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A. The bismuth donor spin system

The Bi:Si spin Hamiltonian results, under the appli-
cation of a magnetic field, in 20 non-degenerate energy
levels, as shown in the Breit-Rabi diagram in Fig. S1. At
low fields, we label the eigenstates by the total spin F
and its projection onto the z axis mF .
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Figure S1. Breit-Rabi diagram of Bi:Si spin system. At fields
below ∼100 mT, the hyperfine interaction dominates, hence
we label states by their total spin state F and its projection
on the z axis mF . Although from 100 − 400 mT we are in a
regime where the Zeeman and hyperfine interactions are sim-
ilar in strength, we will continue to use the low field quantum
numbers F and mF for simplicity.

We now wish to find the relative transition strengths
(given by the transition rates) between any two eigen-
states under the influence of an arbitrary drive field B1.
To first order, the transition rate Γ from one initial state
| i〉 into a continuum of final states | f〉 with a density
of final states ρ of a system under the influence of a per-
turbing Hamiltonian H is governed by Fermi’s Golden
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Rule (FGR):

Γ =
2π

~
|〈 f | H| i〉|2 ρ. (1)

In this case we have a single discrete final state, thus the
density of states can be considered to be a delta function
at the frequency of the transition. As we are interested
only in the relative transition rates we can discard all
constants and use a normalised field vector B̂ as the per-
turbing field:

Γ ∝
∣∣∣〈 f ∣∣∣ B̂ · S∣∣∣ i〉∣∣∣2 . (2)

This allows us to determine the relative transition
strengths and predicts two types of transition, Sx and
Sz, corresponding to B̂ = (1, 0, 0) and B̂ = (0, 0, 1), re-
spectively.

B. Measurement Setup and device fabrication and
characterization

The resonators were patterned onto the Bi implanted
Si using a lift-off process. For this process, the Si was
diced into 13.5 mm × 7.5 mm chips for compatibility with
tooling. Several device chips were fabricated simultane-
ously on each of the larger host chips. The photoresist
stencil was formed by an image reversal process using op-
tical contact lithography. This process was optimized to
give an undercut resist profile, which helps to eliminate
fence formation at the film edges on lift-off. The 100 nm
of niobium was deposited by DC sputtering in a system
with a base pressure of 5 × 10−10 mTorr. Sputtering
power was 129 W and Ar pressure 3.4 mTorr. Deposition
time to give 100 nm was determined by calibration. The
deposition conditions had been optimized previously to
give a film with low intrinsic stress on Si-like substrates.
For 100 nm niobium thick films deposited in this way, we
typically measure a resistivity of 8.8µΩcm at 20 K and
superconducting transition temperature in the range 8-
9 K.

To characterize the microresonators we measure S21

transmission through a copper box which is modulated
by the microresonator. We fit the modulation (in linear
magnitude) with a Breit-Wigner-Fano function:

S21Lin(f) = K
qκ+ f − f0
κ2 + (f − f0)2

+mx+ c (3)
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Figure S2. S21 measurement of a resonator at -68 dBm at
the antenna of the copper box. Data (yellow) is overlaid by
a fit to Eqn. 3 of the SI (blue) giving a resonator frequency
of 6764.260 MHz and Q-factor of 6.1×104. The excellent fit
to theory means that the fit precisely overlays the data in the
centre of the resonance.

where K determines the size of the modulation, q is an
asymmetry parameter, f0 is the central frequency of the
resonator, κ is the HWHM of the resonator and themx+c
term is an approximation to the background transmis-
sion. The Fano resonance lineshape arises as a result of
interference of microwave signals travelling directly from
the input antenna to the recieve antenna with the sig-
nal absorbed and remitted by the resonator. In the limit
of zero direct transmission between the antennae, this
function reduces to a Lorentzian, which is the underlying
true resonance lineshape. This function fits our reso-
nance notch well and an example is shown in Fig. S2.
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Figure S3. Schematic of the CPMG averaging scheme. After
the initial excitation and refocusing pulses, spaced by time τ ,
a train of N refocusing pulses is applied after the first echo
with spacing 2τ , generating a train of echoes. These are all
acquired in a single shot and averaged.

A technique for reducing measurement time, shown in
Fig. S3, was employed for Hahn echo detection for these
measurements. After the Hahn echo has been measured,
it is possible to refocus the spin system again to form an-
other echo using a CPMG pulse sequence [1, 2], provided
the coherence time and T1 relaxation time is sufficiently
long. This is because only a small fraction of the energy
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Figure S4. Normalised CPMG EDFS collected at 11s and 21s
SRT showing no dependence of the linshape on SRT.

stored in the spins is emitted during a Hahn echo. It
has been shown by Mentink-Vigier et al. that such pulse
sequences could be used for the purposes of averaging to
improve ESR sensitivity [3]. In these measurements the
π/2 (π) pulses were 2 µs (4 µs) and τ = 60 µs. In field
sweeps, typically the field step results in a frequency shift
greater than the resonator bandwidth and take ∼30 s for
each field step which dominates the shot repetition time
(SRT). Extensive tests show that, as expected, lineshapes
taken with CPMG acquisitions are insensitive to SRT as
shown, for example, in Fig. S4.

The full measurement setup is shown in Fig. S5. An ar-
bitrary wave-form generator (AWG) is used to send pulse
sequences to a vector signal generator (VSG) which is set
to the frequency of the superconducting resonator as de-
termined by fitting to a VNA transmission measurement
of the resonator. The pulse emitted from the VSG is am-
plified using a 30dB solid state amplifier with max output
power +35 dBm before passing through cryogenic atten-
uators (30 dB in total) to thermalise the centre conductor
of the input line and attenuate room temperature noise.
Fast microwave switches gate the signal from the pulse
amplifier when pulses are not being sent to ensure ampli-
fied room temperature noise is not sent into the fridge.
The signal from the receive antenna inside the copper
box is sent via two circulators to a Josephson Parametric
Amplifier (JPA) which amplifies the signal in reflection.
The amplifier is driven via a directional coupler by a
dedicated microwave source. The JPA has typical gain
of 10 dB although this varies depending on the settings
of the JPA which is optimized for signal to noise ratio,
rather than absolute gain. The signal is further amplifed
by ∼40 dB at 4 K by a high electron mobility transis-
tor (HEMT) and again by ∼40dB at room temperature
before being mixed down in frequency by an IQ mixer.
The IQ mixer uses a local oscillator (LO) produced by
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Figure S5. Schematic of the spectrometer and dilution fridge setup. The copper box housing the resonator is magnified to
show the configuration of the sample and antennae inside. The receive antenna is considerably longer than the input antenna
to increase coupling to the resonator and maximise signal. Coaxial cable types inside the fridge have been colour coded.

the VSG to mix down the signal. The VSG outputs a
reference signal at half the VSG signal frequency and so
a frequency doubler is used to produce a LO at the cor-
rect frequency which is amplified by 20dB to produce a
signal with sufficient power for the IQ mixer. The mixed
down signal is detected using a digitiser.

C. Nearest neighbour mass fit

To fit echo detected field sweeps (EDFS) we consider
the shifts to hyperfine constant due to the average mass
of the bismuth donor’s nearest neighbour silicon atoms.
Using the isotopic abundance of natural silicon, we cal-
culate a trinomial distribution to determine the probabil-
ity of the different nearest neighbour configurations. At
∂f/∂A = 5, as all of these transitions are up to a few %,
the shift is 1.7 MHz/∆MNN where ∆MNN is the differ-
ence between the nuclear mass of all four nearest neigh-
bour Si atoms and four 28Si. This means we know both
the fraction of bismuth donors in each configuration and
the relative frequency of donors in each configuration.
We define a series of Gaussians with a common width and
with relative amplitude determined by the fraction of bis-

muth donors in the configuration and relative frequency
based on ∆MNN for the configuration. For Sx transi-
tions where transitions are quasi-degenerate we consider
the two transitions, calculating an offset frequency from
the spin Hamiltonian and relative amplitudes from the
matrix element in FGR as shown in Fig. S6.

We then fit the EDFS to the series of Gaussians with
two free parameters, the common width of the Gaus-
sians and a correction to the field where the ∆MNN = 0
line intersects with the resonator to allow for small field
miscalibrations which are always < 1%. This results
in fits which accurately capture the lineshape such as
that shown in Fig. 3(a) in the main text. A tail at
high frequency (which for the transition with negative
∂f/∂B shown in Fig. 3(a) is at high field) which is badly
captured by the fit routine is common to many transi-
tions but more clearly resolved for transitions with low
|∂f/∂B|. This may indicate some regions of high strain.

D. Clock transition measurements with 3D cavity

Bismuth donors are measured at a clock transition us-
ing a 3D cavity. This means that no planar devices with
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Figure S6. A fit to an EDFS of an Sx transition considering
nearest neighbour mass shifts and quasi-degenerate transi-
tions. The peaks from the two transitions are shown in green
and orange, with relative amplitude determined by the FGR
matrix element. The total fit is shown in blue and data as
black crosses.

mismatched CTE are present on top of the host Si and
thus it remains unstrained. Using the same loop-gap cop-
per resonator as that used in Ref. 4 we measure an EDFS
at the 7.38 GHz clock transition. Due to the small num-
ber of spins in a thin implanted layer we use a modified
ESR probe with an in-built cryogenic HEMT amplifier
described in a forthcoming publication. The results of
this are shown in Fig. S7.

In Fig. S7(a) we show the echoes in the time domain
as the field is stepped across the clock transition in 1 mT
steps. Integrating the centre of the echo magnitude as in-
dicated by the dashed black lines in Fig. S7(a) we obtain
an EDFS shown in Fig. S7(b). The dip at the centre of
the clock transition is caused by the ∼10 % of bismuth
donors with nearest neighbour mass shifts of 3.4 MHz
(i.e. ∆MNN = 2) dropping out of the bandwidth of the
cavity. Performing the fast fourier transform (FFT) of
the echoes shown in Fig. S7(a) allows us to resolve the
spectrum of the bismuth. The parabolic dispersion of the
most intense peak which is due to all nearest neighbour
silicon atoms being 28Si is clearly seen. These peaks are
fit by a Gaussian shown in red at the bottom of the clock
transition and their width is shown in Fig. S7(d). In ad-
dition to the peaks arising from nearest neighbours all be-
ing 28Si we can resolve peaks arising from ∆MNN = 1, 2.
These peaks are weaker but follow the same quadratic
dispersion at the bottom of the clock transition. We ex-
tract the minimum linewidth of the bismuth donors by
taking the HWHM of the Gaussin which fits the FFT in
Fig. S7(c) and show linewidth is minimized at ∼0.5 MHz.

E. Resonator and strain simulations

Resonators are simulated using COMSOL ™ with sim-
ulations of the magnetic field distribution about the res-
onator and strain induced by differences in coefficients in

thermal expansion solved together.

The magnetic field about the resonator is determined
following Refs. [5, 6]. The integrated current due to

zero point fluctuations (ZPF), δi = 2πf
√
~/2Z where

Z is the impedance of the resonator. The impedance is
determined assuming a lumped element geometry where
Z =

√
L/C and f = 2π

√
1/LC. The capacitance of

the capacitative arms is determined using a coplanar ca-
pacitance calculator, the resonator frequency is measured
and thus the impedance is determined to be ∼100 Ω. The
current fluctuations can then be analytically determined
given the penetration depth of niobium being ∼50 nm [7].

As described in the main text we calculate a spatially
varying contribution factor from the driven microwave
field B1,driven = B1Apulse at each pixel in the FE sim-
ulation. This is shown for Sz transitions in Fig. S8 for
different powers of initial pulse. At high powers banding
occurs where spins in consecutive bands provide opposite
contributions.

Considering how strain shifts the hyperfine frequency,
we can simulate an expected EDFS as is shown in
Fig. S10. This is achieved by solving the spin Hamil-
tonian for a number of different hyperfine constants. We
then sum a series of Gaussians, one for each pixel in the
FE simulation. The centre of the Gaussian is the fre-
quency which the resonator crosses the transition based
on the hyperfine constant at that pixel accounting for
strain and mass shifts. The amplitude of the Gaussian is
set by the contribution factor at that pixel. All Gaussians
are given the same common width of 660 kHz. We do this
for a few values of Apulse and average them to account for
inhomogeneities along the inductor wire. We then use the
resonator dispersion to convert this frequency spectrum
into field, thus simulating the EDFS.

The simulated EDFSs have some broad qualitative
agreement to the measured EDFSs. At low powers the
line saturates in a broad peak. At high powers there
is a peak of approximately the correct width in field.
At intermediate powers there are oscillations in intensity
within the field sweep. These simulated EDFS do not
however accurately reproduce the experimental EDFS.
There are many potential candidates for this discrepancy;
significant, unaccounted, inhomogeneities along the in-
ductor wire, contribution factors in the CPMG pulse
sequence not following the sin3(θ) dependence of Hahn
echo, errors in the FE simulation of strain, incorrect val-
ues of penetration depth being used to calculate B1 to
name a few. The broad qualitative agreement is promis-
ing, indicating that we capture the main features of this
system. Further work, particularly on the strain simula-
tions, is needed for a good qualitative agreement between
simulation and experiment.

We also consider, and rule out, the Meissner effect as
the dominant cause of this line broadening. Using COM-
SOL, we model the resonator as strongly diamagnetic and
compute the deformed static field about the resonator.
Using this static field to compute the spin Hamiltonian
results in EDFS drastically different to experiment and,
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Figure S7. Results of EDFS measurements taken at an Sx transition using a 3D loop-gap copper resonator at 10 K. (a) Raw
echo signal quadratures I (blue curves) and Q (orange curves) at different field values swept across the clock transition. Dashed
vertical lines correspond to the integration time interval which was used to calculate data shown in Fig.S7(c). (c) Black curves
correspond to normalised amplitudes of fast Fourier transform (FFT) of the complex data, I + j × Q, where I and Q are
signal components shown in Fig.S7(a).In addition to the dominant peaks, weaker peaks from nearest-neighbour mass shifts
are resolved. The clock transition, where dominant peaks reach a minimum in frequency, is clear. Red curves correspond to
results of a Gaussian fitting of the dominant peaks at the clock transition. (d) Spin linewidths γ (half-width-at-half-maximum,
HWHM) extracted from the data shown in Fig.S7(c) using the Gaussian fitting of the dominant peaks. The minimum linewidth
value is 0.5 MHz. The inset shows an example of fitting results at the centre of the clock transition (also shown in Fig.S7(c))

most pertinently, means that at low powers the simulated
peak position, which is already too low in field, shifts fur-
ther downwards in field. These low power spectra, arising
from spins closest to the resonator, are where this effect
should be strongest and given that the incorrect sign of
the effect, we conclude is not the dominant broadening
process.

F. Cooperativity and strong coupling in the small
κ limit

The expression for cooperativity, C = g2ens/κγ =
g20N/κγ, is derived from the Tavis-Cummings Hamilto-
nian considering a cavity coupled to N two-level-systems
— in our case, spins. When the spins are inhomoge-
neously broadened such that the homogeneous linewidth,
γh = 1/T2, is small and we are in the regime γh � κ < γ,
as is the case in this paper, these spins can fall outside
of the cavity linewidth. The traditional definition of co-
operativity indicates that spins outside the bandwidth
of the cavity (i.e. no spectral overlap) contribute to the
cooperativity.

In the limit γh � κ < γ, it makes more sense to con-
sider only the spins within the resonator bandwidth, such
that any change to spins that fall outside the resonator
bandwidth cannot affect C or the coupling. We can in-
stead use the coupled spin linewidth γcorr ≡ κ and make
a correction to the number of spins N in the ensemble

to ensure we only count spins within the resonator band-
width. The corrected spin number is

Ncorr = N

∫∞
−∞

η
ηmax

ρ df∫∞
−∞ ρ df

(4)

where ρ is the spin spectral density, η is the resonator
power spectral density and ηmax is the maximum value
of η, such that η/ηmax is the dimensionless resonator
lineshape, normalised to an amplitude of 1. The term
ρη/ηmax is effectively a corrected spin lineshape that ac-
counts only for spins coupled to the resonator. The ratio
of the area of the corrected lineshape to the original line-
shape gives the correction factor to N . Using this, we
can now write the corrected ensemble cooperativity:

Ccorr =
g20Ncorr

κ2
(5)

Now consider the simple case of a uniformly broadened
spin ensemble coupled to a narrow-bandwidth resonator
with identical lineshape and with no detuning between
the two. In this case the spin spectral density is approxi-
mately constant over the bandwidth of the resonator and
the corrected spin lineshape takes on exactly the line-
shape of the resonator, with the same amplitude as the
original spin line. Then Ncorr is simply N multiplied by
the ratio of the resonator linewidth to the spin ensemble



6

1.00

0.75

0.50

0.25

0.00
Y
 (

m
)

Strain g0 -30 dBm -25 dBm

1.00

0.75

0.50

0.25

0.00

Y
 (

m
)

-20 dBm -15 dBm -12 dBm -11 dBm

1.00

0.75

0.50

0.25

0.00

Y
 (

m
)

-10 dBm -9 dBm -8 dBm -7 dBm

0.0 0.5 1.0 1.5 2.0 2.5
X ( m)

1.00

0.75

0.50

0.25

0.00

Y
 (

m
)

-6 dBm

0.0 0.5 1.0 1.5 2.0 2.5
X ( m)

-5 dBm

0.0 0.5 1.0 1.5 2.0 2.5
X ( m)

0 dBm

0.0 0.5 1.0 1.5 2.0 2.5
X ( m)

5 dBm

1.5

1.0

0.5

0.0

0.5

1.0

1.5

0

100

200

300

400

500

600

10.0
7.5
5.0
2.5

0.0
2.5
5.0
7.5
10.0(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

/Γ
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(b) A map of g0/Γ (Hz) for Sz transitions, a linear rescaling of B1. (c-p) maps of contribution factor for Sz transitions
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line is 50 nm below the surface, approximately where electrostatic calculations imply the depletion zone, where donors are
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linewidth

Ncorr = N
κ

γ
(6)

which yields the original term for cooperativity:

Ccorr =
g20N

κ2
κ

γ
=
g20N

κγ
(7)

where cooperativity continues to increase with narrowing
resonator linewidth, despite the fact that this reduces the
number of spins within the cavity.

In general the spin ensemble lineshape is not identical
to that of the resonator, nor is it uniformly broadened.
Indeed, in these experiments the spin lineshape is asym-
metric and modelled by three separate gaussian functions

(six in the case of an Sx transition), while the resonator is
approximately Lorentzian. However this gives a good ap-
proximation and allows us to estimate the cooperativity
in the narrow resonator limit in a simple manner.

Based on this, we can use the FE simulations of the res-
onator to estimate the ensemble coupling strength for a
given distribution of spins. At each pixel the ratio of the
single spin coupling, g0, to the transition matrix element,
Γ, is computed by g0/Γ = B1γe. When B1 is inhomoge-

neous the ensemble coupling is given by gens =
√∑

g20
where the sum runs over spins. Voxels are defined by
the 2D pixels from the simulation with out-of-page ex-
tent given by the length of the inductor (assuming that
current doesn’t vary significantly along the length of the
inductor). Each voxel has NBi = ρBi(r)V bismuth atoms
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Figure S9. (a) Reproduction of S8 for Sx transitions.

within it where ρBi(r) is the local density of bismuth
atoms and V is the voxel volume. NBi is adjusted by
the thermal population and then, as above, corrected so
that only spins inside the cavity linewidth couple to the
resonator as in Eq. 6. For the transition shown in Fig. 2
main text this computation predicts an ensemble cou-
pling strength of ∼260 kHz, which is a factor of ∼ 2 larger
than the experimental result. The discrepancy between
experiment and simulation is likely due to a combination
of uncertainties in the film kinetic inductance, the deple-
tion zone depth, donor activation, a drop in current in
the inductor close to the capacitive arms and spins close
to the resonator having a greater linewidth and more of-
ten falling outside the cavity bandwidth. The variation
in current along the inductor could be accounted for by
additional simulations of the resonance mode using soft-
ware packages such as CST Studio Suite.

Using these FE models we can show that continuing to
add spins further from the resonator increases the cou-

pling strength. We find that for resonators without the
double-back inductor (i.e. a straight wire connecting ca-
pacitive arms) this effect is stronger as the B1 fields are
less confined to be local to the resonator. However, for
a high fidelity memory, the spins must both add to co-
operativity, and also be refocused in a quantum memory
protocol. The weak B1 fields means that refocusing will
be inefficient and so this approach to increasing coop-
erativity is unsuitable if the intended application is for
memories, or any application where coherent control of
spins is required.

The conditions for strong coupling should also be re-
considered. As we are interested in transferring infor-
mation between the resonator and spin ensemble, being
able to resolve a vacuum Rabi splitting is not essential.
We are interested primarily in the loss rates from the
resonator and spin ensemble, and as such the regime re-
quired for quantum memories is actually g0

√
N � κ, γh.
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Figure S10. (a) CPMG EDFS reproduced from main text
Fig. 4(g). (b) Calculated EDFS based on finite element sim-
ulations of strain and B1 fields about the microresonator.

One can also define the homogeneous cooperativity :

Ch =
g20N

κγh
. (8)

The efficiency of the quantum memory asymptotically
approaches 1 as Ch → ∞ [8]. This distinction between
the homogeneous and inhomogeneous spin linewidths is
why it is possible to operate an efficient quantum memory
without being in the traditionally defined strong coupling

regime, g0
√
N � κ, γ. The coupling of a narrow cavity

to an inhomogeneously broadened spin ensemble has also
been discussed in Refs [8–11].

G. Calculation of resonator photon number

The Rabi oscillations obtained in Fig.4 enable us to
estimate the number of photons in the cavity. Using the
Tavis-Cummings model for an ensemble of spins coupled
to a cavity, the Rabi frequency Ω of the spins when the
resonator contains n photons is given by:

Ω = 2g0
√
n (9)

We can calculate g0, assuming that T1 relaxation is
dominated by the Purcell effect[12], using the equation:

1

T1
=

4g20
κ

(10)

Where κ is the resonator half-width and g0 is the res-
onator to single spin coupling rate. As we have seen, in
this system g0 varies greatly according to the position
of the spins relative to the resonator and as such it is
not possible to get a value for T1 of the entire ensem-
ble. We take a rough estimate of T1 ≈ 1.5 s to calculate
g0 ≈ 350 Hz for spins close to the 6764 MHz resonator.
We then use Eq.9 assuming Ω = 500 kHz (the duration
of the pre-rotation pulse used in Fig.4 was 2 µs) to cal-
culate a photon number of ∼ 5 × 105. Note that this is
only a very rough estimate and applies only to low power
measurements of the spins closest to the resonator.
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