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ABSTRACT (201/250 word limit) 

Confounding can cause substantial bias in non-experimental studies that aim to estimate causal 

effects. Propensity score methods allow researchers to reduce bias from measured confounding 

by summarizing the distributions of many measured confounders in a single score based on the 

probability of receiving treatment. This score can then be used to mitigate  imbalances in the 

distributions of these measured confounders between those who received the treatment of interest 

and those in the comparator population, resulting in less biased treatment effect estimates. This 

methodology was formalized by Rosenbaum and Rubin in 1983 and, since then, has been used 

increasingly often across a wide variety of scientific disciplines. In this review article, we 

provide an overview of propensity scores in the context of real world evidence generation with a 

focus on their use in the setting of single treatment decisions, i.e. choosing between two 

therapeutic options. We describe five aspects of propensity score analysis: alignment with the 

potential outcomes framework, implications for study design, estimation procedures, 

implementation options, and reporting. We add context to these concepts by highlighting how 

the types of comparator used, the implementation method, and balance assessment techniques 

have changed over time. Finally, we discuss evolving applications of propensity scores.  
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Generating relevant and reliable real world evidence on the comparative safety and 

effectiveness of medical treatments requires tools to reduce bias from confounding variables.1,2 

Both the availability of health data and the sophistication of analytic methods have increased 

over time due to innovations in statistics, epidemiology, digital health and computing. In the US, 

the 21st Century Cures Act and its paradigm-changing focus on Real World Evidence (RWE)3 

have amplified the demand for studies using routinely collected data to accelerate medical 

product innovation, and similar efforts are underway internationally.4 The complexity of 

available data has also increased, especially with the ability to link across many data sources. 

While investigators in the 1950s trying to understand the causal relationship between smoking 

and lung cancer had access to data on only a handful of potentially confounding variables,5 

today’s researchers have access to data on dozens if not hundreds of variables for users of a 

given drug, device or surgical therapy (though these variables are often measured with error).6,7 

The increasing number of measured confounders and the focus on marginal, rather than 

conditional, causal effects has rendered legacy techniques like full joint stratification 

increasingly unappealing. 

Estimating and utilizing propensity scores, formally defined in 1983 as “the conditional 

probability of assignment to a particular treatment given a vector of observed covariates,” is one 

way for modern researchers to make use of this rich data to reduce confounding in treatment 

effect estimates.8,9 While creation of and stratification by forms of multivariable confounder 

scores predated this work,10-12 some previous scores led to biased effect estimates while others 

were found to exaggerate precision.13-17 Rosenbaum and Rubin’s 1983 paper sharpened the focus 

to prediction of treatments in the entire study population and laid out a clear theoretical 

framework for the scores as well as three distinct ways to utilize them. Since then, propensity 

scores have been widely adopted as a tool to aid in estimating causal effects in applied research, 

and numerous excellent tutorials and orientations to aspects of propensity score analyses have 

been published across a variety of disciplines.18-20 

The primary goal of this manuscript is to add to this body of work by providing an 

overview of the role that propensity scores currently play in generating real world evidence on 

treatment effects. We also highlight trends in implementation (use of active comparators, 

matching, and strategies to evaluate covariate balance) and recent methodological developments. 

To do so, we describe the theoretical framework of the propensity score in the context of 



5 
 

treatment decisions; study design considerations and recommendations when using propensity 

scores; methods for propensity score estimation and implementation; recommendations for 

propensity score reporting to facilitate the evaluation of the research as real world evidence; and 

evolving applications of propensity scores outside the context of estimating effects of a single 

treatment decision. To provide a foundation for this description, we conducted a literature review 

to quantify the increasing use of propensity score methods and examine changes in that use over 

time. 
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LITERATURE REVIEW 

From 2004 to 2018, the period since the most recent systematic review by 

epidemiologists,21 some 48,170 unique manuscripts were published with the phrase “propensity 

score” in their main text and indexed in Pubmed, Embase, Web of Science, or Scopus. From 

these 48,170 papers, we randomly sampled 300 articles that applied propensity scores to research 

questions. In the process of identifying these 300 articles, we excluded 258 articles that discussed 

methodological advancements, were referencing past studies, or otherwise did not apply 

propensity score methods. We reviewed all 300 articles to identify the type of comparator used, 

the type of implementation method, and any types of balance assessment. 

As the 48,170 articles were not evenly distributed across calendar time and we wanted 

similarly precise estimates across this range of time, our set of 300 articles was made up of 75 

articles randomly sampled from each of four calendar years (2004, 2009, 2014, and 2019). This 

strategy also allowed us to estimate the share of articles applying propensity scores for research 

purposes as percentages. We then applied said percentages to the raw number of articles 

identified in the databases to estimate the number of papers published in each calendar that used 

propensity scores for research. The full protocol for this literature search appears in Appendix A. 

Figure 1 shows the 28-fold increase in the estimated number of papers applying 

propensity score methods per year from 220 in 2004 to 6,208 papers in 2018. For comparison, 

the total number of papers indexed by Medline doubled from 2004 to 2018. This widespread 

proliferation of propensity score methods highlights the increasing importance of understanding 

how to apply them. 
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PROPENSITY SCORE THEORY 

 The potential outcomes framework provides the theoretical basis for using propensity 

scores to control for measured confounding of treatment effects in non-randomized 

experiments.8,22,23 When medical providers face a treatment decision (for example, whether to 

prescribe statin A or statin B to a patient), we can posit two contrasting potential outcomes for 

that patient: the outcome if statin A is prescribed (denoted by YA) and the outcome if statin B is 

prescribed instead (denoted by YB).23 Although each of the subjects receives only one treatment, 

the absolute effect (i.e. the risk difference) of statin A versus statin B on each patient can then be 

described as E(YA – YB), and the relative effect (i.e. the risk ratio) can be described as E(YA/YB).  

 Typically, a given person or group will experience only one of their potential outcomes, 

YT=A or YT=B,  while the others are rendered unobservable (i.e. counterfactual). The absence of 

this counterfactual data makes it nearly impossible to directly observe these causal effects. We 

only have access to the realized potential outcomes in the two disjoint populations, which we 

will call ȲT=A, the average outcome in the group that received treatment A, and ȲT=B, the average 

outcome in the group that received treatment B (with the bars denoting population averages). 

 One way we could use these realized potential outcomes is comparing ȲT=A with ȲT=B. 

This approach is problematic, as there may be variables that influence both treatment assignment 

and the outcome,24 commonly referred to as confounders. If confounders are present, the 

population risk difference ȲT=A – ȲT=B will generally not equal E(ȲA)–E(ȲB); the discrepancy is 

known as confounding bias. 

 Removing this bias requires two things. First, it requires consistency of the treatment 

effects; each individual’s potential outcome under a given treatment must be the outcome we 

observe when the individual is assigned that treatment.25 Second, it requires patients receiving A 

and patients receiving B to be exchangeable, (i.e. the two treatment groups must possess the 

same covariate patterns resulting in similar baseline outcome risks except for the effect of 

treatment, including positivity for covariate patterns in both groups); if these conditions are met, 

then ȲT=A – ȲT=B is equal to E(ȲA) – E(ȲB).26,25,27 Simple or stratified randomization to 

treatment A or B has become the standard to achieve exchangeability since, on average, 

randomization renders treatment allocation independent of other factors, whether observed or 

unobserved, that contribute to the outcome. 
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 While randomization is the only way to balance unmeasured variables, there are other 

ways to achieve conditional exchangeability with respect to observed variables.28,29 Restriction 

and matching have been used successfully for this purpose in scientific research for a long time.  

Under the assumption that all confounding variables had been measured well, restriction and 

matching were sometimes seen as equivalent to randomization, especially in small samples.29 

The curse of high dimensionality and rapid decrease in efficiency with simultaneous matching on 

many factors led to an interest in matching on summary scores.10,14,30 Rosenbaum and Rubin8 

defined a balancing score as a function of the measured covariates (x) such that those with T=A 

and T=B have equal distributions of (x) given the balancing score, which thereby balances 

covariates across treatments A and B. Exact full stratification or perfect matching on all 

measured (x) can be thought of as the finest balancing score. The coarsest version that still 

balances covariates is the propensity score, the conditional probability of T=A given (x).8 An 

estimate of this conditional probability from realized data achieves balancing properties similar 

to the “true” probability of treatment assignment and can be used to remove confounding by 

measured variables through matching, stratification, modeling, weighting, or doubly-robust 

estimation.23 Each of these methods creates cohorts that are exchangeable on the measured 

variables, estimating a variety of treatment effects with reduced bias from these factors. 

 There are a few caveats, however. Achieving covariate balance can require iterative 

fitting of the propensity score model. Unless correctly specified (e.g., by including relevant 

interaction or higher order terms), the propensity score may not balance univariate or 

multivariate distributions of (x) between treatment groups; moreover, it is impossible to know 

how complex these interaction and higher order terms need to be. Additionally, problems arise 

when some covariate combinations are exclusive to one treatment group (generally referred to as 

non-positivity).31 Finally, the propensity score will not balance covariates that were not included 

in the score, particularly those that were unmeasured, except to the extent that unmeasured 

variables are correlated with those that are part of the propensity score model.32 

 Propensity score techniques have some drawbacks relative to adjustment for covariate 

differences via g-computation or standardization via outcome models. Most notably, propensity 

score analyses will generally result in less precise estimates (because they cannot approach 

parametric efficiency bounds) and can be more complex to implement.33 
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 These drawbacks must be weighed against the benefits of using propensity scores. First, 

propensity score methods are preferable when it is easier or more plausible to identify the model 

for treatment than for the outcome, particularly in settings with few outcomes. In those cases, 

regression models for the outcome may be overfit with only a small number of confounding 

variables.34-36 Second, unlike an outcome model, the performance of a propensity score at 

balancing covariates can be empirically checked (and the model refined to improve balance) 

without examining treatment group outcomes. Third, it is straightforward to check for covariate 

positivity after implementing the propensity score and to identify (and potentially exclude) types 

of patients who are virtually guaranteed to receive one of the treatments.37,38  

 Fourth, understanding the propensity score distribution in the treated and untreated can 

help researchers gain insight into whether there is insufficient overlap (empirical equipoise) 

between treatment groups to allow for meaningful comparative safety and effectiveness 

research.39,40 Finally, if researchers wish to move beyond population level treatment effects, they 

can compare estimated effects across propensity score strata to identify treatment effect 

heterogeneity (given that providers are likely to channel specific treatment options towards those 

who they believe are more likely to benefit, treatments may be more beneficial for those in more 

extreme propensity score strata).41 While these strata are not themselves clinically relevant, they 

can signal potential variability in benefit or risk; that said, it can be difficult to uncover which 

clinically relevant covariates are creating heterogeneous treatment effects.42 
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PROPENSITY SCORES AND STUDY DESIGN CONSIDERATIONS 

 Suppose, then, that the advantages of using a propensity score persuade researchers to 

adopt the method to estimate a treatment effect. Before deciding how to estimate or use the 

score, there are several key study design considerations. While these considerations are 

important in any study of medical treatments, the decisions below were often ignored in non-

experimental work before propensity scores encouraged a focus on treatment assignment 

mechanisms and the importance of understanding the indications for and barriers to the use of 

the treatment of interest;40,43 moreover, propensity scores can help inform some of these study 

design decisions, particularly with respect to identifying relevant study populations with 

empirical equipoise.44 

 Comparator Choice: One of the most critical decisions with respect to the analytic 

question and potential confounding is the choice of the treatments to be compared; typically, one 

is a treatment of interest and one is a comparator. Choice of comparator shapes and is shaped by 

the causal question being examined: if researchers want to estimate the effects of a treatment 

compared with no intervention, they should design the study to compare treated individuals with 

a non-user or inactive comparator group with similar health conditions. While this may seem 

similar to the use of placebos in randomized trials, the fact that non-users are simply continuing 

to receive nothing (rather than an intervention with no effect) means that the surveillance and 

care they receive may differ fundamentally and systematically from care received by treated 

individuals. Further, this difference in treatment may stem from differences in factors that are 

difficult to measure, such as baseline disease severity, frailty, lifestyle choices and behaviors, 

and risk of the outcome. While measured covariates can be integrated into the propensity score, 

unmeasured variables like these often contribute to confounding by indication (i.e. disease 

severity) which can bias estimates of treatment effect and yield misleading results.45,46  

On the other hand, if the goal of the study is to compare the benefit-to-harm balance of a 

new drug in a class with its predecessors or other marketed products, it is likely more appropriate 

to use patients receiving those treatments to form an active comparator group.47,48 Unlike non-

user comparators45,46, active comparators in many cases implicitly condition on the indication for 

treatment (and the severity of disease warranting treatment), resulting in considerable reductions 

in confounding by indication as well as possibly increased balance in other baseline covariates 

and risk of the outcome. These comparators also generally have more similar surveillance 
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surrounding confounding factors and contraindications, reducing the potential for differential 

confounder measurement error.49 Based on our literature review (Figure 2), active comparators 

were used in less than half of studies in 2004, 2009, and 2014, though by 2019, 57% of studies 

used some form of active comparator.  

Starting Follow-up: Choosing when to start follow-up is also vital, as a lack of a clear 

time zero can result in invalid estimates of treatment effects.50 Since propensity score theory is 

centered around the idea of treatment decisions, it is often useful to focus on the choice of 

treatment at the time of initiation by restricting the study population to new users of drug 

therapy, excluding prevalent users.51 If instead prevalent users are included, the propensity score 

represents both the probability of initiating and remaining on treatment - a much more complex 

quantity.48,50,52 Whether restricting to new users or prevalent users for the treatment of interest, it 

is often difficult to identify the start of follow-up for any non-user comparators. Properly using 

such non-user data is possible, but often complicates the analysis.53 Whether studying new users, 

prevalent users, or non-users, improperly setting time-zero can lead to immortal time bias.54 

 Handling Subsequent Treatment: Another critical design decision with consequences for 

the causal question being examined is the extent to which subsequent treatment affects follow-up 

after time zero. Initial treatment designs follow individuals until the end of the study period 

under their first observed treatment, regardless of any stopping or switching; this is analogous to 

the intention-to-treat designs from randomized clinical trials. Since in non-experimental research 

the literal intention of the prescriber is rarely captured, it is sometimes referred to as an “initial 

treatment” approach. Such an analysis estimates the effect of treatment initiation given the 

population’s persistence, adherence, re-initiation, and switching rates under each treatment. In 

real world settings, as time passes, that treatment effect will generally diverge more and more 

from the effects of initiation and continuous use of treatment.55,56 

With on-treatment follow-up (i.e. as-treated follow-up), subjects are followed from 

treatment initiation until they deviate from some treatment protocol, typically by stopping or 

switching a therapy, at which point they are censored. Such a design estimates the hypothetical 

effect of treatment initiation and continued persistence and adherence to a given 

protocol56,57 and produces estimates that are not conditional on the study-specific factors that 

shape initial-treatment estimates. The price paid, however, is that as-treated designs may show 

high effectiveness of treatments even if real world patients have poor treatment adherence and 
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persistence. Additionally, these designs open up the potential for selection bias via differential 

drop-out unless time-varying confounding is addressed appropriately (which is difficult, as 

treatment changes are often a function of subtle and not routinely captured differences in 

effectiveness and side effects).58  

Study Population: Finally, the design stage requires a decision about the study population 

in which a treatment effect will be estimated, as heterogeneity in treatment effect can result in a 

difference in study findings depending on target population. Generally, investigators start by 

choosing from the effect of the treatment in the total population studied (population average 

treatment effect, or PATE) or in one of the arms being studied (average treatment effect in the 

treated, ATT, or average treatment effect in the comparator/untreated, ATU) or some other 

population entirely.42 

Propensity scores can play a pivotal role in further refining this initial target population to 

a population with better exchangeability and reduced non-positivity. Are the investigators 

concerned about strong confounding among those with high or low probabilities of initial 

assignment to treatment, and if so are they planning to remove (trim) some of those individuals 

from the study population?39,59,60 Excluding all those at the extremes, or “tails,” of the propensity 

score distributions can improve the precision of estimates; moreover, if these individuals are 

already contraindicated or strongly indicated to receive one treatment, their best course of 

treatment may not be of interest to researchers. If trimming is to be used, specifying multiple 

trimming rules (e.g. different percentile cutpoints, symmetrical vs asymmetrical) at the design 

stage can help researchers protect against accusations of fishing for results while giving some 

insight into how much confounding (or effect heterogeneity) exists in the tails. Researchers 

should also be sure to describe those who were trimmed, make it clear that they have limited 

evidence about effects in them, and (if one characteristic is strongly predictive of being trimmed) 

consider explicitly reframing the study question to exclude those individuals. 
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PROPENSITY SCORE ESTIMATION 

 After design choices (including whether the propensity score will be used to shape the 

final target population) are made and data are gathered, the next step in a study using propensity 

scores is propensity score estimation. The propensity score can be used to balance treatment 

groups with respect to measured covariates. But which covariates should be balanced? Once 

we’ve chosen the covariates, how do we use those covariates to estimate the conditional 

probability of treatment? Once we have estimated this probability, what, if anything, can be done 

to check whether the balancing has been successful? 

 Variable Selection: The goal of the propensity score model is to balance the distribution 

of risk factors for the outcome across the treatment groups, while preserving variability in 

treatment assignment that is independent of outcome risk. The choice of covariates is critical, as 

including variables that predict only treatment in the propensity score reduces study efficiency, 

and that cost has to be weighted against gains in validity.61,62 

Variable Types: Consider Figure 3, a directed acyclic graph that depicts assumed causal 

relations in the form of arrows from one variable to another. These arrows form causal paths that 

result in expected associations between variables.63 Baseline covariates with open causal paths to 

the exposure but not the outcome, like the instrumental variable in Figure 3A, should not be 

included in propensity score models. These variables reduce precision39 and amplify the effect of 

any unmeasured confounding (bias amplification).64,65 Unfortunately, distinguishing these 

variables from confounders is usually impossible, and the comparatively small bias from 

including a true instrument versus excluding a variable with a very weak path to the outcome 

(i.e. a near-instrument) means that even near-instruments are typically worth including in the 

propensity score model.66 On the other hand, including baseline variables with open causal paths 

to the outcome but not treatment assignment (like the risk factor variable in Figure 3A) can 

increase precision when random sampling error has led to spurious associations with treatment in 

the study sample.61 

The final type of covariate, baseline variables with open causal paths to both treatment 

assignment and the outcome, are generally good candidates for inclusion in propensity score 

models. C1 in Figure 3A is the archetypal example of such a variable. However, some variables 

meeting this description result in bias when included in the propensity score model if researchers 

are unable to close the paths opened by their inclusion.67 Such variables are termed colliders 
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because they have arrows pointing into them from at least two other variables on a causal graph. 

That said, when a variable is both a confounder and a collider, like the “collider” variable in 

Figure 3B, the confounding bias will generally outweigh collider bias except in extreme 

scenarios.68 

Notably, none of the above considerations about variable selection is specific to 

propensity score models. However, propensity scores have helped clarify these issues, in part 

because they may be prone to the inclusion of instrumental variables if misunderstood as pure 

treatment prediction models. 

Selection Strategies: Several approaches can be used to select covariates for balancing. 

First, one could use a priori specified directed acyclic graphs like Figure 3, that depict assumed 

relations among variables based on prior knowledge, to identify adjustment sets that would 

render treatment assignment and the outcome independent except through effects of 

treatment.63,69 These adjustment sets can be pared into what are sometimes referred to as 

minimally sufficient adjustment sets, and the sets that researchers believe can be measured 

with the least error can then be used to estimate the score.70 This approach requires the causal 

graph to be properly specified, an untestable and often unrealistic assumption. 

Another potential approach is to include all known factors that might be associated with 

the outcome or treatment in the data. This approach (sometimes called the kitchen sink 

approach) is often seen as a less subjective method with fewer assumptions compared with 

creating directed acyclic graphs to identify minimally sufficient adjustment sets, but the kitchen 

sink approach can induce bias from including colliders and amplify unmeasured confounding if 

instrumental variables are included in the propensity score model.65 A slightly more restrictive 

version of this approach (including all variables that are causes of the outcome or treatment in a 

directed acyclic graph) has also been proposed.71 

Finally, one can attempt to identify variables associated with treatment assignment and 

the outcome from the data by applying a selection algorithm to a vast quantity of potential 

baseline covariates. One such approach, called high dimensional propensity scores, identifies 

things like diagnosis codes or healthcare events that are associated with treatment assignment as 

well as the outcome and ranks them as candidates for the propensity score model based on their 

estimated confounding potential (including their association with treatment assignment and the 

outcome).72 Notably, establishing this ranking by simply estimating marginal associations 
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between variables and the outcome does not always eliminate instrumental variables if treatment 

affects the outcome, since the instruments will, in expectation, be associated with the outcome 

through treatment. 

Score Estimation: After the covariates are selected, they are used to estimate each 

participant’s probability of receiving the treatment of interest. By far the most common 

estimation choice has been multivariable regression of treatment on the set of covariates, with 

the propensity score being the predicted probability of treatment for each person given their 

covariates.73 Propensity score estimation usually involves logistic regression but can rely on the 

multinomial logit model for more than two exposure groups74 or linear regression or more 

complex models for continuous treatments.75 Multivariable regression is straightforward but 

requires decisions about what interactions and functional forms to use in the final model, 

including whether to categorize continuous covariates.  

To aid in these decisions, researchers often specify a starting model and implement their 

analytic method (be it matching, stratification, or weighting; see PROPENSITY SCORE 

IMPLEMENTATION below), then check balance by comparing the standardized absolute 

mean differences (SAMDs) between the treatment groups for the covariates included in the 

model.76 Larger SAMDs correspond to larger imbalances in covariates; if SAMDs are too large, 

researchers may re-fit the model with additional interaction terms or more flexible functional 

forms. Multiple iterations may be required to achieve acceptable covariate balance that reduces 

bias from measured confounders; to increase confidence in the results, researchers should pre-

specify each step of the iterative process and avoid examining effect estimates while adjusting 

the model.77,78 While such methods are used quite frequently, surprisingly little theoretical work 

has been done on their impact on the accuracy of standard errors of treatment effect estimates. 

Another option for estimating the propensity score is the use of more flexible tools than 

logistic regression, especially machine learning approaches.73,79,80 These classification and 

prediction techniques target a parameter like average standardized absolute mean difference 

(ASAMD) or overall performance of the prediction model and iterate through potential models 

and probability estimations until they identify a model or set of predictions that optimizes the 

target parameter. The result is a predicted probability of treatment for each individual in the data 

set, conditional on covariates, i.e. a propensity score. Researchers should be sure, however, to 

use cross-validation techniques with these data-driven approaches and to use methods that yield 
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appropriate standard errors and confidence limit coverage for the point estimate when using 

propensity scores created in this manner to avoid complications from overfitting.81 

Regardless of propensity score estimation method, choosing the target parameter for 

balance assessment is difficult. While a low ASAMD typically evinces adequate overall balance, 

this value does not take into account that the effect of variable imbalances on bias depends on 

how strongly the imbalanced variables affect the risk of the outcome. Perfect balance of a near-

instrument or many weak confounders in the presence of a largely imbalanced strong risk factor 

for the outcome can result in strong overall bias despite a low ASAMD. Given the need to 

balance distributions across groups, it can also be useful to assess variance ratios.76 Currently, 

new methods are being developed and refined that incorporate strength of association with the 

outcome when assessing balance.82-84 
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PROPENSITY SCORE IMPLEMENTATION 

Once each individual has a propensity score, the next step is actually using those scores 

to estimate a treatment effect. Propensity scores can be used in several different ways to estimate 

internally valid effects of treatment. Three approaches (matching, stratification, and 

regression covariate adjustment) were described by Rosenbaum and Rubin in 1983.8 A fourth 

strategy, weighting, arose later and was combined with outcome-based approaches in the early 

2000s to create a fifth category: doubly robust estimation.85,86 While each of these methods can 

estimate a treatment effect without bias, and each will yield the same effect estimate when the 

treatment effect is homogeneous, their estimates may differ substantially in the presence of non-

uniform treatment effects.87,88 

 Matching: Matching on the propensity score was one of the first methods to be developed 

as a way to improve the efficiency of matching in the presence of many covariates. After 

assigning propensity scores to all study participants, one group (typically the smaller, treated, 

group, if the comparison is between treated and untreated) is taken as the target group. Those in 

the comparator group whose propensity scores are “similar” to those in the target group are 

identified to be included in the analytic sample. Investigators have to choose what constitutes 

similarity: nearest-neighbor matching randomly chooses a target participant and matches it to 

the comparator participant with the closest propensity score (and repeats this process for the 

whole target group), while optimal matching algorithmically minimizes the overall distance 

between matched pairs in the data set. To avoid large differences in propensity scores within 

matched pairs, calipers are used to restrict the search for the nearest match to within some 

distance (say, 0.01, or 0.10, or 10% of the standard deviation of the propensity score) from the 

propensity score of the target participant.89,90 Using calipers effectively trims from the analytic 

sample any target participants that are at least a half caliper width outside the zone of propensity 

score overlap, sometimes termed the region of common support. 

Matching can be 1:1 (finding one match, at random if multiple exist, for each target 

group member) or one to many (finding a fixed number of matches, e.g. 2:1, or all matches in the 

comparator group within the caliper for each member of the treated group).91 Matching can also 

be with replacement (comparator group members can match with multiple target group 

members) or without replacement (each comparator participant matches with only one target 

group member).92 One to many matching with replacement typically results in the most precise 
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treatment effect estimates and approximates the weighting approaches discussed later; for such 

matching a balanced matching strategy can reduce potential bias from “one-sided” matching.91 

After matching, outcomes in the two groups can generally be compared directly since 

matching leads to exchangeability on measured variables and therefore removes (measured) 

confounding.93 The final treatment effect estimated after matching is the treatment effect in the 

target group for which matches were found. In settings with little similarity between groups, 

propensity score matching will highlight issues related to non-overlap (i.e. non-positivity) insofar 

as the proportion of the target that can be matched with comparator observations will be low and 

the estimated treatment effect may be a bad approximation of the ATT, potentially requiring a 

redefinition of the study population.39,94,95 Additionally, removing the matches with the most 

dissimilar propensity scores runs the risk of creating more chance imbalances in the 

progressively smaller data set (similar to problems with small randomized samples);96 this does 

not appear to be problematic in most pharmacoepidemiologic applications of the propensity 

score, however, given the large study sizes and types of variables used.97 

 Stratification: One alternative to matching that may lead to more precise results at the 

cost of additional assumptions is stratification (or, as it was referred by Rosenbaum and Rubin in 

1983, subclassification) by the propensity score.98 Just as one can reduce confounding by age by 

estimating treatment effects within strata of age, one can estimate treatment effects within strata 

of the propensity score.  The narrower the strata, the less potential for residual confounding from 

within-stratum differences. In addition to the resulting stratum-specific treatment effects, a 

variety of methods (some assuming uniform treatment effects and some not, such as weights)18 

can be used to combine the results into a summary estimate. 

Based on Cochran’s work with linear confounders, 99 Rosenbaum and Rubin suggested 

that five strata based on propensity score quintiles would likely suffice to remove most bias in a 

binary treatment effect (assuming the outcome is a monotone function of the propensity score); 

of course, some bias is likely to remain.8,100 While this is true with roughly equal numbers of 

treated and comparator patients, if the strata are derived from the overall propensity score 

distribution and treatment is rare, the average propensity score will be small and information will 

be concentrated in the higher propensity score strata where there are more treated individuals. 

This can lead to considerable residual confounding because of poorer within-strata balance in the 

low propensity score strata. In such cases, it is preferable to use fine stratification where a large 
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number of strata are formed based on the propensity score distribution in the treated; if we use 

the finest possible strata of the propensity score in the treated, we effectively perform a one to 

many matched analysis.101 In general, regions of non-overlap should be excluded before 

stratification to reduce the potential for residual confounding (and the covariate distributions in 

those non-overlap region described), and balance within strata should be checked. 

 Modeling: The final method Rosenbaum and Rubin discussed in 1983 was modeling, 

specifically including the propensity score alongside treatment in a linear regression model. If 

the association between propensity score and the outcome is modeled adequately, this approach 

will estimate the propensity-score conditional treatment effect (unless g-computation is 

performed after adjustment).102 Specifying the functional form correctly can be difficult, 

however, as the propensity score is a composite of many variables with their own effects on the 

outcome. This approach is therefore “doubly un-robust” in the sense that it requires correctly 

specified propensity score and outcome models. Bias may also arise when the variance of the 

propensity score estimating function differs between the treated and comparator groups.103 

Additionally, this method is one of the few propensity-score based analytic methods where the 

extent to which covariates were successfully balanced between treated and comparator groups is 

difficult to investigate and impossible to demonstrate empirically. Modeling also generally 

assumes uniform treatment effects. However, propensity score modeling can be combined with 

propensity score stratification, matching, or weighting, and researchers can reduce residual 

confounding from measured variables in the score by including them in the multivariable 

regression.9 

 Weighting: Weighting by the propensity score can be used to create a variety of 

exchangeable treated and comparator pseudo-populations with balanced distributions of 

measured covariates. Just as surveys can up- or down-weight the responses of specific groups to 

obtain estimates for a population of interest,104 one can up- and down-weight treated and 

comparator observations to resemble some target population (and each other) using the 

propensity score.105,106 The most common target populations are the total population (inverse 

probability of treatment weighting), the treated population (ATT, odds, or standardized mortality 

ratio weighting),107 the treated population that would have been identified in a 1:1 matched 

analysis without replacement (match weighting),108 or the population with an emphasis on the 

region of overlap (overlap weighting; this particular population can be difficult to articulate).109 
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Weights can also be stabilized to make the weighted sample size equal the unweighted sample 

size, improving the precision of inverse probability of treatment weighted estimators.110 

 Despite the versatility of weighted analyses, there are many potential pitfalls. First, not all 

statistical software is readily suited to weighted data when it comes to producing point 

estimates.111 Another major concern with weighting is how researchers should deal with the 

problem of extremely large weights. When treated individuals have low propensity scores or 

untreated individuals have high propensity scores, they may receive large weights, particularly 

when estimating the population average treatment effect. These people, sometimes referred to as 

those treated contrary to prediction, can have a large influence on results and add considerable 

variance to treatment effect estimates. If they have unmeasured compelling indications or 

contraindications, or incorrectly measured treatment, they may cause bias as well. As a result, 

investigators should be careful to specify before starting the analysis whether they plan to 

truncate or trim (symmetrically or asymmetrically) past a certain weight (or propensity score – 

separate for treated and untreated) cutoff, and should decide on the final weighting model before 

examining outcomes.60,112,94 

 Doubly Robust Methods: Propensity scores can also be used as a component of doubly 

robust estimators that specify both outcome and treatment models, yielding an unbiased estimate 

if at least one of the two models is correctly specified.86 Doubly robust estimates are typically 

less precise than those from outcome models but more precise than weighted estimates. While 

this option is appealing, it is unclear whether (or when) these estimators perform worse than the 

alternatives when both models are incorrect.33 A newer form of doubly robust estimation, 

targeted maximum likelihood estimation (TMLE), estimates an outcome model (typically via 

SuperLearner, an ensemble machine learning method), then leverages a treatment assignment 

model to “target” the parameter of interest-the treatment effect-and reduce confounding.113,114  

 Implementation Trends: Based on our literature review, the proportion of applied papers 

performing matched analyses increased over time (Figure 4). While half of the sampled studies 

in 2004 and 2009 analyzed a propensity score matched dataset, three-quarters of studies in 2014 

and seven-eighths of studies in 2019 used a matched approach, with a corresponding drop in the 

prevalence of stratified and modeled analyses. That said, our search method may have 

underestimated the use of weighting to some extent, as papers describing weighted analyses may 

not use the term “propensity score.”  
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Estimating Variance: Up to now, we have focused on using propensity scores to obtain 

point estimates in the study sample. This is only half the inferential problem as variance 

estimation is also critical. Propensity score methods have several notable features that affect 

variance estimation, and researchers should be sure to use a statistically sound method for 

estimating standard errors. Variance and confidence intervals should also be estimated using 

methods that take into account any machine learning done when selecting variables for the 

propensity score.115 

Despite the prevalence of propensity score matching in research, obtaining appropriate 

standard errors in matched studies is not straightforward. The standard solution for identifying 

standard errors with limited assumptions, the non-parametric bootstrap, can yield overly narrow 

confidence intervals when matching with replacement (as multiple copies of an individual in the 

bootstrap will all match to the same individual).116 Simpler approaches to analyzing matched 

data can also lead to incorrect estimates of the standard error, particularly in the setting of one-

to-many-matching with variable matching ratios.93,117 Fortunately, work has recently been done 

to derive statistically sound estimators of standard errors after matching for continuous 

outcomes, survival outcomes, and time-to-event outcomes.118-120 Only 25 of the 202 matched 

studies in our literature review made any mention of incorporating the matched nature of the data 

when estimating standard errors; hopefully, these new methods for variance estimation will be 

adopted by the wider community applying propensity score matching. 

When using other analytic approaches, it is worth noting that some statistical software 

packages take weighting into account in estimating point estimates but not standard errors, 

yielding too-small standard errors and overly narrow confidence intervals. Nonparametric 

methods like the sandwich estimator (now included in SAS and many R packages) or the 

bootstrap (which typically has slightly more accurate confidence intervals for weighted and 

stratified estimates) are sometimes required to achieve appropriate confidence interval 

coverage.121,122 
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REPORTING RESULTS OF PROPENSITY SCORE ANALYSES 

 Here we provide suggestions on presentation and describe tools available to researchers 

for reporting and interpreting the results of studies using propensity scores. We do not intend 

these suggestions as a rigid checklist on what is required for scientific manuscripts, but rather as 

a guide to information that will help readers evaluate propensity score analyses. 

 Implementation: One useful principle for presenting analytic methods used in a study is 

providing enough detail to allow readers to repeat the study themselves.123,124 This detail includes 

the variables included in the propensity score; how those variables were chosen and measured; 

how the propensity score was estimated; how missing and misclassified data on covariates, 

treatment, and the outcome were handled; whether and how the propensity score estimation was 

iterated to improve covariate balance based on some diagnostic; and, once the propensity score 

was estimated, how it was used to estimate the treatment effect (including details like caliper 

width and whether matching allowed for replacement in a matched study). The extent of loss to 

follow-up and administrative censoring should be described, as should the methods used to 

account for potential selection bias from these processes. When few observations are affected, 

bounds-based analyses can be used to explore the potential impact of restricting to observed 

individuals.125 Censoring that affects many observations can be addressed using methods similar 

to those used to account for bias when conditioning on treatment continuation. If nothing has 

been done, as we frequently saw in our review, a clear reasoning behind this decision should be 

provided by the authors. 

Because unmeasured confounding is one of the largest concerns in the non-experimental 

studies where propensity scores are generally used (and because the propensity score does not 

reduce unmeasured confounding), informing readers of key missing variables and how they may 

affect the final results is good practice. Researchers should also be clear about the treatment 

effect they are estimating with their analysis to ensure readers can understand to whom it applies 

and to what other populations the inference could extend. Presenting the results of pre-specified 

sensitivity analyses with differing propensity score models and implementation approaches can 

also help readers understand the effect of the specific implementation structure chosen. 

 Imbalance: It is important to communicate how much imbalance existed in study 

characteristics in the crude and, if possible, in the final analytic groups.126 The “typical” Table 1 

includes group size, the choice of risk factors considered, and the amount of imbalance of these 
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factors between treatment groups at baseline, often including a metric like the standardized mean 

difference that shows the degree of difference between treatment groups. When combined with 

clear statements about the causal effect being estimated, a good Table 1 helps readers to assess 

whether a given study is answering a question that is relevant to them in a study population they 

care about (or a study population similar to one they care about), whether the most important risk 

factors for the outcome have been measured, and how different the two groups were before and 

after propensity score implementation. 

If matching, stratification, or weighting is being used, columns describing the groups 

after propensity score adjustment can illustrate the final covariate balance or the lack thereof, 

overall and within strata if applicable. These and other balance diagnostics help readers 

understand the degree to which the propensity score has established exchangeability on measured 

covariates. While SAMDs are imperfect, they are often used to examine the imbalance between 

treatment groups, with the aim of getting SAMDs as close to 0 as possible (with an often 

arbitrary cutoff for poor performance at 0.1).76,82 In the example Table 1, we see that applying 

the SMR weights reduced the SAMDs and led to balance in all covariates presented, suggesting 

good performance of the propensity score. In matched or trimmed analyses, providing both crude 

and matched or post-trimming statistics in Table 1 is useful for readers interested in the effect 

trimming or matching had on group composition. It is especially helpful to know the number, 

and covariate distributions of individuals in each treatment group that were excluded from the 

analysis due to their propensity score or a failure to find a match, as they may be important in 

interpreting results and defining future study populations. 

From 2004 to 2019, the proportion of studies assessing group balance after some manner 

of confounder adjustment has increased (see Figure 5), with a rise in the use of both SMDs and 

P-values. The increase in the use of matching has likely facilitated the reporting of these balance 

statistics. However, it is concerning that many of the balance diagnostics rely on p-values, an 

inappropriate metric, as balance assessment does not involve inference about a larger population 

and because p-values are study-size-dependent.127  

Population Overlap: Supplementing Table 1 with a density plot or histogram of the 

propensity score distribution by treatment group (Figure 6) can give substantial insight into the 

prevalence of the treatment as well as the amount of overlap (and treatment equipoise) between 

treatment groups. A plot of the preference score (a transformation of the propensity score) can 
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help assess overlap independent of the overall prevalence of treatment.39 While they do not 

describe the performance of the propensity score, the C-statistic and other measures of model 

discrimination can also help describe the degree of overlap between treatment groups for the 

variables in the propensity score model. The lower the C-statistic, the more similar the groups, 

and the greater the overlap; a high (>0.8) C-statistic raises concerns about positivity and 

equipoise between treatment groups.94 Critically, if instruments are being included in the model, 

they will decrease overlap of compared groups even if the groups are perfectly balanced on risk 

factors for the outcome, leading to loss of precision and bias amplification as described 

above.94,128,129  

Other Items to Report: As with most studies, providing crude estimates of the treatment 

effect (in the total population for matched studies) alongside the (propensity-score) adjusted 

effect estimates can contextualize the overall direction of the measured confounding, which can 

be compared with expectations. If time-to-event analyses are being conducted, including crude 

survival curves alongside weighted or matched versions is helpful, particularly in weighted 

analyses where observations with large weights may manifest as large vertical jumps in the 

curves. If stabilized weights were used, reporting mean weights (which should be close to 1) and 

extreme weights can provide a useful diagnostic for potential problems in the propensity score. 

Heavily weighted observations may signal insufficient equipoise or problems with the coding of 

covariates.130 
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EVOLVING USAGE OF PROPENSITY SCORES 

 This overview has focused on using propensity scores to assess the effect of a treatment 

decision between two alternatives at one fixed point in time, as originally envisioned by 

Rosenbaum and Rubin. However, a great deal of work has considered alternative settings.  

For example, the propensity score can be helpful when there are multiple consecutive 

treatment decisions. The conditional probability of treatment (i.e. the propensity score) can be 

used to fit marginal structural models for time-varying exposures. These methods have advanced 

considerably over the past 20 years-including the settings of time-varying instrumental variable 

analysis and possible interference between study units.105,131,132 Marginal structural models are 

particularly valuable for estimating alternative, more complex causal effects such as the effect of 

dynamic treatment regimens (i.e. treatment regimens where exposure depends on time-varying 

measurements and factors, like treating HIV patients when CD4 falls below a given level).133,134 

Assuming all variables that influence decisions to swap or change therapy are available in the 

data, these methods can estimate important treatment effects without bias. Similarly, time-

conditional propensity scores have been proposed to estimate the effect of switching to novel 

therapies among prevalent users of older treatments and augmenting older treatment regimens 

with new therapeutic agents.135 

The propensity score can also be used beyond the case of a binary treatment decision. A 

similar framework can be applied when treatment has three or more categories.74,136 Matching, 

weights, and trimming approaches are currently being developed that take into account the issues 

unique to this context.95,137,138 Work has also been done to extend propensity score methods to 

continuous exposures and treatments, sometimes referred to as the generalized propensity 

score.43,139,140 
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CONCLUSIONS 

 With the proliferation of real world data sources and statistical software allowing easy 

matched, stratified, and weighted analyses and greater reliance on routinely collected data for 

research, it seems likely that the coming years will see continued use and refinement of 

propensity score methods to generate real world evidence on comparative effectiveness and 

safety. Focusing on treatment assignment during study design and analysis, as suggested by 

Rosenbaum and Rubin in 1983, has yielded insights ranging from the best choice of comparator 

to what should be done in the presence of limited covariate positivity. Summarizing many 

potential confounders in a single statistic such as the propensity score, allows simplified 

presentation and easy assessment of control for measured confounders, and further, allows  

treatment effect estimation even for rare outcomes. Propensity scores have been and will 

continue to be valuable tools for non-experimental research. 
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Table 1: Example Table with Distributions of Covariates and Standardized Mean Differences (SMDs) Before and 

After Weighting Treatment 2 Patients to Resemble Treatment 1 Patients with Standardized Mortality Ratio 

(SMR) Weights 

 

Covariate 

Treatment 1 

N=10,717 

Treatment 2 

N=74,8910 

Crude 

SMDs 

Treatment 2 (SMR 

weighted) N=10,717 

SMR weighted 

SMDs 

Male 5,316 (50%) 32,430 (43%) 0.127 5,206 (49%) 0.005 

Hypertension 10,522 (98%) 73,340 (98%) 0.018 10,523 (98%) -0.002 

Diabetes 3,334 (31%) 24,329 (33%) -0.029 3,352 (31%) -0.007 

Coronary Artery 

Disease 5,178 (48%) 37,389 (49%) -0.032 

5,203 (49%) -0.010 

Congestive Heart 

Failure 3,839 (36%) 30,404 (41%) -0.098 

3,861 (36%) -0.008 


