative to the anions
(in a manner similar to what you would observe in a true ferroelectric phase transition). We
once again find that the polarisation for two unit cells are not the same, Pα′ 6= Pβ′ . Taking the
difference with the non-polar cells α and β, however, yields the same result independent of our
choice of unit cell

∆Pα = Pα′ − Pα = ∆Pβ = Pβ′ − Pβ = e
∆

a
. (2.15)

It is now clear that for a calculation of the electrical polarisation, we must instead talk
about the polarisation difference and not the polarisation itself. To do so in practice, we must
calculate the polarisation of two structures (usually a non-polar paraelectric reference and polar
ferroelectric structure) then take their difference. We must be careful, however, to ensure that
both structures share the same polarisation quantum Pq. This is usually checked by evaluating
several points on what is known as a polarisation branch. That is, we calculate polarisation as a
gradual function of the ferroelectric distortion - a branch - ensuring that the cases of maximal
and minimal distortion connect as a smooth function without discontinuity. In the case of our
infinite 1D ionic lattice, branches are simple linear functions of ∆, uniformly shifted upwards or
downwards in polarisation by Pq depending on our choice of unit cell. Such a process may now
be possible to bypass in some cases following the newly developed Berry flux diagonalisation
approach described in [139].

The perfect ionic lattice example is purely pedagogical of course. Real systems are usually
regarded as having a continuous electronic charge density n(r) as well as point ion-like cores.
Whilst the polarisation contribution from the latter is calculable in the manner considered before,
the calculation of the former takes more consideration. It is clear that n(r) need not be localised
to certain areas of a unit cell. Our system of interest could have a significant covalent character
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in its bonding which causes a problem for identifying a clear polarisable unit. Further, the
Bloch functions ψnk(r) underlying any lattice periodic wavefunction are intrinsically delocalised
in space. It is then useful to consider not the Bloch functions but their Fourier transformed
counterparts; Wannier functions (WFs) Wn(r−R) [140]

Wn(r−R) =
Ω

(2π)3

∫
1BZ

eik·(r−R)unk(r)d3k (2.16)

in unit cell R and where the integral is over the first Brillouin zone. This format is particularly
useful since we can, in real space, find the expectation value of the position operator† 〈r̂〉 and
treat the electrons belonging to the WF of band n as all being at this position. This position is
known as the Wannier centre r̄n

r̄n =

∫
W ∗
n(r)r̂Wn(r)d3r. (2.17)

Using the momentum space representation of the position operator r̂ = −i ∂
∂k

[141] and
substituting for Equation 2.16, we find that in terms of the lattice periodic part of the Bloch
functions (a proof for this step can be found in [142])

r̄n =
iΩ

(2π)3

∫
1BZ

eik·R
〈
unk

∣∣∣∣∂unk∂k

〉
d3k. (2.18)

We can now simply proceed as before, but, separating the electronic contributions from the
ionic cores

P =
1

Ω

(∑
i

(qiri)
ions +

occ∑
n

(qnr̄n)WFs

)
. (2.19)

As before, Equation 2.19 is a many valued quantity, now on a 3D polarisation lattice. We
then proceed to take the difference between two configurations (again, usually between a high
symmetry non-polar and a polar crystal), ∆P. With the help of Equations 2.18 and 2.19, we
have

∆P = Ps

=

[
1

Ω

∑
i

qi(r
f
i − r0

i )

]ions

− 2ie

(2π)3

occ∑
n

[∫
1BZ

eik·R

〈
ufnk

∣∣∣∣∣∂ufnk∂k

〉
−
〈
u0
nk

∣∣∣∣∂u0
nk

∂k

〉
d3k

]
(2.20)

for initial non-polar structure 0 and and final polar structure f . Once again, care must be

†Some care must be taken when considering 〈r̂〉 in systems in periodic boundary conditions. That is, following
the seminal work of Resta, the position operator (in standard Schrödinger representation in real space) for an isolated
system is not commensurate with a periodic one. A new definition for 〈r̂〉 is given in [67].
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taken to ensure both the initial and final structures exist on the same polarisation branch. Notice
that the second term of Equation 2.20 is the Berry phase developed by unk as it evolves along
the path of wavevector k [64, 65, 143]. It is for this reason that this approach is often referred to
as the Berry phase theory of polarisation. The Berry phase formalism appears also in other areas
of physics, well known for describing the Aharonov-Bohm effect [144] and the properties of
topological insulators [145].

From the definition in Equation 2.20, there are two paths to proceed for evaluating Ps in
practice. The first is to explicitly calculate the WFs† for the initial and final structures. This
is usually performed by computing the Wannier centres of the maximally localised Wannier
functions (MLWFs) for which the mean square of their positional spread is minimised with
respect to the phase of the Bloch functions [146]. We then take the difference in the two values
of P calculated trivially applying Equation 2.19.

The second approach is to perform the integral on the RHS of Equation 2.20. We first
calculate the matrix elements 〈unk|∂unk/∂k〉 by integrating along a string of k-points. We note
that since ∂/∂k is a vector derivative, we must calculate these matrix elements along three
non-collinear directions [137]. We then for each component of the polarisation take multiple
strings of k-points, calculate the Berry phase and average the value (thus performing the BZ
integral) over the number of strings used. We must take care here to converge these calculations
both with respect to the number of k-points in each string and with respect to the total number of
strings. We should also check that the calculated Berry phase for each k-point string exists on
the same polarisation branch. Failing to do so can cause the resulting polarisation from averaging
over strings to erroneously become close to zero.

We finish this Section remarking upon a useful definition sometimes used in this thesis for
the calculation of the spontaneous polarisation in the limit of large supercells (where the cell
dimensions L→∞) as suggested by Resta [147]. That is, the case where the BZ integral on the
RHS is converged with a single k-point; the Γ point. We simply replace this term with

lim
L→∞

∆P elec = − e

πL2
[Im ln det Sf − Im ln det S0] (2.21)

where Sf/0 is the connection matrix of the KS states for the initial non-polar or final polar
structure with elements

S
f/0
ij = 〈ψf/0n |ei

2πr̂
L |ψf/0n′ 〉. (2.22)

This is sometimes known as the two point Berry phase formula; often used for the calculation
of polarisation in Car-Parrinello simulations [148–150].

†Since the Bloch functions are defined only to within a phase factor, the WFs cannot be uniquely defined.
However, in accordance with Equation 2.20 we only need the sum over the Wannier centres to be well defined,
which it is.
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2.6 Lattice dynamics

The phenomenological LD theory described in Section 2.4 adequately explains the observed
phenomena near Tc of a ferroelectric phase transition. We must note, however, that the central
order parameter (along with other variables) for which we performed the expansion of the free
energy density was assumed a priori to be the polarisation P . In fact, it is clear that LD theory
makes no account for the microscopic origin of any order parameter but instead describes the
consequences of their onset. The soft mode theory described in this section addresses this
shortcoming for the observed phase transitions in many crystals. We note that whilst the soft
mode concept was developed originally for the description of the onset of ferroelectricity (and is
what we address mostly in this section), it has since become a far more general theory describing
many other structural phase transitions.

2.6.1 An overview of crystal vibrations

The soft mode concept is one rooted in the field of lattice dynamics. This field is concerned
with the temperature induced oscillations of a system of nuclei forming the basis of a crystal
lattice. The collective excitations of this oscillating mechanical field are known as phonons [72]
and are the main concern of this section. The evaluation of phonon modes (which equate to a
particular nuclear displacement pattern) and their frequencies are usually conducted assuming
the quasi-harmonic approximation. That is, nuclear vibrations behave as if they are a system
of interconnected harmonic oscillators [72]. We can then Taylor expand, to second order, the
total energy of this system in mechanical equilibrium with nuclei κ located at the Cartesian
coordinates Rκ,α [151]

E = E0 +
∑
κ,α

∂E

∂uκ,α
· uκ,α +

1

2

∑
κ,α,κ′,α′

uκ,α · φκ,κ
′

α,α′ · uκ′,α′ + ... (2.23)

where E0 is the total energy of the equilibrium system, α is a Cartesian direction, uκ,α is a
displacement from the equilibrium configuration and φκ,κ

′

α,α′ is the real space force constant matrix

φκ,κ
′

α,α′ =
∂2E

∂uκ,α∂uκ′,α′
=

∂Fκα
∂uκ′,α′

(2.24)

which we note has an infinite range for a system with periodic boundary conditions. We
can see that the second term of Equation 2.23 must vanish at the equilibrium since the forces
Fκ,α = −∂E/∂uκ,α = 0. The periodic boundary conditions permit a plane-wave solution for the
displacements [151]

uκ =Wmκ,qe
iq·Rκ−ωm,qt (2.25)

for phonon propagation wavevector q, polarisation vectorWmκ,q and oscillation frequency
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ωm,q. Substituting into Equation 2.23, after some manipulation, yields the eigenproblem

Dκ,κ′

α,α′(q)Wmκ,q = ω2
m,qWmκ,q (2.26)

where Dκ,κ′

α,α′(q) is the dynamical matrix [151] defined as

Dκ,κ′

α,α′(q) =
1√

MκMκ′

∑
α

φκ,κ
′

α,α′e
iq·R. (2.27)

We see then that the dynamical matrix is the Fourier transform of the force constant matrix
normalised by the nuclear mass Mκ [151]. Solving the eigenproblem of Equation 2.26 yields
the vibrational frequencies ωm,q and thus the important phonon dispersion relations as shown in
Figure 2.8 for cubic PTO. The mathematics laid out above may seem rather formal but are simply
an extension of a one dimensional simple harmonic oscillator obeying Hooke’s Law† to three
dimensions in periodic boundary conditions. This paints the picture that the quasi-harmonic
dynamical matrix is just a collection of spring constants, K.

If we are able to calculate the dynamical matrix of a system, we can solve the eigenproblem
of Equation 2.26 giving us access to the nuclear displacement patterns (the eigendisplacements)
and their frequencies of oscillation (the eigenfrequencies). Methods for calculating Dκ,κ′

α,α′(q)

using electronic structure calculations are discussed in Chapter 3, Section 3.5. Once we have
these quantities, they can be used to calculate many of the thermodynamical variables of the
system [151].

As we will later learn, the ferroelectric distortion arises from a polar phonon mode at the zone
centre q = (0, 0, 0) [109, 154]. It is appropriate then to discuss an issue implicit in the above
formalism for polar modes of this wavevector. This issue is with the eventual undefined nature of
longitudinal-optical-transverse-optical (LO-TO) splitting as q→ 0. An interesting discussion of
the physical origin of this phenomenon can be found in reference [155]. LO-TO splitting is best
understood with the aid of a figure. Modes participating in LO-TO splitting are usually accessible
to neutron scattering, so, we imagine we have a neutron of momentum ~q = ~(qx, 0, 0) incident
upon one of the mutually orthogonal axes of a cubic crystal as shown in Figure 2.9. This neutron
excites three polar modes. One in the direction of q (the LO mode) and two mutually orthogonal
to q (the TO modes; TO 1 and 2). Now, since these modes are polar, an internal electric field
is generated in the axis of the oscillation. We now take the dot product of q with this electric
field, finding that the only non-zero contribution comes from E ‖ q; the LO mode. This amounts
to an additional restoring force only for the LO phonon, causing its frequency to be shifted
upwards. This effect is accounted for implicitly in the calculation of Dκ,κ′

α,α′(q) for all q apart from
q = (0, 0, 0). Here, we find that q · E is exactly zero for all three excited modes such that no
splitting occurs. The result is a sudden and discontinuous degeneracy of the LO and TO modes

†Since F = −Kx for a Hookean spring and F = −mω2x for a simple harmonic oscillator, we see that
(K/m)x = ω2x which is rather reminiscent of Equation 2.26.
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; AFD ; AFD; FEa) b) c)

Figure 2.8: The phonon dispersion curves of Pm3̄m PTO as calculated with density functional
perturbation theory using the projector augmented wave method [152] and the LDA functional of
Perdew and Wang [153]. The ionic displacement patterns derived from the eigendisplacements
of the soft modes are displayed below the dispersion. a) The M+

3 mode featuring in-phase a0a0c+

rotations. b) The Γ−4 mode describing the ferroelectric distortion. c) The R+
4 mode featuring

anti-phase a0a0c− rotations.



55 Chapter 2: An Overview of the Perovskite Oxides
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Figure 2.9: A neutron of wavevector q = (qx, 0, 0), qx → 0 but qx 6= 0 is incident upon an
exemplar ionic lattice (+ve ions in red, -ve ions in blue). Three polar phonon modes are excited:
TO 1, TO 2 and LO. Each mode generates an internal E, but, only in the LO mode is its dot
product with q non-zero. The resulting force shifts the frequency upwards resulting in LO-TO
splitting.

at the Brillouin zone centre. For small q in a cubic crystal, it is found that this frequency shift of
the LO mode can be calculated with the well known Lydanne-Sachs-Teller (LST) relation [156]

ε0
ε∞

=
ω2
LO

ω2
TO

(2.28)

for low/high frequency dielectric constants ε0/ε∞ and LO/TO phonon frequencies ωLO/ωTO.
In general, however, we find that to include all symmetries (not just cubic) we must instead
add an additional non-analytical correction (NAC) term [151] to Equation 2.27 and evaluate the
shifted eigenfrequencies by solving the eigenproblem of Equation 2.26

NAC∆Dκ,κ′

α,α′(q→ 0) =
1√

MκMκ′

4πe2

Ω

(q · Z∗κ)α(q · Z∗κ′)α′

q · ε∞ · q
. (2.29)

Note that this equation is still undefined for q of exactly zero, but, defines the limiting case
for which we usually use to interpolate the phonon dispersion near q = (0, 0, 0). A property of
this correction which can be a cause for alarm for an observer of a phonon dispersion plot is its
directionality for non-cubic crystals. That is, some bands become discontinuous as we approach
Γ from different directions. This is completely natural consequence of ε∞ becoming anisotropic
and Z∗ gaining more unique elements (perhaps even becoming non-diagonal) in the non-cubic
space group. Explicitly, we see from Equation 2.29 that two different small q wavevectors, say
(δq, 0, 0) and (0, δq, 0) would yield a different value for the NAC. I must emphasise that such
discontinuities are not fictitious and are an observable phenomenon in inelastic neutron scattering
[157].



Chapter 2: An Overview of the Perovskite Oxides 56

2.6.2 Soft modes

The conceptual idea of a soft mode is profound to the field of structural phase transitions. It is
fortunately quite simple to understand within the remit of the lattice dynamics discussed in the
previous section (Section 2.6.1). The idea is rooted in a particular normal lattice mode exhibiting
an anomalously strong (but gradual) reduction in its vibrational frequency as temperature is
decreased [1, 2, 52, 70]. Close to the Curie temperature, Tc, the vibrational frequency is so
small that we are left with a now-static nuclear displacement pattern frozen in to the original
crystal†. This defines a symmetry lowering structural phase transition where the character of the
eigendisplacements uκ (Equation 2.25) describe exactly the details of the transition (although not
its equilibrium amplitude). Although this idea is generalised to normal modes at any wavevector
within the first Brillouin zone [70], zone centre modes are of a particular interest to this work.
Zone centre soft modes were the first to be studied in the perovskite oxides and are responsible
for the ferroelectric phase transition [1, 2, 52].

2.6.2.1 A microscopic theory of ferroelectricity

We proceed now following the arguments of Cochran [2] in his seminal work on crystal stability
and the theory of ferroelectricity. Cochran showed that it was possible to derive the Curie-Weiss
behaviour of ferroelectric near Tc from a purely atomistic perspective; reconcilable with the
macroscopic and phenomenological LD theory approach presented in Section 2.4. Let us begin
by quoting two empirical relationships describing the zone centre vibrational frequencies of
the LO and TO lattice modes of a diatomic cubic crystal. These equations are derived from a
classical shell model which was (at the time) found to perform well in describing the lattice
dynamics of sodium iodide [158]. These are

µω2
TO = R′0 −

4π

9Ω
(ε∞ + 2)(Z ′e)2, (2.30)

µω2
LO = R′0 +

8π

9Ωε∞
(ε∞ + 2)(Z ′e)2 (2.31)

for ion reduced mass µ, effective ionic charge Z ′, short range restoring force spring constant
R′0 and unit cell volume Ω. Primed quantities here depend on the parameters of the given shell
model which can be found in [158]. The first term on the RHS Equations 2.30 and 2.31 is
representative of short range restoring forces. You should see that including just this term would
be the result of equating the restoring force of a simple harmonic oscillator (F = −mω2x) to
the restoring force of a Hookean spring (F = −R′0x). The second terms of the same equations
represent long range Coulombic forces. Note that this term differs between Equations 2.30 and

†For the sake of clarity, the reason such modes are known as ‘soft’ is that this reduction in frequency is the
result of weaker or softer spring constants for the bonds describing the particular eigenmode.
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2.31 as a manifestation of LO-TO splitting as described in Section 2.6.1.
We examine now what happens as ωTO → 0 when T → Tc as would occur in a mode

softening. We argue that since the terms on the RHS of Equation 2.30 are linearly temperature
dependent due to vibrational modes having anharmonic contributions [1, 2]. We then postulate
that near Tc

µω2
TO

R′0
= 1− 4π(ε∞ + 2)(Z ′e)2

9ΩR′0
= γ(T − Tc) (2.32)

where γ is a positive temperature coefficient. If we now use the LST relationship [156] of
Equation 2.28 it can be shown that

ε0 − 1

4π
' ε0 − ε∞

4π
=

(ε∞ + 2)2(Z ′e)2

9ΩR′0γ(T − Tc)
=

C

T − Tc
(2.33)

such that a Curie-Weiss law is followed with Curie constant

C =
(ε∞ + 2)2(Z ′e)2

9ΩR′0γ
' ε∞ + 2

4πγ
. (2.34)

We have now shown from a microscopic origin the same anomaly in the dielectric
susceptibility as was predicted by the phenomenological LD theory in Section 2.4. This is
important because it allows us to consider the nature of the forces which drive the ferroelectric
instability. Clearly from Equation 2.32, ωTO is a decreasing function of decreasing temperature;
exactly zero frequency at T = Tc where the TO mode has frozen into the crystal. Consider now
what must occur for the terms on the RHS of Equation 2.30 to allow for ωTO = 0. That is, the
short range restoring forces must be equal to the long range Coulombic ones. It can be deduced
then that short range restoring forces stabilise the crystal in its cubic structure against the
destabilising Coulomb forces which quench ωTO, favouring ferroelectricity.

2.6.2.2 Some practical implications at 0K

It is useful to discuss now the implications of this microscopic theory when working at a
temperature of 0K. As we will learn in Chapter 3, Section 3.2, our main simulation method,
DFT, is a theory which operates (most of the time [159]) at 0K. At T = 0, we are of course
working below the phase transition temperature and some artefacts of this do arise. Take now the
example of PTO. Despite being a high temperature phase, the cubic Pm3̄m crystal structure of
PTO is metastable at 0K. This is since the high symmetry structure is such that the forces on
each ion are equal and opposite thus defining a static equilibrium. We then ask the question, in
such a metastable phase, what would happen to the frequency ωTO? We see that below Tc, the
RHS of Equation 2.32 becomes negative. If we then evaluate ωTO we find that it is an imaginary

frequency.
A lattice ‘vibration’ of an imaginary frequency is clearly not a vibration in any standard sense.
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Its meaning, however, can be derived simply with some high-school Physics [160]. Making use
of Hooke’s law and the vibrational frequency of a simple harmonic oscillator (here chosen to
model the vibration of ions), we have

ω =

√
K

m
=

√
−1

m

dF

dx
. (2.35)

Consider now the sign of dF/dx. dF/dx < 0 gives real ω; a small ionic displacement dx
produces a restoring force −dF . dF/dx > 0 gives imaginary ω; the displacement dx now
produces non-restorative dx. In this latter case, our ‘springs’ push the ions in a pattern defined
by the eigendisplacements of the particular mode and force a structural phase transition. When
such a situation arises in any crystal lattice, we refer to it as a dynamical instability.

Referring back to our metastable cubic PTO crystal, we see that when we calculate the
phonon dispersion relations (ωm(q) or its reciprocal, the wavenumber as νm(q) shown in Figure
2.8) we have real ω for most branches but near three important regions: the Γ,R andM -points we
have imaginary ω [43, 154]. If we examine the corresponding eigendisplacements uκ at each of
these points we find some important distortions. At the Γ-point we find the eigendisplacements of
a ferroelectric distortion (Figure 2.8b) and at the R and M points we find the eigendisplacements
of a0a0c− (Figure 2.8c) and a0a0c+ (Figure 2.8a) AFD distortions respectively [43, 154].

It is commonplace to label these modes using group theory. Each mode is assigned an
irreducible representation or irrep from a list of possible labels for a given parent spacegroup
[161]. In the case of PTO, the soft mode irreps of the parent Pm3̄m spacegroup are Γ−4 , R+

4

and M+
3 respectively [43, 154, 161]. If a structure has multiple dynamical instabilities, it is

not guaranteed that the groundstate structure will include all of these. Again, our Pm3̄m PTO
example has three instabilities but only one (the ferroelectric Γ−4 mode) condenses in the phase
transition to the P4mm spacegroup. It is also not the case that only one irrep must condense
during the phase transition. In the Pm3̄m paraelectric to Pbam AFE phase transition of PZO,
the AFE structure condenses six distinct irreps [38]. It is then the task of simulation to explore
each of the dynamical instabilities (and their combinations with each other) to determine which
combination of irreps produces the lowest groundstate energy. One way of doing so would be to
include one irrep at a time. Once an irrep has been introduced (at its equilibrium amplitude, found
by relaxing the structure) we calculate ωm(q) for the new structure and check for imaginary ωm.
This process is repeated until ωm(q) ∈ R throughout the entire first Brillouin zone. We must
also consider that the final structure after this process could be dependant on the irrep path taken,
so, for completeness, we must check all available paths.



59 Chapter 2: An Overview of the Perovskite Oxides

2.7 Anomalous dynamical charges

It is now convenient to discuss in more detail the concept of dynamical charges. These are related
to the change in polarisation induced by atomic motion. The magnitude of these charges are
found to be anomalously large [162] (compared to the nominal or static charges, say) in the
perovskite oxides serving as a signature of the instability of a crystal against the ferroelectric
distortion. There are in fact several definitions for the dynamical charge which relate to the
different relationships between the electric field E and polarisation P and on the boundary
conditions of the system [73] (i.e, is this system periodic or isolated?). The most common
definition used in the study of the perovskite oxides is the Born effective charge [71, 72] or
transverse charge which is defined at a macroscopic field of E = 0 in periodic boundary
conditions. This quantity is a Cartesian tensor whose matrix elements are defined as

Z∗κ,αβ = Ω
∂Pβ
∂uκ,α

∣∣∣
E=0

(2.36)

for atomic species κ, Cartesian directions α and β and displacements of a
symmetry-equivalent periodic sublattice of ions uκ,α. It useful to consider these charges as being
comprised of two components. We can explore the nature of these components in a pedagogical
sense by evaluating the dynamical charge of an isolated diatomic molecule in one dimension. A
convenient definition for the static charge in this scenario would be Z(x) = d(x)/x (note the 1D
dipole moment d(x) from Equation 2.14). We can then evaluate the dynamical charge

Z∗(x) =
∂d(x)

∂x
=

∂

∂x
[xZ(x)] = Z(x) + x

∂Z(x)

∂x
. (2.37)

The first term on the RHS of Equation 2.37 is just the static charge. The second term is
an additional dynamical contribution (sometimes referred to as the anomalous contribution)
relating to the rate of change of the static charge when the atom is displaced. This contribution is
the direct result of changes in the overlaps of atomic orbitals thus varying the degree of orbital
hybridisation. This effect is referred to in the seminal work of Dick and Overhauser [163] as
“exchange charge polarisation”. In systems like the perovskite oxides where Z∗κ,αβ has a large
dyamical contribution, cation displacements force electrons to move in the opposite direction to
the displacement. The opposite is true for anion displacements; holes are forced in the opposite
direction to the displacement. Z∗κ,αβ can be calculated easily in first principles calculations either
by evaluating Equation 2.36 with a finite differences approach (since we know how to calculate
P following Section 2.5) or with a perturbation theory approach [164–166]. Such calculations
have made it possible to probe which orbital hybridisations are responsible for the anomalous
Z∗κ,αβ using band-by-band decompositions. For BTO, the large anomalous charge of Ti (≈+7.25,
compared to a nominal charge of just 4) can be understood by changes in the hybridisation of
O 2p and Ti 3d orbitals. That is, the Wannier centre of the O 2p bands is found to displace in
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a direction opposite to Ti producing the effect described above [73]. In fact, this mechanism
persists for most ATiO3 perovskites [73]. Notably, for PTO, Pb-O hybridisation also makes an
important contribution [3, 167].

An obvious consequence of anomalous Born effective charges is that relatively small ionic
displacements can generate large dipole moments, large values for the spontaneous macroscopic
polarisation of a ferroelectric phase and giant destabilizing coublombic fields [162] (which you
will recall from Section 2.6 drives the ferroelectric transition against short range restoring forces).
In fact, a minor reworking of Equation 2.36 yields the linear approximation for the spontaneous
polarisation, Ps,α, first noted by Resta [66]

Ps,α =
1

Ω

∑
κ,β

Z∗κ,αβ∆uκ,β (2.38)

where ∆uκ,β is an atomic displacement from a non-polar reference structure (which is often a
cubic Pm3̄m phase). We note that this definition has no conceptual issues with the modern theory
of polarisation as described in Section 2.5 since we are calculating a polarisation difference
∆P = Ps between a non-polar reference and a distorted structure on the same polarisation
branch [137]. This approach allows one to estimate Ps of a ferroelectric phase using only atomic
displacements and the Born effective charge tensors of a high symmetry phase. It may seem
counter-intuitive that a constant value of Z∗κ,αβ can be used in such a calculation since we may
expect this to alter over the distortion path due to changes in orbital hybridisations. Recall,
however, (from Equation 2.37) that the anomalous contribution originates from the rate of change

of orbital hybridisation and not the current level of hybridisation [154]. The former may be
fairly constant throughout a distortion path† (although one should check this) allowing Equation
2.38 to provide good estimates of Ps. Equation 2.38 can also used to define a local metric of
the polarisation. This is a particularly useful probe when considering inhomogeneous systems
where dipole moments alter locally (like near a domain wall or surface). Such a procedure is
usually carried out by partitioning the system into many ‘local unit cells’ and measuring their
displacements from a cubic phase. We make use of this approach regularly in Chapter 6 to create
local polarisation vector fields to provide a visualisation of complex polar textures.

2.8 Ferroelectric domain structures

In our previous discussions, we have considered only the case where the ferroelectric polarisation
is entirely uniform throughout a sample. Such a scenario is not physical reality. In fact, even
in a sample free of obvious inhomogeneities (like defects and strain fields), we still see the
organisation of local electrical dipole moments into distinct domains, separated by a domain

†Examining Z∗Ti in the cubic (+7.06) and ferroelectric tetragonal (+6.71) phases of PTO (with an LDA-DFT
calculation) shows a drop of just 4.95% over the phase transition path [162]. This difference is even smaller for the
other species.
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wall (DW). This phenomenon is the result of the finiteness of a real sample. Let us conduct a
thought experiment. Should we take a uniformly polarised finite crystal, merely the condition
that the crystal is polarised means that positive charge is displaced towards one surface and
negative charge is displaced towards the opposite surface (often termed the polarisation charges
[168, 169]). This separation of charge has now made our sample a capacitor with an electric
field opposite to the direction of the polarisation that had created it. This field is able to suppress
the polarisation so is often termed the depolarising field [168, 169]. Now, the configuration
of the local electrical dipole moments in our sample will reorganise themselves into domains
(albeit with some non-trivial dynamics), reducing the electrostatic energy cost associated with the
polarisation charges. The exact domain structure that will form will depend very sensitively on
the electrostatic boundary conditions for the sample as well as the energy cost for the formation
of a DW. This delicate interplay makes the study of ferroelectric domain structures a rich and
interesting one.

The symmetry of the ferroelectric crystal being studied in part determines the morphology
on the resulting domain structure. For example, the tetragonal P4mm ferroelectrics (like PTO
and BTO) can only form DWs where the polarisation traverses an angle of 180◦ or 90◦. This is
due to the six symmetry equivalent axes for the polarisation of the parent cubic Pm3̄m space
group. This is in contrast to the room temperature multiferroic BiFeO3 (BFO) whose spontaneous
polarisation is aligned along one of the eight equivalent [111] directions of its psuedocubic parent.
In this case, there are three possible DWs: 180◦, 109◦ and 71◦ [168]. Of particular interest to this
thesis are the polar domain morphologies in the vicinity of 180◦ DWs in thin ferroelectric films.
That is, alternating domains with P ‖ [001] and P ‖ [001̄] in a stripe pattern (where [001] is the
out-of-plane direction for the film). This domain pattern forms as a result of strong depolarising
fields. At the nanoscale (and the limit of ultrathin films) it is true that the depolarising field
generated by the polarisation charges completely suppresses out-of-plane ferroelectricty for a
film with a single domain. It can be shown with simple electrostatics (assuming a uniformly
polarised film in a vacuum) that the depolarising field for such an out-of-plane polarised film is
given by [170]

Ed = −Pz
ε0

(2.39)

for out-of-plane polarisation Pz. If we take Pz to be the polarisation of bulk P4mm PTO
(measured between 57-100 µC/cm2 [171]), we can see that the depolarising field is truly gigantic,
∼ 102 GV/m and well beyond the required field to suppress the polarisation completely. The
polarisation charges can thus be heavily reduced should the film break into distinct domains
allowing out-of-plane polarisation to exist. To further reduce polarisation charges, local dipole
moments close to the surface/interfaces of the film tend to continuously and smoothly rotate to
be parallel to the surface/interface forming domain caps. This defines what are often termed
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flux-closure domains as seen in Figures 2.10a, 2.10ai, 2.10c. The local dipole moments gradually
rotate across the DW with the walls themselves now being the centre of counter-rotating polar
vortices (seen clearly in Figure 2.10ai). Under electric bias fields, the polar texture can be
manipulated to adapt a more ‘wave-like’ structure like is seen in Figure 2.10b. In general, flux
closure domains can be considered an intermediary between the sharp Kittel type domains
(Fig 2.10d) and Landau-Lifshitz type domains (Fig 2.10e). Despite all of this, the polarisation
charges cannot be entirely screened by the formation of domains because stray fields formed
in the vicinity of DWs add to the electrostatic energy cost. Undeterred by this, PTO films as
thin as three unit cells [32, 33, 172] have been shown to preserve out-of-plane polarisation in a
polydomain phase.

The presence of stray fields at DWs motivated Kittel to consider the relationship between
the strength of such fields and the equilibrium domain period Λ for 180◦ stripe domains in
ferromagnetic films [176]. As it turns out, the same arguments can be made when we replace
the ferromagnetic order parameter with the ferroelectric one. It was first realised that smaller
domains generated smaller stray depolarising fields. Kittel found that the energy density of a
domain Fdomain must be proportional to its period [176]

Fdomain ∝ UΛ (2.40)

for volume energy density U . One can then minimise the energy by simply reducing Λ. One
then has to consider that as Λ is decreased, the density of DWs in the sample must also increase
at a rate ∝ Λ−1. Since there is an energy cost for the formation of DW, this must also become a
factor in determining the domain period. Kittel stated that the DW energy density Fwall is related
to the surface area of the DW which itself must be related to the thickness of the film, t

Fwall ∝
σt

Λ
(2.41)

for DW energy density σ. Should we then minimise the total energy density with respect to
the domain period (that is, set ∂/∂Λ(Fdomain + Fwall) = 0) we arrive at the famous Kittel scaling
relationship

Λ ∝
√
t. (2.42)

The above has been shown to hold true for many ferroelectric films and superlattices. The
constant of proportionality for the Kittel law depends on many different materials properties
generally tending to be much larger for ferromagnets than ferroelectrics meaning ferroelectric
domains (and their DWs) have generally much smaller periods than their ferromagnetic
counterparts. This offers a clear advantage when it comes to device miniaturisation.

Aside from the flux-closure polar morphology, other interesting and potentially useful
arrangements of electrical dipole moments can exist. These include polar waves [174] (Figure
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a)

a i)

b)

c) d)

e)

Figure 2.10: Experimental, simulated and example images/diagrams of ferroelectric domain
morphologies. In all cases, arrows represent the direction and magnitude of the local ferroelectric
mode. a) A cross-sectional HR-STEM for a STO10/PTO10 superlattice, showing that an array
of vortex–antivortex pairs is present in each PTO layer definng a flux-closure domain pattern
from reference [173]. a i) A magnified image of a single vortex–antivortex pair, showing the
continuous and gradual rotation of the polarisation state within such vortex–antivortex pairs from
reference [173]. b) A phase-field simulation demonstrating the polar wave texture as predicted an
an intermediate phase in electric field switching of a PTO/STO superlattice from reference [174].
c) A first principles simulated flux-closure domain texture in the PTO6/STO6 superlattice from
reference [175]. The red area marks an area where an antivortex has formed. d) A schematic
of Classical Kittel domains where up the page is the out of plane direction. e) A schematic of
Landau-Lifshitz type domains. All images have been used with permission from the lead authors
of [173], [174] and [175]. Figure (a), (a i) and (b) are c© 2017 Springer Publishing and Figure
(c) is c© 2012 American Physical Society.
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2.10b), disclinations [177] and even the stabilisation of polar skyrmion phases [89, 178, 179].
Many of these morphologies can possess a finite spontaneous toroid moment (ferrotoroidicity)
and subsequently give rise to electrotoroidic, pyrotoroidic and piezotoroidic responses [174,
180, 181]. Interestingly, those morphologies with toroidal order are able to interact with time
dependent magnetic fields by producing a curling electric field by Faraday’s Law [181]. This field
is hypothesized to be able to switch the toroidal moment to another stable configuration offering
(amongst other things) an exciting alternative to ferromagnetic and ferroelectric memories [180,
181].

Before closing this section we stress that domain formation is not the only mechanism
existing to screen the depolarising field in thin films. In fact, domain structure formation within
thin films is mostly achieved under open circuit boundary conditions. Consider instead a thin
film sandwiched between two metallic electrodes. In this scenario, free charges within these
electrodes can migrate to the interface with the film to screen the polarisation charges [182]
(although, domains have been shown to persist in DFT calculations of BTO interfaced with
metallic SrRuO3 in a capacitor setup [183]). Indeed, the same mechanism is possible through the
adsorption of atmospheric adsorbates (like OH) and has been demonstrated by varying the partial
pressure of oxygen at an open surface [184]. In the absence of externally supplied mobile carriers,
it is possible that the film itself becomes conducting near the interfaces thus forming interfacial
2DEG/HGs in the polar catastophe scenario [90, 185, 186]. Finally, it is often overlooked
that that the depolarising field can be greatly reduced by the simple continuity of polarisation
across an interface. This is of course not possible at the interface with the vacuum but has been
observed in ferroelectric/dielectric superlattices where the dielectric layer can become polarised
[187, 188].

2.9 Alignment to surface features

As we have seen in Section 2.8, a large body of interesting physics stems from the discussion
of the possible polar morphologies that can be achieved in thin films. We note now, however,
that an increasing amount of research is now focused on the properties of the DWs. It has been
found that the 180◦ and 109◦ DWs in BFO are conducting at room temperature using conductive
atomic force microscopy [26]. Although the origin of this conductivity is still not a settled topic,
the very fact that sub-nm 2D conducting channels can exist in an otherwise insulating material
has very exciting ramifications in nanoelectronics. If one is able to manipulate and guide these
conducting DWs, the prospect of nanocircuits becomes a reality. Should this manipulation be
a reversible process (which can be achieved with applied fields [30]) we are then able to write
nanocircuits onto a ‘blank ferroelectric slate’ and remove them just as easily. This field is known
as agile circuit technology [27, 31].

There is promise that nanocircuits could be written permanently by etching patterns into the
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Figure 2.11: Maps of structural inhomogeneities in the vicinity of surface defects of PTO/STO
superlattice heterostructures. a) Map of the ε33 strain tensor element local to a surface defect on a
PTO/STO superlattice from reference [55] (scale bar 2µm). b) The evaluated strain gradients for
the strain field in (a) from reference [55] (scale bar 2µm). c-d) 500× 500 nm2 room temperature
tapping mode AFM images of surface steps and 180◦ stripe domains for epitaxially deposited
PTO on STO. Height is displayed with a color scale range of 0.8 nm. These images are taken
from reference [34]. All images have been used with permission from the lead authors of [55]
and [34]. Images (a) and (b) are c© 2017 American Physical Society and images (c) and (d) are
c© 2008 American Institute of Physics.
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surfaces of ferroelectrics. Although such circuits would not be considered agile, they could be
accomplished without the delicate control of applied fields. It was first noticed in early studies
of PTO films on STO substrates that DWs align with crystallographic steps of the substrate
[32]. This effect was imaged explicitly with AFM on the surface of epitaxial PTO [34] as shown
in Figures 2.11c and 2.11d. XRD confirmed alignment of the stripe domains to the edges of
surface steps and other surface defects [34]. It was shown that this alignment occurs in most
thicknesses of ultrathin films (< 11nm) apart from at low temperature and low thickness (<
3nm) where the stripe domain pattern tends to randomly align. There is now an effort to engineer
these surface defects. One study used focused Ar ion beams to mill surface defects [55]. Large
inhomogenous strain and strain gradients (Figures 2.11a and 2.11b) were found in the vicinity of
the defects suggesting that the alignment mechanism could be flexoelectric [55]. Another study
also used focused ion beams to etch surface defects on PTO/STO superlattices [189]. Like in
reference [55], a nanofocused X-ray beam was used to probe the local alignment of the stripe
domains in the vicinity of the defect. It was found that domain walls strayed no more than 20◦

away from the defect edge. Within this study, time dependent LGD theory was used to suggest
that the alignment mechanism is elastic; resulting from lowering of the bulk and electrostrictive
contributions to the free energy of the system since lateral mechanical constraints are released
[189].

There has been some effort to understand this alignment mechanism from the perspective of
atomistic simulations. An effective Hamiltonian method (parameterised from first principles)
was used to investigate alignment to surface steps in thin PTO films [190]. Interestingly, this
study found that the domain centroids (and not the DWs) recentered to align with the steps. It
was verified that the resulting domain configurations from steps parallel to the DW direction are
more energetically favourable than steps perpendicular to the DWs [190]. Notably, the latter
case was found to be an unstable structure for films thinner than 20Å (with a step height of 4Å).
DFT calculations have also provided some insight [191, 192]. One study showed that DWs
were pinned to the edges of crystallographic steps above a critical compressive strain [191] in
contrast to the effective Hamiltonian study mentioned previously [190]. It was also found that
FE modes local to the steps were enhanced when PbO terminated but suppressed at TiO2 steps
due to charge transfer mechanisms [191, 192].

It is then clear that there is little consensus in this area both for the mechansim of the
alignment (elastic, flexoelectric or a combination?) or for what specifically in the stripe domain
structure is pinned (the DW or the domain centroid?). Within this thesis, we add to this discussion
using large scale DFT methods. That is, previous DFT simulations of [191, 192] failed to treat
explicitly the interaction of a polydomain film with a surface trench. They were limited only to
treating monodomain in-plane polarisation (which they found had a tendency to spontaneously
form a polydomain film upon introduction of a surface step [191]) due to the computational
expense of DFT. The Monte-carlo simulations in [190] did treat the polydomain phase but (i)
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do not offer the same level accuracy of DFT (ii) did not treat the effect of a surface defect in
isolation; instead studying a periodic array of crystallographic steps. It is clear that large scale
simulations could provide insight into (ii) using a large supercell.





3 | Theoretical Background

Chapter abstract

The simulations enclosed within this thesis stand on the shoulders of a theory familiar (at least
in name) to condensed matter theorists, chemists and experimentalists alike: density functional
theory, or, DFT. Subsequently, most of this chapter is dedicated to its origins, implementation
and limitations. After presenting the foundations on which the theory sits, we provide an
overview of its standard implementation in periodic boundary conditions with plane waves and
pseudopotentials or with the projector augmented wave method. We then move to pay special
interest to the reformulated implementation of the theory within the CONQUEST code [7, 17,
193, 194] which allows for large scale DFT simulations for systems comprised of thousands (and
even millions [13]) of atoms; well beyond what is possible with conventional implementations.
This is the code of choice for simulations in Chapters 5 and 6 allowing us to simulate long range
order in the perovskite oxides with quantum mechanical accuracy. Lastly, we discuss the linear
response and finite displacement methods for the calculation of phonons which are central to
Chapter 4.

3.1 An introduction to the quantum many-body problem

A problem at the very foundations of quantum chemistry and condensed matter physics is
in how one extracts the wavefunctions from systems of interacting electrons and nuclei. In
principle, once one has the wavefunction, we have access to all of the properties of the system of
interest [195]. The problem is, the exact evaluation of the wavefunction for the fully interacting
system (the many-body wavefunction) is tremendously difficult once one has more than a couple
of electrons. Fully analytical solutions are only known for 1-electron-1-nucleus systems (i.e
Hydrogen and the hydrogenic ions [196]) and numerical evaluations become intractable around
5 electrons. This is particularly troublesome seeing as most systems of interest are much more

complex than this. The problem is made clearer if we consider the Hamiltonian of an interacting
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system of N electrons and I nuclei at coordinates rN and RI respectively

ĤMB = −1
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(3.1)
where we have used atomic units†. The first two terms featuring the Laplacian operators are

the kinetic energies of the electrons and nuclei respectively. The third term is for the Coulomb
interactions of electrons and nuclei and the last two terms are for the Coulomb interactions of
electrons with electrons and nuclei with nuclei respectively. Note that for the last two terms the
sums exclude self-interaction terms as well as featuring a prefactor of 1/2 to eliminate double
counting. Consider now the degrees of freedom the full many-body wavefunction must possess
when operated upon with this Hamiltonian in the time-independent (non-relativistic) Schrödinger
equation

ĤMBΨMB(r1, r2 . . . rN ,R1,R2 . . .RI) = EΨMB(r1, r2 . . . rN ,R1,R2 . . .RI). (3.2)

In three dimensions this is 3N + 3I . It is immediately clear that even if we could solve for
this many-body system, the storage of the wavefunction would be implausible. Take for example
a single atom of Pb with 82 electrons. The many-body wavefunction then has 249 degrees of
freedom. If we are to store this wavefunction on a uniform, course grid of 10 points per degree
of freedom, we would need 10249 points in total. If each point is stored as a 64-bit double in
memory, our many-body wavefunction would occupy ∼ 10238 terabytes of disk space - far in
excess of current estimates for the total number of atoms in the observable universe (∼ 1080; the
Eddington number [197]).

Let us now try to make this problem more tractable. A good first step is to separate the
electronic and nuclear degrees of freedom in what is known as the Born-Oppenheimer (BO)
approximation [72, 198]. One way of looking at this approximation is that it is permissible
when the timescale associated with nuclear motion greatly exceeds the electronic timescale.
That is, within the BO approximation, we expect electrons to instantaneously adapt to a new
nuclear potential. This is very often justified as electrons are much less massive than the nuclei.
Alternatively, the BO approximation is well justified when the energy gap between ground
and excited electronic states exceeds the energy scale of the nuclear motion, causing beyond-
BO effects where this condition isn’t met [199, 200]. A step which almost always follows
the BO approximation is to treat the nuclei as classical point particles. This is generally a
good approximation with the exception of some light nuclei where a full quantum mechanical
treatment may be required. The problem is now reduced to finding the solutions for just the

†1/(4πε0) = ~ = e = me = 1.
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electronic wavefunctions in the presence of a static field of classical point charges. This makes
the computation of nucleus-nucleus and electron-nucleus terms tractable, but, we are still left with
the many-body nature of the electron-electron terms and thus a 3N-dimensional wavefunction.
This problem is clearly still intractable following the same arguments from before.

It is then the purpose of much research in quantum chemistry to find approximate solutions
to the exact many-body electronic wavefunction. Whilst many such methods exist (and a variety
are summarised succinctly in [201]) the focus of this thesis is aimed towards the DFT solution.
As demonstrated in the previous chapter, DFT has a history for making accurate predictions in
ferroelectric materials, so, makes for a good choice when studying the systems in this thesis.
What now follows is a brief introduction to the theory in terms of its core tenets and limitations.

3.2 Fundamentals of density functional theory

This section details the necessary foundations of DFT. While it is safe to assume that these
discussions are now textbook, we include them here for easy reference in the proceeding sections.
For an in-depth discussion of the topic, we direct the reader to the comprehensive reference texts
by Martin [202], Parr [203], Dreizler [204] and Burke [205] and for a more gentle, pedagogical
introduction, the book by Kohanoff [206].

3.2.1 The Hohenberg-Kohn theorems

As we have noted before, the many-body wavefunction (due to its many coordinates) is an
intractable object to store in memory, let alone solve. This motivates a search for a different
fundamental concept from which we can evaluate the ground state properties of a system. As it
turns out, we can steer away from the full many-body wavefunction by instead considering the
ground state charge density n0(r). Let us now examine the theorems of Hohenberg and Kohn
(HK) or the HK theorems [207] which demonstrate why such a change of focus is valid.

HK theorem I: let n0(r) be the (possibly degenerate) ground-state density for an N-electron

system. Then, n0(r) determines not only the electron number

N =

∫
n0(r)d3r (3.3)

but also uniquely† defines the external potential‡ vext(r), the Hamiltonian Ĥ and thereby

everything there is to know about this system.

†The uniqueness of vext(r) for a given n(r) doesn’t guarantee that vext(r) exists for any n(r). An electron
density n(r) for which the associated vext(r) does exist, is called v-representable.

‡Apart from by an additive constant - i.e, if one were to shift the potential uniformly up or down by a constant
amount, the same n0(r) would result.
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We refer the reader to [207] for the original reductio ad absurdum proof of this theorem.
Practically, HK I means that one need not evaluate the many-body wavefunction directly to
obtain the ground state properties of the system. Instead, the much more pallatable
3-dimensional n0(r) gives us access to these. Further, the theorem asserts that for a given
external potential†, vext we can uniquely define n0(r).

HK theorem II: For any given external potential vext(r), a ground state total energy

functional of the density exists and can be found subject to the variational principle

Etot ≤ F [n(r)] +

∫
vext(r)n(r)d3r (3.4)

where F [n(r)] is a universal, system independent functional whose exact form is so far

unknown. Equation 3.4 only reaches equality when n(r) = n0(r), the ground state charge

density.

The proof of this theorem is found simply by applying the variational principle of quantum
mechanics‡ [209]. This theorem offers a significant advantage from a computational standpoint.
If a procedure can be devised to search for the ground state density, its convergence can be
strictly monitored since no density can yield an energy lower than the ground state density. Even
given these two theorems, we are still left with two glaring questions:

1. Naively, the charge density is related to the many-body wavefunction by n(r1) ≡ n(r) =

N
∫
| Ψ(r1, r2, . . . , rN) |2 dr2 . . . drN . This doesn’t help, however, since we still need

to evaluate the intractable many-body wavefunction. Given this, how to we practically
calculate n(r)?

2. If the exact functional form of F [n(r)] is unknown, how do we evaluate the ground state
energy in accordance to Equation 3.4?

A scheme for answering the first question now follows in Section 3.2.2 while details about
the form of F [n(r)] and approximations for calculating it are outlined in Section 3.2.3.

3.2.2 Independent orbitals: the Kohn-Sham ansatz

In 1965, Kohn and Sham (KS) would make a vital step towards DFT becoming the tractable and
widespread method it is today [210]. Their idea (or ansatz) allows us to calculate the charge
density n(r) without having to evaluate the many-body wavefunction. Instead, electrons are now

†Which following the arguments of the previous section, is defined classically by a set of point-like nuclear
charges. However, this term can in principle include other applied fields.

‡The variational proof holds only for v-representable n(r). A more general proof is the constrained search
approach of Levy [208].
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single, non-interacting particles which move through an effective potential which describes a
fully interacting system [210]. Each independent electron can be treated with a spin coordinate
σ. We, however, omit this choosing instead to treat the spin-degenerate system which sufficiently
describes the materials treated in this thesis. Should we evaluate these single particle orbitals,
we can find n(r) rather simply as

n(r) = 2
∑
i

fi | ψi(r) |2 . (3.5)

where fi is the occupation of the ith KS orbital, ψi. The kinetic energy of the independent
electrons

EKS
kin [n(r)] = −1

2

∑
i

fi

∫
ψ∗i (r)∇2ψi(r)d3r (3.6)

and the classical electrostatic Hartree energy

EHa[n(r)] =
1

2

∫ ∫
n(r)n(r′)

| r− r′ | d
3rd3r′ (3.7)

together allow a definition of the universal functional F [n(r)]

F [n(r)] = EKS
kin [n(r)] + EHa[n(r)] + EXC[n(r)] (3.8)

where the final terms represents the contribution from electronic exchange and correlation
effects. It is for this term in particular that the exact functional form is unknown. It is defined to
be the term which absorbs all of the error in the difference between the fully interacting system
and the KS auxiliary system†

EXC[n(r)] = Ekin[n(r)]− EKS
kin [n(r)] + Eee[n(r)]− EHa[n(r)] (3.9)

where Ekin[n(r)] is the true kinetic energy of the many-body system and Eee[n(r)] is the full
electron-electron term for the many-body system.

This can be a useful definition, but, it doesn’t help us actually calculate it. While some
approximations for doing so are outlined in the following section, one should note now that
KS-DFT in principle is an exact solution to the quantum many-body problem should we know
exactly the form of EXC[n(r)]. Fortunately, for most systems the exchange and correlation energy
is much smaller than the other terms which are described exactly, so, even simple approximations
for EXC[n(r)] can yield accurate results.

†When considering the interaction of a spin-degenerate homogeneous electron gas with a positive background
charge, one can define an approximation of the correlation energy EC in a similar way to Equation 3.9. Richard
Feynman once called this arrangement for EC the ‘stupidity energy’, ES [211]. Perhaps EXC is then the ‘even
stupider energy’, EES.
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Crucially, the KS approach allows us to replace the many-body Schrödinger equation
(Equation 3.2) with NKS (the total number of KS orbitals) Schrödinger-esque equations where
the KS-Hamiltonian operates on the single particle orbitals

ĤKSψi(r) =

(
−1

2
∇2 + veff

KS(r)

)
ψi(r) = εiψi(r) (3.10)

where the effective KS potential is veff
KS(r) = vHa(r) + vext(r) + vXC(r) and, like the energy

terms, is an explicit functional of the density veff
KS ≡ veff

KS[n(r)]. We see now that once we
have selected an approximate XC functional and have represented ψi with a suitable basis set
expansion (discussed in Sections 3.3.1 and 3.4.2) we can solve Equation 3.10 for each ψi yielding
the KS-energy as

EKS = 2
∑
i

fiεi + ∆EHa + ∆EXC (3.11)

where the last two terms are the double counting corrections for the Hartree and XC
contributions respectively [202, 204]. Explicitly

∆EHa = −EHa, (3.12)

∆EXC = EXC −
∫

(vXC)n(r)d3r. (3.13)

The total energy of the system is Equation 3.11 in addition to the classical nuclei-nuclei
interactions which need only be calculated once for a given set of nuclear coordinates. One
might naively think that each of the NKS KS equations need only be solved once also. This,
however, is not true. We can of course solve Equation 3.10 by constructing some veff

KS(r) with
some n(r) (see HK theorem I), but, since we don’t yet know whether this n(r) is anywhere close
to n0(r) (and why would we?), we have no reason to believe that the resulting total energy is the
ground state total energy. In practice we must initially guess† some n(r) and use this to construct
a trial veff

KS(r) for which we then solve the KS equations. Since this process yields not only the
KS eigenvalues but also the eigenvectors‡, we can use the latter to define a new set of ψi. By
Equation 3.5, we can then yield a new density. We can then use this new density§ to yield a new
potential and so on. This process is repeated until the input density matches the density of the
next step to some tolerance. Indeed, one can instead monitor the convergence of other quantities
like the KS potential or the total energy. Once converged, we decide that we have arrived at
an approximation for n0(r) subject to our choice of basis set expansion and approximation for

†Usually, this initial guess is based upon the atomic charge densities.
‡n(r) can also be calculated without use of the eigenvectors as we will learn in Section 3.4.6.
§In practice, the density from a previous step in the SCF loop is mixed with another following some scheme in

an attempt to reduce the inherent numerical instabilities in the SCF cycle [212].
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EXC[n(r)]. This process is known as the self-consistent field (SCF) procedure.

3.2.3 Exchange and correlation

With the exception of the BO approximation and the move to treat nuclei classically, our
formulation of DFT has thus far been an exact one. But, as we have noted, the exact form of
EXC[n(r)] is unknown so some approximations must now be made. Let us then discuss some
well known approximations and the nature of electronic exchange and correlation.

Both the exchange and correlation interactions are purely quantum mechanical effects that
cannot be described by the other terms of F [n(r)] (Equation 3.8). The exchange term arises
from the additional repulsion of electrons of like spins as a consequence of the Pauli exclusion
principle and the antisymmetric wavefunctions which follow. The exchange interaction is treated
exactly in other ab initio techniques. Most notably, Hartree-Fock (HF) theory achieves this
through the use of an explicit exchange term generated by Slater determinants [213]. In a similar
spirit to Equation 3.9, the difference between the HF-energy and the exact total energy is known
as the correlation energy. Broadly, electron correlation can be understood by considering the
contribution to the energy of one electron as influenced by the presence of all other electrons.
One may wrongly assume that such effects are accounted for by the Hartree term of Equation
3.7, but, this can only describe the mean-field interaction of an electron with a classical charge
distribution generated from all of the electrons. In addition to this, the Hartree term causes
further headaches since the charge distribution a given electron interacts with includes this very
electron - i.e, the electron fictitiously interacts with itself giving rise to a self interaction error
(SIE) [202, 214]. Such an error is cause for some concern in DFT calculations and schemes for
(approximately) correcting this error sometimes exist within the chosen exchange and correlation
functional [215, 216].

The most well known approximate XC functional is undoubtedly the local density
approximation, the LDA†, suggested by HK in their original paper [207]. Here, we approximate
the exchange and correlation contributions at a point as if the spatial charge density was that of a
homogenous electron gas (HEG). This contribution is then folded into a real system with an
inhomogenous n(r). The LDA can become exact if the charge density varies slowly enough on
the scale of the local Fermi wavelength and screening length. This condition, however, cannot be
satisfied in real systems. The LDA has the functional form

ELDA
XC [n(r)] =

∫
εXC(n(r))n(r)d3r (3.14)

where εXC(n(r)) is the XC energy per electron of a HEG with density n(r). The correlation
part for this term is often fitted to the accurate Monte-Carlo simulations of Ceperley and Alder
[217]. The LDA provides reasonable results for structural, elastic and vibrational properties

†“Most well known? did you mean B3LYP?” said the computational chemist.
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but fails to produce accurate cohesive properties (typically over-binding solids) and activation
energies [202]. The LDA (amongst other semi-local functionals) is also known to significantly
underestimate the electronic band-gap [215]. Another popular choice for the exchange and
correlation terms is a generalised gradient approximation (GGA). This requires the inclusion of
the magnitude of the gradient of the charge density. This is then separated into the exchange
contribution from a HEG and a separate function FXC

EGGA
XC [n(r)] =

∫
εXC(n(r), | ∇n(r) |)n(r)d3r =

∫
εX(n(r))FXC(n(r), | ∇n(r) |)n(r)d3r.

(3.15)
The choice of FXC defines the particular version of the GGA, for which, there are many

(which are exhaustively included in the well-known Libxc library [218]). The GGA is known
to correct the over-binding problem in LDA as well as improving activation energies. The LDA
lattice constant underestimation is corrected but often by too much, thus, over-softening bonds
[219]. This point is particularly salient for the perovskite ferroelectrics since bond over-softening
leads to the so called ‘super-tetragonality error’ and vastly overestimated ferroelectric distortions
[171]. It is for this reason that the most popular flavour of GGA, the Perdew-Burke-Ernzerhof
(PBE) functional [219] is often unsuitable for studying tetragonal ferroelectrics. Band-gaps are
known to marginally improve for the GGA but are still vastly underestimated [215].

Other more accurate or higher rung functionals too exist. That is, DFT functionals are said
to occupy rungs on a Jacob’s ladder of chemical accuracy [220]. While the LDA and GGA sit
on the lowest rungs of this ladder, hybrid functionals are close to the top. By incorporating some
amount of exact exchange from HF theory, band gaps, atomisation energies, bond lengths and
vibrational frequencies can all be achieved at a high accuracy but with a high computational cost.
A further class of functionals are the meta-GGAs (M-GGAs). These are a logical improvement
on the GGA through inclusion of the laplacian of the orbitals i.e. the kinetic energy. The
M-GGAs attempt to achieve the same accuracy as a hybrid but without the high computational
cost. In particular, the strongly-constrained and appropriately-normed (SCAN) [221] M-GGA
has been shown to be very effective in predicting many properties of the perovskite oxides [171,
222], but, is known to suffer from numerical instabilities in self-consistent calculations [223].

3.3 Periodic systems: a conventional implementation

Within the methodology of the previous section, we set out a tractable computational scheme for
which the total energy of a system of interacting electrons and nuclei can be evaluated using DFT.
We turn now to some further details on how this is conventionally implemented for simulations
of typical condensed matter systems. Condensed matter systems (unlike isolated molecules)
are naturally comprised of at least an Avogadro’s number (NA = 6.022 × 1023) of atoms and
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therefore more than NA electrons. Clearly we cannot solve ∼ NA KS equations. We instead
must choose our solid to be infinite in extent, but, represented by a repeating unit in periodic or
Born-von Karman boundary conditions [224]. We have then made the standard transform from a
set of discrete electronic states to bands defined over the continuous wavevector k described with
Bloch’s theorem [225]. The total energy (amongst other quantities) now becomes an integral
over the first Brillouin zone (1BZ) [202]. At first glance, our transform seems unhelpful as we
have merely replaced the ∼ NA of electrons with an infinite number of wavevectors. Fortunately,
these integrals can be replaced with a sum over Nk special k-points on a grid following the
pioneering work of Monkhorst and Pack† [227]. We can then evaluate the total energy of a
condensed system through solving ≈ Ncell × Nk KS equations each SCF cycle where Ncell is
the total number of electrons in the chosen repeating unit of the crystal. In practice, Nk can be
reduced further using the symmetry operations of the crystal (where the general procedure for
doing so is described in reference [228]). The remaining unique points belong to what is known
as the irreducible Brillouin zone (IBZ) [202] over which we perform a weighted sum.

3.3.1 Plane waves

In its numerical implementation, the KS orbitals must be represented by some underlying basis
set expansion. The most obvious (and commonplace) choice within a periodic solid is motivated
by Bloch’s theorem [225]

ψnk(r) = eik·runk(r). (3.16)

Notice now that the KS orbitals are labelled with band index n and wavevector k. These
ψnk are macroscopic over the infinite crystal, but, the Bloch function unk is periodic over the
repeating unit of the crystal. We can then choose to expand the Bloch functions using a discrete
set of plane waves [202]

unk(r) =
∑

|G|≤Gmax

cGnke
iG·r (3.17)

where the reciprocal lattice vectors G are defined by G ·L = 2πm where L is a lattice vector
of the crystal and m is an integer. The KS orbitals can then be written as a sum of plane waves

ψnk(r) =
∑

|G|≤Gmax

cGnke
i(k+G)·r. (3.18)

This is a truncated expansion where we include only those G-vectors whose magnitudes
are less than some maximum value Gmax. This truncation is often set by the plane wave kinetic

†Other schemes for integrating over the 1BZ also exist [226] but the approach of Monkhorst and Pack [227] is
the most frequently used.
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energy cutoff Ecut = Gmax/2 (in atomic units). Increasing Ecut increases the accuracy of the
calculation in a variational manner, but, since this includes more plane waves in the expansion,
the calculation consumes more computational resources [202].

3.3.2 Pseudopotentials

Thanks to Bloch’s theorem, we now need only consider the electrons within a single repeating
unit of an infinite crystal, Ncell. This number can be reduced even further with a firm chemical
argument. That is, the vast majority of the electronic properties of materials are the result of
the chemistry of the valence electrons. In contrast, those electrons deeper within the nuclear
potential (the core electrons) play little-to-no role in bonding. In light of this, there is a strong
motivation to remove core electrons from our simulations entirely. If, in spite of this, we still
decided to proceed by including both the core and valence electrons in our simulations (an
‘all-electron’ calculation) we run into another issue. For small electron-nucleus separations (like
one would expect for core electrons) the Coulomb potential describing their interaction diverges
rapidly. As a consequence, wavefunctions oscillate rapidly in the core region (as can be seen in
Figure 3.1a) requiring a large number of plane waves (or plane wave-equivalent basis functions
like blips, [16] psincs [9] and Daubechies wavelets [12]) to accurately represent. So, should we
devise some scheme to remove the explicit treatment of core electrons from our simulations, not
only are we now considering fewer electrons, we now require fewer plane waves to describe the
remaining electrons; a computational saving double whammy!

We then replace the strong ionic potential and the core electrons with a softer pseudopotential
(Figure 3.1b) which produces a set of pseudowavefunctions rather than the all-electron valence
wavefunctions. The accuracy of the method is ensured by the matching the pseudo and true
valence wavefunctions beyond a cutoff radius rc from the atomic/ionic site. This matching
procedure can be seen clearly in Figure 3.1. It is not only important that the pseudo and real
wavefunction match beyond this point, their norms must also match within the core region. This
condition, known as norm conservation (producing norm-conserving pseudopotentials, NCPPs
[231]), ensures that the resulting charge densities from the pseudo and all-electron wavefunctions
are the same, or ∫ rc

0

r2 | ψAE(r) |2 dr =

∫ rc

0

r2 | ψPP (r) |2 dr (3.19)

for all-electron and pseudo wavefunctions ψAE and ψPP [231]. The constraint of norm-
conservation can be relaxed should we follow the ultrasoft scheme of Vanderbilt [232] (USSPs).
Instead, an augmentation charge must be added to correct for the charge deficit in the core region.
USPPs allow for convergent calculations with even fewer plane waves albeit with some loss of
accuracy. We make use of norm-conserving pseudopotentials for most of the work in this thesis
(particularly the style popularised by D. R. Hamann [233]), but, as detailed in the next section
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Vlocal

a)

b)

Figure 3.1: Norm-conserving pseudopotential generation data for Pb with the PBESol [229]
functional as parsed from the PseudoDojo database [230] (PS=pseudo, AE=all-electron). The
matching radius is given for each l-channel which is 2.4 a0 for l = 0 and 1 and and 2.1
a0 for l = 2. The pseudo and all-electron radial wavefunctions for solved for the l =0-2
pseudopotentials. b) Smooth psuedopotentials for l =0-2 (non-local) and the local potential. We
refer the reader to [230] for an explanation of the local and non-local parts of the pseudopotential.
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(Section 3.3.3) we also make use of an efficient alternative.

3.3.3 Projector augmented waves

A good alternative to the pseudopotential method is that of projector augmented waves (PAW)
as developed by Peter Blöchl [152]. Here, the aim is to represent the physical (all-electron)
wavefunctions ψ(r) by auxiliary (pseudo) wavefunctions ψ̃(r) and physical core wavefunctions.
The goal is to produce smooth ψ̃(r) which can be represented with a limited basis set expansion
(usually of plane waves) in the interstitial regions of the simulation box and to represent the
core regions with a set of partial waves (usually numerical atomic orbitals, NAOs, discussed
in Section 3.4.2). The relationship between ψ(r) and ψ̃(r) is made using the transformation
operators T̂ and Û . In Dirac notation

|ψ〉 = T̂ |ψ̃〉 ⇐⇒ |ψ̃〉 = Û |ψ〉 (3.20)

such that T̂ = Û−1. Considering now just T̂ , its closed form can be found by separating
its contributions into local onsite regions (often referred to as the augmentation regions) and
interstitial regions where the physical and auxiliary wavefunctions coincide

T̂ = 1 +
∑
A

ŜA (3.21)

where SA is the onsite part of the transform for each atomic site A. This term is set to zero
beyond some cutoff radius from the atomic site which defines the augmentation region. Let us
now consider the form of the physical and auxiliary wavefunctions in this region by expanding
them in terms of the auxiliary and physical onsite partial waves φ̃i and φi

|ψ〉 =
∑
i

ci|φi〉, (3.22)

˜|ψ〉 =
∑
i

ci ˜|φi〉. (3.23)

We see that thanks to Equation 3.20, the expansion coefficients ci are equal should |φi〉 =

T̂ ˜|φi〉. We can then write

|ψ〉 = ˜|ψ〉+
∑
i

ci(|φi〉 − ˜|φi〉). (3.24)

We then rewrite the expansion coefficients using the inner product of local projector functions
〈p̃i| with the auxiliary wavefunctions, ci = 〈p̃i|ψ̃〉 providing us with a useful form of T̂

T̂ = 1 +
∑
i

(|φi〉 − ˜|φi〉)〈p̃i| (3.25)
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where the form of the projector functions are chosen to be both confined to the augmentation
region and to be orthonormal to the auxillary on-site partial waves. i.e, their matrix element is
the kronecker delta: 〈p̃i|φ̃j〉 = δij . We can now build the form of the physical wavefunction
using the auxiliary wavefunction and the local projectors in the revealing form

|ψ〉 = |ψ̃〉+
∑
i

(|φi〉 − ˜|φi〉)〈p̃i|ψ̃〉. (3.26)

We see that the projectors probe the character of the auxiliary wavefunction to replace
incorrect orbital character with the correct ones. We treat the core partial waves under the frozen
core approximation, but, other than this, the usual basis set truncation error and choosing the
augmentation region, the PAW method allows for the extraction of the physical wavefunctions
at a small computational cost. In fact, simulations performed with PAWs consume comparable
computational resources to a ultrasoft pseudopotential calculation† with an accuracy close to the
all-electron calculation.

3.4 Scaling upwards

The size of the repeating unit for which we perform our simulations in our Born-von Karman
box is largely determined by the symmetries of the system we wish to study. Those systems
with a higher number of symmetry operations (both point and translational) can, in general, be
represented with a smaller repeating unit host to a smaller number of electrons which therefore
consumes less computational resources in the evaluation of the DFT total energy‡. Whilst this is
a useful property for calculations with perfect and infinite crystals, this luxury is rarely extended
to experimental reality. Symmetry is broken by defects and the emergence of order parameters in
phase transitions which then require a much larger repeating unit than the original high symmetry
crystal.

This is particularly salient for the perovskite ferroelectrics/antiferroelectrics following the
discussions of the previous chapter. Even for the defect-free crystal, the high symmetry Pm3̄m

phase of many perovskites is dynamically unstable at low temperatures at various propagation
wavevectors q in the 1BZ. These instabilities can lead to unit cell doubling when the AFD R+

4

mode condenses (like in I4/mcm STO [235]), octupling when the AFE Σ2 mode condenses
(like in Pbam PZO [38]) and even increasing the number of atoms 16-fold as we show for low
energy AFE phases in PZO and PHO in Chapter 4. Extending beyond this, studying FE domain
structures like those which appear in thin films will require simulations with thousands of atoms.
This is the topic of Chapter 6. The consideration of realistic experimental order in random solid

†Indeed, USSPs and PAWs are formally related as pointed out by Kresse & Joubert [234].
‡The observant reader will note that in spite the smaller number of electrons in the repeating unit, integrals in

k-space will now require a finer grid for convergence. Whilst this is true, high symmetry crystals have a very small
IBZ so the actual number of k-points to be computed is usually much reduced.
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solutions like PZT intrinsically requires a large number of atoms and increased computational
resources. Unfortunately, certain scaling bottlenecks make it difficult for us to treat such systems
within the conventional implementation of DFT we have described in the previous section. We
shall now take a deeper look at why and propose how these bottlenecks can be remedied.

3.4.1 Limitations of conventional implementations

Conventional simulations based on DFT offer O(N3) asymptotic scaling for the ground state
solution time where N is the total number of atoms in the simulation box [4]. This scaling
behaviour is troublesome as it quickly makes useful calculations beyond a few hundred atoms
intractable on most high performance computing platforms. The origin of this O(N3) scaling
behaviour is rooted in the particular solution method for solving the KS equations (Equation
3.10). In the conventional procedure, we build a Hamiltonian matrix for each irreducible k-point
on our reciprocal space integration grid and solve for its eigenvalues and eigenvectors using
standard matrix diagonalisation† [236]. This technique scales cubically with the dimensions
of the matrix [236] which are typically Nbasis ×Nbasis where Nbasis is the total number of basis
functions in the simulation box. Since Nbasis ∝ N we arrive at the aforementioned O(N3)

asymptotic scaling.
For the plane wave basis set, convergent calculations often require ∼ 100 (sometimes more)

basis functions per atom which will rapidly balloon the size of the Hamiltonian as we increase
the number of atoms. This, in turn, makes it intractable to diagonalise stunting our efforts
to treat a larger system (although, in Section 3.4.5, we show a technique where we can use
matrix diagonalisation for systems of a few thousand atoms). Such a large number of basis
functions are required since the plane wave is the solution of the free electron [237]; bearing very
little resemblance to the orbitals they intend to expand. Plane waves pose other issues for the
scalability of DFT. Such a basis is delocalised in space which causes issues for parallelisation
on many computing cores since spatial partitioning (and divide and conquer methods) for the
basis functions becomes difficult [4]. Also, plane wave codes are reliant of the efficiency of
fast Fourier transforms (FFTs) which are infamous for their poor parallelisability for large scale
problems [4]. It is, of course, still possible to parallelise over k-points, but, the usefulness
of this procedure diminishes with system size since we require fewer and fewer total points.
Their spatial delocalisation can also lead to wasteful calculations on integration grids within our
simulation box. This is particularly obvious for systems with significant vacuum regions which
contain negligible charge density.

†In the majority of plane wave codes, instead directly diagonalising a large Hk, we can yield the KS states
by minimising the KS energy with respect to the plane wave coefficients, as shown in the seminal work of Car
and Parrinello [148]. When the KS energy is directly minimised, O(N3) scaling still arises but is instead from the
orthogonalisation of bands [5].
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3.4.2 A local basis: pseudoatomic orbitals

We can begin to alleviate the problems listed above should we switch out plane waves for a local
basis set. Local basis sets are atom centered functions which are often more chemically intuitive
than plane waves for describing orbitals. They subsequently require less functions to describe
the KS orbitals than do plane waves. Arguably the most intuitive basis is the Slater type orbital
[238]. This is since their functional form is similar to the exact solutions of the hydrogenic
radial Schrödinger equation [196] (Although, unlike the true hydrogenic solutions, Slater type
orbitals have have no radial nodes [238]). In practice, these basis functions are often not used
due to difficulties with integration [239] and are instead replaced with Gaussian functions [240];
a popular choice of basis for many codes (including the pioneering code; Gaussian [241]).
One drawback of using Gaussian functions is that they typically have long tails which make
them rather delocalised in space (although much less so than a plane wave). Such a property is
undesirable for O(N) DFT as we discuss in Section 3.4.6.

Another good choice is to use the numerical solutions for the atomic orbitals of a given
atomic species. This can be done at the all-electron level where the resulting orbitals are often
referred to as numerical atomic orbitals (NAOs) or within the pseudopotential formalism as
pseudoatomic orbitals (PAOs; although sometimes still referred to as NAOs) [6, 242–250]. The
functional form of a PAO is the product of a radial functionRnlζ(r) with the appropriate spherical
harmonic Y l

m(r̂) [196]

χnlmζ(r) = Rnlζ(r)Y l
m(r̂) (3.27)

where each basis function is labelled with the relevant quantum numbers: the principal
quantum number n, azimuthal (angular momentum) quantum number l and the magnetic (z-
projection of l) quantum number m. The subscript ζ is representative of the completeness of the
basis set. That is, for any given nlm any number of ζ’s can be chosen to represent the orbital.
Increasing the total number of ζ’s increases the flexibility of the basis - i.e, in the double-ζ (DZ)
representation, each nlm has two ζ’s indexed as ζ = 1 and ζ = 2.

A popular method for the construction of multiple-ζ basis sets is the split-norm method. This
scheme is inspired by the split valence method which is standard in quantum chemistry codes
using a linear combination of Gaussian functions in the basis set expansion [240]. Here, the
radial functions of additional ζ’s are yielded by ‘splitting’ the slowest decaying radial functions
to act as independent radial functions [250]. For a DZ basis, this is achieved by ensuring that
the ζ = 2 radial function reproduces the tail of the ζ = 1 function beyond a matching radius,
and runs smoothly inwards. Further ζ’s can be obtained repeating the procedure at different
radii. Within the CONQUEST code, we use a modified procedure where each ζ is a new and
explicit solution to the radial Schrödinger equation of the pseudoatom. The assessment of this
mechanism is the focus of much of Chapter 5. Even when including multiple-ζ’s in the basis
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Figure 3.2: The default Pb radial function solutions Rnlζ(r) for ζ = 1 and 2 generated by the
CONQUEST PAO generator code (v1.02) using the equal radii method described in Chapter
5. The cutoff radii rc are marked with vertical dotted lines. Pb 5d features only a single ζ as we
choose to treat it as a semicore state. We have perturbatively polarised Pb 6p to create the Pb 6d
radial functions.

set expansion, our basis can still remain rather rigid. To combat this, we introduce polarisation

functions to the basis set [250]. These are PAOs with a higher angular momentum (typically
l + 1 of the highest occupied valence orbital) aimed at increasing the angular flexibility of the
basis. These can be obtained simply as a new solution to the pseudoatomic Schrödinger equation
or peturbatively by applying a small electric field to the orbital to be polarised [250].

To ensure that our PAOs are localised in space, the radial functions are found in the presence
of a spherical confining potential [247]. How one applies such a potential to obtain the optimal
balance between accuracy and efficiency of the basis is an open question which we address in
Chapter 5. The resulting spatial localisation is such that each basis function decays smoothly to
exactly zero beyond some cutoff radius (χnlmζ(r) = 0; | r |≥ rc). This ensures that important
matrices (including the Hamiltonian and overlap matrices) are sparse allowing for the
employment of efficient and scalable sparse matrix algebra [4, 251]. This strict localisation also
means that operations between basis functions no longer need to take place in areas of vacuum.
We note that matrix sparsity can also be achieved by discarding matrix elements whose
magnitude is below some threshold [4, 252]. We provide in Figure 3.2 some exemplar radial
functions produced by the CONQUEST PAO generator (v1.02). Including all of these
functions would define a DZDP basis set for Pb.

The switch to PAOs from plane waves is not without drawbacks. While increasing the
number of ζ’s does usually increase the quality of the basis, unlike plane waves, this process is
not systematic [6] so we must be careful in our choice of basis and conduct considerable testing.
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Also, when moving to atom centered orbitals like PAOs, we must consider an additional term in
the calculation of the forces which takes into account that (unlike plane waves) basis functions
move with the atoms. These are known as Pulay forces [253].

3.4.3 The CONQUEST approach

The DFT package of choice for a large portion of this thesis is the CONQUEST code [7,
17, 194]. CONQUEST is a local orbital code designed for large scale DFT calculations on
thousands (and even millions [13]) of atoms. The code now primarily uses PAOs (and are the
focus of this section) as basis functions although B-splines or ‘blips’ are also in use [254]. It can
operate in several modes depending on the application. We address the modes used in this thesis
in an order commensurate with an increasing number of atoms. That is, Section 3.4.4 deals with
how one might simulate a few hundred atoms, Section 3.4.5 pertains to simulations of a few
thousand atoms and Section 3.4.6 demonstrates how one can surpass one million atoms. We
must first, however, present a short overview of the unifying parts of the code which are distinct
from typical implementations of DFT.

Let us reformulate our approach to be based upon the single particle KS density matrix
(which we will refer to from this point onwards as the density matrix)

ρ(r, r′) =
∑
n

fnψ
∗
n(r)ψn(r′). (3.28)

The next step is to assume that the density matrix has a finite number of non-zero eigenvalues.
This allows us to represent the density matrix in its separable form [255, 256]

ρ(r, r′) =
∑
iα,jβ

φiα(r)Kiαjβφjβ(r′). (3.29)

This form of the density matrix introduces some recurring formalities for the operation
of CONQUEST. Firstly, we describe the support functions φiα(r) (SFs; sometimes called
non-orthogonal generalised Wannier functions, NGWFs, by those associated with the ONETEP
package [9]). The SFs are local orbital functions (indexed α, β) at atomic sites (i, j) which move
with the atoms strictly localised within a sphere. Ki,α,jβ is known as the density matrix in the
basis of support functions (or sometimes, the density kernel) which we will address fully in the
forthcoming.

Within this reformulated approach, some energy functionals need reconsidering. Since the
density can easily be evaluated as

n(r) = 2ρ(r, r) (3.30)

the Hartree and exchange & correlation energies can be found using the same functionals as



Chapter 3: Theoretical Background 86

before. The kinetic energies of the independent electrons and the eletron-pseudo-core interaction
(the pseudopotential energy), however, must be re-addressed [16, 255]. The kinetic energy is
now given as

EKS
kin =

∑
iα,jβ

∫
φjβ(r)Kiα,jβ∇2φiα(r)dr (3.31)

which within CONQUEST (using PAOs), this integral is evaluated through considering
the two components of the PAOs. That is, the spherical harmonic contributions are evaluated
analytically while we FFT the radial part and scale by k2 (the FFT reciprocal space coordinate)
to yield the Laplacian term. The integral is then performed in 1D with a sum over a very fine
grid. For more information on this process, we refer the reader to Appendix A of [247]. The
pseudopotential energy is rewritten as

EPS = 2
∑
iα,jβ

∫
VPS(r, r′)φiα(r)Ki,α,jβφjβ(r′)drdr′ (3.32)

which in implementation is evaluated by multiplying n(r) at each grid point by the total
pseudopotential at each grid point and summing over all grid points. For more details of this
procedure we refer to reader to Section III A of [16].

3.4.4 Diagonalisation for small systems

SFs are mapped to an underlying local basis of PAOs in the expansion

φiα(r) =
∑
s

dsiαχ
s(r) (3.33)

for support function coefficients dsiα and local basis functions χs(r). The way we choose
to map SFs to PAOs distinguishes the in many cases the mode of operation of CONQUEST.
The simplest case is to use so-called primitive PAOs where only one PAO is mapped to a SF.
This is the same as setting s = 1 in Equation 3.33. Whilst this is the most accurate setting (since
dsiα can be found exactly should the Hamiltonian be diagonalised) it also comes with the largest
computational burden. This is since the Hamiltonian matrix elements are defined

Hiα,jβ =

∫
φiα(r)Ĥφjβ(r)dr. (3.34)

We can instead choose to treat the SFs as an expansion of all the PAO basis functions used
to represent a given orbital. For a d state (5 total orbitals) and a triple-ζ PAO basis (15 total
PAOs), each of the d orbitals can now be represented with a basis set expansion of three PAOs.
When doing so, we of course no longer have the exact SF coefficients from the diagonalisation,
so, we must perform an optimisation for the coefficients. A contraction which is used for a
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large amount of this thesis stems from using a linear combination of basis functions within a
localisation region in what we call the multi-site support function method [18, 19] (which we
detail in Section 3.4.5) although we can also choose to make an expansion as a combination of
all of the orbitals on a given atomic site which we call the on-site support function method [257].

Once we have chosen our mapping of PAOs to SFs, we must select our method for the
evaluation of the DFT ground state (i.e, the energy, charge density and its derived quantities).
Principally, we make a choice on how to evaluate the density matrix in the basis of support
functions; the K-matrix. One approach is to solve the generalised eigenproblem form of the KS
equations

Hiαjβc
n
jβ = εnSiαjβc

n
jβ (3.35)

which arises from treating the KS orbitals as a linear combination of the SFs

ψn(r) =
∑
iα

cniαφ
n
iα. (3.36)

Notice how for Equation 3.35 we must explicitly calculate the overlap matrix elements Siαjβ

Siαjβ =

∫
φ∗iα(r)φjβ(r)dr 6= δiα,jβ. (3.37)

This is since our basis functions are non-orthogonal so cannot be equal to the Kronecker delta
δiα,jβ . Once evaluated, we can solve Equation 3.35 simply by diagonalising† the Hamiltonian to
yield the eigenvalues εn and eigenvectors cnjβ . With this eigenvector information, we can find the
K-matrix elements directly

Kiαjβ =
∑
n

fnc
n
iαc

n∗
jβ . (3.38)

Using this form of K, we can evaluate Equation 3.29, although, we need only evaluate the
diagonal from Equation 3.30. Since we also have the eigenvectors, we can define the KS orbitals
using Equation 3.36 which in turn can be used to evaluate the kinetic energy from Equation 3.6.
Without the eigenvector information (which is the case when using the O(N) algorithm as we
will learn in Section 3.4.6), we can still evaluate the kinetic energy but must use Equation 3.31.
The total energy can now be calculated in the standard way. Regardless of our choice of basis
set expansion, this approach leads to O(N3) scaling since we have performed the troublesome
matrix diagonalisation when solving Equation 3.35. Even so, this is usually fast for systems
up to a few hundred atoms since relatively few PAO basis functions are needed compared to
plane waves. It is possible to avoid doing this diagonalisation entirely using a method based
upon iterative sparse matrix algebra in real space. This is the O(N) scaling method which we

†In the diagonalisation mode, we must still perform integrals over k-space, but, we drop this label in Equation
3.35 for notational clarity.
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describe in Section 3.4.6.

3.4.5 Contracting the Hamiltonian: multi-site support functions

We have so far shown that it is possible to reformulate DFT in terms of the density matrix and
have shown how we can solve for the total energy of small systems using a 1:1 PAO:SF mapping
and matrix diagonalisation. This section seeks to provide a description of the multi-site support
function method (MSSF) method as implemented in CONQUEST. This allows us to treat a few
thousand atoms by a clever contraction of the Hamiltonian dimensions. For further discussion,
the reader is referred to [18, 19, 258, 259] and references therein.

We now consider representing a support function as a linear combination of PAOs not just at
a single atomic site, but, including its neighbours within a localisation region, rMS

φiα(r) =

i,neighbours∑
k

∑
ζ∈k

Ciα,kζχkζ(r) (3.39)

where k is an atomic site enclosed within a sphere of radius rMS about target atom i,
inclusive of i. The coefficients C now span a subspace of a local molecular orbital (MO), which
relinquishes us from atomic symmetry constraints which previously did not allow for a minimal
representation of support functions in the contraction [247]. In practice, this means, for example,
that a primitive TZTP basis can now be contracted to its SZ size whereas before, atomic
symmetry constraints only permitted the contraction to SZP. The MSSF coefficient matrix C is
sparse since only the atoms within rMS are taken into account as neighbor atoms. The overlap
matrix elements in the basis of MSSFs can be written

Siα,jβ =
∑
kζ

∑
k′ζ′

Ciα,kζ〈χkζ |χk′ζ′〉Ck′ζ′,jβ =
∑
kζ

∑
k′ζ′

Ciα,kζS
PAO
kζ,k′ζ′Ck′ζ′,jβ (3.40)

where we have identified that the closure 〈χkζ |χk′ζ′〉 is the overlap matrix of Equation 3.37
in the primitive PAO basis, SPAO. This matrix has nonzero values only if the distance between the
two atoms (k and k′) is smaller than twice the PAO cutoff radius, rc. Therefore, the evaluation of
Equation 3.40 can be performed with sparse matrix algebra

S = CSPAOC† (3.41)

where the range of S written with MSSFs now extends to twice of (rMS + rc). The charge
density can also be rewritten using MSSFs

n(r) =
∑
iα,jβ

∑
kζ

∑
k′ζ′

Ciα,kζχkζ(r)Kiα,jβCjβ,k′ζ′χk′ζ′(r) (3.42)
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although, it is more efficient to evaluate n(r) in the primitive PAO representation since the
matrices have a smaller range

n(r) =
∑
kζ

∑
k′ζ′

χkζ(r)KPAO
kζ,k′ζ′χk′ζ′(r) (3.43)

where the K-matrix in the PAO representation, KPAO is obtained by the transform

KPAO = C†KC. (3.44)

We note that whilst in principle, the K-matrix can be evaluated using either diagonalisation
or the linear scaling approach, we currently encounter issues with numerical instability when
evaluating S−1 using the linear scaling approach with MSSFs. This is an area of active
development within CONQUEST. Using n(r) from Equation 3.43, we can calculate the
Hamiltonian matrix in the basis of primitive PAOs, HPAO whose range is shared with SPAO. We
then transform this matrix to the contracted MSSF form using

H = CHPAOC† (3.45)

whose range is shared with S. We see clearly now that the square dimensions of the
Hamiltonian matrix using the MSSF method are the column or row dimensions of C or C†. Since
these coefficients are contracted to the SZ size using the MSSF expansion, the Hamiltonian is
now SZ in size typically reducing its dimensions by a factor of ≈ 3. Diagonalisation calculations
are now ≈ 27× faster due to the cubic scaling of the operation.

We have so far not addressed how the coefficient matrix C is evaluated. While is it possible
to calculate these with a variational optimisation procedure and iterative diagonalisation, this
is time consuming since convergence can be slow. So, to find the optimal balance between
efficiency and accuracy, we use the local filter diagonalisation (LFD) method to evaluate the
coefficients [258, 259]. This requires the solution of a local eigenproblem for a subset of atoms s
enclosed by a sphere of radius rLD(≥ rMS) for each target atom

HsCs = εsSsCs (3.46)

for subspace eigenvalues εs, MO coefficients Cs and where Hs and Ss are the local subsets
of the system-wide Hamiltonian and overlap matrices respectively. By projecting Cs onto a set
of trial vectors t, we obtain the contraction coefficients C′

C′ = Csf(εs)C
T
s Sst (3.47)

where f(εs) is the Fermi-Dirac distribution. By setting the chemical potential of this
distribution to a value around the Fermi energy (for this local system, not the system-wide Fermi
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energy), the effect from unoccupied local MOs with high energy can be eliminated [18, 19].
While the trial vectors are arbitrary in principle, a good choice is to use the atomic orbitals on
the target atoms as trial vectors. Lastly, C′ is mapped onto the corresponding position in the
contraction coefficient vectors, whose elements are extracted for use in Equation 3.39.

There is a final consideration to be made concerning the timing for the calculation of the
MO coefficients during the SCF procedure. A simple approach would be to perform a full SCF
procedure (to some tolerance) with constant C. Once this SCF cycle is completed, a new C can
be obtained and then a new SCF cycle completed. This would then be repeated until convergence
criteria in the total energy is met. While this is a reliable procedure, the requirement to perform
many SCF cycles can be wasteful from a computational standpoint. Instead, we can choose
to update C at each step of a single SCF cycle. While this could require more evaluations of
the local eigenproblem of Equation 3.46 (and the matrices which are transformed by C), the
overhead associated with doing so is often far less than than the cost associated with further
diagonalisations of the system-wide Hamiltonian. We call this procedure mixed-LFD-SCF and is
used in the MSSF calculations in this thesis.

The MSSF method therefore introduces two new adjustable parameters to the DFT
calculation; rLD and rMS. The former expands the space used for the local filter diagonalisation
and the latter modifies the representation of φiα(r). The accuracy of the contraction can be
improved by increasing both of these subject to rMS ≤ rLD. In practice, convergence can be
achieved for relatively modest values of both (1-2 lattice constants of the bulk in condensed
systems). Using this method, high accuracy calculations (close to plane wave accuracy, as we
see in Chapter 6) with a few thousand atoms can feasibly be performed on most standard HPC
systems. Structural relaxations of ≈ 1000 atoms to a stringent force tolerance can be expected to
take 1-2 weeks of calculation wall-time (although this should be taken with a grain of salt, since
relaxation times are very system dependent property and depend on the starting point) on ≈ 200

physical cores. Simulations of ≈ 2000 atoms may need ≈ 500 physical cores to meet the
memory requirements, dependent on the memory-per-node on the HPC system.

3.4.6 The O(N) method

So far, our approach has relied upon matrix diagonalisation so suffers from the O(N3) scaling
wall for conventional DFT, regardless of the basis set used [4]. Users of conventional codes may
be conditioned to believe that this is the only approach since the electronic terms in the total
energy are derived from the eigenvalues, the charge density is built from the eigenvectors and
the kinetic energy requires the KS orbitals, which, in turn, require the eigenvectors. This could
leave one puzzled about how to obtain these seemingly central quantities, when, in fact, the HK
theorems make so such indication that any eigenproblem need be solved. Instead, we detail an
approach where the ground state n(r) is found variationally through the direct minimisation of
the single body KS density matrix ρ(r, r′) of Equation 3.29.
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Figure 3.3: Scaling performance for CONQUEST on the K-computer and ARCHER using a
pure MPI implementation. a) Strong scaling on the UK national supercomputer, ARCHER, up
to 4920 processors (from 50-5 atoms/core). Calculations were performed on bulk PTO with an
Lrange of 7.41Å and a SZ basis of PAOs. b) A scaling demonstration for the O(N) algorithm on
ARCHER for the same material system as (a). c) Weak scaling on the K-computer up to one
million atoms for bulk Si. This image is c© American Institute of Physics from reference [7].
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We first consider a property of ρ(r, r′) vital to achieving O(N) scaling. That is, it is known
that ρ(r, r′) is ranged as a consequence of quantum inteference effects in a concept often referred
to as nearsightedness [260]. Formally,

ρ(r, r′)→ 0, |r− r′| → ∞. (3.48)

That is, there is a loss of quantum phase coherence between distant points. The decay-rate
of ρ(r, r′) is exponential in gapped systems (increasing with the size of the gap) but algebraic
in metals at T = 0 [4]. This means that insulating systems can be well represented with a
short-ranged density matrix whereas the implicit non-locality of electrons in metals will require
a considerably longer ranged ρ(r, r′). Practically, we choose a truncation range for ρ(r, r′) to
acceptably converge the total energy, forces and stresses from the following minimisation to
the result obtained by directly diagonalising the Hamiltonian. This should be the focus of a
careful convergence study on the system of interest where one should check that the relevant
quantity is converged to a tolerance. Beyond this truncation range, we set the matrix element
to exactly zero which leads to our density matrices becoming sparse. Since the Hamiltonian
and overlaps matrices are also sparse (as noted in Section 3.4.2 as a result of finite ranged basis
functions), sparse algebra operations between these matrices (matrix multiplications, additions
etc.) will have an execution time which scales linearly with the number of atoms [251]. As we
shall formulate in Sections 3.4.6.1 and 3.4.6.2, we can yield the ground state density matrix
using only these operations so can achieve a solution for the energy scaling as O(N).

We must enforce some constraints before outlining our minimization to ensure our solution
remains physical. Firstly, the number of electrons (given as 2Tr[KS]) must remain constant.
Many methods exist for imposing the correct electron number [16, 261–264] and the approach
used in CONQUEST is detailed in Section 3.4.6.2. Next, we consider that ρ(r, r′) is a projector
onto the occupied subspace. It is then required to have eigenvalues λ of either zero or one
(ρ̂ = ρ̂2); a condition known as idempotency. This is in practice difficult to enforce so is replaced
with the easier to achieve condition of 0 ≤ λ ≤ 1. This is known as weak idempotency [262,
265].

The O(N) scaling algorithm in CONQUEST is split into two distinct parts [266]. Firstly, a
density matrix is constructed using the iterative, canonical purification of Palser & Manopolous
(PM) [267]. We then use this matrix to initialise the density matrix minimization (DMM)
technique of Li, Nunes and Vanderbilt (LNV) [262]. The motivation for the two part scheme is as
follows. The PM approach is good at finding density matrices that are idempotent, however, the
algorithm is non-variational. This makes it completely arbitrary as the when to halt the algorithm.
Further, the density matrix produced at the end of the PM stage will depend on the initial density
matrix. The LNV approach is good for searching through idempotent density matrices to find
the one that yields the true ground state. This part of the algorithm is fully variational so the
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DMM can be halted once a minimum has been reached. The ground state density matrix can
then be used to determine the total energy of the system. This method displays excellent strong
and weak scaling performance on most hardware as shown in Figures 3.3a and 3.3c. In Figure
3.3b we explicitly display the linear growth of the wall-time between ≈ 3,000 - 25,000 atoms for
a constant number of processors.

3.4.6.1 Canonical purification

The PM canonical purification method [267] exploits a modified McWeeny purification [268]
polynomial in an attempt to iteratively achieve the ground state density matrix. In its original
form, the McWeeny polynomial is given as [268]

f(x) = 3x2 − 2x3. (3.49)

This polynomial has stable fixed points at x = 0 and x = 1 (where f(x) = x and f ′(x) = 0).
If we were to repeatedly apply this function to the density matrix, we would find that its
eigenvalues would tend towards zero or one, thus, enforcing the idempotency constraint. So,
after each iteration, some nearly idempotent density matrix Ln becomes more nearly idempotent
at Ln+1.

In order to also fix the number of electrons, one can modify the function to allow its unstable
fixed point c (where f(x) = 0 and f ′(x) ≤ 1) to move anywhere between zero and one. This
extra flexibility allows us to conserve Ne = 2Tr[LS]. What follows now is the original fixed-Ne

PM algorithm modified to the non-orthonormal case following the arguments of Bowler and
Gillan [266]. Namely, the transforms L̃ = S̃−1/2LS̃−1/2 and H̃ = S̃1/2HS̃1/2 are applied, where
matrices capped with a tilde are in a non-orthonormal basis. We first define the averaged chemical
potential potential of the system

µ̄ =
Tr[S̃−1/2HS̃−1/2]

Norb
=

Tr[HS̃−1]

Norb
(3.50)

where Norb is the total number of orbitals in the system. For notational clarity, we now drop
tildes from non-orthonormal matrices. We initialize the algorithm with the optimal trial matrix
given as a function of H and with the correct Ne

LPM
init =

ζ

Norb
(µ̄S−1 − S−1HS−1) +

Ne

Norb
S−1 (3.51)

where ζ is given by

ζ = min

{
Ne

Hmax − µ̄
,
Norb −Ne

µ̄−Hmin

}
(3.52)

and Hmax and Hmin are estimated by the Gershgorin limits [269] on the spectrum on the
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Hamiltonian. We now enter the following algorithm

Ln+1 =

[(1− 2cn)Ln + (1 + cn)LnSLn − LnSLnSLn]/(1− cn), if cn ≤ 1
2

[(1 + cn)LnSLn − LnSLnSLn]/cn, if cn > 1
2

(3.53)

where the unstable fixed point cn is evaluated by

cn = Tr
[

LnSLn − LnSLnSLn

Ln − LnSLn

]
. (3.54)

The algorithm in Equation 3.53 should be terminated once E[Ln+1] > E[Ln] as truncation
errors will begin to dominate in further steps.

3.4.6.2 Density matrix minimisation

The LNV method [262] requires the minimization of the grand potential Ω

Ω = Tr[(H− µS)K]

= Tr[H′(3LSL− 2LSLSL)]
(3.55)

where H′ = H− µS and where we have once again used Equation 3.49 to enforce the weak
idempotency condition. That is

K = 3LSL− 2LSLSL. (3.56)

The initial L at this stage is the output of the PM stage after a set number of iterations or after
the energy termination condition is met. If we choose to work at a fixed chemical potential µ, we
can now simply evaluate the gradient of Ω. This gradient then becomes the search direction σ
for a line minimization L + ασ

∇Ω =
∂Ω

∂L
= 6(SLH′ + H′LS)− 4(SLSLH′ + SLH′LS + H′LSLS). (3.57)

This step is able to change to electron number Ne. This is troublesome as we must work at
fixed Ne. To counter this, we must then project out the electron variation direction ∇Ne from
the search direction

∇Ne =
∂Ne

∂L
= 12(SLS− SLSLS). (3.58)

Once the energy minimisation has been completed, we use this electron variation direction
to search for the correct electron number [266]. Once the minimisation is completed to some
tolerance we retrieve K from Equation 3.56 which is used to evaluate ρ(r, r) (and therefore n(r))
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in accordance with Equation 3.29. We then repeat these steps in an SCF procedure. We have,
however, developed a more efficient scheme for the SCF cycle in the O(N) mode of operation
which allows for charge density mixing concurrently with the LNV iterations. In this scheme
which we call “mixed-L-SCF”, the K-matrix is optimised by the Pulay residual minimisation
scheme-direct inversion of the iterative subspace (RMM-DIIS) [270] at each LNV step. This is
used to update n(r) and the KS potential. We see then that charge density mixing is completed
implicitly through the update of K.

3.5 Phonons

In Chapter 2, Section 2.6.1, we detailed the importance of phonon calculations in predicting
phase transitions in the perovskite oxides as well as introducing the foundational theory and
approximations present for most lattice dynamical calculations. Building on this, we move to
describe two methods for their explicit calculation from first principles DFT: density functional
perturbation theory (DFPT) [164–166, 271, 272] (also known as the linear response method) and
the finite displacement method (FDM) [151, 273–277] (also known as the direct method, the
frozen phonon method, the supercell method or the small displacement method). While we now
compare and contrast the two methods, further details pertaining to each method are explained in
Sections 3.5.1 and 3.5.2. We describe DFPT more fully since this method is used for the majority
of the phonon calculations in this thesis.

Both the FDM and DFPT aim to evaluate the dynamical matrix D exactly at a set of q then
interpolate smoothly over all q within the 1BZ to allow for calculations of phonon dispersion
curves and the phonon density of states. In a nutshell, the main difference between the FDM and
DFPT is that the interatomic force constants of the former are calculated in real space while these
are computed directly in reciprocal space for the latter [166]. This means that for the FDM, the
only q-points that can be evaluated exactly are those which are commensurate with the supercell
geometry [151]. For example, should we use the primitive cell as the supercell for a FDM
calculation (which is not a good idea most of the time!) we can only calculate phonons at the
Γ-point exactly so cannot evaluate the dispersion. Should we create a 2× 2× 2 supercell instead,
we now have access to the zone boundary q for which we can now perform an interpolation for
the band structure. Increasing the supercell size further then samples an increasingly dense mesh
of q-points which increases the accuracy of our interpolations. In a DFPT calculation, we can
work with the primitive cell. The force constants are evaluated on the same k-point grid as (or
a grid commensurate with) the electronic structure calculation. That is, each ψnk is perturbed
allowing for exact q-point evaluations at arbitrary q so long as this q exists on the k-mesh of
the electronic problem. While this has its advantages, it usually means that for calculations of
polar solids, the k-mesh must be shifted to be centered on Γ such that important FE modes are

not interpolated. This is in contrast the FDM where it is impossible to not include Γ for any
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supercell.
It is not always clear whether the FDM or DFPT is the most appropriate choice for any given

situation. It may seem obvious that the cost of accurate FDM calculations should be rather large
since for accurate dispersions, a large supercell is required. However, very few calculations using
this supercell may be needed to yield the dispersion since the number of symmetry inequivalent
atomic sites and displacement directions may be low. This is in contrast to DFPT where many
calculations must take place on the primitive cell for each of the considered q-points which may
be large. A more detailed comparison of the scaling of both methods can be found in [166]. One
disadvantage is that a tremendous amount of data is written to disk in DFPT Calculations in
comparison to the FDM. This is since a large number of perturbed wavefunctions, potentials and
densities must be stored. Even for systems of tens of atoms this can add up to Terabytes of data
in accurate calculations.

3.5.1 Density functional perturbation theory

Here we present an overview of the linear response formalism for calculating the interatomic force
constant matrix. For a more detailed outlook and information pertaining to its implementation
with plane waves, we refer the reader to the excellent review article of Baroni et al [166]. Since
this process is rather complicated, we first summarise the procedure before entering the details.
The quantity we desire is the electronic part of the force constant matrix. This requires the
evaluation of the linearised Hellman-Feynman [278, 279] form of the Hessian matrix of the
DFT total energy (Equation 3.68). This form of the Hessian requires the first order response of
the charge density n(r) to a deviation us from the equilibrium atomic positions τs (Equation
3.72). The response of the charge density, in turn, requires the response of the KS orbitals ψnk
which are evaluated using first order perturbation theory [209] (Equation 3.74). To complete this
perturbation, we require the response of the KS potential (Equation 3.75) which itself depends
on the response of charge density. This interdependence requires an SCF procedure analogous
to the evaluation of the KS total energy. This process is carried out directly in reciprocal space
which gives us straightforward access to the dynamical matrix elements since the reciprocal
space force constant matrix need only be scaled by the atomic masses (MκMκ′)

− 1
2 .

Let us begin by making a change in notation from the lattice dynamics discussed in Chapter
2, Section 2.6.1. We further define the ionic site index I; choosing this index to label the unit cell
l and the position of an atom within this cell s such that I = {l, s}. This allows us to define the
ionic coordinate RI as

RI = Rl + τs + us(l) (3.59)

where Rl is the position of the lth unit cell in the crystal lattice. The condition of translational
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invariance† means that the interatomic force constant matrix depends on unit cells l and l′ by the
difference R = Rl −Rl′ . Expressing the real-space interatomic force constant matrix as the
Hessian of the DFT total energy, we then have

φα,α
′

s,s′ (l, l′) =
∂2E

∂uαs (l)∂uα
′
s′ (l
′)

= φα,α
′

s,s′ (Rl −Rl′). (3.60)

Taking the Fourier transform, we have

√
MsMs′D

α,α′

s,s′ (q) = φ̃α,α
′

s,s′ (q) =
∑
R

φα,α
′

s,s′ (R)e−iq·R =
1

Nc

∂2E

∂u∗αs (q)∂u∗α
′

s′ (q)
(3.61)

where Nc is the total number of unit cells in the crystal and us(q) is defined as

RI [us(q)] = Rl + τs + us(q)eiq·Rl . (3.62)

We then find the phonon frequencies ω(q) solving the eigenproblem of Equation 2.26 in
Chapter 2, leading to the secular equation

det
∣∣∣Dα,α′

s,s′ (q)− ω2(q)
∣∣∣ = 0. (3.63)

We are able to solve Equation 3.63 for individual phonons of wavevector q following the
reciprocal space formulation of translational invariance. That is, a phonon of wavevector q does
not induce a force response in the crystal at any other wavevector q 6= q′. This allows us to
easily calculate the force constant matrix in reciprocal space. Where the real space matrix is
needed, we can easily Fourier transform back.

One may recall that in DFT, we make the BO approximation [198] to decouple the electronic
and nuclear degrees of freedom and separately choose to treat the nuclei (or in most cases, the
pseudo-core) as classical point charges. This splits φ̃α,α

′

s,s′ (q) into two parts; the electronic and
ionic contributions

φ̃α,α
′

s,s′ (q) =el φ̃α,α
′

s,s′ (q) +ion φ̃α,α
′

s,s′ (q). (3.64)

The ionic term does not depend on the electronic structure and is simple to evaluate (yet
algebraically prolonged) from the second derivative of the Ewald summation of the ionic cores‡

†Translational invariance simply means that if all of the ions in a crystal lattice are uniformly translated by the
same magnitude and direction, the resulting force on each ion would be zero.

‡This term is derived in appendix B of reference [166].
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ionφ̃α,α
′

s,s′ (q) =
4πe2

Ω

∑
G

e−(q+G)2/4η

(q + G)2
ZsZs′e

i(q+G)·(τs−τs′ )(qα +Gα)(qα′ +Gα′)

− 2πe2

Ω

∑
G 6=0

eG
2/4η

G2

[
Zs
∑
l

Zle
iG·(τs−τl)GαGα′ + c.c

]
δs,s′

+ e2
∑
R

ZsZs′e
iq·R[δα,α′f2(x) + f1(x)xαxα′ ]x=τs−τs′−R

− e2δs,s′
∑
R

∑
l

ZsZl[δα,α′f2(x) + f1(x)xαxα′ ]x=τs−τl−R (3.65)

where G-space summations exclude q+G = 0, R-space summations exclude τs − τs′−R =

0 and η is an arbitary constant chosen to optimally converge the summations. The functions f1

and f2 are defined

f1r =
3erfc(

√
ηr) + 2

√
η
π
r(3 + 2ηr2)e−ηr

2

r5
, (3.66)

f1r = −erfc(
√
ηr)− 2

√
η
π
re−ηr

2

r3
(3.67)

where erfc(y) = 1− erf(y) is the complementary error function (erf).
The electronic term is found by doubly applying the Hellman-Feynman theorem to the KS

total energy. This yields

elφ̃α,α
′

s,s′ (q) =
1

Nc

[∫ (
∂n(r)

∂uαs (q)

)∗
∂Vion(r)

∂uα
′
s′ (q)

dr +

∫
n(r)

∂2Vion(r)

∂u∗αs (q)∂uα
′
s′ (q)

dr

]
(3.68)

where Vion(R) is

Vion(r) =
∑
l,s

vs[r−Rl]− τs − us(l)] (3.69)

and where vs is the ionic pseudopotential of the sth site. Following Equations 3.62 and 3.69,
the Vion derivative terms in Equation 3.68 read

∂Vion(r)

∂uαs (q)
= −

∑
l

∂vs(r−Rl − τ s)
∂r

eiq·Rl . (3.70)

It is the charge density response term that is at the heart of the linear response formulation of
DFPT. The approach taken is to linearise the equation for the charge density in a periodic system
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as described with Bloch’s theorem

n(r) = 2

Nk∑
k

occ∑
n

| ψnk(r) |2 (3.71)

to achieve

∆n(r) = 4

Nk∑
k

occ∑
n

ψ∗nk(r)∆ψnk(r) (3.72)

where we have introduced a finite difference operator ∆{RI} which we define as

∆{RI}A =
∑
I

∂A

∂RI

∆RI (3.73)

where we drop the superscript {RI} in Equation 3.72 for notational clarity. The ψnk response
can then be found using the well-known first-order perturbation theory of Messiah [209]

(ĤKS − εnk)|∆ψnk〉 = (∆VKS −∆εnk)|ψnk〉 (3.74)

for KS Hamiltonian ĤKS and first order correction to the KS potential ∆VKS . ∆εnk =

〈ψnk|∆VKS|ψnk〉 is the first-order variation to the KS eigenvalue εnk. The KS potential response
is given as

∆VKS(r) = ∆Vion(r) + e2

∫
∆n(r′)

| r− r′ |dr
′ +

dvxc[n]

dn

∣∣∣
n=n(r)

∆n(r). (3.75)

Equations 3.72-3.75 then define a set of self-consistent equations analogous to the self-
consistent equations of the original DFT calculation where the KS eigenproblem has been
replaced with the set of linear equations in 3.74. Once the solution has (to some tolerance)
converged, the response from Equation 3.72 can be used to evaluate the appropriate term in
Equation 3.68.

Although we will not show this here (but a thorough treatment can be found in Section C1
of the review article of Baroni et. al [166]), a great advantage of the linear response method is
that the system of linear equations described in Equation 3.74 are decoupled from each other
for perturbations at different q. We then perform monochromatic† perturbations treating each
q separately, decomposing the set of SCF equations into their individual Fourier components,
expressed only with the lattice periodic part of the Bloch functions. This monochromatic
scheme means that the computational effort is comparable to the ground state calculation of the
unperturbed system and is independent of q. We do, however, require several q to accurately
interpolate the band structure, so, the procedure outlined above must then be carried out Nq

times where Nq it the total number of points on the chosen q-point mesh.

†That is, phonons calculated at a single wavevector q which are independent of all other q.
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3.5.2 The finite displacement method

Compared with DFPT, the FDM is simple to understand. The calculation of phonon frequencies
depends on the real space force constant matrix representing the proportionality between
displacements and forces when the displacements are small enough for this relationship to be
linear. In an FDM calculation, all that needs to be done is to calculate the real space force
constant matrix φα,α

′

s,s′ for each of the symmetry inequivalent sites s and Cartesian directions α
according to

φα,α
′

s,s′ (R) =
F+
sα − F−sα
2us′,α′

(3.76)

where we have used a central differences approach [280] to the force derivative with respect
to the atomic displacements and F±sα are the forces after a small displacement ±us′,α′ . We must
carefully monitor the convergence of φα,α

′

s,s′ with respect to the supercell size. This is since the
φα,α

′

s,s′ in the formula for Dα,α′

s,s′ (q) is the force constant matrix for the infinite lattice whereas
calculations with the FDM can only be completed with a choice of supercell. This means we
can only obtain information at wavevectors coincident with the reciprocal lattice vectors of the
supercell. So, to approach the infinite lattice case the supercell size must be systematically
increased [151]. Once we have satisfactorily converged the real space force constant matrix, we
Fourier transform this into q-space using Equation 3.61 which we can interpolate to evaulate
at any q. When performing phonon calculations on polar solids using the FDM, we must be
mindful of the non-analytical form of the dynamical matrix near the zone centre (as discussed in
Chapter 2, Section 2.6.1). Failure to do so will lead to incorrect interpolation of the LO bands
since they will falsely become degenerate with the TO branch near Γ.

In contrast to DFPT (which is implemented with bespoke code in an electronic structure
package), FDM calculations are most often performed using a standalone code. This is since they
only require the induced forces after a small atomic displacement; quantities readily available
in output from most atomistic codes (not limited to DFT codes). Two popular codes are PHON
[151] as developed by Dario Alfè and Phonopy [277] by Atsushi Togo. We make use of the
latter in this thesis.



4 | The Pb(Ti, Zr, Hf)O3 Isoelectronic
Series: a Lattice Dynamical Study

Chapter abstract

A comparative lattice dynamical study is performed on PbTiO3, PbZrO3, PbHfO3 and the solid
solution PbZr0.5Ti0.5O3 throughout the first Brillouin Zone. We use accurate density functional
perturbation theory [164–166] and finite displacement method [151, 277] calculations to extract
phonon dispersions, densities of states and the eigendisplacement character of individual modes.
While we mainly focus on the dynamical instabilities of the high temperature cubic phases, we
later study the low temperature AFE phases of PbZrO3 and PbHfO3. This move is motivated
by the ubiquity of long wavelength instabilities we find in the dispersions of their cubic phases.
While such instabilities are less prevalent in PbTiO3, they persist in our ordered PbZr0.5Ti0.5O3

supercells giving rise to a variety of exotic modes of mixed antipolar & AFD character. When
considering the ability of the virtual crystal approximation (VCA) [47, 48] to describe the lattice
dynamics of PbZr0.5Ti0.5O3, we find that the dispersion agrees well with the highest symmetry
rock salt ordered supercell, but poorly approximates other arrangements. It is also quantitatively
demonstrated that the VCA is unable to capture the correct character of modes in the supercell
arrangements; the VCA cannot be used to accurately predict the low temperature structure of
PZT. The lattice dynamics of PbZrO3 and PbHfO3 are found to be strikingly similar sharing
instabilities of identical character which are slightly more unstable for PbZrO3. Importantly, the
purported low temperature Pbam AFE ground state for both materials is found to be dynamically
unstable. The eigendisplacements of the soft mode drive a symmetry and (marginally) energy
lowering transition to an 80-atom Pnma phase. Given that this structure now appears as the
most stable arrangement in what are considered the AFE archetypes, and, has been known to
appear in other chemically dissimilar perovskites [281–285], this new Pnma phase could be
one of the most common antiferroelectric arrangements in the perovskite oxides.

101
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4.1 Introduction

The three members of the Pb(Ti, Zr, Hf)O3 isoelectronic series: PbTiO3 (PTO), PbZrO3 (PZO)
and PbHfO3 (PHO) form a set of ferroic archetypes with high technological importance. The first
member, PTO, is one of the most well known ferroelectric (FE) materials (perhaps only second
to BaTiO3, BTO) in possession of a large spontaneous polarisation measuring between 57-100
µC/cm2 [171]. This makes PTO a perfect material for application in ferroelectric memory
technologies and a variety of other applications listed succinctly in [23] and [286]. Member
number two, PZO, was the first antiferroelectric (AFE) to be discovered [36, 130] and is certainly
the most studied. The characteristic AFE double hysteresis curve present in PZO under applied
electric fields makes it particularly useful in energy storage devices [35]. The last member, PHO,
is less well known and has been the subject of far fewer studies than the first two members.
Indeed, PHO is an AFE considered to be isostructural with PZO [131, 287]. This paired with the
fact that antiferroelectricity was discovered in PZO first has seen PHO pushed to the sidelines
when studying the nature of the antiferroelectric transition.

Even more functionality can be extracted from this series should we combine the members
in solid solution. Most notably, doing so with PTO and PZO forms PbZrxTi1−xO3 (PZT); the
most abundantly used piezoelectric material. This is due to its giant electromechanical response
and well developed, low cost synthesis [44, 288]. Together, this has ensured the technological
relevance of the material; well adapted for exploitation in ultrasonic transducers [289, 290],
ceramic capacitors and actuators [291]. More exotically, PZT has been proposed for use in
potential piezoelectricity-induced room temperature superconductors where a supercurrent is
induced along a metal/piezoelectric interface [292, 293]. For these applications, it is most
common to consider PZT at around x ≈ 0.52 [91, 92] in the region near the morphotropic phase
boundary (MPB). This is a compositional boundary at the peak of the electromechanical response.
This boundary exhibits complex lattice dynamics where a flat energy surface for polarisation
rotation exists between the FE tetragonal (P ‖ [001]) and rhombohedral (P ‖ [111]) phases via
intermediate monoclinic phases [91, 93, 294].

Following this, it is clear that a thorough understanding of the lattice dynamics of these
materials must play a central role in understanding the phase transitions. The idea of a soft mode

[1, 2, 52] is at the forefront of this discussion. We discussed this idea in detail in Chapter 2,
Section 2.6. In simulation, soft modes can be identified by considering the symmetry (and energy)
lowering distortions of a high-symmetry cubic phase as indicated by imaginary frequencies
at certain wavevectors in the phonon spectrum [1, 2, 52, 69]. Using this method it is found
that a single lattice mode of irreducible representation (irrep) Γ−4 is responsible for the Pm3̄m

paraelectric to P4mm FE transition in PTO [109, 295, 296]. In contrast to this, the Pm3̄m

paraelectric to Pbam AFE transition in PZO and PHO is characterised by six distinct lattice
modes with irreps Σ2, R+

4 S4, R+
5 , X−3 and M−5 [38, 297]. The exact nature of the AFE transition
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in PZO, however, is still a matter for debate [37, 38, 41, 297, 298] which we have discussed in
Chapter 2, Section 2.3.1. At first glance, a classification of the responsible modes for the phase
transitions in morphotropic PZT appears helpful. This, however, is muddied by the fact such
a classification is not possible for a truly random alloy. Even for ordered PZT it proves much
more difficult since the character and frequencies of the relevant modes may vary with Ti/Zr
concentration as well as with the specific ordering of the B-site substitutions in the crystal lattice,
for which, in a periodic crystal the number of permutations are infinite.

If we are to study PZT near the MPB with first principles calculations, we should consider
two paths. Both paths impose fictitious symmetry when compared to the real random compound.
The first is to explore the different permutations of Ti/Zr substitutions within a supercell of
finite size. True morphotropic PZT requires simulation in a large supercell so x = 0.5 is
often chosen as a surrogate. This is the most common approach taken and has been successful
in the calculation of structural [299, 300], piezoelectric [301, 302] and electronic properties
[303]. Using this method, phonon disperison relations across a small area of the first Brillouin
zone have also been calculated for [1:1] PZO/PTO superlattices [50]. For (001) and (110)
ordered structures, FE modes were isolated to Ti/Zr layers whilst the (111) ordered superlattice
displays one mode behaviour with competing FE and AFD character. This study, however, was
limited in scope by only considering modes at the zone centre. The second option is to use a
mixed potential scheme such as the VCA. This approach, like the supercell method, predicts
anomalous dynamical charges and with reasonable accuracy, the location of the MPB [47–49]
but is unable to accurately represent distortions to local structure. The extent to which this is
true, however, is unknown thus a quantitative comparison based on the characteristics of the soft
mode distortions would be valuable. This approach, however, does allow access to a wide range
of Ti/Zr concentrations at a fraction of the computational cost of a large supercell calculation.

This chapter has two goals. The first is to provide a complete comparative study of the phonon
dispersion relations in near-morphotropic periodic† PbZr0.5Ti0.5O3 within density functional
theory (DFT) using the VCA and supercell method complete with comparison to the end members
PTO and PZO. We do so also with special consideration of longer wavelength‡ modes which
previously have been neglected but are now suspected to play a role in the lattice dynamics of PZO
[304] and PHO [305]. We compare the characters of the dynamical instabilities by considering
distortions at high symmetry points (and other points) via eigendisplacement analysis and the
projected phonon density of states (PDOS). Doing so gives access to displacement patterns and
to the species specific character of all the dynamical instabilties. For these simulations, we select

†Although we do not expect PbZr0.5Ti0.5O3 to naturally condense with periodic B-site order (i.e, it is a random
solid solution), considering periodic arrangements allows us to study limiting cases and consider artificial digital
superlattices like PZT II and III (Figure 4.1).

‡Long wavelength modes are often referred to in the literature as incommensurate modulations. We avoid this
term here since in the context of DFT simulations of infinite crystals, there is no wavevector truly incommensurate
with the lattice! We note that while zone centre modes have an infinite wavelength, we are instead referring to
modes with fractional q away from high symmetry points.
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the 2 × 2 × 2 supercell of the primitive perovskite unit for our simulations to coincide with
measured mean cluster size distributions for Ti/Zr ordering in PZT [306]. Such supercells have
recently been used as local phases to build a complex multiphase model of the material able
to predict the experimental pair distribution function to a high accuracy [307]. We obtain the
irreducible representations (irreps) of the soft mode distortions and identify their incipient order
parameters which in the case of longer wavelength modes we find can impose dual order and
complex octahedral rotation patterns (not representable with Glazer notation [45, 46]). By doing
so, we provide further insight into the complex lattice dynamics occurring near the MPB. Further,
it will provide a guide for future investigations detailing the consequences of using the supercell
or VCA methods for future studies of PZT and heterostructures for which PZT is an ingredient.

The second goal is achieved in a follow-up study to the one laid out above. Directed attention
is now given the to the purported Pbam ground state crystal structure of PZO and PHO which we
compare and contrast. That is, we find that the cubic dispersions of PZO (and of PbZr0.5Ti0.5O3)
feature many long wavelength dynamical instabilities, some of which are more unstable than
those condensing to form the Pbam crystal structure. In light of this, we calculate the phonon
dispersions of PZO and PHO in their Pm3̄m paraelectric and Pbam antiferroelectric phases.
While the isostructural nature of the two materials informs us that the lattice dynamics may be
be similar, to our knowledge, this similarity has not been quantified in any comparative study
performed with first principles calculations. Indeed, to our knowledge, the lattice dynamics of
PHO has only been simulated using classical rigid-ion and shell models [308, 309]. While the
focus remains on the dynamical instabilities, it should be noted that if the Pbam structure is the
ground state at zero Kelvin, there should be no dynamical instabilities in the phonon spectrum.
We find that this is not the case and discover that a soft mode at the Z-point of Pbam drives a
transition to a lower energy 80-atom Pnma phase. We compare this new phase to the previously
established Pbam and discuss the prospect of observing this phase in experiment.

The rest of this chapter is organised as follows. In Section 4.2 we detail the theoretical
methods for the calculations, including details for the calculation of the electronic ground state,
phonon dispersions and details for the specific implementation of the VCA. Past this point, the
chapter is split into two parts. The first part begins in Section 4.3 with a comparative study of the
dynamical instabilities of near morphotropic PZT, PTO and PZO. Within this study, in Section
4.3.1 we discuss the properties of the fully relaxed PZT parent structures. Then, in Section
4.3.2 we present the full phonon dispersion relations and PDOS along with a discussion and
tabulation of the relevant soft modes and their frequencies. We begin with a comparison between
the end members PTO & PZO. The other dispersions are then paired based on their similarity
and discussed together with the exception of Pm3̄m ordered PZT supercell which is dedicated
its own section. Modes important to the discussion are shown graphically. The second part of
this chapter begins in in Section 4.4. Within this study, in Section 4.4.1 we compare the phonon
dispersions and dynamical instabilities of PHO and PZO. Following an instability in the AFE
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phase, in Section 4.4.2 we describe a new 80-atom Pnma crystal structure lower in energy than
Pbam. The results of both studies are then discussed together and summarised in Section 4.5.

4.2 Theoretical method

Calculations are performed using the implementation of DFT as present in the ABINIT code
(v8.10.2) [310, 311]. Section 4.3 and subsections therein use scalar-relativistic,
norm-conserving pseudopotentials (NCPPs) generated by the ONCVPSP code (v0.3) [233] as
made available on the PseudoDojo website [230]. These pseudopotentials treat the Pb
5d106s26p2, Ti 3s23p64s23d2, Zr 4s24p65s25d2 and O 2s22p4 orbitals as valence and include
partial core corrections. For the 2× 2× 2 PbZr0.5Ti0.5O3 supercells, Brillouin zone integrals are
performed with sums over Γ-centered 4× 4× 4 Monkhorst-Pack [227] meshes. A plane-wave
cutoff energy of 1088.46 eV (40 Ha) is employed to ensure the accuracy of our calculations.
Exchange & correlation effects are represented by the PBESol [229] functional as present in
Libxc (v3.0.0) [218]. This functional is known to produce high accuracy structural
properties compared with experiment [171] justifying its use in a study of structural distortion.
This method returns the paraelectric cubic Pm3̄m lattice constants of PTO and PZO as
aPTO = 3.918 Å (-0.304%) and aPZO = 4.140 Å (+0.242%) where bracketed values are errors
compared with experiment [312, 313].

Section 4.4, in contrast to Section 4.3 uses the projector augmented wave (PAW) method
for phonon calculations [152]. This is since simulations utilising PAWs typically converge the
relevant properties at a lower plane wave cutoff energy compared to NCPPs. This is a vital
saving since low symmetry antiferroelectric phases will require many unique perturbations in the
phonon calculations. For the PAW calculations, we find that a plane wave cutoff energy of 680.29
eV (25 Ha) provides satisfactory convergence when using the PAW data sets made available in the
JTH library (v1.1) [314]. These data sets represent the same orbitals as the NCPP calculations
for the already mentioned species, although, for Hf, we treat the 5s25p66s26d2 orbitals as valence.
Calculations prepared for phonon dispersions using PAWs use Γ-centered 6× 6× 6 (Pm3̄m)
and 5× 3× 3 (Pbam) Monkhorst-Pack meshes for Brillouin zone integrations. When comparing
the relative energetics of different phases, however, we upgrade this to Γ-centered 8 × 8 × 8

(Pm3̄m) and Γ-centered 7× 5× 3 (Pbam) meshes to accurately resolve phases close in energy.
We remind the reader that the complex Pbam crystal structure of PZO and PHO was shown
in Figure 2.5 within Chapter 2. To our knowledge, no PAW data sets exist for the PBESol
functional† which are both compatible with ABINIT and exist for the required elements, so, we
now perform calculations using the local density approximation (LDA) functional of Perdew
and Wang [153]. Compared with PBESol, lattice constants will now be underestimated and

†We note that much of the community use the available PBE PAW data sets for calculations with most GGA
flavours. We, however, choose not to in order to preserve consistency between the PAW data and the chosen
functional.
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bonds will become stiffer; shifting upwards the frequency of real modes. We now produce the
paraelectric cubic Pm3̄m lattice constants of PZO and PHO as aPZO = 4.107 Å (-0.556%) and
aPHO = 4.072 Å (-1.40%) where bracketed values are errors compared with experiment [313,
315]. We note that convergence tests for all of the NCPP and PAW calculations in this chapter
can be found in appendix A.1.

We make particular use of the linear response features in ABINIT for the calculation of
phonon dispersions using density functional perturbation theory (DFPT) [164, 166]. Dynamical
matrices are calculated on the q-point directly corresponding to the k-point mesh of the supercell
calculation to ensure high accuracy. Dispersions are extracted using a Fourier interpolation
scheme between points on this mesh [164, 166]. Since the perovskite oxides are known to
give rise to giant LO-TO splitting [162], the non-analytic correction (NAC; Equation 2.29 in
Chapter 2) at the Γ-point [164], correcting for the undefined nature of the long-range Coulomb
interactions [155] is particularly important. This correction requires knowledge of the electronic
dielectric tensor ε∞ and Born effective charges Z∗i where i labels each atomic site in the supercell.
Both are obtained also using DFPT in response to a homogeneous electric field [164, 316].

For calculations involving use of the VCA, we use the implementation in ABINIT. It is used
to create an ’alchemical’ virtual atom of Ti/Zr character by linearly mixing the pseudopotentials
of the individual species

V ps
VCA = xV ps

Zr + (1− x)V ps
Ti . (4.1)

This can be further broken down into local contributions and short-range non-local corrections
[317]. Phonon dispersion calculations using DFPT and the VCA are currently not fully supported
in the code so we instead use the (formally equivalent) finite displacement method (FDM) as
implemented in the Phonopy code (v2.1) [277] using a 4× 4× 4 supercell of the primitive
perovskite unit and a displacement of 0.01 Å. For this calculation where x = 0.5, the virtual
atom taks on the intermediate mass of Ti and Zr, equal to 69.55 AMU. The NAC is accounted
for following the same method as used in the DFPT calculations. For means of validation, a
comparison of the phonon dispersions for primitive PTO & PZO using both DFPT and the FDM
are given appendix A.1.

In Section 4.3.2, we treat the six unique B-site configurations of PbZr0.5Ti0.5O3 within the
2× 2× 2 supercell labelled with Roman numerals I:VI. These supercells are shown in Figure
4.1. Although PTO, PZO and VCA calculations are representable in the primitive perovskite
cell, we still choose to use the 2× 2× 2 supercell such that phonon dispersions are calculated
along the same q-path as for structures I:VI and share the same total number of phonon branches
(3 × Natom = 120). PZT supercells are constrained to be cubic with dimensions (2aVg, 2aVg,
2aVg) where aVg = 4.029 Å, the lattice constant set by Vegard’s law [318]. For x = 0.5, this is a
simple average of aPTO and aPZO found for the NCPP calculations. This choice of lattice constant
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Figure 4.1: The structures used for the phonon dispersion calculations of Section 4.3.2. A-site
Pb has been removed for clarity and BO6 octahedral complexes have been coloured to match the
B-site species. Supercell models (rows 1 and 2) are labelled with Roman numerals I:VI whilst
the last row indicates the PZT-VCA supercell as well as the end members PTO and PZO. Each
supercell is also assigned a crystalline space-group.
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favours no particular B-site ordering that may be biased in different experimental conditions.
Further, structural data for high temperature cubic PZT is scarce since the technologically relevant
large piezoelectric coefficients stem from the low temperature tetragonal/rhombohedral phases.
Simulations for PTO, PZO and PHO are performed at their theoretical lattice constants. That is,
for each phase, stresses are relaxed until the magnitude of each component of the Cartesian stress
tensor falls below 1× 10−3 GPa. Before the phonon calculations, internal degrees of freedom
are relaxed to a stringent force tolerance of 1× 10−6 eV/Å to prevent soft modes forming from
non-equilibrium vibrations. To further illuminate the mode characters, we also calculate the
phonon PDOS for each structure. To do so, we calculate the dynamical matrix on a dense
49×49×49 grid of q-points and integrate with the tetrahedron method [319].

Throughout this work, we make use of group theoretical software. We use the programs
FINDSYM (v6.0) [320] and ISODISTORT (v6.5) [321] as made available in the ISOTROPY
software suite. We also make use of the web-based phonon spectrum visualisation tools made
available by H. Miranda [322].

4.3 Results: PTO, PZO & PZT

4.3.1 Parent structures

Table 4.1 details the structural and symmetry properties of the relaxed primitive cells. We
find that a simple metric like the number of Wyckoff sites (and their deviation from the ideal
perovskite sites) suggests which arrangements have comparable lattice dynamics. This is used
as a basis for the discussion in Section 4.3.2. These primitive cells are then translated into the
2×2×2 supercell of the primitive PbBO3 unit (B=Zr or B=Ti) and are shown in Figure 4.1. These
form a set of parent structures from which we later perform mode decompositional analysis.
Table 4.2 shows other important structural, dynamical and dielectric properties also important to
the discussion in this Section.

PTO/PZO/VCA cells show the usual cubic Pm3̄m symmetry. These are joined by PZT
I (Fm3̄m) and IV (Pm3̄m) which also support a cubic local minimum. The former adopts
rock-salt-like ordering with continuous B-sites aligned along the [111] direction whilst the latter
shows a separation of Ti and Zr sites into opposite corners of the supercell. As a consequence,
these parents show isotropic behaviour in both the stress and high frequency dielectric tensors
(Table 4.2). This is in contrast to the other four PZT parents which are members of lower
symmetry tetragonal spacegroups (even whilst constrained to aVg) thus showing anisotropic
behaviour in these tensors about a single axis. It is typical behaviour across all of the PZT parents
(bar the VCA) to compress areas of TiO6 coordination making way for the larger ZrO6 octahedra.
When constrained to avg, PZT I is the most energetically stable configuration whilst III is the
most unstable with an energy difference of 114 meV/PbBO3 unit between them. Remarkably, if
we perform a full cell shape and size relaxation, this energy difference marginally narrows to
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111 meV/PbBO3 showing the small contribution of strain energy to the non-polar phases of PZT.

Table 4.1: The space-groups, Wyckoff positions and primitive supercell dimensions of the
relaxed, cubic-constrained structures. All structures are representable in the 2× 2× 2 primitive
perovskite supercell as illustrated in Figure 4.1. Wyckoff positions are stated using the site
multiplicity and Wyckoff letter as made standard by the Bilbao Crystallographic Server [323].
Supercell dimensions are given in lengths of the mutually orthogonal axes a, b & c with the
exception of PZT I whose axes are at an angle α = β = γ = 60◦ with the full form of the lattice
vectors displayed.

PTO/PZO/VCA (Pm3̄m Oh1̄)

a = aPTO/aPZO/aVg

Pb 1b (1/2, 1/2, 1/2)
Ti/Zr/(1/2 Ti + 1/2 Zr) 1a (0, 0, 0)

O 1d (1/2, 0, 0)

PZT: I (Fm3̄m Oh5̄)

a = (0, aVg, aVg), b = (aVg, 0, aVg), c = (aVg, aVg, 0)

Pb 2c (1/4, 1/4, 1/4)
Zr 1a (0, 0, 0)
O 6e (x, 0, 0), x=0.74232
Ti 1b (1/2, 1/2, 1/2)

PZT: II (P4/mmm D4h1̄)

a =
√

2aVg, b =
√

2aVg, c = aVg

Pb 2f (0, 1/2, 0)
Zr 1d (1/2, 1/2, 1/2)
Ti 1b (0, 0, 1/2)
O 4k (x, x, 1/2), x=0.75838
O 1c (1/2, 1/2, 0)
O 1a (0, 0, 0)

PZT: III (P4/mmm D4h1̄)

a = b = aVg, c = 2aVg

Pb 2g (0, 0, x), x=0.26377
Zr 1c (1/2, 1/2, 0)
Ti 1d (1/2, 1/2, 1/2)
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O 2f (0, 1/2, 0)
O 2h (1/2, 1/2, x), x=0.26279
O 2e (1/2, 1/2, 1/2)

PZT: IV (Pm3̄m Oh1̄)

a = 2aVg

Pb 8g (x, x, x), x=0.74307
Zr 1a (0, 0, 0)
Zr 3d (1/2, 1/2, 0)
Ti 3c (0, 1/2, 1/2)
Ti 1b (1/2, 1/2, 1/2)
O 6e (x, 0, 0), x=0.74807

O 12h (x, 1/2, 0), x=0.26024
O 6f (x, 1/2, 1/2), x=0.74667

PZT: V (P4/mmm D4h1̄)

a = 2aVg

Pb 8r (x, x, z), x=0.75030, z=0.74302
Zr 1a (0, 0, 0)
Zr 2f (0, 1.2, 0)
Zr 1d (1/2, 1/2, 1/2)
Ti 1b (0, 0, 1/2)
Ti 2e (0, 1/2, 1/2)
Ti 1c (1/2, 1/2, 0)
O 4l (x, 0, 0), x=0.74975
O 2g (0, 0, z), z=0.73908
O 4m (x, 0, 1/2), x=0.75053
O 4n (x, 1/2, 0), x=0.74198
O 4i (0, 1/2, z), z=0.73972
O 4o (x, 1/2, 1/2), x=0.75804
O 2h (1/2, 1/2, z), z=0.75582

PZT: VI (P42/mmc D4h9̄)

a = 2aVg

Pb 8n (x, x, 1/4), x=0.25710
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Zr 2a (0, 0, 0)
Zr 2c (0, 1/2, 0)
Ti 2d (0, 1/2, 1/2)
Ti 2b (1/2, 1/2, 0)
O 2e (0, 0, 1/4)
O 2l (x, 0, 1/2), x=0.25134
O 4j (x, 0, 0), x=0.26117
O 4i (0, 1/2, z), z=0.74154
O 4k (x, 1/2, 1/2), x=0.25375
O 4m (x, 1/2, 0), x=0.26
O 2f (1/2, 1/2, 1/4)

Table 4.2 indicates that at avg, PZT is held at a non-vanishing pressure. The VCA exhibits
the largest σRMS of 2.62 GPa whilst II and III show stronger uniaxial stress about the axes of
compositional modulation indicating a proclivity for expansion in these directions. PZT I:VI
show remarkably similar Z∗ and ε∞ indicating that Ti/Zr cation ordering has little influence on
these quantities. It is also notable that Z∗ of PZT I:VI deviates only a small amount from the
mean Z∗ of PZO and PTO. The VCA shows good agreement with the supercell method for Z̄∗Pb

and Z̄∗O⊥
but underestimates strongly the magnitudes of the alchemical Z̄∗B and Z̄∗O‖. The VCA

also features a strong discrepancy in ε∞ compared to both the mean and supercell approach.
Although not tabulated, it should be noted that PZT II, IV, V and VI feature off-diagonal elements
in the Born effective charge tensor only for Z̄∗Pb. These components are small and do not exceed
0.34 electronic charges in magnitude but do vary in sign despite the positive nature of the Pb
cation. It should also be noted that using a similar method, a previous study reports off-diagonal
elements not of Pb, but of the O 4k site, always negative in sign [50].

4.3.2 Phonon dispersion and density of states

We now describe in detail the soft mode lattice dynamics of PTO, PZO and the PZT 50/50
arrangements. Figure 4.2 shows the phonon dispersions for PZT I:VI, PTO, PZO and the VCA
calculated within the supercells indicated in Figure 4.1. Although we have calculated all bands
(shown in the supplemental material of [43]), we consider only the space where ν̄(q) ∈ iR thus
presenting a set of symmetry lowering phase transitions along the fractional q-path (0, 0, 0)⇒
(0, 1/2, 0)⇒ (1/2, 1/2, 0)⇒ (0, 0, 0)⇒ (1/2, 1/2, 1/2). It is at these supercell wavevectors
exactly that we analyze the character of the distortions. The soft mode character has an important
impact on the properties of the of the crystal. This is then inferred with PDOS calculations
(Figure 4.3) and, for some important modes, is reported with eigendisplacement analysis. Table
4.4 serves as a companion to the dispersion identifying modes symmetries, their multiplicities
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Table 4.2: The diagonal elements of the stress tensor σ, high frequency dielectric tensor ε∞ and
averaged born effective charges Z̄∗ of the unique elements for the primitive cubic perovskite unit
cell following the convention of reference [162]. For PZT, these calculations were performed at
aVg whilst PTO & PZO were performed at aPTO & aPZO respectively.

σ11 [GPa] σ22 [GPa] σ33 [GPa] Z̄∗Pb Z̄∗B Z̄∗O‖
Z̄∗O⊥

ε∞11 ε∞22 ε∞33

PTO ≈ 0 ≈ 0 ≈ 0 3.88 7.19 -5.91 -2.58 8.49 8.49 8.49
PZO ≈ 0 ≈ 0 ≈ 0 3.90 5.94 -4.90 -2.47 6.93 6.93 6.93
Mean ≈ 0 ≈ 0 ≈ 0 3.89 6.55 -5.41 -2.53 7.71 7.71 7.71

VCA -1.51 -1.51 -1.51 3.90 6.13 -4.99 -2.52 7.06 7.06 7.06
I 0.56 0.56 0.56 3.89 6.54 -5.36 -2.53 7.59 7.59 7.59
II 0.64 -1.60 0.64 3.89 6.55 -5.38 -2.53 7.59 7.67 7.59
III -1.85 -1.85 0.50 3.86 6.48 -5.31 -2.51 7.54 7.54 7.52
IV -0.67 -0.67 -0.67 3.87 6.49 -5.32 -2.52 7.55 7.55 7.55
V -0.56 -0.56 0.59 3.88 6.53 -5.35 -2.53 7.60 7.60 7.57
VI -0.62 -0.60 -0.60 3.87 6.51 -5.34 -2.52 7.56 7.57 7.57

and numerical values of imaginary frequencies. Table 4.3 presents the q-vectors associated with
the high symmetry labels which also serves as a companion to Figure 4.2.

4.3.2.1 PTO & PZO

We begin with a discussion of end members PTO & PZO. Our choice of supercell for these
calculations reveals folded spectra not previously reported in the literature. We have also,
however, calculated dispersions over the primitive cell and found good agreement with previous
calculations using similar method [154, 171] (see appendix A.1). For PTO we report 7 unique
soft modes at the appropriate wavevectors compared to 26 in the more complex spectrum of PZO.
As expected, the most unstable mode in PTO is found to be Γ−4 featuring Pb/Ti countermotion
against the O anions inducing a net polarisation and incipient FE distortion. Although the Γ−4

distortion exists in PZO, it is harder and features Zr motion alongside O requiring that the smaller
macroscopic polarisation is as the result of Pb-O separation. PTO shows oxygen octahedron
rotational instabilities at the R & M points. These are the R+

4 and M+
3 AFD modes respectively.

In real space, these correspond to out-of-phase and in-phase rotations of the BO6 octahedra about
a single axis, or a0a0c− & a0a0c+ in Glazer’s notation, respectively. These modes are generally
not competitive in PTO but this is not true for PZO. The R+

4 distortion is the softest mode in
PZO and is a prime mover for the AFE phase transition known to make up ≈ 60% of the total
distortion [85] (when the rotation is about the [11̄0] axis).

Branches mostly harden along the (0, 0, 0) ⇒ (0, 1/2, 0) path in PTO resulting in an
antipolar mode ∆5 and a long wavelength AFD mode T4. The latter shares a likeness with both
a0a0c− and a0a0c+ distortions but with a doubled periodicity of four perovskite units along the
axis of rotation. Of the four TiO6 octahedra in the mode, two neighbouring octahedra rotate
counterclockwise and the other two clockwise about the axis of rotation as seen in Figure 4.4i
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Figure 4.2: The soft mode phonon dispersion relations for PZT I:VI, the VCA, PTO and PZO.
All dispersions are over an identical fractional q-path controlled by the parameter ζ = 1/2
(upper x-axis). Folded symmetry labels (described in Table 4.3) are included for PZT I:III, the
VCA, PTO and PZO. We only include folded labels if a soft mode of that wavevector is present
at the given q-point. In the particular case of PTO, this leads to no label for the wavevector (1/2,
1/2, 1/2). Since dispersions for PZT IV:VI were calculated on the primitive cell, no folding takes
place thus only one symmetry label is required.
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Table 4.3: Brillouin zone labels the reader may find useful for interpreting Figures 4.2, 4.5 and
4.6 and references to high symmetry points in the text. Wavevectors are presented in fractional q.
High symmetry points are in bold font while other points are in plain font.

Pm3̄m
R (1/2, 1/2, 1/2) X (0, 1/2, 0) ∆ (0, 1/4, 0) M (1/2, 1/2, 0)
T (1/2, 1/2, 1/4) Z (1/4, 1/2, 0) Σ (1/4, 1/4, 0) S (1/4, 1/2, 1/4)
Λ (1/4, 1/4, 1/4)

Fm3̄m
W (1/2, 1/4, 3/4) X (1/2, 0, 1/2) Σ (1/4, 1/4, 1/2) ∆ (1/4, 0, 1/4)
L (1/2, 1/2, 1/2)

P4/mmm
C (1/4, 1/4, 1/4) X (0, 1/2, 1/4) V (1/2, 1/2, 1/4) M (1/2, 1/2, 0)
W (0, 1/2, 1/4) A (1/2, 1/2, 1/2) ∆ (0, 1/4, 0) Z (0, 0, 1/2)
Y (1/4, 1/2, 0) Λ (0, 0, 1/4) Σ (1/4, 1/4, 0) S (1/4, 1/4, 1/2)

P42/mmc
X (0, 1/2, 0) R (0, 1/2, 1/2) A (1/2, 1/2, 1/2)

Pbam
R (1/2, 1/2, 1/2) S (1/2, 1/2, 0) T 0, 1/2, 1/2 U (1/2, 0, 1/2)
X (1/2, 0, 0) Y (0, 1/2, 0) Z (0, 0, 1/2)

(left). Although there is also a general hardening of branches along the same path in PZO, the
softest is almost dispersionless resulting in another AFD mode of symmetry T4. Although over
the same wavevector as the T4 mode of PTO, this mode is better described as a a0a0c−-like
distortion where rotating octahedra are separated by static ones (Figure 4.4i, right). Both PTO
and PZO now become harder at (1/2, 1/2, 0) resulting in several antipolar modes and for the
first time in this study, single modes with a mixed antipolar/AFD character. These modes often
manifest in a sublattice of BO6 octahedra rotating with a Glazer-like pattern with adjacent PbBO3

units showing local polar distortions. These local polar distortions are aligned such that there
is no net polarisation induced by the mode. An example of this is the Σ2 distortion of PTO,
although it has relatively low soft mode frequency (27.05i cm−1). Modes of this character are
considerably softer in PZO including the S4 distortion which features local AFD modes (with a
complex non-Glazer-like rotation pattern) and antipolar cation displacements. This mode is also
known to make a small contribution to the AFE PZO ground state [85].

Along the (0, 0, 0) ⇒ (1/2, 1/2, 1/2) path, the dispersion now becomes real in PTO. For
PZO, the dispersion remains imaginary. We see a hardening resulting in two strongly degenerate
modes of symmetry Λ2 & Λ3. The former is an 8-fold degenrate AFD mode whilst the latter is
16-fold degenerate featuring Pb-O antipolar displacements. The character of these modes are
reminscient of some of the known modes contributing to the PZO ground state. This suggests that
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Figure 4.3: Species projected phonon density of states D(ν̄) for PTO, PZO the VCA and the
PZT supercells over the imaginary wavenumber space. For the VCA calculation, the gold curve
is the PDOS of the alchemical 50/50 Ti/Zr atom whilst for the supercell models it represents the
sum of B-site PDOS.

the inclusion of these distortions, with others, could create another similar low energy competing
phase. Figure 4.3 shows that the two end-members have a striking dissimilarity in the PDOS.
All species for PTO show a rather featureless smooth function, peaking at ≈ 24i cm−1 whilst
PZO shows a peaked PDOS penetrating further into the imaginary space indicating that cubic
PZO is more dynamically unstable than PTO. The peak at ≈ 50i cm−1 is in part due to the
dispersionless behaviour of a Pb-O antipolar branch extending from (1/2, 1/2, 0)⇒ (0, 0, 0).
This behaviour continues for most of the (0, 0, 0)⇒ (1/2, 1/2, 1/2) path also. It is noteworthy
that the Pb character vanishes for the softest part of the PZO PDOS leaving just modes of Zr-O
character.
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Table 4.4: The 10 most unstable modes, for each structure, measured along the phonon dispersion
path in Figure 4.2 (with the exception of PTO, featuring only 7 instabilities over the dispersion
path). Modes are listed in descending imaginary wavenumber ν̄ across the page. Each entry
features a symmetry label for the irrep and a multiplicity M. Since PZT II, III, IV and VI feature
directional polar modes, affected wavenumbers are given in the format ν̄[010]/ν̄[110]/ν̄[111]. The
full tabulation of all dynamical instabilities can be found in appendix A.1.

M ν̄ [i cm−1] M ν̄ [i cm−1] M ν̄ [i cm−1]

PTO Γ−4 2 149.60 ∆+
5 4 83.40 R+

4 3 62.12
T4 2 45.40 Σ3 4 37.61 Σ2 4 27.05
M+

3 3 18.02

PZO R+
4 3 181.52 T4 2 178.75 M+

3 3 176.09
Γ−4 2 132.14 S4 4 128.32 T5 4 120.45
Σ2 4 119.69 Z4 4 119.53 S3 4 105.37
Λ2 8 103.13

VCA M+
2 3 146.58 ∆5 2 141.95 R−5 3 137.38

Γ−4 2 101.18 S1 4 71.78 T2 4 52.87
Z1 4 52.18 T5 4 52.14 Λ3 16 49.55
X−5 6 44.89

I Γ+
4 3 138.10 ∆4 2 133.08 X+

3 3 128.11
Γ−4 2 111.99 Σ2 4 73.53 ∆5 4 62.02
L−3 8 52.83 X−5 6 49.09 L−′3 8 48.70
W5 4 48.29

II M−3 1 227.52 Γ−5 1 144.78/201.13/215.93 Z−5 2 148.78
A−5 2 140.02 Z−1 1 137.91 Λ4 2 132.92
Γ+

3 1 127.97 C1 4 105.26 Λ5 4 101.14
W2 4 90.22

III Γ−5 1 196.63/196.63/196.63 M+
2 1 190.76 Γ−3 1 174.29/174.29/181.62

∆4 2 173.52 X+
2 2 156.67 M+

5 2 152.61
∆3 2 150.97 X+

3 2 149.79 Y3 2 147.85
X−2 2 143.46

IV Γ−4 2 181.41 Γ+
4 3 169.33 X+

3 1 168.90
X+

5 2 168.18 M−2 1 157.00 M+
3 1 150.48

R+
4 3 148.69 X+′

5 2 130.13 M+
5 2 129.20

Γ−′4 2 114.61

V Γ−5 1 209.42/209.42/209.42 X−3 1 202.33 Γ−3 1 153.93/153.93/182.48
Γ+

3 1 167.07 Γ−′5 1 148.18/148.18/123.20 Γ+
5 1 147.67

X+
4 1 146.16 X−1 1 132.83 Γ+′

5 2 131.48
X−2 1 129.84

VI Γ−5 1 206.22/206.22/206.22 X+
2 1 197.36 Γ−3 1 180.33/195.87/191.69

R−1 1 190.45 Γ+
5 2 167.85 X+

4 1 167.42
X+

3 1 167.00 Γ−′5 1 159.78/146.71/150.21 Γ+
4 1 149.99

Γ+
3 1 142.07



117 Chapter 4: The Pb(Ti, Zr, Hf)O3 Isoelectronic Series: a Lattice Dynamical Study

4.3.2.2 Virtual crystal approximation & PZT I

There is a remarkable visual similarity in the dispersion relations between PZT I and the VCA.
At first glance, this suggests that the within mixed potential scheme the dynamics of alternating
Zr and Ti atoms in the rock-salt structure are well approximated. We do, however, see more
unique branches for PZT I and find that the lowest lying modes of the VCA penetrate further
into the soft space than its rock-salt ordered counterpart. It is also true that both approaches
resemble PZO more so than PTO. This can be seen when assessing the modes at wavevector (0,
0, 0). At this point, PZT I, the VCA and PZO share a similar hierarchy of modes. PZT I and
the VCA also share identical multiplicities. In descending order in imaginary wavenumber, we
have out-of-phase AFD, in-phase AFD, FE then a number of antipolar modes. It is illuminating
in this case, to perform a full analysis of the character. It soon becomes apparent that the VCA
features AFD modes about all three axes of rotation. The amplitudes of these rotations about
two of the axes are small and much larger for the remaining axis. We could then consider these
modes as rotations about a single axis but with small, erroneous rotations about the other axes.
This is in contrast to PZT I where the softest AFD mode (Γ+

4 ) has (like both end members) an
a0a0c− displacement pattern, shown in Figure 4.4 ii) a). In the VCA, this rotation (M+

2 ) retains
its out-of-phase characteristic but now rotates about all three axes of rotation with different
amplitudes thus exhibiting the a−b−c− rotation pattern shown in Figure 4.4 ii) b-d). The next
softest mode in PZT I (X+

3 ) has the a0a0c+ pattern whilst the in-phase rotations in the VCA
(R−5 ), as before, have differing amplitudes about all three axes of rotations. This is the a+b+c+

rotation pattern. The rotation patterns in the VCA are not seen in any of the PZT supercell
models indicating that rotations about more than one axis are a fictitious artifact of the method,
better illustrating the inaccuracy of the VCA in the prediction of local atomic displacements.

The character of the FE Γ−4 modes are also dissimilar in nature. For PZT I, all ions play a
role in the development of polarisation including Ti and Zr displacement of a similar magnitude.
For the VCA, the alchemical B-site plays much less of a role. We can then infer (without the
full Berry-phase calculation) that the incipient polarisation is smaller in magnitude in part owed
to the smaller B-site displacements but also due to the smaller value of Z̄∗B (Table 4.2). A lack
of alchemical B-site character is in fact common place for the VCA as evidenced in Figure 4.3
where although optically coupled to Pb motion, has an almost vanishingly small PDOS. This
suggests that within the VCA, the B-site is dynamically inert. This leaves the softest modes of
the VCA to have nearly a pure O character. It is only for Pb that we see similarity in the PDOS
between the VCA and PZT I. We see a peak in the Pb D(ν̄) for PZT I at ≈ 48i cm−1 which is
shifted ≈ −2i cm−1 in the VCA. The Pb peak in PZT I coincides with the other species. Such
a coupling is in fact true for all PZT configurations and end members PTO/PZO. It is unique
to the VCA that we see little coupling beween Pb & O. This can be regarded as a knock-on
effect of the inert B-site. Since Pb & B-site vibrations are weakly coupled, the usual B-site
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displacements which would otherwise follow Pb are not present. It is these displacements which
more greatly influence O motion since Pb has only a weaker mixed ionic/covalent interaction
with O. Whilst we expect the general ficticious character of the eigendisplacements to persist
accross all concentrations within the VCA, it is likely that the magnitude of the error may vary.
We expect largely ficticious eigendisplacements when Ti/Zr concentrations are comparable but
expect the effect to diminish in the limit of high/low concentrations where the mixed potential
becomes very similar to the original, unmixed pseudopotential.

Moving away from (0, 0, 0) towards (0, 1/2, 0) both PZT I and the VCA give rise to
longer wavelength AFD and antipolar modes. The T2 and ∆4 modes of the VCA and PZT I,
respectively, display the same rotation pattern as the aformentioned T4 distortion in PTO. This
mode is significantly more unstable in PZT I. Despite the VCA appearing to have a higher
degeneracy for the antipolar soft modes at ≈ 50i cm−1, modes are still unique splitting only by
≈ 0.5i cm−1. One of these modes, Z1, is not purely antipolar and once again we see the mixed
AFD/antipolar character displaying non-Glazer-like rotations coupled with Pb cation motion.

like PZO, both the VCA and PZT I become their hardest along the (0, 1/2, 0)⇒ (1/2, 1/2,
0) path. This leads to further antipolar modes at the Σ and S points. Notably, PZT I gains
an additional soft mode from the real domain along this path, Σ1. This is distinct from the
other Pb-O modes since it features antipolar Pb-B displacements with no significant O character.
For the VCA, there is also a 4-fold degenerate mode Z1 once again with mixed antipolar/AFD
character. The most distinct differences in the dynamical behaviour between the VCA and PZT I
now comes along the path (0, 0, 0)⇒ (1/2, 1/2, 1/2). Many of the harder antipolar branches in
the VCA move to the real domain. These modes do begin to harden in PZT I but then re-soften
to become degenerate with other branches at the L-point giving rise to two long wavelength
modes both of symmetry L−3 . Now commonplace, they share a mixed antipolar/AFD character
split by ∆ν̄ = 4.13i cm−1. We distinguish between modes sharing an irrep by priming those
with the lower imaginary frequency as seen in Table 4.4. Each mode has 8-fold degeneracy
despite L−′3 having a longer wavelength AFD rotation pattern than L−3 . This splitting closes for
the VCA giving rise to one 16-fold degenerate mode of symmetry Λ3 displaying a similar mixed
antipolar/AFD character.

4.3.2.3 PZT II & III

We move now to consider the dispersions of PZT II & III. These are the [110] and [001] ordered
superlattices respectively. These structures were considered in a previous work in a study of the
instabilities at the Γ-point [50] using the LDA. Consistent with the previous work, we find that
both PZT II & III have strong TO FE instabilities of Γ−3 & Γ−5 symmetry respectively. The softest
TO mode of the [110] ordered structure is not seen in our dispersion path due to the anisotropy of
LO-TO splitting in non-cubic crystals. This anisotropy can be reasoned by the form of the NAC.
Recall that the NAC is a function of both Z∗i & ε∞. The former gains more unique elements
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Figure 4.4: Visualisation of eigendisplacements described in the text following the same key as
Figure 4.1 but also with grey spheres representing Pb sites. i) The T4 modes of PTO and PZO.
Both Pb and counter-rotating octahedra are removed for clarity. ii) The Γ+

4 distortion of PZT I
(c-axes into page) and the M+

2 distortion of the VCA from three viewing angles indicating out-
of-phase rotation about three axes of rotation iii) The antipolar ∆4 distortion of PZT III. Arrows
indicate the direction of the local polarisation. iv) The mixed antipolar/AFD M+

3 distortion of
PZT IV.
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in lower symmetry crystals and the latter is no longer isotropic as evidenced in Table 4.2. The
affected elements of the dynamical matrix are then corrected by a different amount based on the
direction of the q-vector as it approaches Γ. This effect is seen in PZT II, II, V & VI since they
are all members of a tetragonal spacegroup. These anisotropies are also accessible in experiment
as evidenced by inelastic neutron scattering in tetragonal PTO [157] . Taking just the analytic
part of the Γ−3 mode of PZT II returns an eigenfrequency of 242.28i cm −1, slightly softer than
what is predicted by the LDA [50].

We find that both PZT II & III give rise to soft LO modes, again, in agreement with the
previous work. [110] ordering is generally more dynamically unstable than [001] ordering
showing a distinct separation between the most imaginary FE/antipolar modes and groupings of
Glazer AFD modes. What was not considered in a previous study [50] was competition of polar
modes with other order parameters. The antipolar mode M−3 of PZT II is closely competitive
with Γ−5 . This mode is an antipolar arrangement of Ti-O displacements completely isolated to
local PTO environments, leaving undistorted areas of PZO units. There are also a plethora of
unique Glazer tilt modes owed to inequivalent directions in the crystals and thus inequivalent
axes of rotation. The softest of these is an a0a0c− mode with the axes of rotation along the [001]
(or [010]) direction, the direction of compositional modulation. This is followed by a several
antipolar modes and harder FE modes. In PZT III, rotational instability is highly competitive
with FE order due to the M+

2 mode. This mode shows in-phase rotation of ZrO6 octahedra,
leaving the TiO6 octahedra static in a manner reminiscent of the T4 distortion of PZO. This
shows there is no mechanical coupling along the axis of rotation between octahedra centered on
a different B-site species. Whilst rotations of all octahedra are also unstable (both out-of-phase
M+

5 and in-phase X−2 ), they are harder. Further, both of these modes rotate along homogeneous
B-site chains whereas the M+

2 mode rotates along the heterogeneous direction where no other
Glazer type instability exists.

The character of AFD modes in PZT II alters as we approach the wavevector (0, 1/2, 0).
This mode shows out-of-phase rotations of the ZrO6 octahedra but with a doubled periodicity.
Rotating octahedra are also separated by static ZrO6 octahedra this time showing a lack of
inter-layer coupling even along the homogeneous direction. A long wavelength AFD mode
also exists for PZT III at this wavevector of irrep Y3. This modes shows the same character
of the T4 mode of PTO with the axis of rotation being along the homogeneous direction. This
wavevector for PZT III, however, is dominated by antipolar instability with the most unstable
being the ∆4 mode. This mode appears with two separate polar domains with a domain period
of 4 perovskite units, separated by a 180◦ domain wall as depicted in Figure 4.4 iii). Local PTO
units are significantly more polar than local PZO units.

Like in PZT I, the VCA, PTO and PZO, the most imaginary bands at (0, 1/2, 0) have a steep
gradient to the hard wavevector (1/2, 1/2, 0). This results in tight groupings of antipolar and
mixed antipolar/AFD modes for PZT III but only antipolar modes for PZT II. The dispersion
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now returns to (0, 0, 0). We note that along this direction of approach ([110]), anisotropy in
LO-TO splitting allows for softer LO FE modes to appear in both PZT II & III and softer still
along the [111] direction. This results in a sharp discontinuities in the spectra. From (0, 0, 0) to
the long wavelength (1/2, 1/2, 1/2) point, hardening occurs for both PZT II & III giving rise to 5
distinct distortions for each arrangement. For PZT II, these are the W1:4 (where the subscript
indicates all modes with integers 1 through 4) and W′

1 distortions. Each of these modes has a
pure antipolar character. further, the splitting of the isosymmetrical modes W1 and W′

1 is large
(64.16i cm−1) due to the inclusion of Zr displacement in W′

1 where W1 features static Zr. PZT
III possesses similar characteristics in its long wavelength distortions, S1:4 and S′4. Unlike PZT II,
two of these distortions have the mixed AFD/antipolar character whilst the remaining are purely
antipolar. The S4-S′4 splitting is also large (61.19i cm−1) but is now the result of the inclusion of
local AFD displacements in S4 whilst S′4 is purely antipolar.

The general character of the disortions in both PZT II & III can be inferred from the PDOS
(Figure 4.3). We see that for both arrangements, all species are optically coupled to one-another,
but, like before, the Pb character starts to diminish as we penetrate further into the soft domain.
Whilst both PZT II & III both give rise to two separated islands of states in the PDOS, a sharp peak
exists on the softer island of PZT II at ≈ 100i cm−1. This is owing to the nearly dispersionless
behaviour of the antipolar branch connecting the Λ5 and C1 modes. The 4-fold degenerate W1

anti-polar mode also appears at this wavenumber (along with Λ5 and C1) containing significant
Pb character.

4.3.2.4 PZT IV

We discuss now PZT IV in isolation, which, despite sharing m3̄m symmetry with PZT I, shows
radically different dynamical behaviour as well as being generally more unstable. For the first
time in this study, also, we consider dispersion over what is the primitive unit cell so we pass
through high symmetry points without any folding of the BZ. Unlike PZT I, the softest mode at
(0, 0, 0) is now a Γ−4 distortion which although suggests a FE ground state, is not guaranteed.
This is because the phonon frequency gives us only information on the instability of the mode
and not on the magnitude of energy lowering once the soft lattice mode has condensed in the
crystal. This distortion shows stronger local polarity in directions with continuous PTO units.
The presence of Zr along a polar direction dampens the distortion. For the first time in this study,
no pure Glazer type AFD instabilities are found to exist in a single mode. These are replaced with
isolated in-phase AFD instabilities the softest of which is the Γ+

4 mode. This mode features a
rotating layer (isolated by static PbBO3 layers) with a ratio of 8:1 ZrO6 to TiO6 octahedra. In this
case, the dominance of the PZO rich environment (which favours rotation) is able to overpower
the single PTO unit (favouring FE distortion) into rotation. One other rotational instability exists
at this point, Γ+′

4 . This mode shares the same characteristics as Γ+
4 , but the rotating layer contains

fewer ZrO6 octahedra making the mode more stable than its counterpart. It is notable that there
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are three separate occurrences of the FE Γ−4 irrep: Γ−4 , Γ−′4 and Γ−′′4 . The latter (although much
harder than the others) is distinct not only due to its weak B-site displacements but also its
alternating Pb cation motion transverse to the direction of polarisation giving rise to a mode of a
mixed FE & antipolar character at the zone centre.

Most bands harden only slightly along the path to X much in contrast to the superlattice
type arrangements. Antipolar type distortions at this wavevector are much harder than previous
arrangements featuring only Pb-O motion. There is now only a slight hardening in the dispersion
along the Γ⇒ X path once again leading to a selection of antipolar and AFD modes. The X+

3

and X+
5 modes are particularly unstable. The first is a long wavelength AFD mode much like Γ+

4

but with out-of-phase rotations. These rotational modes are very closely competing split by <1i
cm−1 in the favour of X+

3 . The second, X+
5 is an isolated antipolar distortion where local PTO

units are polar in the direction of compositional homogeneity. PZO units are once again resistant
to polarisation and are left static. After a small degree of hardening along the path to M, we find
15 unique distortions of antipolar and mixed AFD/antipolar character; the largest concentration
of such states in this study. The softest is antipolar M−2 bearing great resemblance to X+

5 but over
a greater wavelength.

The M+
3 mode is the clearest example of a mixed AFD/antipolar mode. This is shown in

Figure 4.4 iv). It features a central in-phase rotation similar to Γ+
4 . PbBO3 units perpendicular

to the axis of rotation now show local polar displacements in a pattern enclosing the central
rotating unit. Softer modes of this character can be seen at the R-point. Here we find that the
most unstable branches are dominated by the mixed AFD/antipolar character. In-fact, the most
unstable mode of this character, amongst all PZT arrangements, is found here and is the triply
degenerate R+

4 . This shares great similarity to M+
3 but rotations are out of phase and about two

axes making the rotation pattern a0b−b−-like. Other modes at this wavevector are also visually
similar to M+

3 but now the local polar regions include Pb & Ti cation motion where before local
polarity was just as the result of O displacing against static Zr.

PZT IV is the only arrangement to form three distinct islands in the PDOS. The two more
stable islands feature coupled ionic motion between all species, but, as before the most imaginary
states have a diminished Pb character. It is clear that the first (and least imaginary) island is
comprised entirely of antipolar states and the second of antipolar and mixed AFD/antipolar states.
The softest island features the purely rotational states but also FE and mixed AFD/antipolar order.
Unlike previous arrangements, the is a significant peak in the most unstable island at ≈ 140i
cm−1 as a result of a significant amount of mixed AFD/antipolar modes. This suggests that such
a mode character could play a role in a low energy structure of this arrangement.

4.3.2.5 PZT V & VI

The last of the arrangements we consider together are PZT V & VI. A striking dissimilarity
between these two arrangements and the rest is the increased number on unique bands in the soft
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space. The vast majority of these states are singly degenerate in response to the large number
of uniquely coordinated ions. At the Γ-point, both arrangements are dominated by a highly
imaginary FE distortion of symmetry Γ−5 . Both distortions display greater local polarisation in
the direction of compositional homogeneity in Ti. Local PZO units are polarized but as in the
end member PZO, Zr play less of a role. Both arrangements feature other polar modes where like
PZT IV, alternating Pb cation motion is in a direction perpendicular to the polarisation suggesting
a dual FE & antipolar character.

Like PZT III and IV, PZT V favours isolated rotations separated by static octahedra. One
example of this is Γ+

3 mode where rotating layers feature a higher number of Zr sites and static
layers have a higher number of Ti sites. It is true once more that purely Glazer type rotations are
not seen in the spectra of PZT V. These are replaced with Glazer-like modes where one layer
rotates more strongly than the other. The most unstable example of this is the Γ+

5 mode which is
strongly a0a0c−-like, but, the rotating layer with the higher Ti/Zr ratio rotates at a diminished
amplitude. For both V & VI, the most imaginary polar branch is almost dispersionless along
the path to X resulting in the softest mode at the X−3 and X+

2 for each arrangement, respectively.
Both modes are antipolar featuring no Pb cation motion but heavy Ti-O countermotions. Like
previous PZT arrangements at this wavevector, we see non-Glazer-like isolated AFD modes and
a variety of harder antipolar modes.

For PZT VI, we see that the most imaginary TO branch is not only dispersionless along
the previously mentioned path but is for much of the BZ until we see a rapid hardening as we
approach Λ. Even here however, the branch remains unstable. This shares some similarity
with the dynamical behaviour seen in the dispersion relations of BaTiO3 (BTO), but, for BTO
the result is a confinement of the instability to three quasi-two-dimensional slabs of q-space
intersecting at Γ since the branch becomes real towards the R-point. With the exception of this
branch, the character of modes at the wavevectors (1/2, 1/2, 0) & (1/2, 1/2, 1/2) are rather similar.
Both give rise to large number of unique AFD/antipolar distortions similar to those described
before. Notable also is the anisotropic behaviour of polar branches approaching the Γ-point
from the different considered directions. Whilst the most imaginary TO branches are unaffected,
discontinuity can be seen clearly when comparing the [110] & [111] directions for both PZT
V & VI which is tabulated in Table 4.4. The farily even distribution of states across the soft
space results in a single island in the PDOS for both PZT V & VI, although, like other PZT
arrangements, there is a higher density of antipolar states in the harder part of the soft-space.
Remarkably, despite the near-dispersionless character of the most imaginary polar branch in PZT
VI, the resulting peak in the PDOS is small as a result of its isolation from other bands in the
spectra and its single-fold degeneracy.
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Figure 4.5: The phonon dispersions of primitive Pm3̄m PZO (blue) and PHO (orange).

4.4 PZO & PHO: a new ground state candidate

4.4.1 Comparison of phonon dispersions

Now having confirmed the presence of long wavelength soft modes in ordered cubic PZT 50/50
and PZO, some interesting questions naturally arise. Firstly, do these instabilities persist in PZO’s
isoelectronic and isostructural partner, PHO? If they do persist, how does their character compare
to those in PZO? Lastly, given the ubiquity of these long wavelength modes, do any further
modes of this type condense in the low temperature AFE phases of PZO and PHO? Figures 4.5
and 4.6 show the phonon dispersion relationships for PZO and PHO within the 1BZ. In contrast
to the previous sections, these calculations have been performed using the primitive 5/40 atom
cells for the Pm3̄m/Pbam phases. Also unlike the previous sections, we have included the real
branches in these plots as they make for interesting visual comparisons. The majority of the
discussion will once again, however, concentrate on the nature of the dynamical instabilities.

Focusing first on the cubic dispersions (Figure 4.5), we see some striking similarities
between PZO and PHO. It is true that most of the imaginary and high (real; above ≈ 580 cm−1)
wavenumber optical branches follow similar dispersion paths across the 1BZ. Visually, the most
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Figure 4.6: The phonon dispersions of primitive Pbam PZO (blue) and PHO (orange).
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discrepancy appears for those real branches in range 0 cm−1 ≤ ν̄(q) ≤ 250 cm−1. It is likely
that it is this region which is responsible for the differences in the thermal properties of the
materials. Treating now the general nature of the dynamical instabilities, we see that PZO is
systematically more unstable than PHO for most branches. This translates directly to the finding
that the relative energy of the AFE Pbam phase to Pm3̄m is much lower for PZO than PHO
(Table 4.5). We also see that the important Σ2 and R+

4 modes have a larger amplitude in PZO
than PHO; PHO is a weaker antiferroelectric (See Table 4.8). Following this, PZO and PHO are
isostructural in the sense that they share the same irreps in the AFE phase, but, the magnitude of
these irreps differ strongly between them. When analysing the eigendisplacements of the
unstable modes at each high symmetry point, we find that the characters of all modes are shared
between PHO and PZO. The only place we are unable to perform this comparison is at the
M-point where the Pb-only antipolar mode M−2 becomes real for PHO. A cautious observer may
from Figure 4.5 suggest that some modes are also missing at the S-point, however, this is untrue.
PHO and PZO simply possess nearly identical wavenumbers for some modes at and in the
vicinity of this point. We do not describe the character of each instability in this section as,
remarkably, they share identical character with the PBESol calculation for PZO in Section
4.3.2.1.

Looking now at the Pbam dispersions of Figure 4.6, we see the two also share great
similarities. The visible difference is perhaps the small upwards shift of the high wavenumber
(above ≈ 550 cm−1) optical branches of PHO versus PZO. One particular feature the eye is
drawn towards is the instability of an optical branch in the vicinity of the Z-point (qZ = (0, 0,
0.5)). Since Pbam is the purported low temperature ground state, this is surprising. The low
temperature ground state (or more precisely, the 0K ground state) should have no unstable modes.
Exactly at the Z-point, this mode has symmetry Z+

4 for PZO and PHO with a wavenumber of
26.15i cm−1 and 24.27i cm−1 respectively. By convention, mode irreps are usually given as a
decomposition of the Pm3̄m phase, so, we unfold the single Z+

4 irrep (of Pbam) to five irreps:
T4, T2, Λ1, Λ3 and ∆5. It is interesting to point out that these distortions are also instabilities of
the PZO and PHO Pm3̄m phases. The distortion pattern (though exaggerated) for T4 and Λ3 is
shown in Figure 4.7. We do not discuss the character of the remaining modes here because, as
we learn in Table 4.8, these modes only appear at a minuscule amplitude. T4 (Figure 4.7a) is a
long wavelength antiferrodistortive mode rotating about the pseudocubic b axis. It is periodic
over four perovskite units with two octahedra rotating clockwise and two anticlockwise. This
mode is reminiscent of the super-tilting pattern observed in NaNbO3 [324] and AgNbO3 [325].
Λ3 (Figure 4.7b) is a Pb-O antipolar mode. For the Pb displacements, it can be described as
having a ‘two-up, two-down’ pattern in one PbO plane then a ‘two-left, two-right’ pattern in the
next PbO plane. Within the PbO planes, O moves antiparallel to the Pb displacements. Within
the ZrO2/HfO2 planes, O moves in a sinusoidal wave pattern with a period of four O sites. This
pattern is reflected (about the Pb-O plane) in the next ZrO2/HfO2 plane.
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a) T4 mode
b) Λ3 mode

Figure 4.7: The two most important modes comprising the difference between the Pbam and
Pnma crystals for PZO and PHO. The magnitude of the displacement is exaggerated. a) The T4

mode. ZrO6/HfO6 octahedra rotate in antiphase about the pseudocubic b axis in pairs. b) The
Λ3 mode. Antipolar Pb displacements are grouped by a common displacement direction with
coloured boxes (red: up, blue: down, orange: left, green: right). Zr/Hf (inactive in this mode)
has been removed for clarity.

4.4.2 The antiferroelectric Pnma phase

We now introduce the eigendisplacements associated with these new irreps into the Pbam
structure at a small amplitude, breaking the symmetry and pushing the crystal into a new
minimum. After doing so, we relax the structure until the magnitude of all forces fall below
1× 10−3 eV/Å. The result is new 80-atom Pnma phase; marginally lower in energy than Pbam
and described by eleven distinct irreps. To corroborate this energy lowering and to ensure this
new phase is not a mere artefact of the LDA, we perform the same procedure with the PBESol
and SCAN† (strongly constrained and appropriately normed; meta-GGA [221].) functionals.
The PBESol calculation was performed using the NCPP method used in Section 4.3. The relative
stabilities are shown in Table 4.5 while the Pbam and Pnma crystal structures are described

†Calculations with the SCAN functional were received in private communications from J. K Shenton. VASP
(v5.4.4) [270, 274, 326–328] was used with PBE PAWs [152, 234] (Zr sv 04Jan2005, Hf pv 06Sep2000, O
08Apr2002, Pb d 06Sep2000). The effects of mismatching PBE PAWs with the SCAN functional are discussed in
[329].
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Table 4.5: The relative stability ∆E (in meV/FU) of the Pbam and Pnma phases compared to
cubic Pm3̄m for PZO and PHO. ∆E = E(Pbam/Pnma)− E(Pm3̄m).

LDA-PW PBESol SCAN

Pbam PZO -310.744 -262.240 -258.943
Pnma PZO -311.878 -263.096 -259.138
Pbam PHO -95.309 -175.014 -205.946
Pnma PHO -96.026 -175.426 -206.186

in Tables 4.6 and 4.7 respectively. To quantify the strength of each distortion, we calculate the
primitive cell normalised mode amplitude Ap for each irrep, shown in Table 4.8. To assign Ap,
the atomic displacements are assigned (by symmetry) to an irrep and calculated as fractional
displacements relative to the parent structure. We then normalise by a factor of

√
Vp/Vs for

primitive/supercell cell volumes Vp/Vs. Ap is then the root sum squared (RSS) of each of
these displacements comprising the irrep. This is the format popularised by the ISODISTORT
package [321].

From Table 4.5, we see that the new Pnma phase is lower in energy than Pbam for all three
functionals used. Pnma is more stable by ∼ 1 meV/FU for most cases, but, this narrows to ≈
0.2 meV/FU for the SCAN functional. The majority of this energy lowering comes from the
condensation of the T4 and Λ3 modes which appear with an amplitude similar to the S4 mode of
Pbam for the LDA-PW and PBESol calculations. For SCAN, the amplitudes of these modes
are degraded, explaining the narrowing of the energy gap between Pbam and Pnma for this
functional. This effect is particularly apparent for Pnma PHO where the amplitudes of these
two modes are ≈ 6× smaller compared with LDA-PW and PBESol. Even more interesting, the
RSS of Pnma PHO for the SCAN functional is lower than Pbam despite the introduction of
the 5 new modes. This is the result of the reduced amplitude R+

4 mode which likely competes
with one of the new modes. Since the new irreps condensing in Pnma couple only weakly to
strain, it can be seen from Tables 4.6 and 4.7 that the lattice constants (per ABO3 unit) of the two
models are almost unchanged (∼ 10−3Å difference). Taking forward just the LDA-PW Pnma

PZO structure, we relax the forces further (to 1× 10−6 eV/Å) and calculate the dynamical matrix
exactly for five‡ q-vectors commensurate with a 5× 2× 3 q-point grid. At these points, we now
find no unstable modes; it is very unlikely that there are further energy lowering subgroups of
Pnma as the result of symmetry lowering atomic distortions.

There are three possibilities we can conceive for the origin of this new phase which should
all be considered. Firstly, it could be that what was observed as Pbam in experiment was Pnma
all along. This could be forgiven since distinguishing between the two models in any given

‡We treated q = (0, 0, 0), (1/5, 0, 0), (2/5, 0, 0), (0, 1/3, 0) and (0, 0, 1/2). Many perturbations were also
treated for other q on the 5 × 2 × 3 mesh, but were intractable to compute for all atomic displacements. These
additional perturbations also yielded real frequencies.
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Table 4.6: The (fractional) Wyckoff positions (x, y, z) and orthorhombic lattice vectors for 40
atom Pbam PZO and PHO. We compare LDA-PW, PBESol and the SCAN functionals complete
with comparison to 10K neutron diffraction data.

Site LDA-PW PBESol SCAN Exp (10K) [330] [287]

Pbam PZO

Pb 4g (0.7035, 0.8770, 0.0000) (0.7017, 0.8764, 0.0000) (0.6951, 0.8762, 0.0000) (0.6991, 0.8772, 0.0000)
Pb 4h (0.2868, 0.1275, 0.5000) (0.2893, 0.1282, 0.5000) (0.2952, 0.1297, 0.5000) (0.2944, 0.1294, 0.5000)
Zr 8i (0.2431, 0.8754, 0.2497) (0.2420, 0.8756, 0.2497) (0.2401, 0.8760, 0.2497) (0.2414, 0.8752, 0.2486)
O 4e (0.0000, 0.0000, 0.7713) (0.0000, 0.0000, 0.7714) (0.0000, 0.0000, 0.7689) (0.0000, 0.0000, 0.7707)
O 4f (0.0000, 0.5000, 0.7999) (0.0000, 0.5000, 0.7969) (0.0000, 0.5000, 0.7974) (0.0000, 0.5000, 0.7974)
O 4h (0.6961, 0.0928, 0.5000) (0.7010, 0.0941, 0.5000) (0.6985, 0.0958, 0.5000) (0.6989, 0.0956, 0.5000)
O 4g (0.7230, 0.1587, 0.0000) (0.7250, 0.1575, 0.0000) (0.7237, 0.1560, 0.0000) (0.7244, 0.1560, 0.0000)
O 8i (0.2431, 0.8754, 0.2497) (0.5316, 0.7616, 0.7188) (0.5328, 0.7619, 0.7197) (0.5317, 0.7378, 0.7202)
a (Å) 5.8098 5.8716 5.9028 5.8736
b (Å) 11.6864 11.7651 11.8129 11.7770
c (Å) 8.0993 8.1776 8.2078 8.1909

Pbam PHO

Pb 4g (0.7101, 0.8769, 0.0000) (0.7092, 0.8764, 0.0000) (0.7003, 0.8748, 0.0000) (0.7114, 0.8768, 0.0000)
Pb 4h (0.2840, 0.1281, 0.5000) (0.2855, 0.1285, 0.5000) (0.2920, 0.1300, 0.5000) (0.2928, 0.1298, 0.5000)
Hf 8i (0.2442, 0.8754, 0.2497) (0.2434, 0.8756, 0.2497) (0.2406, 0.8764, 0.2498) (0.2421, 0.8745, 0.2455)
O 4e (0.0000, 0.0000, 0.7714) (0.0000, 0.0000, 0.7714) (0.0000, 0.0000, 0.7669) (0.0000, 0.0000, 0.7650)
O 4f (0.0000, 0.5000, 0.7951) (0.0000, 0.5000, 0.7927) (0.0000, 0.5000, 0.7905) (0.0000, 0.5000, 0.7932)
O 4h (0.7049, 0.0950, 0.5000) (0.7083, 0.0959, 0.5000) (0.7065, 0.0995, 0.5000) (0.6996, 0.0983, 0.5000)
O 4g (0.7284, 0.1560, 0.0000) (0.7303, 0.1551, 0.0000) (0.7290, 0.1522, 0.0000) (0.7329, 0.1561, 0.0000)
O 8i (0.5282, 0.7609, 0.7195) (0.2434, 0.8756, 0.2497) (0.5271, 0.7599, 0.7234) (0.5280, 0.7410, 0.7190)
a (Å) 5.7585 5.8181 5.8330 5.8404
b (Å) 11.5690 11.6580 11.6575 11.7057
c (Å) 8.0581 8.1344 8.13517 8.1751
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Table 4.7: The (fractional) Wyckoff positions (x, y, z) and orthorhombic lattice vectors for
80 atom Pnma PZO and PHO. We compare LDA-PW, PBESol and the SCAN functionals.
We warn the reader, that by convention, the psuedocubic a and b axes are interchanged when
compared to Pbam.

Site LDA-PW PBESol SCAN

Pnma PZO

Pb 8d (0.7946, -0.0057, 0.8764) (0.7963, -0.0061, 0.8757) (0.8044, -0.0035, 0.8760)
Pb 4c (0.7865, 0.2500, 0.8699) (0.7883, 0.2500, 0.8689) (0.7947, 0.2500, 0.8691)
Pb 4c (0.2150, 0.2500, 0.1258) (0.2122, 0.2500, 0.1260) (0.2049, 0.2500, 0.1281)
Zr 8d (0.7549, 0.1252, 0.6248) (0.7554, 0.1252, 0.6246) (0.7585, 0.1251, 0.6243)
Zr 8d (0.2576, 0.6245, 0.8760) (0.2589, 0.6246, 0.87636) (0.2607, 0.6247, 0.8763)
O 8d (0.5094, 0.8994, 0.4965) (0.5105, 0.8978, 0.4962) (0.5044, 0.8985, 0.4987)
O 8d (0.4538, 0.8645, 0.7314) (0.4571, 0.8649, 0.7326) (0.4615, 0.8630, 0.7351)
O 8d (0.4780, 0.3534, 0.7434) (0.4815, 0.3542, 0.7451) (0.4727, 0.3569, 0.7410)
O 8d (0.7246, 0.4990, 0.6582) (0.7267, 0.4990, 0.6569) (0.7241, 0.4994, 0.6558)
O 8d (0.0140, 0.6150, 0.5067) (0.0152, 0.6150, 0.5071) (0.0072, 0.6158, 0.5033)
O 4c (0.6968, 0.2500, 0.5870) (0.7010, 0.2500, 0.5887) (0.6978, 0.2500, 0.5923)
O 4c (0.3025, 0.2500, 0.3995) (0.2967, 0.2500, 0.3985) (0.3004, 0.2500, 0.4001)
a (Å) 5.8065 5.8671 5.9015
b (Å) 16.2246 16.3833 16.4237
c (Å) 11.6707 11.7505 11.8087

Pnma PHO

Pb 8d (0.7883, -0.0049, 0.8763) (0.7895, -0.0049, 0.8758) (0.7998, -0.0010, 0.8746)
Pb 4c (0.7835, 0.2500, 0.8698) (0.7846, 0.2500, 0.8692) (0.7920, 0.2500, 0.8695)
Pb 4c (0.2183, 0.2500, 0.1263) (0.2161, 0.2500, 0.1263) (0.2078, 0.2500, 0.1298)
Hf 8d (0.7548, 0.1253, 0.6247) (0.7551, 0.1251, 0.6246) (0.7591, 0.1249, 0.6237)
Hf 8d (0.2556, 0.6245, 0.8759) (0.2571, 0.6246, 0.8761) (0.2597, 0.6248, 0.8766)
O 8d (0.5086, 0.8969, 0.4963) (0.5092, 0.8958, 0.4963) (0.5011, 0.8952, 0.4997)
O 8d (0.4599, 0.8649, 0.7336) (0.4639, 0.8646, 0.7350) (0.4714, 0.8625, 0.7394)
O 8d (0.4851, 0.3549, 0.7455) (0.4862, 0.3561, 0.7463) (0.4742, 0.3611, 0.7409)
O 8d (0.7298, 0.4991, 0.6556) (0.7317, 0.4992, 0.6546) (0.7290, 0.4999, 0.6522)
O 8d (0.0118, 0.6150, 0.5061) (0.0128, 0.6150, 0.5063) (0.0018, 0.6166, 0.5008)
O 4c (0.7059, 0.2500, 0.5896) (0.7085, 0.2500, 0.59180) (0.7064, 0.2500, 0.5988)
O 4c (0.2945, 0.2500, 0.3981) (0.2901, 0.2500, 0.3983) (0.2932, 0.2500, 0.3994)
a (Å) 5.7566 5.8147 5.8333
b (Å) 16.1342 16.2886 16.2713
c (Å) 11.5587 11.6482 11.6571
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Table 4.8: The total decomposed mode amplitudes Ap (described in the text) for each irrep using
the Pm3̄m phase as the parent and the Pbam/Pnma phase as the daughter. Data is presented in
the format “LDA-PW PBESol SCAN”. RSS =

√∑
iA

2
p,i.

Mode Pbam PZO Pbam PHO Pnma PZO Pnma PHO

R+
4 0.5504 0.5332 0.5138 0.5082 0.4969 0.4433 0.5380 0.5197 0.5088 0.4964 0.4841 0.4418

Σ2 0.4233 0.4093 0.4462 0.3541 0.3416 0.3832 0.4098 0.3942 0.4440 0.3415 0.3308 0.3838
S4 0.1412 0.1296 0.1424 0.1191 0.1094 0.1192 0.1443 0.1301 0.1427 0.1206 0.1114 0.1186

M−5 0.0096 0.0156 0.0257 0.0103 0.0155 0.0354 0.0159 0.0230 0.0265 0.0153 0.0197 0.0380
R+

5 0.0277 0.0277 0.0376 0.0305 0.0302 0.0301 0.0267 0.0260 0.0349 0.0276 0.0268 0.0294
X−3 0.0191 0.0173 0.0169 0.0159 0.0137 0.0127 0.0135 0.0107 0.0153 0.0101 0.0092 0.0127
T4 - - 0.1337 0.1420 0.0641 0.1283 0.1261 0.0160
Λ3 - - 0.1275 0.1278 0.0735 0.1116 0.1007 0.0181
Λ1 - - 0.0264 0.0263 0.0155 0.0227 0.0201 0.0046
T2 - - 0.0046 0.0046 0.0028 0.0030 0.0026 0.0007
∆5 - - 0.0113 0.0132 0.0092 0.0136 0.0086 0.0024

RSS 0.7094 0.6855 0.6969 0.6318 0.6139 0.5999 0.7172 0.6936 0.6988 0.6390 0.6196 0.5997

measurement is difficult (especially if you didn’t know the Pnma model existed): the new
distortions are small in amplitude, so any measurement would likely have to be performed with
high resolution equipment at cryogenic temperatures. Also, we find that the two models share the
same Raman active modes† (Γ+

2 , Γ+
3 , Γ+

4 ) so no new peaks would appear in the Raman intensity
spectrum. Although one would expect the character and intensity of these peaks to differ between
the models, the differences would be subtle. A ground state Pnma structure would also be
unsurprising seeing as we know the vast majority of perovskites condense this symmetry at low
temperatures [332, 333]. The second origin we have conceived is that in some region below the
measured AFE phase transition temperature, the crystal is Pbam, but, at some point before 0K
there is a second transition to Pnma, previously undetected due to its small magnitude. At the
time of writing this thesis, the group of Gustau Catalan are working on this origin in experiment.
That is, they are checking for an anomaly in the functional properties of PZO (the dielectric
loss, for example) down to low temperatures. While the presence of such an anomaly would
indicate the presence of a phase transition, it does not present the symmetry of the new phase. It
is perhaps only Neutron diffraction/scattering which would allow the determination of Pnma
over Pbam, although, X-rays could be successful in characterising the Λ3 mode due to its strong
Pb character. The third origin is that the new distortions are merely artefacts of the exchange
& correlation functionals used in this chapter. While we have tried to minimize this cause by
using three functionals at consecutively higher rungs (which all predict Pnma as a more stable
phase then Pbam) we cannot explicitly rule this out. Another reason this origin is unlikely is

†The shared nature of the Raman active modes for the Pbam and Pnma models was received in private
communications with Mike Glazer as deduced by symmetry analysis using the program VIBRATE! (v2.7) [331].
In another private communication with Gustau Catalan, he confirms that no new Raman active modes appear in the
Raman intensity spectrum between 295-83K.
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that the new modes appear at a similar magnitude to the previously known S4 mode (at least for
LDA-PW and PBESol calculations) which is measured in experiment. Also, PZO and PHO are
not materials where we would normally expect DFT to fail in the transition metal oxides. That
is, they are not considered strongly correlated materials. Indeed, even if they were, the SCAN
functional is known to perform well for strongly correlated systems [222] so this calculation
most likely rules out this effect.

While this Pnma phase appears exotic, it is more common than one might think. Similar
80-atom Pnma phases are known to be metastable in BiFeO3 (BFO); stabilised under pressure
[334] or the correct electrostatic boundary conditions [335]. They are also known to appear
in a whole host of other solid solutions, including (Bi,La)FeO3 [285], BiFe0.75Mn0.25O3 [284],
(Bi,Nd)FeO3 [281, 282] and BiFe1/2Sc1/2O3 [283, 334]. We note that in all of these cases, the
magnitude of the distortions defining Pnma over Pbam are stronger than what we find for PZO
and PHO, making their experimental identification easier. Given that AFE phases of this type
seem to be ubiquitous and it now appears (in DFT, at least) in the archetypal antiferroelectrics,
the question must be asked: are 80-atom Pnma phases the most common AFE arrangements in
the perovskite oxides?

4.5 Summary

We have explored the soft mode lattice dynamics of PTO, PZO, PHO and PbZr0.5Ti0.5O3 and
determined the character of the most unstable modes of each arrangement. This has revealed
a complex landscape of local minima and possible phase transition paths notably including
competitive long wavelength distortions. It is important to emphasize that this work indicates that
altering B-site ordering in a fixed concentration of Ti/Zr in PZT can in some special cases lead to
the dominance of different order parameters. We find that, in general, (with the exception of PZT
IV) higher symmetry models like PZT I and the VCA are dominated by rotational instabilities of
the BO6 octahedra which, like pure PZO and PHO, are able to couple with Pb antipolar modes
at the Σ-point suggesting the stability of an AFE structure. Lower symmetry supercells are
found to be more PTO-like implicated by the soft zone centre modes with a FE character. We
suggest that this effect is the result of the presence of crystalline directions where continuous
Ti-O-Ti chains exist or at least a direction where the Ti to Zr ratio is high. If this is not true
(as is the case for PZT I) the more inert Zr sites act to dampen the FE distortion allowing for
rotational instabilities to dominate. In the context of a realistic ordering of PbZr0.5Ti0.5O3, these
findings imply that for any given sample unless the Ti/Zr ordering is high symmetry (which is
very unlikely) the dominant order parameters are likely be zone centre and FE in character. This
finding agrees with the experimental observation that PZT is ferroelectric at this concentration
[91]. Given the number of unique distortions in any one of the supercell models, however, it
is unlikely that the ground state of these structures can be described only by a FE distortion.
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This is supporting evidence for the experimentally observed coexistence of ferroelectricity and
octahedral rotations [336]. Further work could include identification of the phase transition paths
resulting in a mixed-mode ground state.

We find also that there is considerable competition with the routinely considered polar and
Glazer-like rotational modes from longer wavelength antipolar modes and with non-Glazer-like
AFD modes. In some cases non-Glazer-like isolated out-of-phase rotation of ZrO6 octahedra
is more unstable than Glazer a0a0c+ and is either closely competitive with or more unstable
than a0a0c− distortions. For PZT IV & V, we find no soft modes which result in Glazer type
rotations. We find that some soft modes can give rise to distortions characteristic of more than
one order parameter. It is found that in PZT IV, V and VI that FE order can appear simultaneously
with antipolar Pb displacements. PZO, PHO and all PZT arrangements have long wavelength
soft modes displaying a dual antipolar/AFD character. It is possible that such distortions are
competitive in PZT IV suggesting complex local minima rivalling the softer FE distortion. Given
the long wavelengths associated with these modes, there are a large number of participating
atoms. It can then become costly to study their behaviour with conventional plane wave based
DFT due to well known scaling issues. Accurate first principles simulations of these systems
will then require large scale electronic structure methods [4].

The applicability of the VCA as a substitute for the supercell method has been investigated.
Whilst the dispersion looks strikingly similar to that of PZT I, we find that the species specific
character is considerably different. The alchemical Ti/Zr atom does not play a role in the lattice
dynamics but rather is a site inert to displacement. Crucially, the softest Glazer type rotational
modes have a different classification in the VCA becoming a−b−c− & a+b+c+ as opposed
to a0a0c− & a0a0c+ like found in other PZT supercells and end members PTO & PZO. This
quantitatively displays the inability of the VCA to represent local structural distortions.

Motivated by the appearance of long wavelength dynamical instabilities in PZO and PZT
50/50, we checked if these long wavelength modes were a shared characteristic of PHO. We
studied the phonon dispersions of the cubic Pm3̄m and orthorhombic AFE Pbam phases finding
that PZO and PHO behaved very similarly. Notably, PZO and PHO shared the same instabilities
(by character) in the Pm3̄m phase, but soft modes in PZO were more unstable. This results in the
modes defining the AFE phases having a larger amplitude in PZO than PHO; they are isostructural
in symmetry but not by distortion magnitude. Most remarkably, the phonon dispersions of the
purported Pbam AFE ground state, for both materials, were found to be dynamically unstable.
The eigenvectors of the unstable modes describe an 80-atom Pnma phase lower in energy than
Pbam. Phonon analysis of this phase for PZO shows that, unlike Pbam, it is likely dynamically
stable. While we cannot unequivocally declare that this is the ground state, from the perspective
of DFT, Pbam certainly isn’t.
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Chapter abstract

A growing number of perovskite oxides are now known to become susceptible to structural
distortions increasingly incommensurate with their parent cubic structures [43, 304, 305, 337].
From an ab initio simulation perspective, this requires accurate calculations including many
thousands of atoms; a task beyond the remit of conventional plane wave-based density functional
theory (DFT). We suggest that this void can be filled using the methodology implemented
in the large scale DFT code, CONQUEST, using a local pseudoatomic orbital (PAO) basis.
We begin by studying the structural accuracy (equilibrium volumes and bulk moduli) of the
default basis sets compared with plane wave calculations using the same pseudopotentials. We
survey a selection of important materials (not limited to the perovskite oxides) finding that
modestly sized basis sets can reproduce plane wave accuracy for these properties to a high
fidelity. Comparing two techniques for the generation of PAOs: the equal energies (EE) and
equal radii (ER) constructions, we find that the latter slightly outperformed the former for these
tests. Taking forward the ER construction, we further study the accuracy of this basis for a
selection of perovskite oxides relevant to this thesis. We treat in detail the most fundamental
quantity to DFT: the charge density n(r) itself. An accurate description of n(r) is vital for the
perovskite FEs due to the crucial role played by short range restoring forces (characterised by
bond covalency) and long range coulomb forces as suggested by the soft mode theory of Cochran
and Anderson [1, 2, 52]. Comparing once more with plane waves and the same pseudopotentials,
we analyse charge density differences and Bader partitioned charge assignments; matching PAO
basis set sizes to calculations with plane wave cutoffs providing the same electronic and energetic
accuracy. Finally, we study the amplitudes of condensed soft modes in the low temperature
FE and AFE phases of PTO and PZO. We find that the lions share of these properties are
impressively described with the default PAOs, but care has to be taken for FE PTO where a
small basis incorrectly describes the balancing act between short range restoring and long range
Coulomb forces propagating to a large super-tetragonality error.

135
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5.1 Introduction

The ABO3 perovskite oxides are well known for hosting a vast and rich variety of physical
phenomena. These include interfacial two-dimensional electron gases [338, 339], negative
capacitance [88, 340], high-temperature superconductivity [341, 342] and many more. A number
of these are linked to a plethora of responsible order parameters and their competition/coupling
with one another [343, 344]. Ferroelectric, ferromagnetic antiferroelectric & antiferromagnetic
order are all commonplace in the perovskite oxides as well as antiferrodistortions (rotation of the
BO6 octahedra) and Jahn-Teller distortions. Some of these features are known to coexist with
one another giving rise to the phenomena of multiferrocity [80]. In simulations, the onset of
different competing order parameters can create a myriad of distinct local minima with similar
energies. It is then of paramount importance that our simulation methodology produces accurate
results such that we can distinguish them from one another in their energies but also accurately
resolve their electronic & structural properties.

In addition to the requirement of high accuracy, the perovskite oxides present structural
[43, 304, 337] and magnetic [345, 346] features over long wavelengths. From a simulation
perspective, a supercell commensurate with these distortions could be large and require first
principles simulations of thousands of atoms. For example, thin ferroelectric films are known to
form flux-closure domains as a compensation mechanism for the depolarising field [32, 33]. The
domain period of these films increases also with the depth of the film in question (the well known
Kittel scaling law [176]) thus requiring simulations in excess of a thousand atoms. In the case of
multiferroic BiFeO3, the competition between various exchange interactions (described in [346])
manifests in the softening of a 64 nm non-collinear spin-cycloid [345, 346] and a unit cell of
∼1000 atoms. Current simulations often bypass this fact and approximate this complex magnetic
order as simple G-type antiferromagnetism. Studies of solid-solution families (ABxC1−xO3,
(1 − x)ABO3 − xCDO3 and more) are popular in the field. Large supercell calculations can
offer realistic experimental ordering in these alloys which can improve upon the accuracy of
structural distortions predicted by smaller supercells and approximations like the virtual crystal
approximation [43, 47, 48]. Further, longer wavelength dynamical instabilities are found to be
competitive in the important piezoelectric solid solution PbZr0.5Ti0.5O3 (PZT 50/50) requiring a
large number of atoms to simulate the energetics [43]. Indeed, within the previous chapter, we
found that such long wavelength distortions condense in the crystal structures of antiferroelectric
PbZrO3 and PbHfO3 causing even a single unit cell to approach 100 atoms in size. Such long
wavelength modulations are now expected to persist in other perovskites and a mechanism for
their onset has been proposed [304]. The requirement for large supercell calculations is of course
not limited to cases within the perovskite oxides. For example, large supercells are required for
simulations of realistic doping (∼ parts-per-million) in semiconductor technologies, biological
systems with or without solvent, compounds with dilute compositions and large scale defect
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complexes such as dislocations.
Electronic structure calculations based on density functional theory (DFT) employing the

plane wave pseudopotential method [347, 348] are known to achieve accurate results. This is in
part due to the systematic and variational nature of the plane wave basis where increasing the
number of basis functions is guaranteed to increase the level to which the total energy converges;
free of empirical parameters. This method is not without its drawbacks. A plane wave by itself
(the solution of the free electron [237]) bears little to no resemblance to the Kohn-Sham orbitals
of the systems they are intended to represent. This is especially true for the localised 3d electrons
of the transition metals, responsible for magnetic and orbital order. It is for this reason that
many thousands of plane waves are required in the basis set expansion which can come at a
large computational cost. Further, plane waves span the whole of the simulation cell which
introduces wasteful grid calculations for systems including a vacuum region. These issues can
be bypassed by replacing plane waves with physically intuitive local basis sets of pseudoatomic
orbitals (PAOs) [6, 246–248, 349]. These are atomic-like orbitals for which the radial part is
solved in the pseudopotential of each ionic species [249, 250]. PAOs are now regularly used in
the Siesta [6], OpenMX [244], ONETEP [8], FHI-AIMS† [243] & CONQUEST [17] codes,
the last of which is employed in this chapter. The construction and generation of such a basis is
described in Section 5.2.3.

Our PAOs are designed with a cut-off in real space (where the basis function becomes zero)
motivated by the desire to employ efficient sparse matrix algebra with high parallel efficiency
[251]. Further, our formulation of DFT is based on the density matrix ρ(r, r′). Should we choose
to truncate the range of this matrix (a requirement should we wish to use the linear scaling mode
of operation), we are physically supported by the principle of near-sightedness; the assertion
that the density matrix ρ(r, r′) decays to zero as |r− r′| → ∞ [260]. Complete with a change in
algorithm (described in Chapter 3, Section 3.4.6), this allows the well knownO(N3) scaling wall
(where N is the number of atoms in the simulation) in standard DFT to be broken and replaced
with a code which now scales as O(N). This method paves the way for full electronic structure
calculations on systems of many thousands of atoms (or even millions [13]), well beyond what
is possible with conventional plane wave methods. While the O(N) algorithm does allow for
superior scaling, we find that for calculations involving a few thousand atoms (less than ≈ 4000)
can be performed more quickly (and more accurately) through directly diagonalising the sparse
Hamiltonian matrix. For less than a few hundred atoms, this diagonalisation can be performed
on a primitive Hamiltonian with dimensions NPAO ×NPAO (as we do in this chapter; NPAO is the
total number of PAOs used in the calculation) but for a few thousand atoms we must contract the
basis set following the MSSF mode of operation discussed in Chapter 3, Section 3.4.5.

The accuracy of PAO basis sets has been reported in previous works [244, 247, 249, 250,
349–351] where structural and energetic properties have been discussed. Notably, none have

†FHI-AIMS typically uses the all-electron version of PAOs: numerical atomic orbtials (NAOs) [243].
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reported on the effects to the most fundamental quantity in DFT; the charge density n(r)

itself. An accurate account of n(r) is of high importance for the perovskite oxides. Not only
because applications require it (like the simulation of 2DEGs [90]) but because of the possible
ramifications for the soft mode theory of ferroelectricity [1, 2, 52]. That is, the ferroelectric
transition is governed by a zone centre dynamical instability driven by the competition of short
range covalent forces (preferring cubic symmetry) and long range Coulomb forces (favouring
the ferroelectric state). The charge density n(r) (and its derived quantities) is clearly a probe of
bond covalency [352, 353] whilst electron-electron Coulomb terms feature explicit dependence
on n(r) in the calculation of the Hartree potential [202].

It is the purpose of this chapter to quantify the performance of PAOs versus plane waves
using calculations with the same pseudopotential. We begin by comparing the two default PAO
construction mechanisms implemented in the CONQUEST PAO generator code: the equal
energies (EE) and equal radii (ER) constructions. We calculate the zero pressure equilibrium
volumes and bulk moduli for these two methods and compare them to the plane wave result†.
For this comparison, we use a broad selection of material test cases: elemental semiconductors
(C, Si and Ge), Binary oxides (two SiO2 structures: an α-quartz polymorph and stishovite, and,
MgO) and cubic perovskite oxides (PTO, PZO and SrTiO3, STO).

Taking forward only the ER construction (as we will later learn, this is marginally more
successful for the structural properties), we perform a detailed comparison of the ground state
charge densities and the order parameters controlling ferroelectric & antiferroelectric order in
the perovskite oxides. We do so by considering PTO, PZO (in both their high temperature cubic
and low temperature ferroelectric/antiferroelectric phases) and two cubic supercell arrangements
of PZT 50/50. At low temperatures, PTO is a P4mm ferroelectric formed from the softening of
a single zone centre lattice mode (irrep) Γ−4 [295]. In contrast, low temperature PZO is thought

to be a Pbam antiferroelectric described by a complex multi-mode picture comprised primarily
of R+

4 , Σ2 & S4 modes [85, 297]. A small part of the distortion is also due to the softening of R+
5 ,

X−3 & M−5 (and, as we learnt from Chapter 4, perhaps also T4, Λ3, Λ1, T2 and ∆5!) lattice modes
[85, 297]. We quantify the amplitudes of each individual lattice mode and strain mode in the
phase transitions of both perovskites as well determining the associated energetics for each of
the considered PAO basis sets. Since the energy differences between structural polymorphs in
the perovskite oxides are generally small (a few meV/atom), this is a strict test for the accuracy
of PAOs.

The remainder of this chapter is now organized as follows. Within Section 5.2.1, we outline
the general simulation method for both the plane wave and PAO DFT calculations and describe
the crystal structures used in the study. Then, in Section 5.2.2, we outline the metrics we use

†Calculations presented in Section 5.3.1 (pertaining to equilibrium volumes and bulk moduli) were part of a
collaborative project with many participants. The author was responsible for plane wave calculations of Si, Ge, C,
STO, PTO and PZO and for PAO calculations of PZO. Other content was performed by the remaining authors of
[51] and full credit is owed to them.
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in comparison of PAO and PW calculations. In Section 5.2.3 we describe the method for the
generation of the PAO basis sets and the details of the default basis sets used in this chapter.
Section 5.3.1 discusses the accuracy of structural parameters; comparing the EE and ER PAO
constructions. Past this point, our focus changes to treating only the perovskite oxides using
the default ER PAOs. Section 5.3.2 provides charge density difference analysis between PAO
calculations and plane waves while Section 5.3.3 presents Bader analysis of the ionic charges,
volumes and average densities. In Section 5.3.4 we compare the amplitudes of the soft mode
distortions responsible for the ferroelectric and antiferroelectric phase transitions in PTO &
PZO including the energetics associated with crucial displacive modes. We closely examine
the energetics over the phase transition paths by steadily increasing mode amplitudes until a
maximal value, then, cumulatively add the remaining important modes. In Section 5.3.5 we
discuss a simple method for optimising PAO basis sets when the defaults do not provide sufficient
accuracy. We show the successful application of this method for describing ferroelectric PTO.
We conclude this chapter in Section 5.4 with a broad overview of our findings. This includes
a discussion of the impact this chapter has on the topic of local basis sets and the promise of
accurate and large scale electronic structure calculations on the perovskite oxides.

5.2 Theoretical method

5.2.1 Simulation details

Calculations are performed using plane wave and local orbital DFT. Calculations using plane
waves in Section 5.3.1 are performed with the PWSCF code (v6.4.1; part of the Quantum
Espresso suite [354]) whilst those in the remaining sections are performed with the ABINIT
code [310, 311] (v8.10.2). Local orbital calculations utilising PAOs are carried out using
the CONQUEST code (v1.0) [7, 17, 355] with the direct diagonalisation of the primitive
Hamiltonian matrix of dimensions NPAO × NPAO. All three† codes are able to use the same
norm-conserving pseudopotentials as produced by ONCVPSP [233] (v3.3.1) where input
parameters were taken from the library (v0.4) on the PseudoDojo website [230]. This library
is known for its high accuracy results versus other pseudopotentials, projector augmented wave
methods & all-electron results as characterised in the well known DFT delta study [348]. These
pseudopotentials are scalar-relativistic and include partial core corrections. The orbitals treated as
valence, for each species, can be found in Table 5.1. Exchange & correlation functionals are taken
from the Libxc [218] (v3.0.0) library. For perovskite oxide and elemental semiconductor
calculations we use the PBESol functional [356] while calculations of the binary oxides use the
original and unmodified PBE functional [219]. While there is little difference between these

†While is is not ideal to use two different plane wave codes for the comparison to PAOs, in testing, we find that
PWSCF and ABNIT produce indistinguishable results for the lattice constants of PTO, PZO and STO in the cubic
phase. While this is to be expected since identical pseudopotentials are used, this level of reproducibility is laudable.
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Table 5.1: The orbitals treated as valence by the pseudopotentials used in this work. Those
orbitals in bold font are treated as semi-core in the PAO calculations (i.e, are described by only a
single ζ regardless of the basis set size) and those which are underlined are not present in the
pseudopotential but are treated as polarisation states in the PAO calculations.

Pb 5d, 6s, 6p, 6d Ge 3d, 4s, 4p, 4p
Zr 4s, 4p, 5s, 4d, 5p C 2s, 2p, 3d
Ti 3s, 3p, 4s, 3d, 4p Si 3s, 3p, 3d
Sr 4s, 4p, 5s, 5p O 2s, 2p, 3d

Mg 2s, 2p, 3s, 3p

functionals for many applications, PBESol is known to perform better than PBE for the structural
properties of most solids, especially the perovskite oxides [171].

In Section 5.3.1 we consider six basis sets sizes in total for each of the test cases. That
is, for the EE and ER constructions we treat the single-ζ plus polarisation (SZP), double-ζ
plus polarisation (DZP) and triple-ζ plus triple-polarisation (TZTP) basis sets. Within the
CONQUEST PAO generation code, these are the default small, medium and large basis
sets respectively. In Sections 5.3.2, 5.3.3 and 5.3.4 we consider just three basis sets under the ER
construction: SZP, double-ζ plus double-polarisation (DZDP) and TZTP. This approach allows
us to study the effect of systematically adding an extra ζ per angular momentum channel; which
for this section will allow us to more precisely assign where improvements to the electronic
structure originate. We use different versions of the CONQUEST PAO generator code in this
Chapter. We use v1.01 in Section 5.3.1, v1.02 in Sections 5.3.2, 5.3.3 and 5.3.4 and the beta
version in Section 5.3.5. The basis sets and details of their generation are described fully in
Section 5.2.3.

The different crystal structures treated in this study are shown in Figure 5.1. For the cubic
Pm3̄m perovskites, P4mm PTO and the elemental semiconductors, we use 9×9×9 Monkhorst-
pack [227] mesh for reciprocal space integrals. For Orthorhombic PZO and cubic PZT 50/50
arrangements we use a 7×3×5 & 5×5×5 mesh respectively. For α-quartz, stishovite and MgO
we use 3×2×3, 3×3×6 and 4×4×4 meshes, respectively. For calculations with plane waves,
we use a 40Ha cutoff for all calculations apart from for MgO where a 60Ha cutoff was used.
For calculations with PAOs, integrations must take place on a real space grid. A 300Ha cutoff
grid was used for the perovskites, a 260Ha cutoff was used for the elemental semiconductors,
stishovite/α-quartz used a 200Ha cutoff and MgO used a 260Ha cutoff. All of these parameters
were chosen to adequately converge the equilibrium volumes and bulk moduli of each test case.
When optimised structures are needed, we relax the ionic positions until the magnitude of the
force on every atom is less than 5× 10−3 eV/Å. Stresses are relaxed until the magnitude of all
elements of the Cartesian stress tensor fall below 1× 10−4 GPa.
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Figure 5.1: The crystal structures for all of the test cases in this chapter. We do not explicitly
show C or Ge since they are isostructural with Si in this work. Similarly, we do not show STO
since one only needs to exchange the A site of PTO for Sr. For PTO and PZO, we also illustrate
the paraelectric to ferroelectric and paraelectric to antiferroelectric phase transitions, respectively.
The responsible displacive soft modes for the transitions are also indicated.
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5.2.2 Comparative metrics

To calculate the equilibrium volumes and bulk moduli in Section 5.3.1, we evenly scan volumes
V ±2% of the equilibrium volume V0 with static point energy calculations for the given test case.
We use a total number of points which converges the bulk modulus B0 of the Birch-Murnaghan
[357] equation of state

E(V ) = E0 +
9V0B0
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for zero pressure energy E0 and bulk modulus derivative B′0. Using the sampled E(V ), we
perform a least squares fit to Equation 5.1 to extract V0 and B0.

For calculations assessing the charge density (in Sections 5.3.2 and 5.3.3), we use a finer
charge density grid with 100× 100× 100 grid points/ABO3 formula unit. For the orthorhombic√

2a×2
√

2a×2a PZO unit cell (where a is the Pm3̄m lattice constant), we use 150×300×200

grid points. Each of these finer charge density calculations, for each basis, are performed using
the optimised plane wave structure of each crystal. In order to assign ionic charges, volumes
and average ionic densities, we use the Bader partitioning scheme as implemented in the bader
code [358–361] (v1.03). This code partitions individual atoms in crystals using the zero-flux
surface of the charge density. This is a 2-D surface for which the charge density is at a minimum
perpendicular to the surface. We note that whilst there is no unequivocal definition for the
assignment of ionic charge, we choose the Bader definition since it derives only from n(r) thus
introducing no new variables to our analysis. We define also a total integrated electronic error
designed to quantify the level of disagreement in n(r) for the plane wave and PAO calculations.
This is defined by the integral

N e
error =

∫
|nPAO(r)− nPW(r)|dr (5.2)

for plane wave/PAO electronic charge density nPW(r)/nPAO(r).
In Section 5.3.4 we assess the amplitudes of individual soft lattice modes in the phase

transitions of PTO and PZO. To do so, we use the group symmetry analysis software made
available in the ISOTROPY suite, in particular ISODISTORT [321] (6.7.0). This code is
able to perform mode decompositional analysis when provided with the cubic Pm3̄m parent
structures and the distorted daughter structures of PTO and PZO. In our calculations, the parent
structures are the relaxed cubic Pm3̄m crystals for each basis set and daughter structures are
the relaxed ferroelectric tetragonal PTO and antiferroelectric orthorhombic PZO cells for each
basis. The soft mode amplitudes can then be extracted from the ionic displacements present in
the daughter structures compared with the parents.
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5.2.3 Generation of pseudoatomic orbitals

PAOs are a local basis with a simple construction of a radial function Rnlζ(r) multiplied by an
appropriate spherical harmonic Y l

m(r̂)

χnlmζ(r) = Rnlζ(r)Y l
m(r̂) (5.3)

for principal quantum number n, orbital angular momentum l and projection of orbital
angular momentum m. The last subscript ζ is related to the number of functions per l-channel.
Increasing the number of ζ’s adds flexibility to basis set and improves the accuracy of the total
energy in a non-systematic manner. Since the spherical harmonics are analytic functions, the
responsibility of the PAO generation code is to solve for the radial functions only. These radial
functions are extracted as the eigenstates of the isolated pseudoatom confined within a spherical
potential. While the confining potential can take on different forms [249], we use the hard
confinement scheme first proposed by Sankey [248]. There is a question in this process with
regards to how strongly each orbital should be confined. The approach used by the Siesta code
is the concept uniform of energy shifts ∆εl; allowing for a consistent definition of confinement
for all angular momentum channels across all PAOs. While our approach stems from this, by
default, the CONQUEST PAO generator code (v1.02) specifies an energy shift for each PAO,
∆εnlζ , and solves for each Rnlζ(r) explicitly as an eigenstate of the radial Schrödinger equation
of the confined pseudoatom. That is,(

− 1

2r

d

dr2
r +

l(l + 1)

2r2
+ Vl(r)

)
Rnlζ(r) = (εnlζ + ∆εnlζ)Rnlζ(r). (5.4)

We have implemented two schemes within the CONQUEST PAO generator code (v1.02)
for setting ∆εnlζ . The first approach is the EE construction. Here, all radial functions of the same
ζ share an energy shift. To add flexibility to multiple-ζ basis sets, we apply a large energy shift
to one ζ , creating a highly confined function whilst others have progressively less confinement.
The second approach is the ER construction. Here, we take the average rc obtained for the
same ζ from the EE construction. The radial functions are then solved once more using this
average cutoff for all of the orbitals for a given ζ. This way, each ζ shares a cutoff radius. We
use the default setting, applying energy shifts of 2 eV, 0.2 eV and 0.02 eV for ζ = 1, 2 and 3,
respectively. While these shifts are a heuristic, for most systems, they give three relatively evenly
spaced confinement radii. Polarisation functions are solved in one of two ways. For equation of
state fits in Section 5.3.1, species with semicore states use the explicit l + 1 excited solutions of
the radial Schrödinger equation while those without semicore states use a peturbative scheme;
considering the effect of a finite local electric field acting on the highest valence state [362]. In
contrast, Section 5.3.2 uses the perturbative scheme for all atomic species. We note that the
approach for evaluating polarisation states only differs between the two sections as perturbative
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polarisation for species with semicore states has only recently been implemented in the PAO
generation code (Section 5.3.1 predates this implementation). By default, all polarisation states
share rc with the highest occupied valence PAOs.

All of the cutoff radii for the default basis sets used in this chapter are displayed in Table
5.2. It can be seen that the ER method produces slightly more compressed functions than
the EE method. These are generally more efficient as the Hamiltonian and overlap matrices
become sparser with smaller rc. We emphasize once more that the radial functions used in this
chapter are the defaults of the PAO generator code. Any results here then should be regarded as
out-of-the-box performance because in principle, it is possible to fit/optimize these functions for
specific situations. For example, the approach made by the Siesta code is a downhill simplex
minimisation of the total energy carried out on the material system to be studied with respect to
the parameters of the PAO generation mechanism [249]. Another approach optimises the binding
energy curve of dimers [363]. We discuss our own approach to optimisation in Section 5.3.5.
Whilst these methods can produce good results, the possibility of many local minima in the
optimisation is an issue as is the overfitting of smaller PAO bases such that their transferability is
diminished. In this respect, a large basis set of default (and more general) PAOs may be more
transferable.

Table 5.2: The cutoff radii rc for the default PAOs used in this work under the equal energies
and equal radii constructions for the PBE and PBESol functionals. Those table entries left blank
appear for orbitals treated as semi-core (being described by only a single ζ).

rc [a0] Equal Energies (EE) rc [a0] Equal Radii (ER)

ζ = 1 ζ = 2 ζ = 3 ζ = 1 ζ = 2 ζ = 3

PBESol

Pb 5d 4.46 3.51 2.61 6.85 5.34 3.78
6s 6.54 5.21 3.87 6.85 5.34 3.78
6p 9.57 7.19 4.85 6.85 5.34 3.78
6d 9.57 7.19 4.85 6.85 5.34 3.78

Ti 3s 3.32 - - 3.32 - -
3p 3.79 - - 3.79 - -
4s 9.49 7.30 5.04 8.23 6.18 4.07
3d 6.88 4.98 3.06 8.23 6.18 4.07
4p 6.88 4.98 3.06 8.23 6.18 4.07

O 2s 4.31 3.40 2.46 4.86 3.74 2.58
2p 5.47 4.06 2.71 4.86 3.74 2.58
3d 5.47 4.06 2.71 4.86 3.74 2.58

Sr 4s 4.13 - - 4.13 - -
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4p 4.94 3.94 2.96 7.95 6.19 4.38
5s 10.98 8.34 5.83 7.95 6.19 4.38
5p 10.98 8.34 5.83 7.95 6.19 4.38

Zr 4s 3.52 - - 3.52 - -
4p 4.06 - - 4.06 - -
5s 9.04 7.21 5.28 8.22 6.39 4.52
4d 7.38 5.54 3.78 8.22 6.39 4.52
5p 7.38 5.54 3.78 8.22 6.39 4.52

Si 3s 6.55 5.16 3.69 7.65 5.81 4.02
3p 8.62 6.47 4.31 7.65 5.81 4.02
3d 8.62 6.47 4.31 7.65 5.81 4.02

Ge 3d 3.43 - - 3.43 - -
4s 6.37 5.02 3.64 7.62 5.79 4.00
4p 8.79 6.60 4.40 7.62 5.79 4.00
4d 8.79 6.60 4.40 7.62 5.79 4.00

C 2s 5.48 4.26 3.05 6.25 4.69 3.17
2p 6.96 5.16 3.28 6.25 4.69 3.17
3d 6.96 5.16 3.28 6.25 4.69 3.17

PBE

Si 3s 6.55 5.16 3.69 7.65 5.81 4.02
3p 8.72 6.47 4.31 7.65 5.81 4.02
3d 8.72 6.47 4.31 7.65 5.81 4.02

O 2s 4.31 3.35 2.46 4.91 3.74 2.58
2p 5.47 4.11 2.67 4.91 3.74 2.58
3d 5.47 4.11 2.67 4.91 3.74 2.58

Mg 2s 2.77 - - 2.77 - -
2p 3.16 - - 3.16 - -
3s 9.03 6.86 4.69 9.03 6.86 4.69
3p 9.03 6.86 4.69 9.03 6.86 4.69

5.3 Results

5.3.1 Equilibrium volumes and bulk moduli

Table 5.3 details the equilibrium volumes and bulk moduli for all of the test materials calculated
with plane waves and the default EE and ER PAOs. Before remarking on individual cases, it
can be seen that in general, the EE and ER methods perform rather similarly in comparison to
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plane waves for this metric. Default SZP basis sets offer between≈ 2− 5% errors in equilibrium
volumes (and ≈ 3× less for lattice constants) and ≈ 1− 11% for bulk moduli (where this range
is expanded due to the poor performance of B0 for the SZP Ge basis sets). For DZP, these errors
shrink to ≈ 1.5% for equilibrium volumes and to ≈ 2% for most bulk moduli with the exception
of the SiO2 polymorphs which still feature ≈ 10% errors. For the default TZTP basis sets,
we now see errors in equilibrium volumes falling in most cases below ≈ 1% and bulk moduli
accuracies between ≈1-2% (with the notable exceptions of TZTP (ER) for STO and PZO which
perform poorly).

Table 5.3: The equilibrium volumes V0 and bulk moduli B0 obtained from least-squares fits to
the Birch Murnaghan equation of state [357] (Equation 5.1). EE indicates results from the equal
energies PAO construction while ER indicates results from the equal radii method. PW is the
converged plane wave result.

PTO PZO STO

V0 [Å3] B0 [GPa] V0 [Å3] B0 [GPa] V0 [Å3] B0 [GPa]

PW 60.14 191.1 70.98 169.7 58.79 186.4
SZP (EE) 61.22 183.0 73.35 163.5 60.76 182.6
DZP (EE) 61.06 186.2 71.84 169.4 60.52 180.0

TZTP (EE) 60.83 188.8 71.78 172.1 60.08 183.4
SZP (ER) 61.66 191.1 72.28 189.3 60.99 170.0
DZP (ER) 60.69 190.9 71.68 177.6 60.15 180.7
TZTP (ER) 60.2 190.3 71.22 158.0 59.67 169.9

Si C Ge

PW 160.19 93.28 45.04 449.3 182.86 67.47
SZP (EE) 169.39 93.28 46.66 425.4 189.22 59.73
DZP (EE) 161.52 92.58 45.65 441.1 185.58 65.73

TZTP (EE) 160.90 91.79 45.31 448.3 183.44 66.75
SZP (ER) 170.12 82.81 46.77 415.1 191.60 57.49
DZP (ER) 162.59 90.96 45.61 444.1 184.41 68.70
TZTP (ER) 160.72 91.70 45.19 452.9 184.22 64.99

MgO SiO2 (Stishovite) SiO2 (α-quartz)

PW 76.92 149.1 47.89 301.0 210.5 195.3
SZP (EE) 80.31 149.7 49.82 260.4 220.8 165.9
DZP (EE) 78.57 141.4 49.09 278.4 215.4 176.3

TZTP (EE) 78.50 148.4 48.26 291.8 212.6 190.9
SZP (ER) 80.32 137.2 49.95 283.9 222.0 160.4
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DZP (ER) 78.49 141.5 49.16 289.2 215.6 177.1
TZTP (ER) 78.51 148.3 48.25 295.0 213.0 193.5

It can be seen in more cases than not, that the ER construction performs marginally better the
EE construction for these tests. This is especially true for the tested perovskite oxides where
the equilibrium volumes are always better described by ER PAOs. The performance for the
elemental semiconductors is similar to the perovskites with the notable exception of Ge which
for the SZP basis shows strong disagreements with the plane wave results. We show E(V) for the
ER PAOs in Figure 5.2. It can be seen from this figure that despite the large error in B0 for the
SZP basis, close to the equilibrium volume, it still very well matches the plane wave result. The
performance begins to be poor when we reach high pressures for this basis.

A challenging test for the default PAOs is to compare the relative stabilities of the two SiO2

polymorphs: equilibrium-pressure α-quartz and high pressure stishovite. Since stishovite has
been artificially stabilised at equilibrium pressure, the correct ordering of the relative stabilities
should show α-quartz having a lower energy than stishovite. Between these two polymorphs, the
coordination Si also changes from four to six; the PAOs must be flexible to a new coordination
environment. We compare the energy difference per formula unit (FU) for each basis set to the
plane wave result (-0.28 eV/FU). The TZTP basis performs well (-0.20 eV/FU for EE and -0.22
eV/FU for ER). The DZP basis sets using perturbative polarisation (the default setting) gives the
correct ordering (-0.08 eV/FU for EE, and -0.05 eV/FU for ER) with a less accurate magnitude.
Generating the 3d polarisation orbitals simply as excited eigenstates of the confined pseudoatom
gives the incorrect ordering for DZP (+0.15 eV/FU for EE and +0.19 eV/FU for ER) but the
correct ordering for SZP (-1.46 eV/FU for EE and -0.52 eV/FU for ER). Testing further, we
add a second perturbative polarisation state to the DZP basis (now DZDP), which now performs
similarly to TZTP (-0.19 eV/unit for equal EE, and -0.20 eV/unit for ER). Clearly comparisons
of stability of structures require radial flexibility in all angular momentum channels, and we
would recommend using at least DZDP when considering this kind of problem with the default
basis sets. For structural properties of the individual phases, however, the performance of the
default DZP basis sets is reasonable, though not as accurate as for the elemental semiconductors,
PTO, PZO and MgO. We see that the ER method also performs better not only for many of the
structural properties, but also for the energetics. Indeed, in general, the total energy is lower for
the ER basis sets compared to EE. It is also clear that perturbative polarisation states perform
better than the excited eigenstates for the energetics. It is for this reason that Sections 5.3.2 and
5.3.3 use the ER construction with perturbative polarisation states.
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Figure 5.2: The Birch-Murnaghan equations of state for Fd3̄m Ge using plane waves (PW) and
the default ER PAOs. This test case shows the worst agreement with plane waves. Each curve is
shifted to the origin by the equilibrium energy and volume as this allows for clearer comparison
of the bulk modulus.
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N e
error/ABO3 unit (44 electrons) [e]

Pm3̄m Pm3̄m P4mm Pbam Fm3̄m Pm3̄m
PTO PZO PTO PZO PZT 50/50 PZT 50/50

SZP 0.719 0.768 0.730 0.772 0.739 0.743
DZDP 0.358 0.382 0.380 0.397 0.369 0.371
TZTP 0.246 0.276 0.257 0.282 0.257 0.259

Table 5.4: The total integrated electronic error N e
error (normalized per 5-atom ABO3 perovskite

unit, containing 44 electrons) as defined in Equation 5.2 for the SZP, DZDP & TZTP PAO basis
sets for each of the considered structures in Figure 5.1.

5.3.2 Charge density differences

Figures 5.3, 5.4 & 5.5 show the charge density differences ∆n(r) = nPAO(r)− nPW(r) for each
PAO basis set and each crystal structure shown in the lowest two rows of Figure 5.1 (PTO, PZO
and PZT 50/50). We show this quantity using both coloured isosurfaces and slices through chosen
planes which are described in each figure. Before discussing the details of each case, we discuss
some striking features shared by all cases. The range of ∆n(r) is similar between all crystals,
extremal at around 0.25 electrons/Å3 with a very narrow region of negative ∆n(r), minimal
at ≈ 0.07 electrons/Å3. Even when considering these extrema, their magnitudes are ≈ 50×
smaller than the extrema of any given n(r). This is even more apparent when considering the
mean absolute of ∆n(r) which is ≈ 0.01 electrons/Å

3
for SZP falling to ≈ 0.004 electrons/Å

3

by TZTP. This shows that even at first glance for all bases the electronic error versus plane waves
is small. It is also clear that these regions of maximal ∆n(r) are small in volume and isolated
close to each ionic site, especially the O anions. Further, error is almost vanishing proximal
to the Pb cations and Pb-O bonds suggesting this chemistry is well reproduced from the plane
wave calculations. Other than the aforementioned sites, ∆n(r) ≈ 0 for the vast majority of the
simulation box. Since all calculations are normalised to the same number of electrons (44/ABO3

unit) the localised surplus of electrons close to ionic sites has to result in an electron deficiency
elsewhere. This manifests itself in two areas. Firstly, a small negative ∆n(r) appears in bonding
areas, especially those characterising the BO6 octahedra. Secondly, the remaining ∆n(r) spreads
itself out as an even smaller negative background over the rest of the simulation box. Finally, we
see that the effect of increasing the size of the PAO basis from SZP to DZDP results in a large
reduction in ∆n(r). This effect is most clear when we examine the shrinking volumes enclosed
by the isosurfaces present on any one of Figures 5.3, 5.4 or 5.5. This effect can also be seen as
we increase the basis set size from DZDP to TZTP but is less drastic.

Table 5.4 shows the total integrated electronic error as defined in Equation 5.2. Much like
the range of ∆n(r), the magnitude is similar across all crystals and decreases as we increase the
basis set size. This improvement is once again greater between the SZP & DZDP basis sets as



Chapter 5: Pseudoatomic Orbitals: Electronic and Structural Accuracy 150

a)             PbTiO3 b)             PbZrO3

PbO plane

a
a
/2

0

S
Z
P

TiO2 plane

a
a
/2

0

D
Z
D

P

0 a/2 a

a
a
/2

0

T
Z
T

P

0 a/2 a

−0.15

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

∆
n
(r

)
[e

le
ct

ro
n
s/

Å
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Figure 5.3: The charge density difference between PAO calculations and plane waves for
increasing PAO basis set size for cubic PTO (a) and cubic PZO (b). For each case, we display
the full 3d isosurfaces and slices through the PbO and BO2 planes. Isosurfaces are plotted at the
+0.10 (dark red), +0.020 (light red) and -0.020 (blue) electrons/Å3 levels.

compared to the drop in N e
error between DZDP & TZTP. What is notable, however, is that there is

a noticeable (but small) gain in N e
error as we break Pm3̄m symmetry for cubic PTO & PZO to

the distorted P4mm & Pbam phases respectively. This gain is comparable for both compounds.
This effect can be explained by a slight rigidity for each PAO local to sites which become low
symmetry. The basis must now adapt to the distorted environment in a more asymmetrical
manner which doesn’t perform as well as the same process at a higher symmetry site. This
effect can be seen clearly in Figure 5.4a when examining the TiO2 panel for the SZP basis
set. Close to the O 1b Wyckoff site we see firstly that ∆n(r) is now asymmetrical in the plane
perpendicular to the pseudocubic c-axis as compared to the same panel in Figure 5.3a where
∆n(r) is symmetrical. We see also the ∆n(r) is now greater (and extremal) in the upper region
of the O 1b site which is a primary source of the increase in the total integrated error as we break
cubic symmetry. We see for the two PZT 50/50 configurations that N e

error is comparable since
both arrangements have a similar, cubic symmetry. It is also interesting to point out that the mean
of N e

error between cubic PTO & PZO for any basis very closely mirrors the value of N e
error for

either of the PZT 50/50 configurations. This suggests that the electronic structure local to PTO
& PZO units in the alloy is similar to that of the pure compound. This is supported further when
examining the BO2 panels of Figure 5.5 where local PTO & PZO units are easily discernible
when compared with the BO2 panels of Figure 5.3. This suggests that approximations (like the
virtual crystal approximation) designed to circumvent the need for large supercell calculations of
alloys are unable to accurately account for local electronic structure. This is an explanation for
the origin of the failings of the VCA pointed out in Chapter 4.
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Figure 5.6a quantifies N e
error for Pm3̄m PTO in terms of the same error produced by a given

plane wave cutoff energy using the plane wave basis. We see that when increasing the number
of PAOs to TZTP, we achieve the same accuracy as a 27.28 Ha cutoff plane wave calculation.
Figure 5.6b makes the same comparison but for the convergence of the total energy difference
∆E. All PAO basis sets perform better using this metric (in particular, SZP makes a gain of
+4.63 Ha in plane wave cutoff energy) with TZTP achieving the same convergence in energy as a
30.85 Ha plane wave cutoff. We note that these values are close to double those reported by the
PAO basis sets in the Siesta code [6] but accept that a lot of this difference could be accounted
for due to the softer (and lower accuracy) Troullier-Martins [364] type pseudopotentials used in
[6] and the difference in material system used for the study (bulk Si).

5.3.3 Bader analysis

Table 5.5 shows the quantities derived from Bader partitioning of the charge densities calculated
using the plane wave optimised geometries. These results reveal some fine features in the
electronic structure. We see that for all basis sets, taking cubic PTO as an example, the Bader
ionic charges qB (obtained from the difference in the number of valence electrons treated by
the pseudopotential and the Bader partitioned valence charge) do not coincide well with the
nominal charges (Pb2+, Ti4+, O2−) which are used frequently in the literature as a convenience
rather than an ab initio assignment. We retrieve around half the nominal values suggesting
a significant covalent character to the bonding, especially for the BO6 octahedra. This is in
contrast to the well known of phenomenon of anomalous dynamical or Born effective charges
(Z∗) in the perovskite oxides, known to approximately double the nominal charges of ions in
the perovskite oxides [162]. The reason for this discrepancy is that the dynamical nature of Z∗

accounts for the additional charge from counter motion of electrons/holes when an cation/anion
is displaced. In comparison, the Bader charge calculated in this chapter is a static property. As
we have previously noted, since static charges are not unequivocally defined, the given ionic
charges in this section will vary between assignment methods.

We see that there is a cation→ anion negative charge transfer with increasing basis set size
suggesting an increasing level of ionicity in bonding bringing qB closer to their PW values. We
see that the prediction of qB is rather underestimated for cations and overestimated for anions in
the SZP basis set. This suggests that the electronegativity of O is underestimated and/or electrons
proximal to the metal ion sites are over-localised compared to plane waves. This fact first appears
to be at odds with the observed effect of an electron surplus near O anions as seen in Figures 5.3,
5.4 & 5.5. This is however rationalised as we also observe a decrease in the Bader volume VB for
O anions which, in turn, increases the average valence charge density n̄B (as seen in Table 5.5)
recovering the effect observed in the electron density difference plots. Whilst it can be seen that
the Bader derived quantities are rather approximate (most notably in qB) for the SZP basis, by
DZDP (and certainly by TZTP) they are in good agreement with the values obtained from plane
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Figure 5.4: The charge density difference between PAO calculations and plane waves for
increasing PAO basis set size for tetragonal PTO (a) and orthorhombic PZO (b). For each case,
we display the full 3d isosurfaces and selected slices. Isosurfaces are plotted at the +0.10 (dark
red), +0.020 (light red) and -0.020 (blue) electrons/Å3 levels.
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Figure 5.5: The charge density difference between PAO calculations and plane waves for
increasing PAO basis set size for Fm3̄m cubic PZT 50/50 (a) and Pm3̄m cubic PZT 50/50 (b).
For each case, we display the full 3d isosurfaces and selected slices. Isosurfaces are plotted at
the +0.10 (dark red), +0.020 (light red) and -0.020 (blue) electrons/Å3 levels.
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Figure 5.6: The convergence properties of plane wave calculations where PAO calculations
featuring the same error have been overlaid for comparison. Calculations were performed on
the Pm3̄m PTO structure. a) Convergence with respect to the total electronic error integral
of Equation 5.2 b) Convergence with respect to ∆E, the energy difference between a given
calculation and the energy obtained from the 40Ha plane wave cutoff.



155 Chapter 5: Pseudoatomic Orbitals: Electronic and Structural Accuracy

qB [e] VB [Å3] n̄B [e/Å3]

Pm3̄m PTO

SZP DZDP TZTP PW SZP DZDP TZTP PW SZP DZDP TZTP PW

Pb 1.29 1.37 1.39 1.38 18.81 18.40 18.39 18.41 0.676 0.686 0.686 0.686
Ti 2.01 2.08 2.12 2.15 7.68 7.54 7.42 7.35 1.300 1.315 1.331 1.344
O -1.10 -1.15 -1.17 -1.18 11.22 11.40 11.45 11.46 0.633 0.627 0.6326 0.626

Pm3̄m PZO

Pb 1.21 1.30 1.39 1.35 21.89 21.42 20.83 21.06 0.585 0.593 0.606 0.600
Zr 2.31 2.39 2.43 2.47 11.00 10.65 10.39 10.23 0.881 0.903 0.921 0.931
O -1.17 -1.23 -1.27 -1.27 12.70 12.97 13.25 13.23 0.565 0.557 0.549 0.550

P4mm PTO

Pb 1.27 1.35 1.39 1.37 19.70 19.26 19.07 19.16 0.646 0.657 0.661 0.659
Ti 2.03 2.10 2.13 2.16 7.83 7.67 7.56 7.48 1.273 1.291 1.306 1.315
O -1.10 -1.15 -1.17 -1.18 11.76 11.96 12.07 12.06 0.603 0.597 0.594 0.595

Pbam PZO

Pb 1.20 1.29 1.34 1.31 21.24 20.70 20.52 20.66 0.603 0.614 0.617 0.614
Zr 2.37 2.47 2.51 2.55 10.99 10.61 10.39 10.28 0.876 0.898 0.913 0.920
O -1.19 -1.25 -1.28 -1.29 12.79 13.10 13.23 13.22 0.562 0.554 0.550 0.551

Fm3̄m PZT 50/50

Pb 1.24 1.34 1.39 1.35 20.29 19.78 19.52 19.76 0.629 0.640 0.646 0.640
Zr 2.26 2.36 2.42 2.55 10.91 10.54 10.28 9.96 0.892 0.915 0.933 0.949
Ti 2.04 2.12 2.15 2.18 7.70 7.53 7.43 7.34 1.294 1.313 1.325 1.338
O -1.13 -1.19 -1.22 -1.24 11.87 12.13 12.28 12.27 0.601 0.593 0.588 0.590

Pm3̄m PZT 50/50

Pb 1.24 1.34 1.39 1.36 20.45 19.86 19.60 19.79 0.624 0.637 0.643 0.639
Zr 2.33 2.39 2.43 2.47 10.64 10.43 10.18 10.03 0.909 0.921 0.939 0.950
Ti 2.04 2.11 2.15 2.18 7.73 7.54 7.42 7.34 1.289 1.311 1.327 1.337
O -1.14 -1.20 -1.23 -1.23 12.01 12.27 12.42 12.39 0.595 0.587 0.582 0.583

ε [%] -7.55 -2.83 -0.26 - 2.45 1.20 0.37 - -1.73 -0.89 -0.26 -
εabs [%] 7.55 2.83 1.45 - 4.27 1.84 0.84 - 2.82 1.25 0.60 -

Table 5.5: The Bader partitioned ionic charges qB, volumes VB and average valence charge
densities n̄B for each ionic species and each of the considered crystal structures calculated for
each basis set. Where ionic species have symmetry inequivalent sites, we take the mean value
over all sites. We give also the mean relative error (MRE) ε and mean absolute relative error
(MARE) εabs measured in % error versus plane waves.
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waves. This once again emphasizes the electronic accuracy achievable with the default PAOs.
We have also examined the possibility that the errors in qB could be an artefact of pressure

using the particular case of Pm3̄m PZO. That is, the optimised lattice constants for the PAO
bases overestimate the plane wave result by 0.99%, 0.46% and 0.34% for the SZP, DZDP and
TZTP basis sets respectively. If we then perform simulations at the plane wave lattice constant (as
was done for the results in Table 5.5) this imposes an isotropic pressure of -5.28 GPa (SZP), -2.63
GPa (DZDP) and -1.46 GPa (TZTP). Because of this fact, we calculated the Bader quantities
once more using the zero pressure lattice constants. Remarkably, qB changes only marginally (no
more than±0.01e). Since we are working at a larger volume, the VB must of course increase, but,
the ratios of the cationic to anionic volumes remains constant. Since roughly the same amount
of charge is now enclosed within a larger VB, we naturally see a decreased n̄B for all sites. We
deduce then that the errors in qB do not strongly respond to deviations from the equilibirum
lattice constants. These errors are instead described by the incompleteness of the basis.

We see that the ratio of the cation to anion volumes is a decreasing function of basis set
completeness, decreasing by ≈ 0.1 for V B

B /V
O
B and ≈ 0.2 for V Pb

B /V O
B from SZP to TZTP. This

implies that in the smaller basis set, O occupies a smaller ionic volume in comparison to the Pb
and B-sites. This could result in small differences in lattice dynamics between the basis sets and
could effect the Goldschmidt tolerance factor, depending explicitly on ionic radii [365, 366].
This effect could be responsible for some of the differences in the amplitudes of the soft modes
discussed in Section 5.3.4.

5.3.4 Soft mode distortions

In this section we consider the soft modes known to drive the phase transitions in PTO and PZO.
We consider the amplitude of each identifiable irrep in the relaxed structures for each basis set.
We also consider the degree of energy lowering associated with each of these irreps and define
phase transition energies. We display the displacive modes in Tables 5.6 and 5.7. Strain modes
influence the phase transition in PZO only by a small amount so we include only discussion of
strain modes in PTO (although all strain modes are tabulated in Table 5.8); coupling strongly to
the displacive Γ−4 mode. The phase transition energies are quoted in Table 5.10 and the linear
evolution of mode energetics are shown in Figure 5.7.

Before discussing mode amplitudes, we must first carefully define them. We do so following
the format of the ISODISTORT Ap amplitude normalised to the primitive cell [321]. Once an
atomic displacement has been identified as belonging to a particular irrep, the displacement is
calculated in fractional coordinates relative to the parent structure. This defines the amplitude of
a specific displacement in the irrep. To calculate Ap we now normalise the amplitude by a factor
of
√
Vp/Vs for primitive/supercell cell volumes Vp/s. Now to calculate the amplitude of the irrep

as a whole, we take the square root of the sum of the squares of the displacement amplitudes
belonging to the irrep in question. If we wish to characterise the amplitude of the total distortion
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SZP DZDP TZTP PW

Pb 1b T1u 0.000 0.000 0.000 0.000
Γ−4 → qΓ = [0, 0, 0] Ti 1a T1u 0.160 0.118 0.111 0.141

O 3d A2u 0.659 0.458 0.370 0.446
O 3d Eu 0.842 0.646 0.550 0.651

Total distortion 1.081 0.800 0.672 0.802

Table 5.6: The mode amplitudes normalised to the parent cell Ap (described in the text) for the
irreps characterising the Pm3̄m→ P4mm phase transition in PTO.

from the transition, we can take the square root of the sum of the squares for each irrep amplitude.
Tables 5.6 and 5.7 are then tabulations of Ap.

We consider first the simpler phase transition of PTO. This is characterised by a single
displacive mode Γ−4 resulting in the ferroelectric P4mm phase. Examining Table 5.6 we see
that Pb 1b displacements are set to zero since we have chosen the Pb site as the origin. For the
SZP basis set, the Γ−4 distortion is rather approximate compared to plane waves, overestimated
by ≈ 35%. This overestimate can be understood in simple terms by considering the arguments
of Cochran and Anderson [1, 2, 52] in their seminal works on soft modes. It is suggested that
the condition for stability against the ferroelectric distortion is that short range restoring forces
(favouring the cubic phase) outweigh long range Coulombic forces (favouring ferroelectricity).
This condition does not hold for PTO in 0K DFT hence the ferroelectric Γ−4 mode is an energy
lowering phase transition of the Pm3̄m phase. It is clear, however, that this delicate balance of
short and long range forces is modified between the different PAO bases. As discussed in Section
5.1 (and displayed in Figure 5.3a), there are too few electrons in the covalent bonds defining the
TiO6 octahedra; an effect especially apparent for the SZP basis. This reduces the strength of short
range restoring forces whilst the Coulombic Ewald contribution remains constant for a given
ionic geometry. We suggest that this increased imbalance drives a much stronger ferroelectric
distortion for the SZP basis. We note that whilst the Hartree forces (a functional of the charge
density) from the coulomb interacting electrons will also play a role in this balancing act, their
contribution is non-trivial. Indeed, the electrostatic contribution to the total energy from Ewald
terms is in general much larger than the Hartree contribution in these systems so we expect the
former to dominate.

Consider also the coupling to strain modes Γ+
1σ and Γ+

3σ (the subscript σ denotes a strain
mode rather than a displacive one). The former is responsible for uniform isotropic
expansions/contractions of the cell whilst the latter is responsible for tetragonality. Rather than
quote the amplitude of each mode for each basis (shown in Table 5.8), it is more illuminating to
examine the zero pressure lattice constants of Table 5.9. We see that for the SZP basis the c/a
ratio is considerably overestimated at 1.24 when compared to the plane wave c/a of 1.084. This
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SZP DZDP TZTP PW

R+
4 → qR = [1/2, 1/2, 1/2] O 3d Eu 0.571 0.554 0.553 0.534

Total R+
4 distortion 0.571 0.554 0.553 0.534

Pb 1b T1u 0.213 0.214 0.239 0.256
Zr 1a T1u 0.041 0.034 0.037 0.047

Σ2 → qΣ = [1/4, 1/4, 0] O 3d A2u -0.047 -0.042 -0.035 -0.035
O 3d Eu1 0.253 0.250 0.224 0.227
O 3d Eu2 -0.230 -0.222 -0.216 -0.217
Total Σ2 distortion 0.407 0.400 0.396 0.409

Pb 1b T1u -0.049 -0.033 -0.026 -0.026
S4 → qS = [1/4, 1/2, 1/4] O 3d Eu1 -0.013 -0.129 -0.103 -0.106

O 3d Eu2 0.074 -0.083 -0.071 -0.070
Total S4 distortion 0.154 0.157 0.128 0.129

Pb 1b T1u -0.006 -0.001 -0.009 -0.010
M−5 → qM = [1/2, 1/2, 0] Zr 1a T1u -0.008 -0.003 -0.006 -0.008

O 3d Eu 0.012 0.013 0.009 0.009
Total M−5 distortion 0.015 0.013 0.014 0.016

Pb 1b T1u 0.011 0.024 0.027 0.027
R+

5 → qR = [1/2, 1/2, 1/2] O 3d Eu -0.001 -0.006 -0.007 0.008
Total R+

5 distortion 0.011 0.025 0.028 0.028

Zr 1a T1u 0.001 0.0003 0.002 0.003
X−3 → qX = [0, 1/2, 0] O 3d Eu -0.009 -0.009 -0.017 -0.017

Total X−3 distortion 0.009 0.009 0.018 0.017

Overall distortion 0.718 0.702 0.693 0.686

Table 5.7: The mode amplitudes normalised to the parent cell Ap (described in the text) for the
irreps characterising the Pm3̄m → Pbam phase transition in PZO. The modes are listed in
descending total distortion.

Mode amplitude, Ap

irrep SZP DZDP TZTP PW

PTO Γ+
1σ 0.0667 0.0321 0.0166 0.0266

Γ+
3σ 0.1883 0.0867 0.0495 0.0674

PZO Γ+
1σ -0.0037 -0.0037 -0.0037 -0.0029

Γ+
3σ -0.0150 -0.0115 -0.0124 -0.0132

Γ+
5σ 0.0041 0.0049 0.0013 0.0014

Table 5.8: The strain mode amplitudes, Ap, for the Pm3̄m→ P4mm phase transition of PTO
and the Pm3̄m→ Pbam phase transition of PZO.
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SZP [Å] DZDP [Å] TZTP [Å] PW [Å]

a b c a b c a b c a b c

P4mm PTO 3.799 3.799 4.710 3.865 3.865 4.282 3.890 3.890 4.128 3.870 3.870 4.194
Pbam PZO 5.919 11.907 8.241 5.877 11.835 8.223 5.886 11.793 8.206 5.871 11.765 8.178

Fm3̄m PZT 50/50 8.124 8.124 8.124 8.091 8.091 8.091 8.080 8.080 8.080 8.050 8.050 8.050
Pm3̄m PZT 50/50 8.143 8.143 8.143 8.112 8.112 8.112 8.096 8.096 8.096 8.069 8.069 8.069

Table 5.9: The optimised, mutually orthogonal, pseudocubic lattice constants a, b and c for the
distorted PTO/PZO phases and the PZT 50/50 arrangements.

leads to the considerable overestimates of the amplitudes of Γ+
1σ and Γ+

3σ. The amplitude of the
ferroelectric Γ−4 distortion is then increased as a result of the strong, mutual coupling to Γ+

1σ and
Γ+

3σ. A peculiarity of this transition for the default PAOs is their non-systematic nature. Despite
the smaller number of basis functions, the DZDP basis performs better than TZTP for the
amplitude of displacive modes, strain modes, the phase transition energy (Table 5.10) and lattice
constants of the P4mm phase (Table 5.9). It is for this reason that great care must be taken when
using PAOs to describe systems where the internal and cell degrees of freedom are strongly
coupled. We note that using a basis other than the default can result in vast improvements for
this transition. When tuning the confinement energies to fit the plane wave c/a, we can achieve a
phase transition energy within 1 meV of the plane wave energy as we show in Section 5.3.5.

We have also computed the spontaneous macroscopic polarisation for the relaxed P4mm

PTO structures. For the PAO calculations, we use the method developed by Resta [147, 367]
(equivalent to the Berry phase formalism [64, 65] in the limit of large cells; we use 10 cells in the
direction of the distortion) whilst we use the well known Berry phase formalism of King-Smith
and Vanderbilt for the plane wave calculation. With plane waves, we find a polarisation of 92.74
µC/cm2 which compares very well with the TZTP value of 92.82 µC/cm2. We note that this is
despite the underestimation of the displacive Γ−4 mode (indicative of the ionic contribution, Table
5.6) meaning the electronic contribution to the polarisation is increased. The DZDP polarisation
is found to be 104.15 µC/cm2 showing that despite the Γ−4 mode amplitude closely adhering to
the plane wave value, the electronic contribution is slightly overestimated. For the SZP basis,
we find a polarisation of 95.93 µC/cm2 which at first glance indicates better agreement with
plane waves than DZDP. We note that this is only because the significantly larger dipole moment
(as indicated by the mode amplitude in Table 5.6) is normalised by the largely overestimated
volume (+8.2% compared to plane waves).

The PZO transition is more difficult to unpack. Despite this, (perhaps due to only a weak
coupling between displacive and strain modes) the material is impressively described by the
default PAOs. The error in both the Pm3̄m and Pbam lattice constants are smaller than 0.5%
for the TZTP basis demonstrating that even highly distorted perovskites can be represented well
by the default PAOs. We now examine Table 5.7 commenting on the individual contributions
of each irrep in the transition. Beginning first with the R+

4 mode we see that the accuracy
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PTO Pm3̄m⇒ P4mm PZO Pm3̄m⇒ Pbam
[meV/ABO3 unit] [meV/ABO3 unit]

SZP -115.51 -295.78
DZDP -58.40 -256.27
TZTP -47.37 -258.71
PW -69.83 -262.24

Table 5.10: The phase transition energies for the cubic to tetragonal/orthorhombic transitions in
PTO/PZO. This quantity is defined by the difference in total energy between the relaxed cubic
phase and the relaxed distorted phase for each basis.

improves with basis set size but accounts for the largest source of error in the overall distortion.
Since the R+

4 mode is AFD, this overestimation leads to a larger rotation angle of the oxygen
octahedra compared to plane waves. For the antipolar Σ2 distortion, we see that the total
distortion is further from the plane wave value as we increase the number of basis functions.
This is somewhat misleading however as when we examine the individual displacements, we
see that O and Pb displacements are better described by the TZTP basis. The reason the SZP
basis appears to perform better is because the underestimated Pb displacement balances with
the O Eu2 displacement. Taking both the S4 and X−3 modes together, we see that an accurate
description requires the TZTP basis. It should be noted, however, the X−3 mode contributes very
little to the energetics of the transition which is dominated by the R+

4 , Σ2 and S4 modes. We
note finally that although the amplitudes of some modes do not improve with basis set size, the
overall distortion does. By TZTP, the distortion is within 0.1% of the plane wave distortion. This
accuracy is seen also in the phase transition energy (Table 5.10) which improves with basis set
size within 1% of the plane wave value by TZTP.

Figure 5.7 describes the energy difference ∆E between an initial, undistorted phase and a
phase distorted by some fraction of a displacive or strain mode. For each basis, the maximum
amplitude of an irrep is the amplitude found in the relaxed structure in Tables 5.6 and 5.7. In
Figure 5.7a, the initial undistorted structure is the optimised Pm3̄m PTO structure for the basis
in question. Since the displacive mode is coupled strongly to the strain modes, we linearly
evolve the three modes (Γ−4 , Γ+

1σ and Γ+
3σ) simultaneously until their maximum amplitudes are

reached. As was explained previously, the default DZDP basis best approximates the plane wave
energetics since the TZTP basis retrieves a less accurate c/a ratio. A small energy barrier (at zero
mode amplitude) exists for the transition for all cases. This is not true in reality, only existing
here since we have assumed the displacive and strain modes are directly proportional on a 1:1
basis (the real coupling is non-linear). The size of this barrier for the SZP basis is larger at ≈ 35

meV. This is an artefact of the large strain modes and the highly non-linear coupling with the
displacive mode. For curves along the plane wave optimised trajectory (explained in the Figure
5.7 caption), a minimum of energy is always reached before the mode maximum inferring that
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Figure 5.7: The phase transition energetics for PTO and PZO as function of normalised mode
amplitude. Points/crosses are calculated data whereas lines are linear interpolations. Curves
labelled with (PW) were calculated along the plane wave optimised trajectory. a) Seven curves
indicating phase transition paths for the zone centre distortions in PTO. Modes with the subscript
σ are strain modes coupled to the displacive Γ−4 mode. b) Seven curves describing the phase
transition path for the three most important modes in the Pbam PbZrO3 phase transition. Each
path begins with the optimised orthorhombic cell for each basis such that strain modes are
“pre-frozen”.
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the optimised plane wave structure does not so well approximate the optimised structure of a
given PAO basis. This, much like the phase transition energy, can be improved upon using a
non-default basis.

In Figure 5.7b, our initial undistorted structure is the optimised orthorhombic Pbam cell of
PZO (with lattice constants described in Table 5.9) but with zero displacive mode amplitude. As
a general trend, we see that there is a fair discrepancy between the SZP and plane wave curves.
This almost disappears as we use a DZDP basis and even more so by TZTP. A clear source of
error in our description for all bases is the overestimated amplitude of the R+

4 mode. We see that
along the (0, 0, 0)→ (R+

4 , 0, 0) path, this overestimation results in too much energy lowering.
Interestingly, for the DZDP and TZTP bases, this error seems to recover along the (R+

4 , 0, 0)
→ (R+

4 , Σ2, 0) path and by the time all three displacive modes are present, the energetics are
almost identical. For the plane wave optimised trajectories, we once again observe a minimum
of energy before the maximal mode amplitude. This barrier appears just before the (R+

4 , Σ2, 0)
point indicating that the plane wave Σ2 mode (when coupled to R+

4 at least) does not describe
a stable structure. This effect does appear to diminish with basis set size, disappearing almost
entirely for TZTP. At the (final) (R+

4 , Σ2, S4) point, we see that the DZDP, DZDP(PW), TZTP
and TZTP(PW) curves very well represent the PW curve. This implies that in this case, the
default PAOs could be used to describe a plane wave optimised structure with only a very small
penalty in the energetics. This is valuable since this allows us take small plane wave optimised
cells to build larger supercells for PAO calculations without re-relaxing the structure allowing for
easy up-scaling of accurate DFT calculations.

5.3.5 Basis set optimisation

The mode decomposition amplitudes of Table 5.6 and the Pm3̄m→ P4mm phase transition
energies for PTO in Table 5.10 show that there is some room for improvement on the default
basis. We choose to optimise the c/a ratio of the tetragonal phase; minimising the difference in
the c/a ratio obtained from the DZDP PAO basis with the plane wave result. Fitting to the c/a
ratio is a good choice for the ferroelectric phases since strong strain-polarisation coupling ensures
that the bulk polarisation will be implicitly optimised in the process. We choose the DZDP
basis since this offers good flexibility whilst having few enough ζ’s (and therefore parameters
in the optimisation process) to quickly (and more reliably) reach a minumum. Also, we use a
different DFT functional in this section; LDA-CAPZ [215], as we use this optimised basis in
Chapter 6 which makes use of this functional. In the optimisation process, the cutoff radii rc (or
equivalently, the confinement energies) of each PAO are the variables of the minimisation. The
optimisation procedure can be described with three stages:

1. Solve for the radial functionsRnlζ(r) for an initial set of rc for each species for the confined
pseudoatom. We choose the default ER PAOs as a starting point.
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2. Using these PAOs, a full geometry optimisation of the atomic positions and cell size/shape
is performed starting from the plane wave optimised P4mm PTO structure.

3. If the resulting c/a ratio agrees with the plane wave value to some tolerance (we use 0.02),
terminate. If not, return to stage 1 with a modified set of rc in the direction of steepest
descent according to the Nelder-Mead simplex [368].

Indeed, all three of the above steps are encapsulated within the Nelder-Mead simplex [368];
chosen simply because we have no information about the gradient of the objective function.
The initial and optimised cutoff radii rc are shown Table 5.11. It can be seen that the optimised
cutoff radii are more compact than the defaults for Pb 5d, Pb 6d, Ti 4s, Ti 3d and Ti 4p while
the remaining PAOs expand (especially O). The optimised DZDP phase transition energy for
this functional (-47.91 meV) is accurate to the plane-wave calculation (-48.12 meV) to +0.44%
whilst the optimised DZDP c/a ratio (1.036) is accurate to -0.19%. This is an improvement on
the c/a obtained from the default DZDP basis (by the ER method; 1.30) and drastically improves
on the phase transition energy (-17.95 meV). Much like the default TZTP PBESol basis used
in the previous sections, the default TZTP LDA basis does not improve on the default DZDP
basis; underestimating the c/a ratio further. We note that whilst our optimisation method clearly
offers vast improvements for this application, we must make some serious caveats. Firstly, our
approach is prone to encountering local minima (where the algorithm gets stuck) and is sensitive
to the initial rc. At this stage, then, we would describe this optimisation as being purely heuristic.
Secondly, the optimisation interferes with the transferability of the basis. That is, although
the structure of the P4mm phase is better described with the optimised basis, the error in the
equilibrium volume of the cubic Pm3̄m phase increases (the error is 1.5% for the default ER
and is 1.9% for the optimised basis).

Table 5.11: The cutoff radii rc for the default (ER; equal radii) and optimised LDA-CAPZ PTO
basis described in the text. Unlike before, we now treat the Pb 5d states as semicore.

Default rc (ER) [a0] Optimised rc [a0]

ζ = 1 ζ = 2 ζ = 1 ζ = 2

Pb 5d 6.38 - 5.60 -
6s 6.38 3.78 6.61 3.93
6p 6.38 3.78 6.54 4.06
6d 6.38 3.78 3.91 2.68

Ti 3s 3.32 - 4.53 -
3p 3.79 - 5.11 -
4s 8.13 4.07 5.75 3.22
3d 8.13 4.07 5.68 3.14
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4p 8.13 4.07 4.02 3.01
O 2s 4.86 2.58 5.03 2.71

2p 4.86 2.58 6.02 3.34
3d 4.86 2.58 6.02 3.34

5.4 Summary

We have investigated the consequences of representing delicate features of the perovskite oxides
and other materials with the default PAO basis sets packaged with CONQUEST in comparison
to plane wave calculations using the same pseudopotential. For structural properties, most basis
sets (although, with some glaring exceptions) described accurately the equilibrium volumes
and bulk moduli of the elemental semiconductors, binary oxides and the perovskite oxides. We
learnt that in most cases the ER PAO construction method marginally outperformed those made
under the EE scheme for the structural properties and relative energetics. We learnt also that
those default basis sets with perturbative polarisation functions outperformed those using simple
excited states for describing relative stabilities. That is, in the case of the two SiO2 polymorphs,
the relative stability often had the wrong sign when using explicit excited states.

In the electronic structure, we were able to reproduce the plane wave electronic charge
density with an error of ≈ 0.5% using the total integrated electronic error integral of Equation
5.2. We found that the largest source of error to this integral is from a surplus of electronic
density close to O anion sites as shown in electronic charge density difference plots. Even fine
features derived from Bader partitioning (Bader charges, volumes and densities) agree well with
plane wave calculations and once again demonstrates the small surplus in electronic density near
O anion sites. We quantified the completeness of the PAO basis sets by providing plane wave
cutoff energies offering the same accuracy in Nerror and energy convergence as those using the
plane wave basis. We found that although the two metrics disagree (by a small amount) on the
cutoff, by TZTP we can achieve the accuracy of a 27.28-30.85 Ha plane wave cutoff, close to
double what has previously been reported in the literature. We note that whilst this comparison
is useful, the error cancellation in the plane wave basis (that is, errors in the core regions tend
to cancel with one another) is not perfectly achieved when we consider the energy difference
between plane wave and PAO calculations. Further, we expect these errors to be less system
dependent in the case of plane waves than for PAOs, especially smaller basis sets (like SZ and
SZP).

When investigating the condensation of soft modes, we found that larger basis sets of
PAOs (DZDP and TZTP) well described the Pm3̄m → Pbam phase transition in PZO, both
structurally and energetically. Impressively, both the total distortion and phase transition energy
when using the TZTP basis are within 1% of the plane wave figures. We found that more care
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had to be taken for the Pm3̄m → P4mm phase transition in PTO in part due to the need to
accurately represent short range restoring forces and in part due to the strong coupling between
displacive and strain modes. This, however, can be remedied by using a non-default optimised
basis where we have laid out a heuristic method for the optimisation process. Remarkably, we
find that using a default DZDP or TZTP basis set on a plane wave optimised geometry for PZO
results in close to identical phase transition energies. This suggests that even highly distorted
perovskites can be represented by basis sets of default PAOs.

This chapter suggests that even fine structural and electronic features of the perovskite
oxides can be calculated to near plane wave accuracy using basis sets of PAOs. Since PAO-
based calculations (in partnership with the correct algorithm) can scale to many thousands
(and millions [13]) of atoms, this approach now offers a pathway for accurate large scale first
principles simulations of perovskite systems using DFT. We note that whilst there is still progress
to be made for the calculation of more demanding physical properties (like soft mode phase
transition temperatures), some particularly valuable research questions (as discussed in Section
5.1) facing the perovskite oxides can now be addressed with this method using large scale
structural relaxations, spin-polarised calculations with highly disordered magnetism and the
extraction of electronic properties from systems with realistic defect concentrations.





6 | Ultrathin PbTiO3 Films: Substrate
Effects and Surface Defects

Chapter abstract

Low dimensional structures comprised of ferroelectric (FE) PbTiO3 (PTO) and quantum
paraelectric SrTiO3 (STO) are hosts to complex polarisation textures such as polar waves,
flux-closure domains and polar skyrmion phases [89, 174, 177–179, 369, 370]. Density
functional theory (DFT) simulations can provide insight into this order, but are limited by the
computational effort required. To circumvent this, we deploy two separate large scale DFT
methods implemented in CONQUEST [7, 17] within two separate but complementary studies.
In the first study, we treat PTO films on STO substrates using the novel multi-site support
function (MSSF) method [18, 19]. This method reduces the solution time for the electronic
ground state, preserves high accuracy and allows for simulations of systems > 2,000 atoms in
size. At low dimensions, we find that the polar wave texture with cylindrical chiral bubbles
emerges as an intermediate phase between full flux-closure domains and in-plane polarisation.
This is driven by an internal bias field born of the compositionally broken inversion symmetry in
the [001] direction. Tuning this built-in field could allow one to manipulate chiral order on the
nanoscale through the careful choice of substrate, surface termination or use of overlayers.
Antiferrodistortive (AFD) order locally interacts with these polar textures giving rise to strong
FE/AFD coupling at the PbO terminated surface driving a p(2 × Λ) surface reconstruction;
another pathway for the local control of ferroelectricity. In the second study, we scale up DFT
beyond 5,000 atoms using the O(N) solver [16, 254, 255, 262, 266, 267] to simulate shallow,
engineered surface trenches on free standing and polydomain PTO films. In line with
experimental observations [32, 34, 55, 189], we find that surface trenches running parallel to
domain walls (DW) are preferred to those running perpendicular to DWs. Also, trenches are
found to be more stable positioned over the domain centroid compared to over the DW. We
describe this preference with a principle of least disturbance to the underlying flux-closure
domain structure. Finally, in agreement with experiment, we find large negative strain fields in
the vicinity of our trenches [55]. This has been suggested to contribute to the DW alignment
mechanism [55].

167
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6.1 Introduction

With the advent of advanced deposition techniques [57, 371] has come a revolution in the
engineering of thin film perovskite oxides and layered heterostructures for a variety of
applications in nanoelectronics. These advancements have propelled research into the great
variety of physical phenomena such systems can exhibit. These include enhanced colossal
magnetoresistance [372], high-temperature superconductivity [373], the formation of interfacial
two-dimensional electron and hole gases (2DEG/HG) [90, 338] and the emergence of negative
capacitance [87, 88]. While these are becoming well documented [56, 58, 374], new emergent
phenomena resulting from exotic electrical polarisation textures, including polar waves, vortices
and polar skyrmion phases [89, 174, 177–179, 369, 370] are less well understood. The toroidal
moment born from the chirality of these polar morphologies can give rise to strong
electrotoroidic, pyrotoroidic and piezotoroidic effects [174, 180, 375] all of which show promise
to be exploited in new low dimensional functional devices.

The ferroelectric (FE) domain walls (DWs) of related systems are also known to give rise
to novel functionality. In some cases, it has been shown that FE DWs can become conducting
within an otherwise insulating material [26, 376]: a promising avenue for the embedding of
circuits in nanoelectronic devices [27, 28]. Indeed, this year (2020), a domain wall-enabled
memristor was created in a thin film LiNbO3 capacitor [29]. Following this, it is clear that polar
textures and DWs can now be controlled and manipulated. However, current approaches rely
on the delicate control of directed external fields [29–31, 89, 174] which can lack permanence
once the field is switched off. In this chapter, we investigate alternative methods for controlling
polar order on the nanoscale without use of these external fields. We perform two separate but
complementary studies simulating the impact of substrate and engineered surface trenches on
ferroelectric order in ultrathin PTO films. Because of the large number of atoms required for
such simulations, we use the large scale DFT methods [7, 16, 18, 254, 255, 262, 266, 267] we
detailed in Chapter 3, Section 3.4.

Another avenue for the control of ferroelectricity is through manipulating the interacting
order parameters of the system. Notably, many perovskites (and heterostructures) are susceptible
to both the antiferrodistortive (AFD) and FE distortions. In the bulk, these two modes were
thought to suppress one another, although, recent evidence suggests that a cooperative regime
may also exist [377, 378]. At surfaces and interfaces we see phase coexistence. For example, at
the PbO terminated [001] surface of PTO, we observe the AFD c(2× 2) surface reconstruction
[379, 380]. This is characterised by strong antiphase rotations of the TiO6 octahedra about the
[001] axis (or a0a0c− in Glazer’s notation [45, 46]) and is known to coexist with and mutually
enhance in-plane ferroelectricity [379–381]. It is now popular to interface PTO with STO in
the repeating (STOn/PTOn)N superlattice for n alternating perovskite unit cells repeated N
times in a layered heterostructure. In the case of an ultrashort period (n = 1), hybrid-improper
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ferroelectricity can arise from the coupling of AFD and FE modes [81].
The (STOn/PTOn)N heterostructure continues to be studied from a theoretical perspective.

Most frequently considered is full periodic boundary conditions with infinitely repeated layers.
This has been studied with first principles DFT [188] where the focus has been on the
interactions of FE and AFD instabilities in the monodomain configurations. More recently,
however, polydomain configurations have been studied and ferroelectric flux-closure domains
have been shown to be stable [175]. Since [175] treats the bulk superlattice, the c(2× 2) surface
reconstruction wasn’t considered. Polydomain simulations of pure TiO2 terminated PTO films
(which do not give rise to enhanced surface AFD modes [379, 380]) have been performed but do
not treat the STO substrate by instead choosing to adopt the fictitious free standing film
geometry [172]. This work then cannot make any account for substrate/interface effects or the
intrinsically broken inversion symmetry for epitaxially deposited films on substrates. Indeed,
inversion symmetry breaking is known to give rise to built-in bias fields [382, 383] in tricolor
superlattices, which, to the authors knowledge, have so far not been investigated with DFT as a
method for controlling FE domain structures. Also to the author’s knowledge, there has been
only a single DFT-based study treating both the PTO surface and the STO substrate. This study
probed the nature of the theoretically proposed 2DEG/HG pair [90] where thicker films (≥ 14

unit cells) of the FE monodomain out-of-plane configuration were considered as large
depolarising fields are known to suppress this configuration in thinner films [24]. Multiple FE
domains are considered a competing phase but no 2DEG/HG pair emerges as the resulting flux
closure domains are an alternative mechanism for screening the depolarising field [185].

Ferroelectric DWs have been experimentally observed in alignment with crystallographic
step edges [32, 34] and surface defects (engineered or otherwise) [55, 189] in the PTO/STO
system. While this promises control over the orientation and direction of (possibly conducting in
similar systems) DWs, there are many open questions related to what drives the phenomenon.
For example, it is not known precisely which part of the domain structure is pinned by the defect.
One DFT study suggested that DWs themselves were pinned to the edges of crystallographic
steps above a critical compressive strain [191]. In contrast to this, an effective Hamiltonian study
[190] showed that it was the domain centroid (the area furthest from the DW with maximal out-
of-plane polarisation) which was pinned by the step edge. In [190], unlike [191], the underlying
polydomain nature of the film is treated, suggesting this approach provides the correct answer.
Unfortunately, this clarity is muddied by the fact that [191] uses the more accurate full DFT
approach while the approach taken in [190] is only parameterised by DFT. Another debate
is related to the mechanism of the alignment. One study deployed time dependent Landau-
Ginzburg-Devonshire (LGD) theory and suggested that the alignment mechanism is elastic.
That is, the bulk and electrostrictive contributions to the free energy are lowered because lateral
mechanical constraints are released in the vicinity of the surface defect [189]. In experiment,
however, giant strains and strain gradients are found the vicinity of the surface defect [55]. This
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opens the door to the possibility of strains and strain gradients coupling to the polydomain
polarisation; piezoelectric and/or flexoelectric contributions to the alignment mechanism.

The polydomain configuration in itself is challenging to simulate from the perspective of
DFT. The difficulty arises from the increased number of atoms N in the supercell as a result of
treating a fixed domain period Λ. If we are also to treat a finite thickness of film t, the Kittel
scaling law requires that the equilibrium Λ too increases since Λ ∝

√
t [32, 34, 176]. If our

simulations are to include the STO substrate, we could need a significant amount of atoms as the
large ferroelectric polarisation of PTO may be able polarise a few layers of STO. Finally, if we
wish to include AFD modes in our simulations (like the c(2 × 2) surface reconstruction), the
periodicity in the [010] direction must be doubled so as to not frustrate the octahedral rotations.
To include all of these effects, calculations with a supercell containing a few thousand atoms are
needed rather than the few hundred that conventional plane wave DFT is able to handle [4, 17].
When treating engineered surface trenches even more atoms may be required. While it is possible
to treat a periodic array of surface trenches with a similar number of atoms to those discussed
above, treating a trench in isolation may require several repeats of the polydomain structure to
limit lateral trench-trench interactions. Further, if we are to unequivocally rule out the stability
of trenches running perpendicular to the DW, several thousand atoms will be required in the
supercell†.

To overcome these limitations, some resort to alternative methods including phase fields,
shell models, Monte Carlo and second principles [174, 369, 384–389]. Whilst these approaches
each have their merits, they cannot universally serve as a replacement for full DFT. Most of
these methods implicitly accept that DFT offers superior accuracy since they either are or can be
parameterised by the theory [385, 388, 389]. Further, all of these methods make no account (or a
limited account [385]) for the electronic structure, limiting the ability of simulations to adapt to
new chemical environments like at surfaces and interfaces with a substrate. In this chapter, we
utilise two separate novel variations on local orbital DFT. The first allows us to consider systems
of a few thousand atoms with chemical accuracy rivaling plane wave calculations [18, 19] while
the second allows us to treat very large systems [7, 17] (demonstrated for as many as 1 million
atoms [13]) albeit with some loss of accuracy compared with the first approach.

This chapter is divided into two separate but complementary parts. In the first part, we
provide a full first principles study on ultrathin films of PTO down to a single PbO monolayer
(Nz = 0) up to 9 unit cells (Nz = 9) where Nx/Ny/Nz is the number of perovskite unit cells
included in the [100]/[010]/[001] direction. We treat explicitly the STO substrate and the PbO
termination invoking the c(2× 2) surface reconstruction. As well as treating paraelectric films,
we treat two monodomain configurations of the polarisation (P || [100] and P || [110]) and
stripe domain patterns comprised of alternating P || [001] and P || [001̄] domains. We do not
consider monodomain polarisation oriented in the out-of-plane directions (P || [001] or P ||

†This is as a result of increasing the supercell dimensions in the [010] direction as explained in Section 6.4.
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[001̄]) since a previous work has shown this is suppressed by the depolarising field within our
range of thicknesses [90] (also verified to be true within our simulations). We characterise
the competing energetics of the different film geometries as well detailing the resulting polar
morphologies, interactions with the surface reconstruction and other structural features.

In the second part, we investigate the interaction of engineered surface trenches with the
ferroelectric domain structure in an exemplar polydomain and free standing PTO film. Although
we have previously noted that such a geometry is fictitious, its weakness is also its strength. That
is, with this geometry, the effects of interfacial substrate chemistry are removed. Also, should we
symmetrically terminate our films (the upper and lower surface feature a trench; as they do in this
chapter), we can minimise effects from local inversion symmetry breaking in the out-of-plane
directions. This way, we can study effects intrinsic to PTO itself, disentangled from these other
effects, as we aim to do in this study. We choose the Nz = 7 film for this study since (for shallow
trenches) it is thick enough to limit (although not eliminate) trench-trench interactions between
the upper and lower surfaces of the film. We treat three arrangements for the orientation of the
surface trenches: trenches running parallel to the DW positioned over the DW (‖wall), trenches
running parallel to the DW positioned over the domain centroid (‖centroid) and trenches running
perpendicular to the DW (⊥ + AFD: the reason this orientation features AFD modes is discussed
in Section 6.2.6.2). For each of these cases the width of the trench is held constant (two unit cells
across) but we vary the depth at d = 1, 2 and 3 unit cells for each arrangement. We determine
the most energetically favourable orientation of the trenches relative to the DW and report on the
perturbations to the domain structure compared to the film without trenches.

The remainder or this chapter is organised as follows: Section 6.2.1 presents finer details
associated with the simulation method. In Section 6.2.2, we provide a careful convergence study
for the parameters of the multi-site support function (MSSF) expansion. Then, in Section 6.2.3,
we perform convergence tests for the truncation range of the density matrix used in the O(N)

calculations. Section 6.2.5 details the treated film geometries for PTO films on STO substrates
(including a study for selecting the appropriate amount of STO substrate) while Section 6.2.6
details the geometries used in free standing film calculations with surface trenches. Section
6.3 discusses the results of the first study: PTO films on STO substrates. Within this study, in
Section 6.3.1, we compare the competing energetics between each film geometry as a function
of thickness. Next, in Section 6.3.2, we present the local polarisation fields of the various film
geometries. The results of this first study finish in Section 6.3.3 where we detail the amplitudes
of local AFD modes, including the c(2 × 2) surface reconstruction. Also in this section, we
analyse the coupling of AFD modes with surface polarisation and the asymmetrical rumpling of
surface/interfacial Pb cations. Section 6.4 pertains to the results of the second study: simulations
of free standing PTO films with surface trenches. Within this study, in Section 6.4.1, we discuss
the relative stabilities of the various trench orientations and trench depths. In Section 6.4.2, we
discuss the contribution to the alignment mechanism from the minimisation of depolarising fields
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near the trenches. Then, in Section 6.4.3, we consider the effects of the strain fields found in the
vicinity of the trenches. We conclude this chapter in Section 6.5; marrying together the findings
of each investigation, commenting on the impact this chapter has on the field and suggesting new
areas for which our novel large scale DFT methods are applicable.

6.2 Theoretical method

6.2.1 General details

This Section provides details common to both the MSSF calculations and those using the O(N)

approach, both implemented within the CONQUEST code† [7, 17]. Parameters specific to
these two methods are described in Sections 6.2.2 and 6.2.3 respectively. Simulations use the
local density approximation (LDA) as parameterised by Ceperley, Alder, Perdew and Zunger
[215, 217] to describe exchange and correlation effects. This functional has recently been shown
to perform well against higher rung functionals for describing some important features of the
perovskite oxides [171]. Specifically, although both hybrid and meta-GGA functionals better
predict the experimental structural properties, they still overestimate the bulk polarisation of PTO.
Since this is the primary order parameter of our system, LDA is a good choice as the magnitude
of the overestimate is much less. Optimised Vanderbilt norm-conserving pseudopotentials are
used to replace core electrons [232, 233]. We use the scalar-relativistic variety available in
the PseudoDojo library (v0.4) [230]. These are used as an input for the ONCVPSP code
(v3.3.1) [233]. These pseudopotentials include the Pb 5d 6s 6p, Sr 4s 4p 5s, Ti 3s 3p 4s 3d and
the O 2s 2p states respectively. While many real-space integrals are performed using intuitive
analytic operations [247], some are performed on a fine, regular integration grid with a plane
wave equivalent cutoff of 300 Ha. Each of the structures in Sections 6.2.5 and 6.2.6 are fully
relaxed with quenched molecular dynamics until the maximum absolute value of the force on
every atom falls below 0.01 eV/Å. Supercells which feature asymmetric surface terminations
can give rise to a small dipole moment in the out-of-plane direction which propagates to a small
spurious electric field across the supercell. Those supercells suffering from this are corrected
with the dipole correction scheme of Bengtsson [390].

6.2.2 Multi-site support functions

Simulations of PTO on an STO substrate presented in Section 6.3 use the MSSF method [18,
19] (as described in Chapter 3, Section 3.4.5) in tandem with O(N3) scaling diagonalisation.
These simulations require reciprocal space integrations which are performed on 6/Nx × 6/Ny ×
1 uniform meshes as described by Monkhorst & Pack [227] where Nx,y are the number of

†The versions of CONQUEST and the basis generation code used in this chapter are from the beta which
predates the official release.
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Figure 6.1: The equations of state E(V ) for the cubic phases of STO (left) and PTO (right) using
different rMS = rLD. We also include E(V ) for the exact diagonalisation of PAOs (where the
MSSF contraction has not been made) and the E(V ) (PW) result obtained from a plane wave
calculation using the same pseudopotentials. The PW curve has V0 shifted to agree with the
minimum of the exact diagonalisation calculation so a better comparison can be made of the
energetics. The true lattice constants can be found in Table 6.1.

perovskite unit cells included in the [100] and [010] directions of the supercell respectively‡. We
use a double-ζ plus double-polarisation (DZDP) basis set of pseudo-atomic orbitals (PAOs) to
expand the states of the pseudopotential. We also include the Pb 6d, Sr 4d, Ti 4p and the O 3d as
polarisation orbitals aimed at increasing the angular flexibility of the basis. Ti 3s, Ti 3p and Pb
5d orbitals are treated as semi-core states described only with a single ζ . The exact details of the
PTO basis sets used were described in Chapter 5, Section 5.3.5 while the Sr basis was generated
with the default equal radii construction.

We have performed a convergence study for the parameters of the MSSF method. rMS and
rLD were increased subject to rMS = rLD and the Birch-Murnaghan [357] equations of state
(Equation 5.1, Chapter 5) for cubic Pm3̄m PTO and STO were calculated. These curves are
shown in Figure 6.1 and the fit parameters are recorded in Table 6.1. We also include on each
figure the equation of state obtained with a plane wave basis set using the same pseudopotential
as performed with the ABINIT code (v8.10.3) [310, 311]. We see that by rMS = rLD = 6.350Å
there is excellent agreement with the exact diagonalisation and plane wave calculation. The
lattice constants (calculated from the EOS fit - not lattice vector optimisation which produces
a slightly different result) beyond rMS = rLD = 6.350Å also agree with the plane wave
calculations, achieving errors of +0.51% and +0.52% for PTO and STO respectively. We see
also that the Bulk modulus is well described by the PAO basis sets offering errors of -3.55%

‡We do not explicitly shift meshes with even in-plane dimensions to be centered on Γ while those with odd
dimensions are naturally centered on Γ. The (marginal) effect of this choice is studied in Appendix A.2.
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V0 [Å3] a0 [Å] B0 [GPa] B′0

Pm3̄m PTO

rMS = rLD = 4.233Å 60.224 3.920 204.112 4.592
rMS = rLD = 5.292Å 59.824 3.911 201.377 5.421
rMS = rLD = 6.350Å 59.577 3.906 199.333 5.371
rMS = rLD = 7.409Å 59.566 3.905 198.941 5.332
rMS = rLD = 8.467Å 59.549 3.905 198.653 5.360
Exact diagonalisation 59.547 3.905 198.743 5.274

PW 58.616 3.885 206.659 4.656

Pm3̄m STO

rMS = rLD = 4.233Å 59.046 3.894 197.298 5.518
rMS = rLD = 5.292Å 58.589 3.884 206.681 2.410
rMS = rLD = 6.350Å 58.168 3.875 201.291 4.629
rMS = rLD = 7.409Å 58.157 3.874 200.872 4.558
rMS = rLD = 8.467Å 58.133 3.874 200.847 4.651
Exact diagonalisation 58.142 3.874 200.186 4.653

PW 57.225 3.854 201.395 4.095

Table 6.1: The values of the equilibrium volumes V0, equilibrium lattice constants a0, bulk
moduli B0 and bulk modulus derivatives B′0 as obtained from a least squares fit of E(V ) to
the Birch-Murnaghan equation of state. Exact diagonalisation refers to the result obtained
without the MSSF contraction, i.e. the Hamiltonian is built with primitive PAOs with dimensions
NPAO ×NPAO like in Chapter 5.
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and -0.05% respectively. Finally, we note that all PAO calculations overestimate (by a small
amount) the bulk modulus derivative B′0 = (∂B/∂P )P=0. This is of little impact however since
the Birch-Murnaghan equation of state is not particularly sensitive to B′0. Note, for example,
that the exact diagonalisation and plane wave curves of Figure 6.1 are rather indistinguishable
but differ by ≈ 13% in B′0. We proceed using rMS = rLD = 6.350Å. This yields the cubic
Pm3̄m lattice constants of PTO and STO (aPTO and aSTO) as 3.904Å and 3.874Å respectively.
Further, the tetragonality (c/a) of FE P4mm PTO is obtained as 1.036 producing a spontaneous
polarisation of 79.02 µC/cm2 as calculated with Resta’s method [66, 147] within the modern

theory of polarisation. This method is equivalent to the Berry phase [64] formula of King-Smith
and Vanderbilt [65] in the limit of large cells; we use 10 PTO unit cells in the direction of the FE
distortion to achieve convergence.

6.2.3 Linear scaling

Simulations of free standing PTO films with surface trenches presented in Section 6.4 use the
two part O(N) scaling algorithm [262, 266, 267] as implemented in the CONQUEST code [7,
17]. The full details of this method were described in Chapter 3, Section 3.4.6. The O(N) solver
requires an inverted overlap matrix, S−1. This is completed with Hotelling’s method [391] where
we truncate the range of S−1 to 6.35 Å. This choice inverts S to a tight tolerance of 1× 10−5.
For the second part of the algorithm (the density matrix minimisation (DMM) stage [262]), the
minimisation tolerance is set to 1× 10−6. Self consistency is achieved in tandem with with the
second stage using the mixed-L-SCF scheme described in Chapter 3, Section 3.4.6.2. As we
currently encounter problems with numerical instability when inverting the overlap matrix for
multiple-ζ PAO basis sets, we instead use a single-ζ plus polarisation (SZP) basis set for these
simulations. This basis set is comprised of the PAOs discussed in Section 6.2.2 with the second
ζ removed. At the exact diagonalisation level, this returns the cubic Pm3̄m lattice constant of
PTO as 3.909 Å and the c/a ratio of the FE P4mm phase as 1.043. Both of these figures are only
slightly enlarged when compared to the previously mentioned figures for the DZDP basis; use of
the SZP basis retains structural accuracy. The same is not true for the relative stability of P4mm

versus Pm3̄m, however. This is now underestimated at -88.86 meV/FU compared with same
figure calculated with the DZDP basis (-47.91 mev/FU).

To allow for O(N) scaling, a further approximation must me made. That is, we must choose
a truncation range for the density matrix (DM). We perform a careful convergence study for the
total energy of the Pm3̄m and P4mm phases and the energy difference between them. This is
shown in Figure 6.2 where these energies are shown as function of increasing DM range using
the structures optimised at the exact diagonalisation level. To find a balance between accuracy
and efficiency, we choose to truncate the range of the DM at 10.58 Å (20 a0). According to
Figure 6.2, this decreases the energy difference to -106.89 eV/FU. This is not the complete
story however as these calculations used the structures optimised at the exact diagonalisation
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Figure 6.2: The total energy (upper) for Pm3̄m and P4mm PTO and the energy difference
(lower) between them as a function of increasing DM range. Horizontal dashed lines mark the
total energy/energy difference from exact diagonalisation.

level. When we alter the DM range, we slightly alter the position of minima on the DFT total
energy surface; DM truncation defines a (slightly) different optimal structure. At the new relaxed
minima, the Pm3̄m lattice constant is 3.910 Å and the tetragonality of the P4mm phase is 1.046.
The energy difference also widens slightly to -113.33 meV. It is clear that the accuracy in precise
figure for the energy difference is not retained with this smaller basis. However, the general
hierarchy of the energetics are retained and the structures themselves do not deviate strongly
from the DZDP level. When we assess the preferred orientation or surface trenches to the DW,
this means we can have good confidence in the relaxed structure of the film and the energetic
hierarchy of trench orientations. However, the precise energy difference between the different
trench orientations will be only an estimate. Since we are only concerned with which orientation
is the most favoured and with the atomistic structure, this is not an issue.

6.2.4 The local polarisation

To analyse the different polar morphologies within our ultrathin PTO films, it is useful to be
able to access the magnitude of local dipole moments. One way for doing so is to use the
linear approximation of Resta [66] (as was discussed in Chapter 2, Section 2.7) for the local
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polarisation; the local dipole moment normalised by the volume of the local unit cell

P(i) =
e

Ωc

∑
α

wαZ
∗
α · u(i)

α (6.1)

for local unit cell i, local unit cell volume Ωc, atom index α, Born effective charge tensor Z∗α,
local atomic displacements from the idealised cubic bulk positions u

(i)
α and atomic weight factor

wα which is related to how many atoms α belong to the local cell i (which we choose to be 5).
We must carefully note, however, that there are several choices for the local 5-atom unit cell i.
These choices are discussed in [392]. We chose to work with two ABO3 cells, the B-centered
unit cell (where the A-site is at the origin) and the A-centered unit cell (where the B-site is at the
origin). This allows for the calculation of local polarisation vectors centered at the both the metal
cation sites. For the B-centered cells, we have the atomic weight factors wB = 1, wA = 1/8 and
wO = 1/2. For the A-centered cells we have wB = 1/8, wA = 1 and wO = 1/2.

The Born effective charge tensors were calculated for cubic bulk PTO and STO using finite
differences in the macroscopic polarisation. We do so by displacing each of the symmetry
inequivalent sites within a 5 × 5 × 5 supercell of PTO and STO a small amount (0.005 Å)
and calculating the resulting polarisation with Resta’s method [147]. For consistency, we use
the rMS = rLD = 6.35Å MSSF contraction in the calculation. For PTO, the 3x3 symmetrical
diagonal tensor has elements Z∗Pb, PTO = 3.89 and Z∗Ti, PTO = 7.08 while O is

Z∗O, PTO =

−5.79 0 0

0 −2.58 0

0 0 −2.58

 .
For STO, the 3x3 symmetrical diagonal tensor has elements Z∗Sr, STO = 2.55 and Z∗Ti, STO =

7.17 while Oxygen is

Z∗O, STO =

−4.95 0 0

0 −1.92 0

0 0 −1.92

 .
All of these tensors agree well with the plane wave result for this functional [162]. We note

also the elements of the Oxygen tensors reorder based on which site in the local unit cell we are
considering. We use these tensors for calculations of the local polarisation for the MSSF and
linear scaling calculations. For the latter, we accept that these tensors will vary a small amount
as we change basis set from DZDP to SZP and impose a truncation range for the DM. Since (i)
we only expect this change to be small and (ii) this method is only used to provide an estimate,
this is of little concern.

While this method is now used often in the field [175, 392], a drawback of this method is
that a local unit cell cannot always be found. That is, at the film surface, there will always be an
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incomplete unit cell. For this reason, our calculations always finish with a vector centered on
Ti and not Pb, despite treating the PbO termination. At the PTO/STO interface, there is also a
hybrid unit cell with half its A-sites being Pb and half being Sr. For this area, we define no local
polarisation vectors.

6.2.5 Supercell configurations: PTO on STO

The film geometries treated for simulations of PTO on an STO substrate are displayed in Figure
6.3. Universal to all structures is a fixed amount of STO substrate. We must then perform a
careful convergence study to identify the appropriate amount of included SrO/TiO2 monolayers.
We perform our tests on the paraelectric phase of the Nz = 2 film by including successively more
SrO and TiO2 monolayers in the substrate and relaxing each film to a force tolerance of 0.01
eV/Å. We then measure the vertical displacements ∆z on the film metal cations from their initial
positions and check for convergence as function of the number of substrate monolayers. The
results are shown in Figure 6.4. It can be seen that Pb cations relax towards the substrate whilst
Ti Cations relax away from it. This behaviour is only qualitatively achieved beyond NML ≈ 4

with the exact positions stabilising beyond NML ≈ 11. This suggests that NML ≥ 11 should
provide a sufficient amount of substrate for our simulations. We do, however, decide to include
an additional 4 monolayers (NML = 15) to allow further ‘breathing room’ for ferroelectric
distortions that could penetrate into the substrate when simulating polar phases. While this does
come at the computational cost of an extra 10NxNy atoms, this is a necessary precaution.

An interfacial region aI = 1/2(aSTO + cPTO) exists between the first PbO layer and last
SrO layer which we treat independently of the film and substrate. The in-plane components of
the supercells are held to integer multiples of aSTO. The two bottom-most monolayers of the
substrate have their atomic positions fixed in structural relaxations. These measures ensure we
are applying a realistic mechanical strain to the PTO film as well as simulating the effects of
a semi-infinite substrate. To limit unfavorable interactions between images of the film in the
[001] direction, we introduce a total of 20Å of vacuum. These supercells have the generalised
dimensions {NxaSTO, NyaSTO, 7aSTO + aI + NzcPTO + 20Å}. We simulate films of thickness
Nz = 0, 1, 2, 3, 5, 7 and 9 formula units of PTO where a thickness of 0 corresponds to a single
PbO monolayer. Films of Nz ≥ 3 unit cells were increased in steps of two unit cells such that
the equilibrium domain period predicted by Kittel scaling could increase by an even integer
number of unit cells (a requirement for domains to have an equal number of unit cells). This
range of film thicknesses could encompass different energetically stable geometries including a
transition between FE monodomain, polydomain and possible intermediate phases. It also spans
low dimensional films with strong interface coupling with such effects decreasing with increased
thickness.

We choose to treat the following supercell configurations with and without the influence
of AFD modes (note also that structures treated without these modes do not show the c(2× 2)
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Figure 6.3: The initial supercell configurations for the Nz = 3 films before structural relaxation.
Shown here are the supercells not including AFD modes. Each configuration is however also
treated with AFD modes following the explanation in Section 6.2.5. a) The paraelectric supercell
constrained such that spontaneous polarisation cannot emerge. b) The monodomain in-plane
ferroelectric case (P || [100] is shown here, but we also treat P || [110]) constrained such
that spontaneous polarisation cannot develop in the out-of-plane direction. c) The polydomain
ferroelectric case with equally sized up and down domains for the ferroelectric polarisation.
Shown here is the Λ = 6 case.
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text) as a function of the number of included substrate monolayers, NML.

surface reconstruction). To do so, we must set Ny = 2 and have Nx set to multiples of 2. The
important AFD distortions for both STO and PTO are the zone-boundary R+

4 and M+
3 modes.

The former is equivalent to a a0a0c− Glazer tilt system [45, 46] while the latter is a0a0c+. The
former has been found previously to be the most energetically favorable so we do not treat the
M+

3 mode [393]. The R+
4 mode can be defined with a single rotation angle θz as shown in

the inset of Figure 6.5. We find that the angles θz = 6.21◦ and θz = 4.52◦ (Figure 6.5) define
minima in the energy of the cubic supercells of STO and PTO respectively. Since simulations are
performed with the in-plane lattice constants of STO, we initialise supercells with the optimal
strained PTO rotation angle θz,σ = 5.20◦ as found in the tetragonal supercell. These results
indicate that strains of < 1% in PTO are able to both increase the optimal θz and increase the
depth of the energy minima. These angles overestimate what is seen in experiment. For I4/mcm

STO, θz ≈ 2.1◦ [394] while AFD modes are not observed in the PTO bulk. Calculations using
hybrid functionals have been able improve this angle for STO (θz = 1.9◦ [395]) but are not
used in this study in part because of the computational cost but also due to the aforementioned
overestimate in the bulk polarisation of PTO.

6.2.5.1 Paraelectric

First we consider films of the high symmetry, paraelectric, non-polar variety (Figure 6.3a).
These supercells are initialised by PTO formula units with the high symmetry cubic fractional
atomic positions and optimal cubic out-of-plane lattice constant cPTO = 3.904Å. Although
spatial inversion symmetry is intrinsically broken by the composition of our supercells, we
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Figure 6.5: Energy versus the R+
4 mode rotation angle θz for PTO at its bulk cubic lattice

constants, strained PTO with a = b = aSTO (σ = −0.78%) and STO at its bulk cubic lattice
constants. Calculations here are in full periodic boundary conditions in the infinite bulk crystal.
The coefficients of quartic polynomials are evaluated with a least squares fitting procedure and
plotted as lines. Inset An illustration demonstrating the R+

4 rotation angle θz shown here for
STO. The same angle persists in PTO.
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constrain atomic relaxations of these films to the lowest symmetry space group (P4mm) carefully
preventing any cation-anion counter motion. This allows for the most degrees of freedom in
relaxations without incurring any intrinsic ferroelectric polarisation. It is the purpose of these
films to provide a baseline for the relative stability of polar phases.

6.2.5.2 Monodomain in-plane ferroelectric

In this supercell, we allow monodomain ferroelectric polarisation to develop in the [100] and
[110] directions (Figure 6.3b). PTO formula units retain the same cPTO as the paraelectric case but
atomic positions now correspond to the Γ−4 mode of the primitive cubic PTO unit cell orientated
in the [100] direction. This induces a ferroelectric polarisation of 56.9 µC/cm2 in the infinite
bulk as calculated with the method described in Section 6.2.1. To create [110] polarisation, we
simply displace the metal cations along the [110] direction and displace Oxygen anions along the
[1̄1̄0] direction proportional to the magnitude of the bulk Γ−4 mode. During structural relaxation,
we apply symmetry constraints to prevent the development of out-of-plane polarisation [380],
although, we expect that the non-trivial depolarising field that would result naturally suppresses
it.

6.2.5.3 Polydomain ferroelectric

Here we consider films initialised with a striped domain structure consisting of alternating regions
of PTO polarised in the [001] and [001̄] directions which we will from this point onwards refer
to as up and down domains respectively (Figure 6.3c). Up and down domains are equal in size
(Nup = Ndown) and together form a full domain period Λ. Equivalently, Nup +Ndown = Nx ≡ Λ.
Domain walls are chosen to be centered on the PbO plane. This choice, however, is arbitrary as
the energy difference between this and the TiO2 centering is found to be ∼ 1 meV per unit cell
[172]. This is (slightly) beyond the resolution of our calculations, a fact noted in a comparable
study [175].

It is found that there is a minimum thickness of film for this type of ferroelectricity to occur.
Theoretical results of the free standing PTO film have shown that the polydomain ferroelectric
film is lower in energy than the paraelectric configuration [172] but make no account of possible
monodomain in-plane orientations for the polarisation. In experiments conducted with an STO
substrate [33] it was found that that the polydomain configuration was only observed above 3 unit
cells in thickness (in the temperature range of 311-644K). We also confirm that no out-of-plane
component of P remains after structural relaxation of polydomain Nz = 1 and 2 films (Λ = 4).
We then only present results for this configuration for those films with thicknesses Nz ≥ 3. PTO
unit cells are initialised with the strained FE P4mm unit cell. When the in-plane constants are
constrained to aSTO, this results in c = 4.049Å and a slightly enhanced polarisation of 80.07
µC/cm2.
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An accurate account for the polydomain structure requires us to work at the equilibrium
domain period. To avoid the need to manually find this domain period for each thickness (which
would require us to simulate several domain periods for each film thickness), we use knowledge
from previous experimental and theoretical data. In particular, we find that both theory and
experiment agree upon Λ = 6 when Nz = 3 [33, 172]. We use X-ray diffraction data [32] for the
remaining film thicknesses. We choose the nearest even number of unit cells (to preserve the
periodicity of the AFD rotation pattern) corresponding to the experimental domain periods. We
then have for the Nz = 3, 5, 7, 9 films, domain periods of Λ = 6, 8, 10, 12 unit cells respectively.
Films of this configuration are free from constraints during structural relaxation.

In a study of monodomain out-of-plane polarisation, it was found that P ‖ [001̄] (towards the
STO substrate) becomes more polar than P ‖ [001] [90] (towards the vacuum). For polydomain
films, this could mean that up domains are less polar than down domains. This would result in a
small net dipole moment in the [001̄] direction (and a spurious electric field) developing during
structural relaxation which is corrected for using the scheme described in Section 6.2.1.

6.2.6 Supercell configurations: trenches on free standing PTO

Simulations assessing the impact of surface trenches are performed using the free standing film
geometry of the Nz = 7 PTO film. Although no explicit STO substrate is present, we still choose
to impose an in-plane strain equivalent to the experimental mismatch of the PTO and STO lattice
constants (1.2%). This strains the system at a level coincident with the experimental observations
of domain wall alignment [34]. At the PTO unit cell level, this sets the in-plane constants (a and
b) of the P4mm phase as a′STO = 3.848 Å. Should we hold these constant and relax the c-axis
axis and the atomic coordinates in the bulk, we obtain a PTO cell with a tetragonality of 1.077.
A linear estimate of the polarisation (following the discussion in Section 6.2.4) is then 102.81
µC/cm2, increased from 87.75 µC/cm2 in the unstrained case. This strained unit cell is used to
initialise the domain structure.

For these supercells (unlike the supercells described in Section 6.2.5) we choose to work at
exactly the theoretical equilibrium domain period. We make this choice because in comparison
with the films on substrates, there are fewer atoms in the supercell of a free standing film and
only one thickness of film to treat; the task is much less labour intensive. To find this, we build
four PbO terminated films with Λ = 8, 10, 12 and 14 where the domain wall (as before) is
centered on the PbO plane and a vacuum space of 20 Å is included. We relax each structure and
compare the energy to the paraelectric film. The results are shown in Figure 6.6. We see that the
equilibrium Λ is 12 unit cells, slightly larger than the period of 10 which we extrapolated for the
films mounted on substrates in the previous section. This result gives us increased confidence in
our theoretical method as, in line with experiment, we predict the polydomain phase to be more
stable than the paraelectric phase. Indeed, we also find it to be lower in energy than monodomain
polarisation oriented along the [100] direction. The relaxed structure of the Λ = 12 film is used
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Figure 6.6: The energy difference between free standing Nz = 7 polydomain films and the
paraelectric film as a function of domain period Λ. The equilibrium period is found at Λ = 12.

to prime the supercells in Sections 6.2.6.1 and 6.2.6.2. Like another work studying free standing
films [172] we see the emergence of the flux-closure domain morphology. We show the local
polarisation field of this relaxed structure in Figure 6.7. We draw the readers attention to the
equal magnitudes of polarisation along the up and down domain centroids. This occurs since
inversion symmetry is intact for this supercell; a symmetry which is compositionally broken
when films are mounted on substrates in Section 6.3.

6.2.6.1 Trenches parallel to domain walls

We treat two types of film where the surface trench runs parallel to the domain wall. The first
is shown in Figure 6.8a. Here, the trench is positioned above the domain wall and an identical
trench is positioned on the other surface below the domain wall. We refer to this film as ‖wall.
The second is shown in Figure 6.8b. This is the same as described for the first case but the
trench has been shifted to run along a domain centroid. We refer to this film as ‖centroid. While
Figure 6.8b shows the trench over the down domain, we remind the reader that our films feature
trenches on both surfaces of the free standing film and that up and down domains are equivalent
by symmetry in this arrangement. For both of these geometries, we treat trenches of depth
d = 1, 2 and 3 unit cells. The d = 1 case is shown in Figure 6.8d. To increase d by one, we
remove another PbO and TiO2 layer from the floor of the trench. This set of d defines all of
the possible depths in increments of one unit cell before the two symmetrical trenches would
tunnel through the film entirely. Note how our choices of trench depth always leave the film
uniformly terminated at the PbO layer. The trench width is set to two unit cells for all cases. This
choice of width allows trenches to be satisfactorily separated in the [100] direction when the
supercell is only Λ unit cells across. We choose an even number for the width so trenches can be
exactly centered on the central PbO chain of the domain wall or centroid. The general form for
the geometry of these supercells is then {12a′STO, a′STO, L+ 20 Å} where L is the z-dimension
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[010]
[100]

[001]

Figure 6.7: The local polarisation vector field of the relaxed Nz = 7 film at the equilibrium
domain period Λ = 12 (as demonstrated in Figure 6.6).

of the relaxed and pristine Nz = 7 polydomain film. For each of the films listed so far, we also
perform calculations with doubled [010] dimensions and break the symmetry at the surface as
to invoke the c(2× 2) surface reconstruction. We do this for a fair comparison in energy to the
perpendicular arrangement (where the surface reconstruction naturally arises) described in the
next section. The generalised dimensions of these films then become {12a′STO, 2a′STO, L+ 20 Å}
which we denote as ‖wall + AFD and ‖centroid + AFD.

We perform two further calculations greatly increasing the separation between trenches from
Λ to 4Λ and treat both parallel arrangements (‖wall

4Λ and ‖centroid
4Λ ). The general dimensions for this

supercell then become {48a′STO, a′STO, L + 20 Å}. The goal here is to examine the effects of
individual trenches rather than a short period array of them. With the trenches separated at this
distance we will be able to see if strain and strain gradients at the surface of the film (resulting
from the presence of a trench) persist at longer ranges. The [010] dimensions of these films do
not permit AFD modes.

6.2.6.2 Trenches perpendicular to domain walls

We consider now a supercell where trenches run perpendicular to the domain wall, as shown in
Figure 6.8c. As before, we treat trench depths of d = 1, 2 and 3 and hold constant the width at
2 unit cells. To achieve a trench separation consistent with the majority of the parallel trench
arrangements, we must increase the supercell size in the [010] direction to give the generalised
dimensions {12a′STO, 12a′STO, L+ 20 Å}. These calculations are particularly demanding and can
exceed 5,000 atoms in size. The even [010] periodicity and the broken symmetry resulting from
the insertion of a trench naturally invokes the c(2 × 2) surface reconstruction for these films.
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Up domain        Down domain        Domain wall        Domain centroid         Surface trench

[010]
[100]

[001]

[001]
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[010]

a) b) c)

d)

Figure 6.8: a-c) Bird’s eye views for surface trenches on an ultrathin PTO film. Each trench
arrangement is shown with its label which was assigned in the text. +AFD is bracketed in (a) and
(b) as these trench configurations are treated with and without AFD modes. (a) Parallel to the
domain wall, positioned over the domain wall: ‖wall. (b) Parallel to the domain wall, positioned
over a domain centroid: ‖wall. (c) Perpendicular to the domain wall: ⊥ + AFD. The reason this
arrangement always includes AFD modes is discussed in the main text. d) Looking down the
axis of a surface trench on the Nz = 7, Λ = 12 film. This example is the configuration shown in
(a) looking down the [010] direction. Atom colouring follows the same key as Figure 6.3.
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This must be considered when comparing the energetics to the parallel trench arrangements. We
denote films of this type as ⊥ + AFD.

6.3 Results: PTO on STO

6.3.1 Competing phases

The relaxed film geometries considered in Section 6.2.5 have energetics which evolve as a
function of film thickness. Figure 6.9 displays this behaviour indicating the favorability of
different phases. We measure this favorability as the energy difference ∆E between the geometry
of film in question and the paraelectric film. We choose to measure ∆E in meV/atom since the
(more common) definition of meV/formula unit would vary with film thickness. This is because
as the film thickness increases, the Pb/Sr fraction (upper axis of Figure 6.9) increases as an
artefact of a fixed amount of STO substrate. As a result, we expect to see a component energy
lowering from ferroelectric phases as we increase Nz since the energy of PTO is lowered with
the onset of ferroelectricity (by 9.58 meV/atom in the bulk). We then expect to observe a rise in
energy for purely AFD phases since the fraction of STO, favoring AFD modes, has decreased.
The energetics of film thickness Nz = 0 are not present on Figure 6.9 since no ferroelectric phase
was stable. Adding AFD rotations does however lower the energy compared to the paraelectric
film by an amount similar to Nz = 1.

Considering first the monodomain in-plane ferroelectric films, Figure 6.9 shows that the
favored axis for the polarisation is always [110] as was shown in a DFT study of the free standing
film under compressive strain [396]. This is true with and without the influence of AFD modes.
This favorable direction seems to diminish with film thickness becoming almost degenerate with
[100] polarisation at Nz = 7 for the films not influenced by AFD modes. When AFD modes
are taken into account, the degree of favorability for [110] polarisation (compared with [100])
almost doubles showing that [110] polarisation is far more compatible with a0a0c− rotations.
We suggest that [110] polarisation is more favorable than [100] since P ‖ [100] is stunted by the
epitaxial strain. An increased distortion along the longer diagonal axis of the supercell (of length√

2aSTO) when compared with a distortion parallel to one of the pseudocubic axes (of length
aSTO) relieves this stunting. We can also deduce whether coupling between AFD and FE modes
is cooperative or competitive. The sum of ∆E for the FE [100] curve and the AFD curve (FE
[100] + AFD (sum) on Figure 6.9) is always lower than the combined FE [100] + AFD curve
(FE [100] + AFD (c) on Figure 6.9) where modes coexist. This indicates that the coupling is
competitive with AFD modes suppressing FE ones and vice versa as is usually true for bulk
modes. When making the same comparison for [110] polarisation (which is not observed in the
bulk), however, the two curves are very similar. This suggests that FE and AFD modes are at
worst independent of one another, but, for Nz = 2 or 3 are mildly cooperative, with the FE [110]
+ AFD (c) curve being lower in energy than the sum by ≈ 0.2 meV/atom (close to the resolution
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Figure 6.9: The energy difference of a given film ∆E compared with the non-polar paraelectric
films versus the film thickness in PTO unit cells, Nz. Since we use a fixed amount of STO
substrate, the formula unit of the film alters with Nz. This is accounted for by the upper x-
axis indicating the Pb/Sr fraction. The area in grey indicates the domain of Nz for which the
polydomain configuration was found to be unstable. In the key, entries followed by (c) indicate
films where the mentioned modes coexist. Those followed by (sum) are simply the sum of the
individual (isolated) contributions from the mentioned modes.
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of the simulation).
Remarkably, the polydomain configuration is not universally the ground state. Monodomain

[110] polarisation is the lowest in energy until a film thickness of 4-5 unit cells. This is close
to the experimental observation of a polydomain structure at a thickness of 3 unit cells [33]
with the difference perhaps being an artefact of finite temperature in experiment. We note also
that these results agree with the theoretical findings of Shimada [172] in that at a thickness of 3
unit cells, the polydomain configuration is lower in energy the paraelectric film. In our work
within this chapter, however, while the energy is lowered by this geometry, monodomain in-plane
[110] polarisation is favored at this depth. It is also important to note that this work treats the
PbO termination whilst the work of Shimada treats the TiO2 termination. As we discuss later
(in Section 6.3.2), the Nz = 3 polydomain film does not condense the flux-closure domain
morphology but instead shows a polar wave (Figure 6.11b). This clearly will have an impact on
the energetics. Comparing the polydomain FE + AFD (c) curve with the polydomain FE + AFD
(sum) curve, we find that the latter is always lower in energy (a gap which widens with increasing
film thickness). This suggests that that polydomain FE competes with AFD modes. This effect
is not as drastic as the competition between FE modes and monodomain [100] polarisation
however.

6.3.2 Polarisation morphologies

In this section we analyse and compare the polar morphologies of the PTO films on STO
substrates using the local polarisation P(i) we presented in Section 6.2.4. Vector fields of this
quantity have been calculated for all polar structures and are presented in Figures 6.10 and 6.11.

In Figure 6.10a we show the Ti-centered local polarisation along the up and down domain
centroids. The domain centroid here is a string of Ti centered unit cells in the vertical direction
located at the centre of a domain. It is at the down domain centroid that the maximal local
polarisation can be found, buried in the upper third of the PTO film. Indeed, there is a discrepancy
in polarisation between the up and down domains throughout the entire film, leading to a small
net dipole moment in the [001̄] direction. This effect can be explained by the compositionally
broken inversion symmetry present in even the highest symmetry films (the relaxed geometry
described in Section 6.2.5.1). The result is that P ‖ [001̄] is favored by a built-in bias field
directed towards the substrate. While we find that this field is local to the first few PTO surface
monolayers, we suggest that the enhanced local P ‖ [001̄] modes at the surface spread to the rest
of the domain due to a finite correlation length associated with the polar atomic displacements
[397]. This leads to an indentation of the substrate (as seen in Figure 6.13) creating extra
volume for the down domains and enhanced local tetragonality which mutually couples with
the polarisation. The opposite argument is also true for the local P ‖ [001] modes within the
up domain whereby the internal bias field is now depolarising. We predict that such a disparity
between the up and down domains will diminish with increasing film thickness, tending to zero
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Figure 6.10: The local polarisation profiles as a function of film vertical position z for different
film geometries with and without the interplay of AFD modes. a) The local polarisation
(|P |xz =
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z , which is ≈ Pz at the domain centroid apart from the Nz = 3 film which
has a polar wave morphology) at the domain centroids for both the up and down domains of
polydomain films. We display only Nz = 3 and Nz = 9 for clarity. b) The local polarisation of
films initially in the P || [110] configuration. Both Px and Py components are shown for Nz = 1
and Nz = 2 (where there is a finite size effect). Otherwise, Px ≈ Py. c) The local polarisation
(Px) for films with P || [100].



191 Chapter 6: Ultrathin PbTiO3 Films: Substrate Effects and Surface Defects

as the film thickness becomes much larger than the correlation length of the enhanced local
polar modes. The scenario explained above is analogous to the observation of built-in bias fields
present three component or tricolor superlattices [382, 383] where our third component is the
vacuum region.

We find that the maximal polarisation increases with film thickness for the polydomain
films. Although we only display Nz = 3 and Nz = 9 in Figure 6.10a, the rise is gradual
when considering the maximal polarisation of the Nz = 5 and Nz = 7 films also. This reflects
the results of synchrotron X-ray diffraction [33] whereby satellite peak intensity (indicative of
domain polarisation) is an increasing function of film thickness. Such a phenomenon is likely a
result of decreasing depolarising field strength with increasing film thickness as is observed for
thicker P ‖ [001] films [398]. It is notable that byNz = 9, this maximal polarisation (for the case
without AFD modes) exceeds the strained PTO bulk figure by 26%. The same enhancement is
not seen for the Nz = 3 film which suffers a 12% reduction. It can be seen for all film geometries
that the influence of AFD modes tends to reduce the polarisation in the film. Figure 6.10a shows
that allowing for AFD modes produces a local polarisation reduction of ≈ 15 µC/cm2 for all
films. This reduction, however, becomes more severe as we reach the surface where we suggest
that the enhanced local rotational modes at the surface reconstruction compete strongly with the
polarisation.

The majority of the relaxed polydomain structures, as seen in similar works, form the flux
closure morphology (Figure 6.11a). That is, the local polarisation gradually rotates through
180◦ across the domain wall at the top of the film and rotates through -180◦ at the bottom as a
mechanism for screening the depolarising field. The result is counter-tilting vortex-like domain
walls (Figure 6.11a, red areas), with a small vertical area for ≈ 0 polarisation at the vortex
center. This domain morphology forms fully for the Nz = 5, 7, 9 films with and without the
influence of AFD modes. We note that whilst these domain structures share similarities with
other works, they do have some key differences. The vortex cores are not located centrally (in
the z-direction) in the film. They are instead shifted towards the substrate. We also see that at the
surface, flux is closed more abruptly than at the interface with the substrate. At the interface, the
polarisation penetrates (≈ 2 unit cells) into the substrate helping to close the flux. Together with
the previously mentioned tendency for a stronger polarisation in the [001̄] direction, this makes
for a more asymmetrical morphology than those observed in the superlattice or free standing
film arrangement [172, 175]. In contrast to the work of Shimada [172], the Nz = 3 film does not
appear to form complete a flux closure domain structure. Examining Figure 6.11b we see that
the flux does not fully close at the interface with STO. Instead, the polar morphology is S-like or
wave-like, in this case orientated in the [1̄00] direction giving the film a net in-plane macroscopic
polarisation. We deduce that at the surface, the flux does close by analysing the displacements
of the terminating PbO layer (whose polarisation vectors are not calculable with our method as
explained in Section 6.2.4). This gives rise to small cylindrical vortices near the surface which
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b)
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Figure 6.11: The local polarisation vector fields in the x-z plane for two film thicknesses not
including AFD modes. a) The flux-closure domains of the Nz = 9, Λ = 12 film. The red area
highlights a vortex/antivortex pair b) The polar wave morphology in the Nz = 3, Λ = 6 film.
The red area indicates a cylindrical chiral bubble.
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are sometimes known as cylindrical chiral bubbles [177, 369] (Figure 6.11b, red area).
Such an instability has been predicted as an intermediate phase in phase field simulations

under applied electric fields in the superlattice arrangement [174] as well as at zero field in
high-angle annular dark field (HAADF) images [177]. This polar topology is also observed in
thin PZT films as predicted with Monte-Carlo simulations of a first principles-based Hamiltonian
[369]. Although such a polar topology has not yet been observed in thin PTO films, we note
that previous XRD studies do not explicitly rule out the coupling to the characteristic in-plane
wavevectors for the Nz = 3 film [32, 33, 399]. In our work, the polar-wave morphology appears
as an intermediate phase between full flux-closure domains and in-plane polarisation like in
reference [174] but in the absence of an applied field. This is replaced by the built-in bias field
which emerges from the compositionally broken inversion symmetry. Since this bias field is
directed to suppress up domains but enhance down domains, up domains now have an decreased
critical thickness for the absolute suppression of out-of-plane polarisation compared to down
domains. We suggest that at Nz = 3, we are below this critical thickness for up domains (where
in-plane FE modes are now favored) but still above it in down domains. The resulting polar wave
texture is then emergent from the closing of flux between P ‖ [001̄] and P ‖ [1̄00] (although
P ‖ [100] is equally favored) domains as shown in Figure 6.11b. This finding suggests that
control over polar morphologies can be achieved in ultrathin films by careful engineering of
the boundary conditions. Specifically, we suggest that the built-in bias field can be manipulated
through the choice of substrate, film surface termination or use of overlayers. This principle of
design offers a promising avenue for the manipulation of chiral order in low-dimensional devices
operating through the control of toroidal moments.

Figure 6.10b and 6.10c show the polarisation profiles for the films initialised with uniform
polarisation oriented in the [110] and [100] directions respectively. For the former, we find that
for most cases, Px ≈ Py (hence P remains aligned along [110]) apart from the thinnest Nz = 1

and 2 films. In particular, when the Nz = 1 film is coupled with AFD modes, the polarisation
rotates strongly to be mostly polarised in [001]. For both [110] and [100] polarised films, we
see that these films become polar as we cross the STO/PTO interface, quickly adopting a bulk
like value. Then, for films without AFD modes, we see a polar enhancement near the surface.
For those with AFD modes, we see a polar reduction followed by enhancement near the surface
contrasting with the strong reduction for the polydomain films. Computing the norm

√
P 2
x + P 2

y

of the polarisation for the [110] and [100] films in the bulk-like region shows us that the [110]
films have a slightly enhanced polarisation (+2µC/cm2) compared to just [100] polarisation.
What is notable for the monodomain films is that (past a thickness of two unit cells at least) there
is no trend for the behaviour of the local polarisation for increasing film thickness. Each film
shows the same bulk-like polarisation then the same surface reduction or enhancement.
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[Å

]

SrTiO3

substrate

Interfacial
region

PbTiO3

film

Reconstructed
region

Monodomain and
paraelectric

P || [110]

P || [100]

Paraelectric

°10°5 0 5 10

Polydomain

Up domain

Down domain

Domain wall

µz(z) [±]

a)

b)

Figure 6.12: a) The a0a0c− TiO6 octahedral rotation angle θz(z) for the different geometries
of the Nz = 9 film. b) θz(x) and the x and z components of the local polarisation P (x) across
a domain period Λ of 12 unit cells for the Nz = 9 film. Since both the local polarisation and
rotations are centered on Ti sites, as a visual guide, an aerial view of the film looking down [001̄]
is below b) aligned with the points on b).

6.3.3 The p(2× Λ) surface reconstruction

An analysis of the competition between local FE and AFD modes can provide valuable insight
into the design of new low dimensional devices whereby FE and AFD modes can be tuned
to enhance their functional properties. In this section, we analyse the interaction of FE and
AFD modes with a focus on strong coupling within the reconstructed surface layers of the PbO
terminated films.

Figure 6.12 shows the local evolution of the R+
4 octahedral rotation angle θz along the [001]

direction (Figure 6.12a) and across a domain period Λ in the [100] direction (Figure 6.12b)
for the Nz = 9 (Λ = 12) film. The rotational behaviour in Figure 6.12a (left) is similar to the
behaviour reported by Bungaro [380] whereby the reconstructed area couples cooperatively with
in-plane [100] polarisation. We show that this also true for P || [110] (polarisation is locally
enhanced at the surface as shown by Figures 6.10b and 6.10c) with the rotation pattern θz(z)

being almost indistinguishable from the [100] polar film. We note that whilst this mutual AFD/FE
enhancement is active at the surface, for the rest of the film, AFD/FE modes are mutually reduced
when compared to the paraelectric structure and the bulk. The θz(z) trend for the polydomain
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Figure 6.13: Surface and interface rumpling of the Pb cations for the Nz = 7 (Λ = 10) film
without AFD modes. a) The vertical deviation of the surface (upper) and interface (lower) Pb
atoms from the Pb atom located at the first domain wall (along the x-axis). b) An exaggerated
schematic of the surface and interface rumpling including the boundary with the substrate.

films (Figure 6.12a, right) is more complex. Rotations are almost completely quenched (reduced
to ≈ 2◦) at the up and down domain centroids compared to the domain wall (apart from the
reconstructed region). We suggest that this occurs since the maximal polarisation at the centroids
outcompetes AFD modes. We see similar behaviour for all Nz for the effects listed above, even
for the strength of the reconstruction angle. This is remarkably resistant to finite size effects: even
at a single PbO monolayer (Nz = 0), θz persists at around 12◦ despite the change in chemical
environment for the surface TiO6 octahedra.

Figure 6.12b shows a coupling between local polarisation at the surface (upper) and the
surface reconstruction angle (lower). Across a domain period Λ, we see that θz(x) modulates
by 1.75◦. |θz(x)| peaks close to Px = 0 which is remarkable since this is precisely the opposite

behaviour to the monodomain in-plane films where FE and AFD mutually support one another.
Since Px(x) and Pz(x) are π/2 radians out of phase with each other in the surface layer, it
can also be said that the peaks in |θz(x)| coincide with extrema in |Pz(x)|. We see also the
magnitude of Pz(x) has an impact on the height of the peaks in |θz(x)|. That is, since the down
domains are more polar than the up domains, the larger down polarisation in the surface layer
reduces the |θz(x)| peak and vice versa for the for the smaller polarisation in the up domain. We
note that such AFD/FE couplings are different to those found in a recent shell model study of
the free standing film [388]. In [388], the symmetrical [001] boundary conditions for the film
modulate θz(x) over Λ/2 instead. We also note that whilst the strongest octahedral rotations
θz are about the [001] axis, we also see smaller rotations of ≈ 2-3◦ about the [100] axis in the
surface reconstruction. In addition to this, at the surface of the polar wave film for Nz = 3, we
observe rotations about all three pseudocubic axes in the surface reconstruction. The strongest
rotations are still about the [001] axis however.

The broken inversion symmetry leads to further structural effects for the polydomain films.
We can measure the distortion of the films in the vertical direction by considering the Pb
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displacements in the terminating PbO layer with the vacuum and at the STO interface. Figure
6.13 shows an exemplar calculation for the Nz = 7 (Λ = 10) film. The other film thicknesses all
resemble the behaviour of this film. With the exception of a small dip in ∆z at the domain wall
for the surface rumpling (a mechanism to reduce the domain wall formation energy), we see that
interface and surface rumpling behave spatially like two sinusoids π/2 radians out-of-phase with
one-another. This is in contrast to the PTO/STO superlattice configuration [175] where the intact
inversion symmetry preserves symmetrical rumpling (in-phase sinusoids). Due to the periodicity
of octahedral rotations and Pb cation surface rumpling in the [001] direction, it is clear that
for the polydomain films we must reconsider the labelling of the surface reconstruction. For
monodomain and paraelectric films, the Wood’s notation [400] of c(2× 2) remains correct but
an analysis of the symmetry for the polydomain case reveals this must alter to become p(2× Λ).
We suggest that these fine FE/AFD interactions could now be observable in experiment thanks to
recent advances in integrated differential phase contrast (iDPC) imaging [401]. In contrast to
HAADF, iDPC images yield the positions of the metal cations and oxygen anions resolved at a
subunit cell level [401]. This allows for the direct measurement of local FE and AFD modes
offering an exciting new avenue for direct comparison with atomistic results.

6.4 Results: trenches on free standing PTO

6.4.1 The most favourable orientation

Table 6.2 shows the relative energies for each of the relaxed free standing films detailed in
Section 6.2.6. The energies are displayed relative to the ‖centroid + AFD film for each trench depth
d. It is immediately clear that this is the most favoured trench orientation, independent of the
d treated in this chapter. It is also clear that the relative ordering of the films is independent
of d. That is, after ‖centroid + AFD follows ‖wall + AFD, ⊥ + AFD then the two films without
AFD modes. Indeed, for those films treated without AFD modes (‖centroid and ‖wall), the favoured
trench position remains over the centroid. It is also true that the trench is still favoured over the
centroid compared to the wall when trenches are separated at 4Λ in the ‖centroid

4Λ and ‖wall
4Λ films.

These findings are in line with the experimental [32, 34, 55, 189] and theoretical studies [180,
191] that have previously shown that DWs run parallel to surface defects. The clarification that
the trench is most stable positioned over the centroid supports the predictions of [180] where the
domain structure was pinned by step edges at the domain centroid. Explicitly, our study now
also disagrees with [191] which found that a 180◦ DW formed directly under the surface defect.

The finding that the domain centroid is pinned by surface trenches (rather than other parts of
the domain structure) informs design principles for DW nanoelectronic devices where the exact
position of the DW needs to be controlled. That is, engineered surface trenches could be used to
reliably control the position of a DW at a distance ≈ Λ/2 from the trench. That being said, it is
unknown how the insertion of a trench could affect the domain period. In the case of ultrathin
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Table 6.2: The relative stabilities of the relaxed films with trenches as detailed in Section 6.2.6.
The energy is measured relative to the ‖centroid + AFD arrangement apart from films subscripted
with 4Λ which are measured relative to ‖centroid

4Λ . Energies are normalised per formula unit.
This is assigned as the number of atoms in the parallel trench arrangements with the same
trench separation. That is, for d = 1, 2 and 3, the energy is given per 428, 412 and 396 atoms,
respectively, but, for the films subscripted 4Λ, the energy is given per 1760 atoms.

E - E(‖centroid + AFD) [eV/FU]

‖centroid + AFD ‖wall + AFD ⊥ + AFD ‖centroid ‖wall ‖centroid
4Λ ‖wall

4Λ

d = 1 0 +0.219 +1.706 +3.852 +4.106 0 +0.359
d = 2 0 +0.361 +0.881 +4.089 +4.095 - -
d = 3 0 +0.141 +1.951 +4.639 +4.878 - -

films, this could be a troublesome effect because the film would now be much thinner in the area
of the trench; decreasing the average thickness of the film with likely consequences for Kittel
scaling. This could be an interesting focus of a future study. It is also important to consider how
our results would change when substrate effects are present. That is, within Section 6.3.2, we
found that the underlying domain structure becomes asymmetrical, manifesting mostly in down
domains becoming more polar than up domains for films on substrates. Given this, it is likely
that there will be a small difference in energy between a trench inserted over a down domain
compared to over an up domain; it could only be possible to pin one type of domain. However,
without explicit simulations, it is not possible to tell which is favoured. This is a further avenue
to be explored in future works.

While we have now shown that ‖centroid + AFD films are the most favoured orientation, the
question of “why?” is a difficult one to answer. From our simulations, it appears that there are
multiple factors which could contribute to the DW alignment mechanism by competing/coupling
with local polar modes. These include: the presence of AFD modes, new depolarising fields at
the trench edge and trench-induced strains and strain gradients. The influence of AFD modes
are least likely to contribute. That is, the ‖centroid film is still favoured over ‖wall without their
presence. However, it is not possible to tell from our simulations how the ⊥ + AFD film would
be affected in the absence of AFD modes (see the discussion in Section 6.2.6.1) so we cannot
rule them out completely. A discussion of the remaining factors are presented in Sections 6.4.2
and 6.4.3.

6.4.2 Depolarising field minimisation

For those trench orientations parallel to the domain wall, simple insights can be gleaned from the
arrangement of the local polar modes in the vicinity of the surface trench. The general principle
is that the orientation which is the most favoured is the one which is most able to minimise
new depolarising fields near the trench; a principle we find that holds for all d treated in this
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study. This is shown in Figure 6.14 for the d = 1, ‖centroid film. It is clear to the eye that the
local polarisation of the pristine film geometry (Figure 6.14a) is altered only a small amount
for the remaining unit cells when the trench is positioned over the up domain centroid (Figure
6.14b; we also find a similar local polarisation pattern at the down domain centroid). While
there is a reduction in magnitude, the direction and general pattern of the dipole moments are
preserved. The same is not true when the trench is positioned over the wall (Figure 6.14b).
We see that in this case, there is a reorientation of the local polarisation from the pristine film
(Figure 6.14c) for the Ti sites of the uppermost unit cells. Specifically, these moments rotate
in-plane along [010] or [01̄0] and turn towards the film. This is undoubtedly a mechanism to
reduce the discontinuity of polarisation at the trench edge which would otherwise give rise to
large depolarising fields. In the process of doing so, the upper Ti site in the dashed orange box
of Figure 6.14d finds itself stuck between a rock and hard place. That is, although its relaxed
geometry has reduced depolarising fields from polar discontinuity with the vacuum, it has found
itself in an energetically unfavourable near-head-to-head† polar configuration with the Ti site
below it. This will give rise to a penalty in the stability and is likely the reason the trench over
the centroid is comparatively more stable. The origins of the favourability of the ‖centroid film
are independent of the presence of AFD modes. As was seen in Section 6.3 for the films on
substrates, AFD modes tend to reduce to local magnitude of polar modes, but, their general
pattern and direction is unchanged.

A scrupulous individual may ask: “Why do the local polar modes centered on the Ti sites
within the purple dashed box in Figure 6.14b not rotate away from the vacuum in line with
the mechanism described for Figure 6.14d?”. The answer to this has two parts. Firstly, closer
inspection shows that they do slightly rotate in-plane (although are still largely out-of-plane).
Indeed, the polarisation of these two Ti-centered unit cells look very much like the polarisation at
the surface of the pristine film (Figure 6.14a). Secondly, it is clear from both Figures 6.14a and
6.11a that it is at exactly the domain centroid that out-of-plane polarisation is preserved without
rotation in-plane (although, there is magnitude reduction near the surface, shown quantitatively
in Figure 6.10a). This is permitted as the underlying flux-closure domain structure screens a
large portion of the depolarising field.

The instability of the ⊥ + AFD films can also be understood by changes in the local
polarisation vector fields, but the description is more complex and cannot be understood by the
unfavourable orientation of isolated polar modes. Overall, of the films studied, these films have
their ideal domain structure perturbed the most by the insertion of a trench. Figure 6.15 shows
the complex nature of the perturbed domain structure at a single vortex for the d = 2 film. Figure
6.15a shows the whole vortex looking down the [010] direction for the area indicated on 6.15b.

†It has recently been shown from first principles that the depolarising field at 180◦ head-to-head and tail-to-tail
domain walls can be screened with a 2DEG/HG pair [402]. No such gases form here so the energy cost for this
near-head-to-head arrangement remains large.
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|P(i)| = 91.3μC/cm2

Figure 6.14: A close-up demonstration of the differences in the local polarisation before (a, c)
and after (b, d) the introduction of a surface trench for those trench orientations running parallel
to the domain wall. O sites are removed for clarity. a) Near the surface of the pristine film at
the domain centroid. The Pb site contained within a grey box is the site used in the scale bar
(lower right) b) The local polarisation near a d = 1 trench over the domain centroid (‖centroid).
The two Ti sites contained within the purple dashed box are discussed in the text. c) Near the
surface of the pristine film at the domain wall. d) The local polarisation near a d = 1 trench
over the domain wall (‖wall). The two Ti sites contained within the orange dashed box show a
near-head-to-head arrangement of local polar modes which are discussed in the text.
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Figure 6.15: a) The local polarisation vector field of a single vortex in the relaxed d = 2, ⊥
+ AFD film looking down [010]. Oxygen has been removed for clarity. This figure also uses
the same scale bar as Figure 6.14. b) A schematic of the ⊥ + AFD film. The area shaded in
cream/yellow indicates the segment of the film displayed in a). The arrows on the front of this
shaded portion are a cartoon representation of a). c) A close up of the five local polar modes
along [010] at Ti-centered unit cells near the film surface (the area on a) circled in blue). The last
Ti-site on the right is at the edge of the trench. d) A close up of six local polar modes along [010]
at Ti-centered unit cells near the vortex core (the area on a) circled in grey). The last Ti-site on
the right is the Ti-site closest to the surface of the trench.
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It is clear to the eye that at the rotating parts of the vortex, there are considerable modulations to
the local polarisation as we travel in the [010] direction towards the trench site. Two examples
of these modulations are shown close-up in Figures 6.15c and 6.15d. For Figure 6.15c, There
is a strong turning of the polarisation away from the vacuum (and large increase in magnitude)
for the site at the trench edge (the Ti-site furthest right in the figure). In Figure 6.15d, there is a
continuous anticlockwise rotation of the local polar mode as we travel along [010] eventually
becoming completely in-plane as we reach the site at the surface of the trench (the Ti-site furthest
right in the figure). We can then deduce that, generally, sharp changes of the local polar modes
near (or under) the trench destabilise the underlying domain structure at a longer range than the
parallel trench arrangements, ultimately contributing to the instability of this trench arrangement
compared with the others.

6.4.3 Strain fields

The study in reference [55] found large inhomogeneous strains and strain gradients for the out-
of-plane lattice constants in the vicinity of Ar-ion milled trenches on the surface of a PTO/STO
superlattice. This was enabled by the use of a nanofocussed X-ray beam which measured local
three-dimensional maps of reciprocal space at different points around surface defects used to
reconstruct images of the local lattice parameter. We showed these images in Chapter 2, Figures
2.11a and 2.11b. In this section, we compare our ab initio results to this study by calculating the
local strain at the surface of our films with trenches.

First, we calculate a reference lattice constant which we take to be the average c for the
pristine film (without trenches), cavg = 4.051 Å. We choose this approach to be consistent with
the experimental work of [55]. We then isolate each (Ti-centered) surface unit cell and calculate
the two vertical Pb-Pb distances and the vertical apical O-O distance. Their average is the surface
out-of-plane lattice parameter csurf. The out-of-plane surface strain is calculated simply as

εsurf
33 =

csurf − cavg

cavg . (6.2)

This is shown in Figures 6.16 and 6.17 as we move along the [100] direction on the film
surface. To remove the effect of AFD modes from the equation, in Figure 6.16, we choose to
examine εsurf

33 on the bottom surface of the ‖centroid film (where the trench is over an up domain).
Since ‖centroid + AFD is the most stable arrangement found in our work, this general orientation
of trench most likely corresponds to experimental observations. It is clear immediately that in the
vicinity of and at the floor of the trench, we see large negative strains which persist for ≈ 4− 6

unit cells, more than twice the width of the trench itself. Although, as can be seen from Figure
6.17, this range reduces to ≈ 3− 4 unit cells when the trench is over the down domain centroid
on the bottom surface. The majority of this strain originates from changes in the Pb-Pb distances
while O-O distances change only slightly. We can see from Figure 6.16 that the strain field
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appears quite insensitive to d apart from for d = 3. For this case, there are giant strain anomalies
at unit cell indexes 7 and 8. Also, at the trench floor for this film there is a reduction in the
magnitude of the strain; a likely consequence of the limitations of our model as we discuss later
in this section. Since our reference lattice constant for which we calculate the strain is an average
value, we do not separate strain contributions of the underlying domain structure of the pristine
film from those coming as the result of the trench. Following this, we can see from Figure 6.16
that the positive strain over the down domain centroid persists in the pristine film so is not a
trench effect.

We see from Figure 6.17a that the range of the strain field doesn’t alter in the ‖centroid
4Λ films

despite the increase in the lateral separation of trenches. We can also see from Figure 6.17
that there is distinctly different behaviour for the trench-induced strain between the ‖centroid

4Λ and
‖wall

4Λ films. For the former, we can see from Figure 6.17a that at the bottom surface (where the
trench is over the up domain centroid) the trench-induced strain cooperates with the preexisting
negative strain of the pristine film. On the opposite surface, the positive strain is reduced by the
trench. This is in contrast with Figure 6.17b where we see no cooperation of strain but see sharp,
discontinuous deviations from the strain field pattern of the pristine film even for those unit cells
not at the trench floor. Also, the strain field alters from the pristine film at a longer range than the
‖centroid

4Λ arrangement. We suggest that these effects contribute to the favourability of the ‖centroid
4Λ

film but it is difficult to quantify exactly their impact.
Most of the differences between our results and those seen in experiment can be inferred

by the change in length scale. That is, the diameter of the nanofocused X-ray spot used in [55]
was ≈ 60nm; ≈ 13× larger than the supercells discussed here. The trench treated in [55] was
also much wider and much deeper (the width and depth were both ∼ 1µm). This suggests that
the range of the strain field is commensurate with the size of the defect. Directly simulating
such a scenario from an atomistic basis would require ∼ 100 million atoms. While this isn’t
necessarily beyond the scalability of our O(N) algorithm [13] the required computer power
would be truly astronomical if were to meet our 10− 20 atoms/core guideline for the operation
of CONQUEST†.

While it is now clear that large negative strains are seen in the vicinity of surface trenches
both in theory and experiment, we must accept that our model has some shortcomings. That is,
our choice of film thickness, for larger d, permits fictitious interactions between trenches along
the vertical axis of the film (i.e. trenches on the top surface can interact with trenches on the
bottom surface). While we expect this interaction to be small for d = 1, for d = 2 (and certainly

by d = 3) the effect will be larger. We can therefore assume that the reliability of our results
decrease with increasing d. These shortcomings aside, it is still not clear how the strain fields

†At the time of writing this thesis, the worlds largest supercomputer, Fugaku (with 7.3 million cores), comes
close to meeting this guideline. As a ball-park estimate, I speculate that we could relax a ∼ 100 million atom
structure occupying the whole machine for ∼ 1 month.
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Figure 6.16: The out-of-plane strain for (bottom) surface unit cells εsurf
33 along the [100] direction

for the ‖centroid films. Both plots feature the underlying strain from the pristine film (the film
without trenches) for comparison.

couple with the polarisation. As explained in the previous section, most of the changes in the
local polarisation resulting from the introduction of a trench appear as a mechanism to minimise
the depolarising field. Decoupling this contribution from possible contributions from strain (via
the piezoelectric effect) or strain gradients (via the flexoelectric effect) is not possible with our
method. Only the development of a scheme for disentangling these effects from one-another
would provide insight into whether piezoelectric and flexoelectric effects play a role in the
alignment mechanism. While ab initio calculations of the flexoelectric coefficients have recently
become possible†, such methods are still in a developmental stage and not yet applicable to the
supercell sizes treated in this chapter. Certainly at the length scale studied here, the discussion
of the previous section regarding the least disturbance of the local dipole moments provides a
satisfactory description of the alignment mechanism. However, this description does not deal
with how the local dipole moments would change with the width of the trench. When the trench
width becomes much larger than Λ an alternate mechanism may dominate and the giant strain
and strain fields seen in [55] and our study could become more important.

6.5 Summary and Conclusions

We have used large scale DFT calculations to simulate an array of polar morphologies present in
thin PTO films. We studied their interaction with STO substrates, engineered surface trenches and

†The first principles theory of flexoelectricity is a hot topic. It was conceived in the early 2010’s [403–405] and
increasingly better implementations in code are beginning to emerge [406–408]. Thus far, however, these studies
have reported only exemplar calculations in bulk systems.
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Figure 6.17: The out-of-plane strain for surface unit cells εsurf
33 along the [100] direction for: a)

the ‖centroid
4Λ film and b) the ‖wall

4Λ film. Both plots feature the underlying strain from the pristine
film (the film without trenches) for comparison. Up domains are coloured light grey while down
domains are dark grey.
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AFD modes. In doing so, we have provided insight into mechanisms for controlling ferroelectric
domain structures without the use of directed applied fields. Our methodology has been successful
in providing first principles results for systems comprised of a few thousand atoms, well beyond
what is feasible with traditional plane wave based methods, venturing towards systems sizes
usually simulated with Monte Carlo, phase field or second principles techniques. Our simulations
have allowed for the explicit simulation of a large amount of STO substrate, multiple ferroelectric
domains and increased supercell dimensions in the [010] direction used include AFD modes,
the surface reconstruction and to separate engineered surface trenches. For the majority of these
simulations, this has ensured that we are able represent realistic experimental conditions when
compared to previous works which neglect one or more of these features. In doing so we have
showcased two effective algorithms for evaluating the electronic ground state as implemented
in the CONQUEST code. When using the MSSF method in tandem with diagonalisation of
the Hamiltonian, we have been able to perform high accuracy simulations involving ≈ 1,000 -
2,000 atoms using ≈ 200− 500 physical cores; resources routinely available on standard HPC
systems. Using the O(N) algorithm, we have performed useful calculations involving >5,000
atoms (albeit with some loss of accuracy) using ∼ 1,000 physical cores; resources available on
most HPC platforms.

We have demonstrated the stability of the polydomain film geometry compared to
monodomain phases for freestanding PTO films and films on substrates. We find that the
polydomain case becomes more energetically favorable between 4-5 unit cells in thickness,
close to the experimental observation at 3 unit cells. We find that the general effect of including
AFD modes is to lower the energy significantly (in most cases more than the FE distortion) and
to suppress the amplitudes of local polar modes (apart from at the surface of monodomain
in-plane FE films, where they are mutually cooperative).

The polydomain films display the flux-closure domain morphology forNz = 5, 7 and 9 whilst
the Nz = 3 film on an STO substrate shows the polar wave morphology with cylindrical chiral
bubbles as an intermediate phase between full flux closure domains and in-plane ferroelectricity.
Local polarisation is enhanced at the domain centroids when compared to PTO bulk; a trend
which increases as a function of Nz. Most notably, down domains feature enhanced local polar
modes promoted by the internal bias field born of the compositionally broken inversion symmetry
present in any film-substrate system. Equally, this bias field acts to depolarise up domains leading
to different critical thicknesses for the total suppression of out-of-plane ferroelectricity for the
two domains. Since these critical thicknesses are the outcome of the strength and direction of the
bias field, engineering this with a careful choice of substrate, surface termination or overlayers
allows for control over polar textures at the nanoscale. This finding is especially important for
next-generation functional devices reliant upon the control of toroidal order.

This bias field also has consequences for the periodicity of the AFD surface reconstruction.
While we find that the reconstruction for the monodomain in-plane FE and paraelectric films is
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c(2× 2), we find that coupling between surface polarisation and AFD modes in the polydomain
geometry modifies this. In addition to surface rumpling of Pb cations, the surface reconstruction
angle modulates up to 1.75◦ across a domain period Λ. We then suggest that for the polydomain
films, the correct label for the AFD surface reconstruction is p(2 × Λ) in Wood’s notation.
This provides direct evidence that the strength of AFD modes can be locally controlled by the
strength of FE modes and vice versa. Such knowledge could motivate new principles of design
in low dimensional functional devices whereby FE and AFD modes are locally tuned by their
interactions.

In an investigation of engineered surface trenches on free standing PTO films, we have found
that trenches running parallel to the domain wall and positioned over the domain centroid are
more energetically favoured than those positioned over the wall and those running perpendicular
to the domain wall. This is in agreement with the experimental observation that DWs run parallel
to surface trenches, defects and other surface features in the PTO/STO system [32, 34, 55,
189]. While there are many different contributing factors, we suggest that a large portion of
the alignment mechanism can be described based on a principle of least disturbance of the
underlying domain structure. That is, the most favourable trench orientation is the one where
the dipole moments in the vicinity of the trench are able to relax into a position where the
energy penalty from depolarising fields is reduced the most. This is what occurs for the ‖centroid

films. Also in line with experiment [55], we find large negative strains and strain gradients
in the vicinity of the trench. While [55] suggests that this likely contributes to the alignment
mechanism, like [55], we are unable to disentangle strain and strain gradient coupling to the
polarisation from polarisation rotation effects resulting from the minimisation of the depolarising
field at the edges of the trench. Now with evidence suggesting that it is the domain centroid that
is pinned (in agreement with [180]), it could be possible to control the exact position of DWs,
which should appear ≈ Λ/2 unit cells away from a small surface trench. This provides useful
insights into the design of future DW nanoelectronic devices.

The large scale electronic structure methods implemented within the CONQUEST code now
show promise to be used to solve a plethora of problems within the perovskite oxides. This could
include the simulating other potentially possible polar morphologies in the PTO/STO system such
as skyrmion phases [89, 178, 179] and disclinations [174]. The former has recently been observed
in the PTO/STO superlattice [89, 178] supported by phase-field and second-principles simulations.
A full first principles treatment using our method would provide accurate, valuable insights into
the properties of these topological objects presenting a direction for future research should the
necessary HPC resources be available. Since our method is general, we can extend to other
problems in the perovskite oxides (and beyond) such as realistic defect concentrations and highly
disordered configurations the popular solid solution families ABxC1−xO3, (1−x)ABO3−xCDO3

where DFT methods used to circumvent the need for large supercell calculations fail in the
reproduction of local structural distortions [43]. Indeed, within Chapter 4, we showed that
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distortions increasingly incommensurate with the cubic ABO3 unit are commonplace in PZT
50/50, PZO and PHO. Investigating the condensation of these modes could in a lot of cases
require a large number of participating atoms. These are very fertile grounds to be exploited by
large scale DFT in CONQUEST, able to provide vital insights into complex and incommensurate
phase transitions [305, 337].





7 | Conclusions and Outlook

This thesis has offered new insights into the structure and function of technologically important
ferroelectric and antiferroelectric perovskite oxides. We have studied materials renowned in
industry and academia alike for being extremely versatile with properties that are either already
exploited on a commercial scale (although, there is always room for improvement), or, for having
a strong potential for utilisation in novel functional devices. We have been able to address
the fundamental nature of the industrial piezoelectric, PZT, and assess functional ferroelectric
domain textures in low-dimensional PTO films. Also, the crystal structure of the archetypal
antiferroelectrics, PZO & PHO, has been brought into question, reopening a closed book with
ramifications for other antiferroelectrics. At the same time, we have highlighted the need for
large scale DFT simulations for many of these systems and demonstrated the readiness of the
CONQUEST code to meet this requirement. We have shown that this method can be successfully
applied for accurate simulations involving thousands of atoms; solving intractable problems for
conventional codes.

In Chapter 4 we critically re-examined the Pb(Ti, Zr, Hf)O3 isoelectronic series and the PZT
50/50 solid solution. We began with an assessment of seven cubic constrained arrangements of
PZT 50/50 (including the VCA) compared with end members PZO and PTO. For each case, we
evaluated the phonon dispersions and densities of states throughout the 1BZ using accurate DFPT
and FDM simulations. With a focus on the dynamical instabilities (ν̄(q) ∈ iR), we mapped the
possible energy and symmetry lowering phase transition pathways for the various arrangements.
Using the dispersions, densities of states and the character of modes at high symmetry points,
we were able to glean new insights into the nature of the phase transitions in these industrially
important materials. In general, we found that those PZT configurations lacking continuous
Ti-O-Ti chains (like the rock-salt ordered case) had lattice dynamics comparable to pure PZO
whilst those with at least one of these chains intact (or at least a chain where the Ti:Zr ratio is
high) behaved much more like pure PTO. This sends a word of warning to those wishing to
simulate near-morphotropic PZT: the choice of cation ordering significantly alters the lattice
dynamics (and likely the character of the ground state phase). This warning does come with
a caveat. A simple analysis of the number of permutations for B-site order in PZT 50/50 (in
a crystal of finite size) reveals that there are many more arrangements with at least one chain
having a high Ti:Zr ratio than not. So, it is much more likely that any given sample will have a
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PTO-like ferroelectric ground state, in line with experimental observation [91].
The character and wavelength of several important modes, above all, has informed us of two

things. Firstly, the VCA cannot accurately represent distortions to the local atomic structure; a
fact already suspected but now shown in quantitative manner. It is then highly likely that accurate
lattice dynamics cannot be achieved with this approximation and increasingly large supercell
calculations may be needed. Secondly, many phonon branches in the dispersions of PZT and
PZO, unlike PTO, remain firmly unstable throughout much of the 1BZ, even at q away from
high symmetry points. This is strong evidence for the existence of long range order increasingly
incommensurate with the parent cubic crystal. Since these instabilities have a large number of
participating atoms, large scale DFT simulations are essential to study their energetics.

Given the complexity of the cubic PZO dispersion and the propensity for long range order,
we were motivated to carefully study the (perhaps former!) groundstate antiferroelectric Pbam

phase of PZO and PHO. Remarkably, the phonon dispersions of these phases, in both materials,
are dynamically unstable at the Z-point (qZ = (0, 0, 1/2)). Freezing in the eigendisplacements
of this instability and relaxing the structure doubles the unit cell (to 80 atoms) and slightly lowers
the energy (confirmed at the LDA, GGA and meta-GGA levels in DFT). This new phase is a lower
symmetry Pnma structure, characterised by a NaNbO3-like [324] (or AgNbO3-like [325]) super-

tilting pattern of the ZrO6/HfO6 octahedra and small Pb antipolar displacements perpendicular to
the preexisting Pb antipolar displacements. When evaluating the stability of this this new Pnma

phase with further phonon computations, we found that it was dynamically stable (ν̄(q) ∈ R)
for the chosen set of q-points. Then, from the perspective of DFT at least, it is most likely the
ground state crystal structure of PZO and PHO. The outlook for experimental conformation
of this is, however, difficult. Firstly, the differences between the Pbam and Pnma models are
subtle. This distortion is small and Pnma is only lower in energy by ∼1meV/FU. This suggests
that near cryogenic temperatures may be required in any measurement to distinguish them. The
low sensitivity of X-ray methods to oxygen positions likely precludes their use (although they
may be able to resolve the Λ3 Pb displacements), and, since the two models share the same
Raman active modes, there will be no smoking gun in the Raman spectra. However, neutron
methods (diffraction or inelastic scattering) could be used to great avail and high resolution
TEM-HAADF/iDPC images have a chance to detect the new Pb displacements.

Having demonstrated that long wavelength order is ubiquitous (even in the bulk crystal)
in these systems, we moved towards a suitable simulation method to study it. In Chapter 5,
we demonstrated the readiness of compact & efficient basis sets of PAOs to perform accurate
simulations of the perovskite oxides and other important materials. Since these are a vital
ingredient for large scale DFT in the CONQUEST code, we have then shown it is possible to
scale up DFT while retaining high chemical accuracy. We found this to be true even for the

perovskite oxides which are expected to respond sensitively to small variations in the electronic
structure. We began by performing a comparative study of the structural properties between
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various PAO basis sets, reporting their accuracy with respect to plane wave calculations using
the same pseudopotential. We focused on the PAO generation mechanism used to produce the
default basis sets shipping with CONQUEST. We found that basis sets generated with the equal

radii criterion, in most cases, slightly outperformed those created with the equal energy criterion
for lattice constants and bulk moduli. This difference aside, most PAO basis sets were found to
reproduce plane wave calculations to a high fidelity.

Taking forward the equal radii construction, we performed an in depth analysis of the
electronic structure, phase transition energies and soft mode distortion amplitudes using PTO,
PZO and two arrangements of PZT 50/50 as test cases. Once again, the performance of the PAO
basis sets were bench-marked against plane wave calculations with the same pseudopotential.
For the electronic structure, two metrics were selected. The first was a comparison of the charge
density difference ∆n(r) between the PAO calculations and the plane wave obtained charge
density. We examined this visually with charge density difference plots and quantified this by
defining a total electronic error integral. We found that PAO charge densities obtained even
with a small SZP basis were accurate to ≈ 1.7% while the large TZTP basis was accurate to
≈ 0.5%. It became clear from the visualisations of the charge density differences that volumes of
increased error appeared at sites with reduced symmetry, as evidenced in P4mm tetragonal PTO.
We found that most of the error in the charge density was related to oxygen, either by a surplus
of charge density on oxygen sites or a deficiency in charge density in the bonding describing the
TiO6 octahedra. Secondly, we assigned charges to the atomic sites using the Bader partitioning
method. We found that these assignments were similar in accuracy to the pure charge density
with an obvious cation to anion electronic charge transfer as basis set size increased.

We finished by analysing the nature of the phase transitions from the high temperature cubic
phases of PTO and PZO to the lower temperature ferroelectric and antiferroelectric phases. We
reported impressive accuracy in both the phase transition energy and magnitude of the soft mode
distortions for PZO using a moderately sized basis. We did, however, find that more care needed
to be taken for the phase transition in PTO. Here, the default small basis set (SZP) could not
adequately describe the delicate balancing act between short range restoring forces and long
range Coulombic forces (as described in the soft mode theory of Cochran and Anderson [1, 2,
52]), leading to a large super-tetragonality error in the tetragonal phase. While this error can be
negated through using a larger basis, we suggested that a ‘tuned’ basis be used instead.

Now with a tried and tested large scale DFT method, in Chapter 6, we moved towards
describing the ferroelectric domain structures present in ultrathin PTO films. We focused first on
the unaddressed problem of broken inversion symmetry for films on substrates. This problem
has been addressed for tricolor superlattices where they are known to self-pole with the possible
disappearance of minority domains [383, 392]. However, as we realised, full self-poling in
this manner is prohibited in thin films by giant depolarising fields, so, the minority domains
likely persist (which lines up with the experimental observation of polydomain ultrathin films in
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film/substrate systems [32–34, 399]). Treating PTO deposited on a STO substrate, we used the
MSSF method to investigate this problem, scaling high accuracy DFT beyond 2,000 atoms.

We found that multiple domains persisted down to low dimensions but were more
asymmetrical than those previously reported in the literature. Domains directed towards the
substrate were universally more polar than those directed away from it, driven by a internal bias
field born of the compositionally broken inversion symmetry. When the film was just three unit
cells thick, we found that there was a transition from full flux-closure domains to a polar wave
phase with cylindrical chiral bubbles. We suggested that the formation of this phase was caused
by the bias field creating different critical thicknesses (and different depolarising fields) for the
suppression of out-of-plane ferroelectricity for up and down domains. Then, at some critical
thickness, up domains become unstable whilst down domains remain stable. The resulting polar
wave texture is then the result of the linked polar flux between areas of stable out-of-plane
polarisation and areas where in-plane polarisation is now favoured. It was found that local polar
modes coupled strongly with local AFD modes, especially at the surface. Here, strong
inter-mode coupling drives a p(2× Λ) surface reconstruction for polydomain films.

Also within Chapter 6, we scaled up DFT even further. Using the full O(N) scaling
capabilities of CONQUEST, we investigated the mechanism for which ferroelectric domain
walls align with surface defects in ultrathin films. With simulations exceeding 5,000 atoms in
size, we confirm that ferroelectric domain walls preferentially align to run parallel to engineered
surface trenches, pinned at the domain centroid. We suggest that this trench orientation is
the most favoured as it causes only small modulations to the underlying flux-closure domain
structure. Further, trenches as shallow as one unit cell in depth are found to give rise to strong
strain gradients on the film surface in line with experimental observation [55]. These strain
gradients are expected to play a role in the alignment mechanism for wider and deeper trenches.

Reflecting now on this thesis as a whole, there are certainly lessons to be learned and exciting
new directions for future research. The emergence of an increased stability crystal structure of
PZO and PHO, the supposed antiferroelectric archetypes, brings into question how much we
know about the structure of other antiferroelectrics. A full first principles study of the phonon
dispersions should then be performed on the other known antiferroelectrics. Only then could we
rule out fine distortions at longer wavelength q contributing to their ground state structures. It
is the opinion of the author that such a search for stability has not previously been completed
due to the limitations of DFT. That is, antiferroelectric materials typically have large unit cells
and low symmetry. This spells disaster for phonon calculations whose efficiency relies upon
exploiting the symmetry operations of the crystal. For context, evaluating the stability of the
Pnma PZO phase required in excess of 500,000 core hours of DFPT calculations; access to HPC
is clearly essential. Given the complexity of this new stable phase, it begs the question: are PZO
and PHO really archetypal? It is the opinion of the author that they are not. The emergence of
an antiferroelectric transition in Cu3Bi(SeO3)2O2Cl (Francisite) described by a single antipolar
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mode [132] is far more prototypical and will likely lead to great advances in the understanding
of the antiferroelectric phenomenon.

Now that within Chapter 5 we have shown that most of the default PAOs shipping with
CONQUEST rival plane wave accuracy, one may ask the question: why use plane waves at
all? There are many answers to this question. We firstly must put emphasis on only most of
the default PAOs performing well. Some notable examples performed rather poorly. Since we
cannot be sure exactly when the default PAO constructions will fail, the preparatory step where
one must carefully test the basis set remains. When one must optimise a basis, the performance
becomes excellent, but, the very fact we have performed a fitting procedure (albeit fit to another
ab initio result) makes the whole process feel a little less ab initio. By comparison, plane
wave calculations suffer neither of these shortfalls. Also, at present, the maturity of plane wave
packages is such that they are more feature rich than those operating with local orbitals. While
this situation is improving, there is still much progress to be made.

Some interesting outlooks for controlling ferroelectric domains without external fields are
made in Chapter 6. For films on substrates we suggested that the internal bias field generated
from the broken inversion symmetry could be put to use. While it may already be possible
to tune the strength of this field through the choice of substrate or overlayers, with the aid of
ever-improving advanced deposition techniques, it could soon be possible to take this further.
That is, ferroelectric domains could be contained within complex heterostructures offering tuned
internal bias fields in more than one direction. This is one promising avenue for the development
of future devices reliant on the control of toroidal order. We have also shown that engineered
surface trenches as shallow as one unit cell are enough to preferentially align domain walls to
run parallel to the trench in ultrathin films. This could inform design choices in the fabrication
of domain wall nanoelectronic devices.

We hope that the work in Chapters 5 & 6 work will encourage more materials modellers to
give large scale DFT a try. Within CONQUEST, we have shown that is possible to perform
accurate simulations on a few thousands atoms using the HPC resources available at most
universities and research laboratories. That being said, there are still teething problems for large
scale DFT. One issue encountered within this thesis relates to difficulties in structural relaxation.
That is, in the limit of a large system, the number of degrees of freedom f that must be optimised
is ≈ 3N where N is the number of atoms. This causes problems for conventional optimisation
procedures. Take for example the popular conjugate gradients method [409]. This is expected
to reach a minimum after ∼ f steps; clearly unsatisfactory for systems comprised of a few
thousand atoms. While we find that quenched molecular dynamics performs better for these
larger structures, it is by no means perfect and has several adjustable parameters that one must
tune for optimal performance. This is one area where machine learning techniques could offer
improvements [410].

Since large scale DFT remains a compute intensive task, it must adapt to current hardware
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trends in HPC. It was commonplace ten years ago to have supercomputers with only ≈ 10

physical cores per node. Examining some new systems (like Fugaku, Summit, ARCHER2 and
Isambard) it is clear that this number has increased up to twelve-fold. In most cases, this will
force further adoption of hybrid MPI/OpenMP communications. There is also a demand for
these architectures to consume less power. Above all this has provided companies like ARM a
slice of the HPC market. Indeed, the largest supercomputer in the world at the time of writing
this thesis, Fugaku, is an ARM machine. This trend also means that GPU computation has
become increasingly important. This creates a task for DFT code developers in working out
which portions of code are suitable for porting to GPU. These issues aside, one thing is clear.
Those who venture into the field of large scale DFT will surely reap the rewards through solving
previously intractable problems, discovering new functional properties and ultimately informing
advances in nanotechnology.



A | Appendices

Here we provide extra information in support of the main text of this thesis. Section A.1 contains
standard tests for the convergence of plane wave calculations, a full wavenumber tabulation of
the dynamical instabilities of PTO, PZO and PZT 50/50 and a demonstration of the equivalence
of FDM and DFPT calculations. Section A.2 contains tests for convergence of PAO calculations
for bulk and thin film calculations.

A.1 Plane waves and dynamical instabilities,

Figures A.1 and A.2 comprise a standard battery of convergence tests for the plane wave
cutoff energies and BZ integrations relevant to Chapter 4. We remind the reader that the
parameters used in production for NCPP/PAW (which used the PBESol [229]/LDA-PW [153]
functionals) calculations were 1088.46/680.285 eV for the plane wave cutoff and Γ-centered
8/Nx× 8/Ny × 8/Nz and 6/Nx× 6/Ny × 6/Nz for Monkhorst-Pack meshes where Nx,y,z is the
number of repeated 5-atom perovskite units in the given Cartesian direction. For BZ integrations
we considered only those meshes centred on the Γ-point so that important ferroelectric zone-
centre instabilities were not interpolated in the subsequent DFPT phonon calculations.

Figure A.4 shows the DFPT & FDM dispersions of PTO & PZO using the primitive perovskite
cell. DFPT calculations are performed using the implementation in ABINIT (v8.10.2) whilst
FDM calculations are performed using phonopy (v2.1). We do not aim to prove the formal
equivalence of the FDM and DFPT but rather demonstrate that in practicality, comparable results
can be achieved between them. This test is a justification for the use of the FDM for VCA
calculations in Chapter 4 when others are performed with DFPT.

We use a 4× 4× 4 supercell and a displacement of 0.01Å for the FDM calculation and a
Γ-centred 8× 8× 8 q-point mesh for the DFPT calculation. We ensure that we achieve the same
level of convergence in the electronic ground state for both cases. The parameters used represent
what is feasibly possible (at present) for both methods for a modest computational cost. That is,
convergence is very well achieved for DFPT with the chosen mesh of q-points, but, for the FDM,
improvements can be made to some q-points but the supercell size of 4× 4× 4 already contains
320 atoms, approaching the limits of plane wave DFT. This means that the DFPT calculation
should be more accurate since the dense q-point mesh incorporates the exact calculation of
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Figure A.1: The convergence of the total energy (compared to the total energy resulting from a
highly converged 1500 eV calculation) as function of plane wave cutoff energy for the NCPP
and PAW calculations. Plots on vastly different scales are separated by a black dashed line.
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Figure A.2: The convergence of the total energy (compared to the total energy resulting from
a highly converged 12× 12× 12 calculation) as function of Γ-centred Monkhorst-Pack mesh
dimensions for the NCPP and PAW calculations. Note that Fm3̄m PZT 50/50 is represented
within a 2 × 2 × 2 supercell of the primitive perovskite unit, so, the 6 × 6 × 6 mesh of this
calculation is designated as 12×12×12-equivalent. Plots on vastly different scales are separated
by black dashed lines.
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Figure A.3: The convergence of forces on the B-site ions in the cubic cell with the B-site
displaced 0.1Å in the [001] direction. We show convergence as a function of fineness of Brillouin
zone integration as well as the plane wave cutoff energy. Each plot has a different scale for the
y-axis. For the upper right plot. PZT 50/50 calculations are plotted with their 5-atom perovskite
unit cell equivalent MP mesh (i.e, a 2×2×2 MP mesh in the 40-atom PZT supercell is equivalent
to a 4× 4× 4 mesh on the primitive perovskite unit cell).
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phonons at longer wavelengths than what is possible within the 4× 4× 4 supercell in the FDM.
Figure A.4 shows that there is clearly great agreement between the two methods across

the whole of the 1BZ. The calculations are however not without discrepancy. Notably, at the
M-point of the PTO calculation, the instabilities of the FDM are slightly greater than the DFPT
calculation. Discrepancies of a similar magnitude also exist as we approach Γ for the PZO
calculation. These errors are as the result of interpolation on a sparser grid of q-points for the
FDM calculation vs the DFPT calculation. This level of error is however small and does not
affect the general hierarchy of modes.

M ν̄ [i cm−1] M ν̄ [i cm−1] M ν̄ [i cm−1]

PTO Γ−4 3 149.60 ∆+
5 4 83.40 R+

4 3 62.12
T4 2 45.40 Σ3 4 37.61 Σ2 4 27.05
M+

3 3 18.02

PZO R+
4 3 181.52 T4 2 178.75 M+

3 3 176.09
Γ−4 3 132.14 S4 4 128.32 T5 4 120.45
Σ2 4 119.69 Z4 4 119.53 S3 4 105.37
Λ2 8 103.13 Λ3 16 101.82 ∆5 4 93.38
M−5 6 87.70 S2 4 72.93 Σ3 4 60.66
Σ′2 4 59.00 Z′4 4 119.53 Z1 4 56.19
X+

5 6 53.03 S′4 4 50.60 R+
5 3 49.96

S1 4 46.04 Z2 4 36.84 T′5 4 32.98
T3 2 29.33 M−2 3 12.25

VCA M+
2 3 146.58 ∆5 2 141.95 R−5 3 137.38

Γ−4 3 101.18 S1 4 71.78 T2 4 52.87
Z1 4 52.18 T5 4 52.14 Λ3 16 49.55
X−5 6 44.89 Σ2 4 40.27 S2 4 36.47
Σ3 4 28.90 M−5 6 21.80

I Γ+
4 3 138.10 ∆4 2 133.08 X+

3 3 128.11
Γ−4 3 111.99 Σ2 4 73.53 ∆5 4 62.02
L−3 8 52.83 X−5 6 49.09 L−′3 8 48.70
W5 4 48.29 ∆′5 4 47.02 Σ3 4 40.64
Σ′3 4 30.35 X+

5 6 23.23 Σ4 4 15.71
Σ1 4 12.39

II Γ−3 1 242.28 M−3 1 227.52 Z−5 2 148.78
Γ−5 2 144.78 A−5 2 140.02 Z−1 1 137.91
Λ4 2 132.92 Γ+

3 1 127.97 C1 4 105.26
W1 4 102.70 Λ5 4 101.14 W2 4 90.22
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M ν̄ [i cm−1] M ν̄ [i cm−1] M ν̄ [i cm−1]

C2 4 81.83 V1 2 73.79 Γ−′5 2 73.59
V5 4 72.71 Λ′5 4 63.59 A+

1 1 62.46
W4 4 58.47 C′1 4 53.19 Γ−′3 1 49.62
A+

5 2 48.45 C′2 4 46.31 M+
2 1 42.64

Z−′5 2 40.39 W3 4 40.28 W′1 4 38.54
V2 2 34.42 A+

2 1 24.79 M+
5 2 22.25

A+
4 1 20.43 C′′2 4 18.50

III Γ−5 2 196.63 M+
2 1 190.76 Γ−3 1 174.29

∆4 2 173.52 X+
2 2 156.67 M+

5 2 152.61
∆3 2 150.97 X+

3 2 149.79 Y3 2 147.85
X−2 2 143.46 Γ−4 1 139.99 S3 4 129.31
Y1 2 128.42 S4 4 125.00 Y2 2 121.06
Σ4 4 114.69 Σ3 4 112.91 ∆′3 2 112.14
Σ2 4 111.96 S2 4 106.31 M+

2 1 86.98
Γ−5 2 66.80 S′4 4 63.81 X+

1 2 57.29
Σ′2 4 51.92 M−5 2 44.99 S1 4 37.58
Y4 2 37.45 ∆1 2 36. 77 ∆′′3 2 35.19
Y′1 2 33.47 Σ1 4 31.52 ∆′4 2 27.15
X−3 2 21.52 X−′2 2 21.52 Γ+

5 2 19.61
Σ′3 4 1.48

IV Γ−4 3 181.41 Γ+
4 3 169.33 X+

3 1 168.90
X+

5 2 168.18 M−2 1 157.00 M+
3 1 150.48

R+
4 3 148.69 X+′

5 2 130.13 M+
5 2 129.20

Γ−′4 3 114.61 X−1 1 113.97 Γ+′
4 3 113.65

X−5 2 108.24 Γ−5 3 101.77 M−5 2 101.00
R−3 2 97.56 M−4 1 93.31 M+′

3 1 92.85
X−′5 2 89.27 X−4 1 85.35 R−4 3 82.08
M−3 1 76.93 X−3 1 74.61 M−′5 2 66.98
R−5 3 64.69 R−′5 3 58.70 M+

2 1 54.87
M+

4 1 53.23 X+′′
5 2 42.33 X−′′5 2 38.24

R−′′5 3 38.04 Γ−′′4 3 37.69 R+
3 2 32.38

R+′
4 3 29.11 Γ+

5 3 24.81 X+′′′
5 2 22.41

M−′3 1 21.33 Γ+′′
4 3 19.94 M+′′

5 2 19.92
M−1 1 18.81 X−′′′5 2 17.91 M−′2 1 13.90

V Γ−5 1 209.42 X−3 1 202.33 Γ+
3 1 167.07
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M ν̄ [i cm−1] M ν̄ [i cm−1] M ν̄ [i cm−1]

Γ−3 1 153.93 Γ+
5 2 147.67 X+

4 1 146.16
X−1 1 132.83 Γ+′

5 2 131.48 X−2 1 129.84
M+

3 1 126.85 A+
3 1 124.13 A−3 1 117.20

X+
2 1 116.35 Γ−4 1 114.09 Γ+′

3 1 113.55
A+

5 2 112.74 A−4 1 108.99 X+
3 1 105.03

M+
5 2 99.94 Γ−′5 2 98.87 M+

2 1 98.36
X−′2 1 98.20 M−3 1 97.04 M−4 1 95.03
M−5 2 86.16 X−′3 1 84.11 A−′4 1 75.27
Γ−′3 1 74.54 A−5 2 67.07 X+′

2 1 63.98
X+′

3 1 63.97 Γ−′′5 2 62.67 A−2 1 60.47
A+′

5 2 57.86 X−4 1 56.88 M−2 1 50.65
X+

1 1 50.24 A+
1 1 48.22 A−′5 2 47.63

X−′′2 1 47.30 X−′3 1 46.82 A−1 1 45.25
X−′′′2 1 44.10 Γ−′′′5 2 43.75 A+

2 1 43.00
M−′5 2 42.70 A+

4 1 42.11 M+′
5 2 40.86

X+′′
3 1 39.51 M−′3 1 38.22 M+′

3 1 37.50
Γ+′′

5 2 36.25 A−′3 1 35.66 A+′′
5 2 35.53

Γ+
4 1 33.40 X+′′

2 1 33.17 M+′′
5 2 29.38

X−′′′3 1 28.07 X−1 1 26.36 M+
4 1 26.31

X+′
4 1 25.02 Γ+′′

3 1 24.40 Γ+′′′
5 2 12.93

A+′
3 1 12.79 Γ−2 1 12.25 M−1 1 11.24

M−′4 1 7.80

VI Γ−5 2 206.22 X+
2 1 197.36 R−1 1 190.45

Γ−3 1 180.33 Γ+
5 2 167.85 X+

4 1 167.42
X+

3 1 167.00 Γ+
4 1 149.99 Γ+

3 1 142.07
R+

4 1 141.00 A3 2 137.71 Γ−′5 2 136.80
R−3 1 123.60 A2 2 120.70 X+′

3 1 119.82
X−3 1 115.84 X−1 1 114.49 Γ+′

5 2 114.14
R−4 1 106.06 R+′

3 1 104.45 X+′
2 1 102.38

A′3 2 101.82 R+
2 1 98.40 R−′3 1 98.02

Γ−′′5 2 97.86 Γ−′3 1 96.82 X−4 1 92.87
X−′3 1 89.47 X−2 1 88.45 R+

4 1 88.45
A4 2 85.09 R+

1 1 84.27 A′2 2 83.99
X+′′

2 1 80.41 R′1 1 80.04 X−′4 1 79.06
X−′2 1 76.30 R−2 1 74.85 Γ−4 1 65.34
R−′4 1 63.07 A1 2 61.62 Γ−′′′5 2 59.61
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M ν̄ [i cm−1] M ν̄ [i cm−1] M ν̄ [i cm−1]

Γ−′′3 1 57.06 A′′3 2 48.35 A′4 2 48.07
X−′′2 1 46.95 X−′′3 1 44.18 X+′′

3 1 41.42
R+′′

3 1 39.34 X+′′′
2 1 39.27 R−′′3 1 38.55

X+
1 1 37.22 A′1 2 36.53 Γ+′′

5 2 35.71
R−′′1 1 35.39 R+′

2 1 35.35 R+′
4 1 35.01

A′′2 2 34.17 Γ+′
3 1 33.14 R+′′

4 1 30.27
X+′′′′

2 1 25.71 Γ+′
4 1 25.38 R−′2 1 24.39

X+′
4 1 24.06 X−′′′3 1 23.84 R+′′′

4 1 22.31
R+′′

2 1 20.26 A′′′3 2 19.30 Γ+′′′
5 2 14.76

Γ−2 1 11.59

Table A.1: The analytical phonon wavenumbers of dynamical instabilities at the considered
wavevectors chosen in 4 for PTO, PZO and PZT 50/50. Modes are listed in descending order
in imaginary wave number from left to right. Each mode is assigned a symmetry label and a
multiplicity, M.

Table A.1 lists exhaustively the dynamical instabilities of the phonon calculations of PTO,
PZO and PZT 50/50 in Chapter 4. Symmetry labels (irreps) are obtained by the following
procedure: first, the eigendisplacement pattern of a given mode is superimposed (at a small
amplitude) onto the parent crystal. This creates a daughter for which we use the mode
decompositional analysis tools within the ISODISTORT [321] program. The result is the mode
irrep and other useful symmetry information.

A.2 Pseudoatomic orbitals: bulk and thin films

In this section we show convergence in the total energy (per atom, to be consistent with Chapter 6)
and energy differences for increasingly fine real-space integration grids [4] and Monkhorst-Pack
[227] meshes. Figure A.5 shows energy convergence for the fineness of integration grid for the
bulk phases of PTO. We see that our choice of a 300Ha cutoff achieves convergence to the (very
fine) 1200Ha grid to 0.02 meV/atom in the energy difference between the Pm3̄m and P4mm

phases (A.5, Lower panel).
Figure A.6 shows the convergence in the total energy and energy differences with respect to

the fineness of Monkhorst-Pack mesh for the bulk phases of PTO (left column) and the Nz = 2

film (right column, geometry explained in Chapter 5, Section 6.2.5). It is interesting to point out
that energy convergence for the film geometry (a 2D mesh of N ×N ×1) is achieved at a slightly
coarser mesh (with smaller N , that is) than the bulk geometry (a 3D mesh of N ×N ×N ). We
suggest that this is because convergence in the the out-of-plane direction for the film geometry
is (close to) perfectly achieved with a single k-point as ensured by the large vacuum region
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Figure A.4: Phonon dispersion curves using the FDM and DFPT for both PTO (top) and PZO
(bottom). This calculation is performed across the primitive cell of Pm3̄m PTO & PZO.
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Figure A.5: A convergence study for the the fineness of integration grid (measured in plane-wave
equivalent cut-off energy, Ecut) for the bulk Pm3̄m and P4mm phases of PTO. The upper and
middle panels are for convergence of the total energy whilst the lower panel measures the energy
difference ∆E between the phases in meV/atom.

separating periodic images of the film. When we increase the fineness of the mesh, there is then
no energy contribution from extra k-point sampling in the out-of-plane direction.

We note that there is a small effect related to energy differences between Γ-centered and
non-Γ-centred meshes. For the film geometry, wee see that the energy difference is lower by
0.19meV/atom for the 6× 6× 1 mesh (Figure A.6, bottom right) when one phase is Γ-centred
and the other is not. This effect reduces to a difference of 0.1meV/atom if we consider the energy
difference between a paraelectric film (not centred on Γ) and a film with AFD modes, as we do
in Chapter 6 (which is centered on Γ since we use a 6/Nx × 6/Ny × 1 mesh and Nx = Ny = 2).
We therefore conclude that energy differences between geometries without AFD modes and with
AFD modes will all be lower in energy by ≈0.1meV/atom. This extra degree of energy lowering
should be taken into account when examining Figure 6.9 in 6, but, makes no difference to the
conclusions drawn (i.e, the favourability hierarchy of different phases).
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Figure A.6: The convergence of reciprocal space integrals using uniform Monkhorst-Pack meshes
for the bulk phases of PTO and the Nz = 2 film (detailed in Chapter 6). The upper panels show
the convergence of the total energy with increasing grid dimensions. The middle panel shows the
same test but as a difference with the highly converged (to ≈ 5× 10−7 eV in the total energy)
12× 12× 12 mesh. The lower panel also compares with the 12× 12× 12 mesh, but measures
the energy difference between the considered phases.
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[319] P. E. Blöchl, O. Jepsen, and O. K. Andersen, “Improved tetrahedron method for Brillouin-
zone integrations,” Physical Review B, vol. 49, no. 23, pp. 16 223–16 233, Jun. 1994.

[320] H. T. Stokes and D. M. Hatch, “FINDSYM: program for identifying the space-group
symmetry of a crystal,” Journal of Applied Crystallography, vol. 38, no. 1, pp. 237–238,
Jan. 2005.

[321] B. J. Campbell, H. T. Stokes, D. E. Tanner, and D. M. Hatch, “ISODISPLACE: a web-
based tool for exploring structural distortions,” Journal of Applied Crystallography,
vol. 39, no. 4, pp. 607–614, Jul. 2006.

[322] H. Miranda. (2019). Phonon website. http://henriquemiranda.github.io/phononwebsite/.
A useful web-based visualisation tool for examining mode eigendisplacements., (visited
on 04/10/2019).

[323] M. I. Aroyo, J. M. Perez-Mato, C. Capillas, E. Kroumova, S. Ivantchev, G. Madariaga,
A. Kirov, and H. Wondratschek, “Bilbao Crystallographic Server: I. Databases and
crystallographic computing programs,” Zeitschrift für Kristallographie - Crystalline

Materials, vol. 221, no. 1, p. 15, Jan. 2006.

[324] J. Chen and D. Feng, “TEM study of phases and domains in NaNbO3 at room
temperature,” Physica Status Solidi (a), vol. 109, no. 1, pp. 171–185, Sep. 1988.

[325] M. Yashima, S. Matsuyama, R. Sano, M. Itoh, K. Tsuda, and D. Fu, “Structure of
Ferroelectric Silver Niobate AgNbO3,” Chemistry of Materials, vol. 23, no. 7,
pp. 1643–1645, Apr. 2011.

[326] G. Kresse and J. Hafner, “Ab initio molecular dynamics for liquid metals,” Physical

Review B, vol. 47, no. 1, pp. 558–561, Jan. 1993.

[327] G. Kresse and J. Hafner, “Ab initio molecular-dynamics simulation of the
liquid-metal–amorphous-semiconductor transition in germanium,” Physical Review B,
vol. 49, no. 20, pp. 14 251–14 269, May 1994.

[328] G. Kresse and J. Furthmüller, “Efficiency of ab-initio total energy calculations for metals
and semiconductors using a plane-wave basis set,” Computational Materials Science,
vol. 6, no. 1, pp. 15–50, Jul. 1996.

[329] Y. Yao and Y. Kanai, “Plane-wave pseudopotential implementation and performance of
SCAN meta-GGA exchange-correlation functional for extended systems,” The Journal

of Chemical Physics, vol. 146, no. 22, p. 224 105, Jun. 2017.

https://doi.org/10.1007/bf01349680
https://doi.org/10.1103/physrevb.49.16223
https://doi.org/10.1103/physrevb.49.16223
https://doi.org/10.1107/s0021889804031528
https://doi.org/10.1107/s0021889804031528
https://doi.org/10.1107/s0021889806014075
https://doi.org/10.1107/s0021889806014075
http://henriquemiranda.github.io/phononwebsite/
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1524/zkri.2006.221.1.15
https://doi.org/10.1002/pssa.2211090117
https://doi.org/10.1002/pssa.2211090117
https://doi.org/10.1021/cm103389q
https://doi.org/10.1021/cm103389q
https://doi.org/10.1103/physrevb.47.558
https://doi.org/10.1103/physrevb.49.14251
https://doi.org/10.1103/physrevb.49.14251
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1016/0927-0256(96)00008-0
https://doi.org/10.1063/1.4984939
https://doi.org/10.1063/1.4984939


Bibliography 254

[330] H. Fujishita, Y. Ishikawa, S. Tanaka, A. Ogawaguchi, and S. Katano, “Crystal Structure
and Order Parameters in the Phase Transition of Antiferroelectric PbZrO3,” Journal of

the Physical Society of Japan, vol. 72, no. 6, pp. 1426–1435, Jun. 2003.

[331] A. M. Glazer, “VIBRATE! A program to compute irreducible representations for atomic
vibrations in crystals,” Journal of Applied Crystallography, vol. 42, no. 6, pp. 1194–1196,
Oct. 2009.

[332] M. W. Lufaso and P. M. Woodward, “Prediction of the crystal structures of perovskites
using the software program SPuDS,” Acta Crystallographica Section B Structural

Science, vol. 57, no. 6, pp. 725–738, Nov. 2001.

[333] N. A. Benedek and C. J. Fennie, “Why Are There So Few Perovskite Ferroelectrics?”
The Journal of Physical Chemistry C, vol. 117, no. 26, pp. 13 339–13 349, May 2013.

[334] S. A. Prosandeev, D. D. Khalyavin, I. P. Raevski, A. N. Salak, N. M. Olekhnovich,
A. V. Pushkarev, and Y. V. Radyush, “Complex antipolar

√
2× 4× 2

√
2 structure with

Pnma symmetry in BiFeO3 and BiFe1/2Sc1/2O3: First-principles calculations,” Physical

Review B, vol. 90, no. 5, p. 054 110, Aug. 2014.

[335] J. A. Mundy, C. A. Heikes, B. F. Grosso, D. F. Segedin, Z. Wang, B. H. Goodge, Q. N.
Meier, C. T. Nelson, B. Prasad, L. F. Kourkoutis, W. D. Ratcliff, N. A. Spaldin, R.
Ramesh, and D. G. Schlom, A high-energy density antiferroelectric made by interfacial

electrostatic engineering, ArXiv eprint: 1812.09615, Dec. 2018.

[336] F. Cordero, F. Craciun, F. Trequattrini, and C. Galassi, “Effects of coupling between
octahedral tilting and polar modes on the phase diagram of the ferroelectric perovskites
PbZr1−xTixO3 and (Na1/2Bi1/2)1−xBaxTiO3,” Phase Transitions, vol. 87, no. 3,
pp. 255–270, May 2013.

[337] R. G. Burkovsky, “Dipole-dipole interactions and incommensurate order in perovskite
structures,” Physical Review B, vol. 97, no. 18, p. 184 109, May 2018.

[338] H. Y. Hwang, Y. Iwasa, M. Kawasaki, B. Keimer, N. Nagaosa, and Y. Tokura, “Emergent
phenomena at oxide interfaces,” Nature Materials, vol. 11, no. 2, pp. 103–113, Jan. 2012.

[339] M. Huijben, A. Brinkman, G. Koster, G. Rijnders, H. Hilgenkamp, and D. H. A. Blank,
“Structure-Property Relation of SrTiO3/LaAlO3 Interfaces,” Advanced Materials, vol. 21,
no. 17, pp. 1665–1677, May 2009.
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study of strain effects on ferroelectricity at PbTiO3 surfaces,” Physical Review B, vol. 74,
no. 17, p. 174 111, Nov. 2006.

[397] M. D. Glinchuk, A. N. Morozovska, and E. A. Eliseev, “Correlation Radius in Thin
Ferroelectric Films,” Ferroelectrics, vol. 400, no. 1, pp. 243–254, Sep. 2010.

[398] C. Lichtensteiger, J.-M. Triscone, J. Junquera, and P. Ghosez, “Ferroelectricity and
Tetragonality in Ultrathin PbTiO3 Films,” Physical Review Letters, vol. 94, no. 4,
p. 047 603, Feb. 2005.

[399] G. Stephenson, D. Fong, M. R. Murty, S. Streiffer, J. Eastman, O. Auciello, P. Fuoss,
A. Munkholm, M. Aanerud, and C. Thompson, “In situ X-ray studies of vapor phase
epitaxy of PbTiO3,” Physica B: Condens. Matter, vol. 336, no. 1-2, pp. 81–89, Aug.
2003.

[400] M. Prutton, Introduction to surface physics. Clarendon Press Oxford, 1994, p. 58.

https://doi.org/10.1039/c6cp08157f
https://doi.org/10.1039/c6cp08157f
https://doi.org/10.1103/physrevlett.96.137603
https://doi.org/10.1103/physrevlett.96.137603
https://doi.org/10.1103/physrevb.59.12301
https://doi.org/10.1214/aoms/1177731489
https://doi.org/10.1103/physrevb.65.104111
https://doi.org/10.1134/s1063783409020279
https://doi.org/10.1134/s1063783409020279
https://doi.org/10.1063/1.1702820
https://doi.org/10.1063/1.1702820
http://stacks.iop.org/0953-8984/18/i=20/a=009
http://stacks.iop.org/0953-8984/18/i=20/a=009
https://doi.org/10.1103/physrevb.74.174111
https://doi.org/10.1103/physrevb.74.174111
https://doi.org/10.1080/00150193.2010.505796
https://doi.org/10.1080/00150193.2010.505796
https://doi.org/10.1103/physrevlett.94.047603
https://doi.org/10.1103/physrevlett.94.047603
https://doi.org/10.1016/s0921-4526(03)00273-4
https://doi.org/10.1016/s0921-4526(03)00273-4
https://books.google.co.uk/books/about/Introduction_to_Surface_Physics.html?id=CX9KmT-gvvYC&redir_esc=y


Bibliography 260

[401] Y. Sun, A. Y. Abid, C. Tan, C. Ren, M. Li, N. Li, P. Chen, Y. Li, J. Zhang, X. Zhong,
et al., “Subunit cell-level measurement of polarization in an individual polar vortex,”
Science Advances, vol. 5, no. 11, eaav4355, Nov. 2019.

[402] J. Sifuna, P. Garcı́a-Fernández, G. S. Manyali, G. Amolo, and J. Junquera,
“First-principles study of two-dimensional electron and hole gases at the head-to-head
and tail-to-tail 180◦ domain walls in PbTiO3 ferroelectric thin films,” Physical Review B,
vol. 101, no. 17, p. 174 114, May 2020.

[403] J. Hong and D. Vanderbilt, “First-principles theory of frozen-ion flexoelectricity,”
Physical Review B, vol. 84, no. 18, 180101(R), Nov. 2011.

[404] J. Hong and D. Vanderbilt, “First-principles theory and calculation of flexoelectricity,”
Physical Review B, vol. 88, no. 17, p. 174 107, Nov. 2013.

[405] M. Stengel, “Flexoelectricity from density-functional perturbation theory,” Physical

Review B, vol. 88, no. 17, p. 174 106, Nov. 2013.

[406] C. E. Dreyer, M. Stengel, and D. Vanderbilt, “Current-density implementation for
calculating flexoelectric coefficients,” Physical Review B, vol. 98, no. 7, p. 075 153, Aug.
2018.

[407] A. Schiaffino, C. E. Dreyer, D. Vanderbilt, and M. Stengel, “Metric wave approach
to flexoelectricity within density functional perturbation theory,” Physical Review B,
vol. 99, no. 8, p. 085 107, Feb. 2019.

[408] M. Royo and M. Stengel, “First-Principles Theory of Spatial Dispersion: Dynamical
Quadrupoles and Flexoelectricity,” Physical Review X, vol. 9, no. 2, p. 021 050, Jun.
2019.

[409] M. R. Hestenes, E. Stiefel, et al., “Methods of conjugate gradients for solving linear
systems,” Journal of research of the National Bureau of Standards, vol. 49, no. 6,
pp. 409–436, Dec. 1952.

[410] E. G. del Rı́o, J. J. Mortensen, and K. W. Jacobsen, “Local Bayesian optimizer for atomic
structures,” Physical Review B, vol. 100, no. 10, p. 04 103, Sep. 2019.

https://doi.org/10.1126/sciadv.aav4355
https://doi.org/10.1103/physrevb.101.174114
https://doi.org/10.1103/physrevb.101.174114
https://doi.org/10.1103/physrevb.84.180101
https://doi.org/10.1103/physrevb.88.174107
https://doi.org/10.1103/physrevb.88.174106
https://doi.org/10.1103/physrevb.98.075153
https://doi.org/10.1103/physrevb.98.075153
https://doi.org/10.1103/physrevb.99.085107
https://doi.org/10.1103/physrevb.99.085107
https://doi.org/10.1103/physrevx.9.021050
https://doi.org/10.1103/physrevx.9.021050
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf
https://nvlpubs.nist.gov/nistpubs/jres/049/jresv49n6p409_A1b.pdf
https://doi.org/10.1103/physrevb.100.104103
https://doi.org/10.1103/physrevb.100.104103

	Introduction 
	An Overview of the Perovskite Oxides 
	The ABO3 Factotum and Accomplices
	Ferroelectricity
	Signatures of ferroelectricity
	A brief history

	Antiferroelectricity
	An even briefer history

	The phenomenological Landau-Devonshire theory
	The modern theory of electrical polarisation
	Lattice dynamics
	An overview of crystal vibrations
	Soft modes
	A microscopic theory of ferroelectricity
	Some practical implications at 0K


	Anomalous dynamical charges
	Ferroelectric domain structures
	Alignment to surface features

	Theoretical Background 
	An introduction to the quantum many-body problem
	Fundamentals of density functional theory 
	The Hohenberg-Kohn theorems
	Independent orbitals: the Kohn-Sham ansatz 
	Exchange and correlation 

	Periodic systems: a conventional implementation
	Plane waves 
	Pseudopotentials
	Projector augmented waves 

	Scaling upwards 
	Limitations of conventional implementations
	A local basis: pseudoatomic orbitals 
	The CONQUEST approach 
	Diagonalisation for small systems 
	Contracting the Hamiltonian: multi-site support functions 
	The O(N) method 
	Canonical purification 
	Density matrix minimisation 


	Phonons 
	Density functional perturbation theory 
	The finite displacement method 


	The Pb(Ti, Zr, Hf)O3 Isoelectronic Series: a Lattice Dynamical Study 
	Introduction
	Theoretical method
	Results: PTO, PZO & PZT
	Parent structures
	Phonon dispersion and density of states
	PTO & PZO
	Virtual crystal approximation & PZT I
	PZT II & III
	PZT IV
	PZT V & VI


	PZO & PHO: a new ground state candidate 
	Comparison of phonon dispersions 
	The antiferroelectric Pnma phase 

	Summary

	Pseudoatomic Orbitals: Electronic and Structural Accuracy 
	Introduction
	Theoretical method
	Simulation details
	Comparative metrics
	Generation of pseudoatomic orbitals

	Results
	Equilibrium volumes and bulk moduli
	Charge density differences
	Bader analysis
	Soft mode distortions
	Basis set optimisation

	Summary

	Ultrathin PbTiO3 Films: Substrate Effects and Surface Defects 
	Introduction
	Theoretical method
	General details
	Multi-site support functions 
	Linear scaling 
	The local polarisation 
	Supercell configurations: PTO on STO
	Paraelectric
	Monodomain in-plane ferroelectric
	Polydomain ferroelectric

	Supercell configurations: trenches on free standing PTO
	Trenches parallel to domain walls
	Trenches perpendicular to domain walls


	Results: PTO on STO
	Competing phases
	Polarisation morphologies
	The p(2 ) surface reconstruction

	Results: trenches on free standing PTO
	The most favourable orientation
	Depolarising field minimisation
	Strain fields

	Summary and Conclusions

	Conclusions and Outlook 
	Appendices 
	Plane waves and dynamical instabilities, 
	Pseudoatomic orbitals: bulk and thin films 

	Bibliography

