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Abstract 

Methionine demethylation during metabolism generates homocysteine (Hcy) and its remethylation requires 

folate and cobalamin.   Elevated Hcy concentrations are associated with vascular-related complications of 

pregnancy, including increased vascular stiffness, predictive of clinical vascular disease. Maternal and fetal 

total Hcy (tHcy) concentrations are positively related, yet the influence of Hcy on fetoplacental vascular 

function in normal pregnancy has not been examined. We hypothesized that Hcy alters fetoplacental vascular 

characteristics with influences on fetal growth outcomes. We investigated (1) placental chorionic plate 

artery distensibility and neonatal blood pressure in relation to umbilical plasma tHcy; (2) relationships between 

cord venous (CV) and cord arterial (CA) plasma tHcy, folate, and cobalamin concentrations; and (3) tHcy 

associations with birth weight and anthropometric measurements of body size as indices of fetal growth 

in normal pregnancies with appropriate weight-for-gestational age newborns. Maternal plasma tHcy, 

folate, and cobalamin concentrations were consistent with published data. Placental chorionic plate artery 

distensibility index (β; measure of vessel stiffness) was inversely related to CA tHcy, yet neonatal blood pressure 

was not significantly affected. CV and CA tHcy concentrations were positively related and CV tHcy 

negatively related to CV cobalamin but not folate. CV tHcy concentration positively related to birth 

weight, corrected birth weight per-centile, length, head circumference, and mid-arm circumference of 

newborns. CV cobalamin was inversely related to fetal growth indices but not to folate concentration. Our 

study demonstrates a potential relationship between fetal tHcy and placental artery distensibility, placing 

clinical relevance to cobalamin in influencing Hcy concentration and maintaining low vascular resistance to  

facilitate nutrient exchange favorable to fetal growth.  

 



Introduction  

Homocysteine (Hcy) arises from the metabolism of methionine (Figure 1), which crucially generates the 

methyl donor S-adenosylmethionine (SAM) required for cellular methylation processes including 

DNA, RNA, protein, and phospholipid methylation.1 Methyl donation from SAM to cellular 

acceptors generates S-adenosylhomocysteine (SAH). The efficient metabolism of SAH (by SAH 

hydrolase catalysis to produce adenosine and Hcy) is essential, as SAH inhibits the activity of SAM-

dependent methyltransferases involved in a variety of methylation reactions. Homocysteine can 

undergo remethylation back to methionine (Figure 1), and this conversion requires folate and 

cobalamin (Cbl) catalyzed by the action of methionine synthase.1,2 Importantly, this is the main 

pathway for the metabolic disposal of Hcy in human placenta.1 Hence, suboptimal folate or Cbl 

status, or diminished Hcy-metabolizing enzyme activity, can lead to dysregulated Hcy biosynthesis 

and elevated plasma total Hcy (tHcy) concentration.3-5 Human pregnancy is a period of increased 

folate and Cbl demand6 and disturbances in Hcy-folate-Cbl metabolism associate with clinical 

complications affecting uteroplacental vascular function with impacts on fetal and neonatal 

development.7-10  

 

Several studies have demonstrated that maternal tHcy concentration is higher in infants of low birth 

weight than normal controls,8,11-14 and a meta-analysis has revealed a 25% increased risk of 

having a small-for-gestational age infant when maternal tHcy concentration exceeded the 90th 

percentile.11 However, observations are inconsistent; other studies report that low birth weight is 

not associated with raised maternal tHcy concentration15,16 or demonstrate both negative17 and 

positive18 associations between maternal tHcy concentration and birth weight. A consistent 

interpretation of these data is challenging, as effects of tHcy on birth weight per se may not be 

easily distinguished from effects of accompanying suboptimal B vitamin status that would 

generate tHcy through metabolic-interdependent pathways (Figure 1). A more informative 

situation is presented when availability of maternal folate and Cbl is optimal, and therefore, fetal 

provision of these is not limiting, in determining the relationship between tHcy and fetal growth 

outcomes. 

 

Raised tHcy is an independent risk factor for vascular disease19,20; it associates with several 

aspects of impaired vascular function including endothelial dysfunction,4,21-23 enhanced 

smooth muscle proliferation,24 stimulated collagen biosynthesis,25,26 and diminished vascular 

elasticity,27 leading to increased arterial stiffness. However, much remains to be understood about 

the potential relationship between tHcy and indices of arterial stiffness in the fetoplacental 

circulation in normal pregnancy. 

 

We hypothesized that as fetal Hcy increases, distensible properties of arteries in the fetoplacental 

circulation would be impaired, leading to an increased vascular resistance, which in turn could 

influence fetal growth and vascular indices in the neonate. Hence, a primary objective of this study 

was to investigate whether cord plasma tHcy concentrations influence the distensibility 

characteristics of small chorionic plate arteries (CPAs) of human placenta, selected for their 



relative ease of accessibility and a likely site of resistance in the fetoplacental circulation.28-30 

Additionally, we examined whether neonatal blood pressure (BP), as an index of vascular 

resistance, was influenced by fetal tHcy concentration and determined the relationships between fetal 

tHcy in umbilical cord venous (CV) and cord arterial (CA) plasma to birth weight and anthropometric 

measures of neonatal body proportions. 

 

Materials and Methods 

Mothers 

All women (European, white Caucasian) were in good health and gave signed informed consent at St 

Maƌy͛s Hospital, MaŶchester. Ethical approval was granted by the Central Manchester 

Local Research Ethics Committee (06/Q1407/25) with University of Manchester Committee on the 

Ethics of Research on Human Beings endorsement (06040). Obstetric records confirmed normal 

uncomplicated pregnancies. Maternal characteristics were obtained at the first antenatal clinic 

attendance (10-12 weeks). Gestational age was defined as completed weeks of gestation, using 

menstrual dates and confirmed by ultrasound dating. The women reported routine use of folic acid 

supplements (0.4 mg/d, 4-8 weeks duration in early pregnancy), a non-vegetarian diet, and not 

smoking cigarettes. 

 

Newborn Infants, Anthropometric Measurements, and BP 

All infants were in good condition at birth (Apgar scores 9 or 10 at 1 minute). Percentiles for birth 

weight were determined using national growth standards (UK-WHO Growth Charts for Children 

aged 0-4 years, Child Growth Foundation, UK). On routine clinical examination, no medical condition 

or congenital abnormality was recorded. The same research nurse measured birth weight using a 

digital baby scale (Seca  384, Germany) and anthropometric indices. Occipital-frontal head 

circumference and mid-arm circumference with the left arm flexed to 90 at the elbow were 

measured using a paper measuring tape. Length was measured using a Harpenden Neonatometer 

(Holtain Limited, United Kingdom). Blood pressure was measured using a Dinamap Pro 100 

automated oscillometric machine with an appropriate BP cuff (GE Medical Systems, Information 

Technologies, Freiburg, Germany) at 24 to 48 hours following birth.31 

 

Plasma tHcy, Folate, and Cbl Analysis 

Non-fasting maternal blood was obtained from the antecubital vein at antenatal clinic (10-12 

weeks). The CV and CA blood was obtained at delivery after clamping the umbilical cord. 

Maternal and cord blood was collected into tubes with either potassium EDTA or lithium heparin as 

anticoagulant, placed on ice, and centrifuged at 1000g for 10 minutes. Separated plasma was 

stored at 80 C and transferred for analysis (University Hospital of Wales, Cardiff). Plasma tHcy was 

measured by high-performance liquid chromatography and fluorometric detection following 

reduction, deproteinization, and derivatization with the fluorophore SBDF (ammonium 7-fluorobenzo-

2-oxa-1,3-diazole-4-sullfonate).32 This assay was standardized using National Institute of Standards 



and Technology Standard Reference Material. Plasma folate and Cbl were measured by competitive 

protein-binding assays on an Elecys 2010 analyzer (Roche Diagnostics, Burgess Hill, West Sussex, UK). 

 

Pressure Myography Studies on CPAs 

Pressure myography studies were performed to measure the passive mechanical wall properties of 

the CPAs.30,33 Placentas were obtained within 30 minutes of delivery, and CPAs (<300 mm diameter) 

were isolated and mounted onto 2 glass cannulae connected to a pressure servo unit to regulate 

transmural pressure (Living Systems Instrumentation, Burlington, Vermont). The arteriography 

chamber was perfused with calcium-free physiological solution (with the following composition 

[in mmol/L]: NaCl 119, NaHCO3  25, KCl 4.69, MgSO4  2.4, EGTA 2, KH2PO4 1.18, glucose 6.05, 

EDTA 0.034, pH 7.4; gassed with 5% O2 and 5% CO2) and maintained at 37oC. Intraluminal 

pressure was increased stepwise from 3 to 120 mm Hg. Vessels were continuously analyzed by 

video dimension analysis, and arterial lumen diameter and wall thicknesses were measured at 3 

sites along the vessel length (and averaged). Wall cross-sectional area (CSA) was calculated as 

pðr0 r1Þ, where r0 and r1 are whole vessel and lumen radii, respectively. These measurements 

allowed calculation of wall stress and strain. Wall stress (dyne/cm2) was calculated as: pressure 

lumen diameter/(2 wall thickness). Strain was calculated as: increase in lumen diameter from 3 mm 

Hg/diameter at 3 mm Hg. From plots of the stress-strain relationship (r2 > .9), where stress = 

y.eβ.strain, the coefficient of intrinsic vessel stiffness (b) was derived from the gradient. 

 

Data Analysis 

Statistical analyses were carried out with SPSS 11.0 for Windows (IBM SPSS, Portsmouth, Hampshire, 

UK) or Prism version 6 (GraphPad Software, La Jolla, California). Data are presented in various 

formats as detailed in the text, with n = number of individual pregnancies. Birth weight was adjusted 

for maternal height, weight, ethnicity and parity, infant sex, and gestational age to determine 

corrected birth weight percentile.34     Median tHcy, folate, and Cbl values in CV and CA blood were 

compared using Mann-Whitney U or Wilcoxon signed rank test as appropriate. Spearman correlation 

coefficient was used to investigate relationships of CV plasma tHcy, folate, or Cbl with birth weight 

and anthropometric measurements; relationship of CV and CA plasma tHcy with systolic, diastolic, or 

mean BP; and relationship between CA plasma tHcy and CPA stiffness index (β). Linear regression 

analysis was used to examine the relationship between paired CV and CA tHcy concentration. 

Kruskal-Wallis test assessed the significance of corrected birth weight percentile relationships to 

paired CV tHcy and CA tHcy concentrations. P < .05 was considered statistically significant. 

 

Results 

Maternal and Infant Characteristics 

Maternal and infant characteristics are shown in Table 1. Birth weights were appropriate for 

gestational age (>25th and <90th percentiles), and BP was consistent with reference values.31 

Chorionic Plate Arteries Distensibility and Neonatal BP Relationships to Umbilical tHcy Concentration 



To examine the passive mechanical properties of CPA, vessel dimensional changes in response to 

varying intraluminal pressures were assessed. The lumen diameter of CPA vessels expanded as 

intraluminal pressure was raised incrementally, with the most dynamic increase in lumen diameter 

occurring up to an applied pressure of 30 mm Hg (Figure 2A). Wall thickness exhibited a gradual 

decline over the same range of applied pressures (Figure 2B), with a gradual increase in wall CSA 

(Figure 2C). All CPA vessels were responsive to pressure changes, confirming preservation of 

vascular integrity. As expected, the stress-strain curve generated by CPA demonstrated an 

exponential relationship (Figure 2D), and from individual stress-strain relationship curves, the 

coefficient of vessel stiffness (b) was derived. Figure 2E shows stratification of the stress-strain 

relationship curves according to umbilical arterial tHcy concentration quartiles. The CPA vessels of 

placentas where CA plasma tHcy concentrations were in the lowest quartile demonstrated a left shift 

relative to those in higher quartiles, suggesting that these CPA vessels were stiffer (less distensible). 

Conversely, those CPA vessels from placentas with CA tHcy concentrations falling in the highest 

quartile 1 demonstrated a right shift relative to those in lower quartiles, suggesting these CPA 

vessels were less stiff with greater vessel 3 or more distensibility. As shown in Figure 2F, values of b, 

the coefficient of vessel stiffness, ranged from 2.2 to 12.2, reflecting a large variability in the 

distensible properties of CPA vessels of placentas from normal pregnancies. Vessel stiffness in 

placental CPA was inversely related to plasma tHcy concentration over the concentration range of 

4.5 to 10.8 mmol/L tHcy in CA plasma (Figure 2F), which in vivo would flow through CPA of the 

fetoplacental circulation. The concentration of tHcy in CA plasma was highly dependent upon the 

concentration of tHcy in the umbilical venous circulation as CV and CA tHcy concentrations were 

highly correlated (r2 ¼ .94, P < .001; Figure 3), in agreement with previous observations.17,35   This 

raises the possibility that tHcy arising from placental transport and/or metabolism of Hcy and 

entering the fetal circulation could ultimately influence the distensible properties of placental CPA 

vessels. Neonatal systolic, diastolic, and mean BP was not significantly associated with either CV or 

CA tHcy concentration (data not shown). 

 

Plasma tHcy, Folate, and Cbl Concentrations in Maternal and Cord Blood 

Maternal plasma tHcy, folate, and Cbl concentrations (median [quartiles], n - 23) were 4.6 [3.7, 5.9] 

mmol/L, 12.4 [6.8, 19.8] ng/mL, and 208 [163, 268] ng/L, respectively, consistent with the previous 

studies.36 In a subset of paired cord plasma samples, tHcy concentration was significantly higher in 

CV than CA plasma (6.30 [5.60, 9.95] mmol/L vs 6.10 [4.75, 8.60] mmol/ L, P = .0006) with a similar trend 

toward significance for Cbl (346 [241, 374] ng/L vs 285 [225, 352] ng/L, P < .07), while folate 

concentrations (18.15 [13.10, 38.82] ng/L vs 17.45 [12.45, 31.85] ng/L) were not significantly 

different (P =.71; n = 25 for all). CV tHcy exhibited a significant negative correlation with CV Cbl (r = 

.53, P < .005; n = 27) but not CV folate (r =.31, P = .12; n = 26), suggesting tHcy entering the fetal 

circulation was particularly modulated by Cbl. These associations were not statistically 

significant in CA plasma. 

 

Relationships of Plasma tHcy, Folate, and Cbl Concentrations in Cord Blood to Birth Weight and Neonatal Anthropometric 

Indices 



Cord venous tHcy concentration was positively correlated with birth weight, corrected birth weight 

percentile, neonate length, head circumference, and mid-arm circumference (Table 2). CV Cbl was 

negatively correlated with birth weight, corrected birth weight percentile, neonate length, and mid-

arm circumference (Table 2). CV folate demonstrated no significant relationships. Stratification of 

birth weight into percentile ranges revealed that corrected birth weight percentiles were positively 

associated with a graduated elevation of both CV and CA plasma tHcy concentrations (Figure 4). 

Discussion  

This study has revealed novel relationships between CA tHcy concentration and the 

distensibility characteristics of placental CPA that importantly provide oxygen and nutrients 

and remove waste products during development and reflect a site of vascular resistance 

within the fetoplacental circulation.37,38  We observed that CPA isolated from placentas of 

normal, uncomplicated pregnancies exhibited greater variability in their distensible properties 

as compared to other vessel types,39–42 eǀideŶĐed ďy the ǀaƌiaďility iŶ the ǀalue of β, the 
coefficient of CPA vessel stiffness (Figure 2). This variability may, however, reflect an influence 

of maternal diet; interdependencies between tHcy, folate, and Cbl can influence arterial 

stiffness. 43,44 The structural characteristics of CPA previously reported include a lack of 

internal elastic lamina and a dominance of collagen fibers orientated around the smooth 

muscle cells of the arterial wall.38  Whetheƌ gƌeateƌ iŶtƌiŶsiĐ ǀessel stiffŶess ;higheƌ β ǀalueͿ is 
underscored by changes in the content and/or arrangement of extracellular matrix proteins as 

major determinants of passive vascular mechanical properties45 requires further investigation. 

 

Previous studies examining the effects of hyperhomocysteinemia on vascular remodeling have shown 

an increased deposition of collagen and vessel stiffness leading to increased vascular resistance 

and ensuing vascular pathology.46 However, the novelty of the current study is that it has 

iŶǀestigated the ƌelatioŶships ďetǁeeŶ ǀessel CPA disteŶsiďility aŶd ͚͚physiologiĐal͛͛ ĐoŶĐeŶtƌatioŶs 
of tHcy (as accepted in clinical practice) in normal, uncomplicated pregnancy. We have 

demonstrated a clear association between these variables in matched samples, with a lower 

intrinsic stiffness and greater distensibility of placental CPA vessels found as the tHcy concentration 

in CA plasma increased (Figure 2). It was notable that the distensibility of isolated placental CPA was 

related to tHcy concentration in the umbilical arterial circulation (flowing from the fetus to the 

placenta) over a relatively narrow tHcy concentration range (4.5-10.8 mmol/L; Figure 2). Variability in 

CA plasma tHcy concentration is likely to be dictated by that in the umbilical venous circulation 

(flowing from the placenta to the fetus) based on the strong correlation between umbilical venous 

and arterial plasma tHcy concentrations (Figure 3). These observations are of interest in raising 

2 possibilities: either subtle changes in CA plasma tHcy concentration in the umbilical arterial 

circulation affects CPA vascular distensibility or greater efflux of Hcy from the placenta to the 

umbilical venous circulation occurs in placentas with greater CPA vessel distensibility. In this 

context, it is noteworthy that Hcy can elicit dilation in other vessel types in a dose-dependent 

manner.47 Homocysteine in the umbilical venous circulation could originate either from maternal 

plasma by placental transport of tHcy,48,49 with maternal tHcy concentration predicting tHcy in cord 

blood,4,35,36,50,51 or alternatively could be generated by placental metabolism, perhaps reflective of 

placental methylation capacity.1,49 However, there was no apparent influence of tHcy in the fetal 

circulation on neonatal BP, suggesting that the associations may reflect vessel-specific phenomena.  
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We went on to consider how the relationship between tHcy and placental CPA distensibility might 

impact on fetal growth. A relatively greater CPA distensibility would be consistent with a lower 

resistance in the fetoplacental circulation, of potential benefit for placental nutrient delivery 

and fetal growth. Consistent with this concept, we observed positive associations between 

increasing tHcy concentration in both fetal circulations and birth weight outcomes (as a proxy of 

growth; Figure 4). The lack of a relationship between fetal folate concentration and birth weight 

or body size observed here in a folate-supplemented cohort is consistent with the observation 

of others who also demonstrate a lack of dependency with respect to maternal folate status.12,13,52  

 

In our study in normal pregnancy, maternal and cord plasma tHcy, folate, and Cbl concentrations 

accord well with those from previous larger studies where women routinely used folic acid 

supplements,36,50 providing confidence in the translatability of the findings. Further, the CV-CA 

tHcy relationships observed here (Figure 3) are consistent with the previous studies.17,35 Fetal 

plasma tHcy shows an inverse association with both maternal and fetal folate and Cbl 

concentrations, respectively.35,50-53 Our demonstration of a significant inverse relationship between 

tHcy and Cbl concentrations in CV plasma accords well with these previous observations,35,36,52,53 

suggesting fetal tHcy concentration is highly modulated by the availability of B-group vitamins. 

The concept of a regulatory dominance of fetal Cbl on tHcy concentration35,36,50,53  is 

strengthened here by the reciprocal associations between fetal tHcy and Cbl with respect to birth 

weight and anthropometric measurements of neonatal body size (Table 2).   

 

Importantly, our study has several strengths over the previous studies designed to investigate the 

influence of tHcy on birth weight in that we also performed measurement of anthropometric indices 

to augment determination of birth weight as a proxy of fetal growth outcome. Additionally, 

participants were a well-defined cohort of the same ethnicity, and all infants were of appropriate-for-

gestational age weight. We excluded smokers and selected women who had fetal ultrasound 

scans to confirm gestational age and who gave birth at 37 to 42 weeks, negating the effects of 

smoking and gestational age as determinants of birth weight that have associations with tHcy.10,52,54    

The strength of the association between birth weight and CV tHcy and CV Cbl was explored further 

by using corrected birth weight percentile, adjusting for maternal height, weight, ethnicity and parity, 

infant sex, and gestational age. It is notable that our findings are consistent with those of larger 

populations who have reported a negative association between Cbl status at birth with birth weight, 

length, and head circumference,52,55 suggesting these data have robust biological significance.  

 

Our evidence that birth weight and body size increase as CV tHcy concentration is raised while CV 

Cbl concentration is decreased would be compatible with an increased utilization of Cbl in the 

larger babies as a cofactor required to remethylate Hcy to methionine (Figure 1), perhaps to meet 

methylation demand1,49 and the greater rates of methionine transmethylation in late 

pregnancy.56 A higher CV tHcy concentration, reflecting greater tHcy delivery to the fetus, may 

also afford the developing fetus an opportunity to metabolize Hcy to methionine. Consistent 

with this concept, fetal uptake of Hcy is implicated by the lower CA tHcy concentration compared to 

CV tHcy, which accords with the previous observations.16,17   Additionally, the demonstration that 



methionine synthase activity is present in fetal liver and kidney57 lends support to the notion that 

the fetus has the capacity to remethylate Hcy.  

 

In summary, in normal pregnancy, umbilical plasma tHcy concentration, as a metabolite marker of 

the functioning of the methionine cycle in the fetal compartment, demonstrated a strong 

dependence on fetal Cbl, but not folate, concentration. The CPA distensibility, birth weight, and 

neonatal body size all demonstrated positive associations with fetal tHcy concentration, consistent 

with the concept of low fetoplacental vascular resistance promoting fetal growth. Further, the inverse 

associations of neonatal body size indices with fetal Cbl concentration implicate a key modulatory role 

for Cbl in regulating fetal Hcy metabolism and fetal growth, which should motivate intervention 

studies with Cbl in pregnancy. 

 

  



 

Figures: 

 

Figure 1. Metabolic coupling of folate and methionine cycles. The conversion of homocysteine (Hcy) to 

methionine is crucial in generating the methyl donor S-adenosylmethionine (SAM) for methylation 

processes.  Methyl donation from SAM to cellular acceptors (R-) generates S-adenosylhomocysteine 

(SAH). The efficient metabolism of SAH (by SAH hydrolase catalysis to produce adenosine and Hcy) is essential 

as SAH inhibits the activity of SAM-dependent methyltransferases involved in a variety of methylation 

reactions. The physiological form of folate, 5-methyltetrahydrofolate (5-MTHF) serves as the methyl donor in 

the remethylation of Hcy to methionine, catalyzed by methionine synthase (MS), a cobalamin (Cbl)-

dependent enzyme. Methionine synthase is the only enzyme to utilize 5-MTHF and return tetrahydrofolate 

(THF) to the active folate pool for the de novo synthesis of purines and thymidylate for DNA synthesis. 

Tetrahydrofolate is then recycled to form 5,10-methylene tetrahydrofolate from which 5-MTHF is 

generated by the action of 5,10-methylene tetrahydrofolate reductase (MTHFR). 

 

 



 

Figure 2. Relationship of the distensibility of placental chorionic plate arteries (CPAs) to umbilical arterial 

plasma total homocysteine (tHcy) concentration. Pressure myography was applied to human placental 

CPAs to investigate vascular distensibility changes in (A) vessel lumen diameter, (B) vessel wall thickness, and 

(C) vessel wall cross-sectional area (CSA) monitored in response to incremental changes in intraluminal pressure. 

This allowed calculation of (D) the stress-strain relationship, which gives an indication of the passive distensibility 

of human placental CPAs (for A-D, mean + standard error of the mean [SEM]; n = 34-38). E, Stress-strain 

relationships in CPAs stratified according to quartile concentrations of cord arterial (CA) tHcy ( , <25th [n = 

5]; , 25-75th [n = 6]; , >75th [n = 3]; mean + standard error of the mean [SEM]). F, β, calculated from the 

gradient of the stress-strain relationship and a coefficient of vessel stiffness, was inversely correlated with CA 

plasma tHcy concentration (r = - .62, P =.02, n =14; Spearman rank correlation). Values of β are shown 

according to the quartile concentrations of cord arterial tHcy ( <25th [n = 5]; , 25-75th [n = 6]; , >75th 

[n = 3]).  

 



 

Figure 3. Relationship between plasma total homocysteine (tHcy) concentrations in paired samples of cord 

venous (CV) and cord arterial (CA) plasma. The concentration of tHcy was measured in paired samples of CV 

and CA plasma harvested from the umbilical cord of placentas from normal, uncomplicated pregnancies. There 

was a linear association between the concentration of tHcy in CV and CA circulations (r2 = .94, P < .0001, n = 

33).  

 

 



Figure 4. Relationship of corrected birth weight percentile to fetal plasma total homocysteine (tHcy) 

concentration in paired cord venous (CV) and cord arterial (CA) blood samples. Relationship of corrected 

birth weight percentile (birth weights adjusted for maternal height, weight, ethnicity and parity, infant sex, 

and gestational age) stratified according to <25th (n = 5), 25th to 75th (n = 12), and >75th (n = 8) 

percentiles to (A) CV plasma tHcy concentration and (B) CA plasma tHcy concentration. *P < .05, corrected 

birth weight percentile versus CA tHcy; ***P < .005, corrected birth weight percentile versus CV tHcy 

(Kruskal-Wallis test). 

 

Tables 

 

Table 1. Maternal and Newborn Infant Characteristics 

           
 

     n Median (quartiles)   

Mothers 

Age, years    49 27 (23,32)       

Parity    

1     25 

2     14 

3 or more    10 

Height, cm    49 166 (163,171) 

Weight, kg    49 67 (58,78)  

BMI     49 24 (22,27)  

Mode of delivery  

Vaginal     34  
Cesarean delivery   15  

Blood pressure, mm Hg 

Systolic     49 108  (100,115) 

Diastolic    49 64 (60,70) 

Newborn infants  

Gestational age, weeks  49 40 (39,41)  

Boys     21  

Girls     28  

Birth weight, kg    49 3.64 (3.25,4.02) 

<25     11 3.10 (2.78,3.31) 

25-75     25 3.64 (3.33,3.75) 

>75     13 4.26 (3.99,4.48) 

Length, cm    49 51.3 (50.1,53.5) 

Mid-arm circumference, cm  49 11.2 (10.6,12.1) 

Occipitofrontal circumference, cm 49 35.4 (34.5,36.0) 

Blood pressure, mm Hg 

Systolic     49 78 (71,85) 

Diastolic    49 43 (36,49) 

Mean     49 53 (47,62) 

Heart rate per minute   49 131 (121,142) 

Cord venous blood 



Plasma tHcy, mmol/L   38 6.25 (5.10,9.95) 

Plasma folate, ng/mL   27 22.05 (14.20,35.35) 

Plasma Cbl, ng/L    28 348 (266,377) 

Cord arterial blood 

Plasma tHcy, mmol/L   29 6.30 (5.10,10.45) 

Plasma folate, ng/mL   14 17.45 (12.45,31.85) 

Plasma Cbl (ng/L)    14 284 (225,352) 

 

 

Abbreviations: BMI, body mass index; Cbl, cobalamin; tHcy, total homocysteine.    
aCorrected birth weight percentile: birth weight was adjusted for maternal height, weight, ethnicity, and 

parity, infant sex, and gestational age. 

 

 

Table 2. Relationships Between Plasma tHcy, Folate, and Cbl    Concentrations in CV Plasma and Birth 

Weight and Anthropometric Measurements in Newborns.  

 

      CV Plasma      
 

Infant Size  tHcy, mmol/L  Folate, ng/mL  Cbl, ng/L  

 

Birth weight, kg 

 r (n)  .67 (36)   -0.01 (27)  -0.43 (28) 

 P  <.0001a   .96   .022a 

Corrected birth weight percentile 

 r (n)  -.59 (36)   -.05 (27)   -.51 (28) 

 P  .0001a   .81   .005a 

Length, cm 

 r (n)  .48 (36)   .26 (27)   -.43 (28) 

 P  .003a   .19   .022a 

Occipitofrontal head circumference, cm 

 r (n)  .43 (36)   -.15 (27)   -.29 (28) 

 P  .0087a   .46   .14 

Mid-arm circumference, cm 

 r (n)  .47 (36)   .05 (27)   -.55 (28) 

 P  .004a   .81   .0024a 

 

Abbreviations: Cbl, cobalamin; CV, cord venous; r (n): Spearman correlation (number of newborn infants); 

tHcy, total homocysteine.    
aDenotes statistical significance. 
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