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Generation of monodisperse droplets by a large droplet impacting a mesh array is a
common technique in microfluidic engineering, materials science, and drug production.
Understanding the dynamic mechanism behind this is critical to controlling this process.
This work uses a nonorthogonal multiple-relaxation-time lattice Boltzmann (LB) method
to simulate a droplet impacting a mesh array. By varying the droplet viscosity and surface
tension, a comprehensive parametric study is carried out to investigate the influence of
droplet properties on the dynamic process of droplet impact, penetration, and fragmen-
tation. The results indicate that the inertial effect dominates the spread stage of droplet
impact. At later stages, the viscous drag and surface tension act to prevent the spread of the
droplet, which results in different maximum spreading diameters. The penetration of the
droplet through the mesh initially leads to the formation of a liquid jet, the length of which
is determined by the competition between the dynamic pressure and capillary pressure.
Different jet breakup lengths are observed for various Weber numbers. The maximum
spreading diameter and jet breakup length are predicted by an extended model over a wide
range of liquid properties, in good agreement with the LB simulation results. An analysis is
also conducted from an energy perspective. It is found that the surface energy significantly
decreases after the fragmentation of the high-viscosity droplet, which is caused by the
merge of satellite droplets after the jet breakup.
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I. INTRODUCTION

The impact of a liquid droplet on a superhydrophobic surface has been intensively studied, owing
to its self-cleaning, antifouling, and drag-reducing potentials [1–6]. In particular, the formation
of monodisperse droplets, by a drop or drops impacting a mesh array with pores of tens to
hundreds of microns in dimension, is one of the most promising techniques [7,8]. This configuration
has a wide range of applications in microfluidic engineering [9,10], materials science [7,8], and
agriculture [11]. Examples include three-dimensional (3D) inkjet printing of dental prostheses
[12], living cell microarrays [13], and ceramic suspensions [14]. Recently, Modak et al. [15]
reported a drop-on-demand printing technique based on this configuration, which offers several
advantages over inkjet printing. Parameters such as the maximum droplet spreading diameter, liquid
jet breakup length, and droplet-penetrated mass are crucial for the novel material development
and microfluid control [7–11,16]. According to previous theories, the droplet would go through
complex dynamic processes, including collision, penetration, and fragmentation, when interacting
with the hydrophobic orifice plate [11,16,17]. Despite various studies for more than a century, many
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phenomena associated with this complex process remain poorly understood, such as the jet breakup
dynamics and irregular distributions of satellite drop sizes [8,9].

The rapid development of experimental high-speed imaging technologies has led to the unravel-
ling of some of the knowledge gaps in this area [9–11,16]. Brunet et al. first captured the secondary
droplet generation in their experiments of a droplet impacting on a hydrophobic microgrid and
investigated the effects of the grid geometry [10]. Ryu et al. [18] and Xu et al. [19] investigated
the droplet penetration mechanism during the impact of a water droplet through a mesh screen.
Ryu et al. [18] indicated that a superhydrophobic mesh enhanced droplet penetration through the
mesh compared to a hydrophobic mesh. Xu et al. [19] asserted that the droplet collision process was
determined by the competition between the inertial pressure and water hammer pressure. In the field
of materials science, and Kumar et al. [7] and Zhang et al. [8] carried out experimental research into
water droplets impacting superhydrophobic textiles. The influence of the droplet impact speed on
the maximum droplet spreading diameter, contact time, and the penetrated mass was analyzed. In
the studies of Kooij et al. [9] and Soto et al. [11], they applied simplified assumptions to propose a
model for the prediction of the water-droplet-penetrated mass and the maximum spreading diameter
after impacting the mesh screen.

Most of the existing researchers have adopted experiment methodologies [9,20] which provide
qualitative rather than quantitative results due to experimental limitations [7–11]. Important physical
insights into complex two-phase flow regarding the velocity distribution within the liquid and the
energy evolution in the dynamic process are currently inaccessible by experimental techniques.
Also, deviations are common in controlling the droplet landing position and impact velocity in
the experiment [21]. In recent years, numerical simulation techniques have started to be applied
to studies of droplet impact on mesh screens due to accurate control of physical parameters and
access to quantitative information. In 2019, Wang et al. [21] used a many-body dissipative particle
dynamics (MDPD) method to simulate water droplet fragmentation after impacting on mesh screens
and determined the droplet ejection angle and the penetrated mass. More recently, Vontas et al. [20]
adopted the volume-of-fluid (VOF) method to investigate droplet impact on various mesh screens.

In the existing studies of this configuration, the impact dynamics of water droplets were widely
investigated [7–11]. However, the influence of droplet properties has not been systematically
researched [9]. One exception was the study of Vontas et al. [20], which tested a water, acetone, and
glycerol mixed droplet impacting a mesh. However, the dimensionless Ohnesorge number in their
study was less than the critical value 0.018 [20,22] below which the viscosity effect is negligible
in the droplet dynamics. Therefore a knowledge gap still exists in this configuration, especially for
the high-viscosity droplet. In the present study we adopt a nonorthogonal multiple-relaxation-time
(MRT) lattice Boltzmann (LB) method [23] to systematically investigate the effects of droplet
properties on the dynamics of droplets impacting a superhydrophobic mesh array. By analyzing
the force balance and energy evolution, the mechanisms behind droplet spread, penetration, and
fragmentation are investigated. Furthermore, the maximum spreading diameter and the liquid
jet breakup length after the impact will also be predicted. In the following section, the simula-
tion methodology, computational setups, as well as numerical model validations are presented.
Section III presents the simulation results, providing a detailed analysis of droplet dynamics and
energy evolution. The conclusion of this study will be presented in Sec. IV.

II. METHODOLOGY

A. The lattice Boltzmann multiphase model

As a kinetic-theory-based mesoscopic numerical method, the LB method has been widely
adopted in the simulation of complex fluids [24–26]. It has the advantages of simple and robust
numerical algorithm, high parallel efficiency, ease of incorporating mesoscopic and microscopic
physics, and ability to handle complex configurations [27–29]. Especially in the simulation of the
multiphase flow, the interface deformation, breakup, and merge can be captured naturally [27,28].
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FIG. 1. The 3D main view (a) and side view (b) of a liquid drop impacting a mesh array.

And the interaction between the liquid phase and various types of surfaces can be described
with simple boundary treatment [30–32]. Compared with the conventional multiphase simulation
methods such as the VOF, the LB method is computationally an order of magnitude more efficient
and produces one to three orders of magnitude lower spurious currents at interfaces [33]. On the
other hand, the basic implementation of the LB method for multiphase flow suffers from numerical
instabilities when high density ratio, large Weber number, and/or Reynolds number are involved
[23,24,28].

In this study we adopt a recently proposed nonorthogonal MRT-LB model [23] to enhance
numerical efficiency and stability. To treat the multiphase flow, an improved pseudopotential model
proposed by Li et al. [31] is employed. The superhydrophobic wettability conditions are realized
by the model proposed by Li et al. [32]. The nonorthogonal MRT-LB multiphase framework has
been validated in several studies such as [17,23] for its numerical efficiency and stability as well
as simulation fidelity in comparison with experimental results. In the following, the method will be
further validated against experimental data in Ref. [7]. The details of the model can be found in the
Appendix.

B. Simulation setup

Figure 1(a) is the three-dimensional physical configuration of the droplet and mesh array assem-
bly, where D0 denotes the initial droplet diameter, w represents the opening width, b indicates the
solid width, and the thickness of the array t equals w. Figure 1(b) is the side view during the droplet
penetration; the diameter of the pancake which remains above the mesh is D. The height of the
pancake is H, and L indicates the length of the liquid jet which penetrates below the mesh.

Considering the liquid properties are the research interest in this work, for the convenience of the
comprehensive parametric study, the dimensionless quantities are employed. The Weber number
(We = D0V 2/γ ), which represents the ratio of inertial force and capillary force, is used to evaluate
the influence of the droplet surface tension. The Ohnesorge number (Oh = μ/

√
D0γ ρl ) is adopted

to evaluate the influence of the viscous force relative to the mean of inertial and capillary forces.
ρl , γ , μ, V are the density, surface tension, dynamic viscosity, and impact velocity of the droplet,
respectively. The solid fraction (φ) of the mesh array is set as φ = 1 − [w/(w + b)]2. The effect of
gravity is negligible in this study because droplet diameter is below the inertial capillary length Lc =
2.7 mm [34,35]. The dimensionless time is defined as T ∗ = V × N/D0, where N is the number of

simulation time steps, and T ∗ = 0 represents the moment when the droplet starts to touch the mesh
array. The dimensionless values of pancake’s diameter (D∗), pancake’s height (H∗), as well as liquid
jet length (L∗) are adopted in the following analysis, which are all defined with respect to the initial
droplet diameter.

The grid independence study is conducted by simulating a droplet impacting a mesh array under
various grid resolutions. The resolutions of droplet radius (R) are set as 45, 60, and 70 lattice units,
respectively. All the other parameters are kept the same. The grid number in X and Z directions is 8
and 20 times the droplet radius, respectively, and the grid number in the Y direction equals that in
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FIG. 2. The dimensionless pancake diameter evolution after impacting the mesh array for various droplet
radius resolutions.

the X direction. The ratio between the opening width and the droplet radius is fixed at 0.43, and the
solid fraction (φ) of the mesh is kept at 0.6. The Weber and Ohnesorge numbers are kept at 150 and
0.04, respectively. Figure 2 indicates the evolution after the droplet touches the mesh.

As shown in Fig. 2, significant deviations are observed for the R = 45 case because of insufficient
grid points in the opening. For the R = 60 and 70 cases, the maximum relative error for the results
E = |D∗(60) − D∗(70)|/D∗(70) × 100% is less than 4%, and the grid resolution has little influence
on the simulation results. Thus, in the following simulations, over 60 grid points are used for the
droplet radius and over 25 grid points for the mesh opening.

C. Model validation

Validation of the LB model is conducted with reference to experimental results of [7], which
simulated a 2.5-mm-diameter water droplet impacting a superhydrophobic sieve. The wire breadth
and opening width of the mesh sieve equal 0.3048 and 0.5334 mm, respectively, while the contact
angle (CA) equals 162°. The ratio of the opening width to the droplet radius and the solid fraction
(φ) of the mesh are 0.43 and 0.6. Using the lattice units, the droplet diameter (D0), the opening width
(w), and the solid width (b) are set up as 120, 26, and 15, respectively. To capture all the features
of the droplet impact on the mesh, we set up the simulation domain in x, y, and z directions to be
4, 4, and 10 times the droplet diameter, respectively, and the total grid points are over 250 million.
Considering that the viscosity effect of the water droplet can be ignored under the experimental
conditions, the liquid kinematic viscosity for the validation cases is then set to be smaller than
0.0075 in the lattice units so that the Ohnesorge number (Oh) < 0.008. Firstly, the simulation
and experiment results are qualitatively compared for two Weber numbers. Figure 3(a) shows the
We = 54.4 case and Fig. 3(b) the We = 204 case.

As shown in the qualitative comparison, the simulation and experimental results are in good
agreement. After droplet impact on the plate, the pancake above the mesh array spreads horizontally
along the mesh and then retracts. In the meantime, part of the liquid penetrates throughout the
mesh to form liquid jets or fingers. For the higher We case, the maximum spreading diameter of
the pancake is larger, and the breakup length of the liquid jet is longer. Owing to difficulties in
the precise control of the initial impact speed and center location of the droplet in the experiment
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FIG. 3. Comparison between the experimental snapshots (gray) [7] and the present LB simulation (blue)
of water droplets impacting a superhydrophobic mesh array for two Weber numbers.

[7], small deviations between the simulation and experimental snapshots can be found in the jet
fragmentation as well as the pancake splashing shape.

Considering constant geometric parameters of the mesh array in the present study, and the com-
putational cost constraint, further quantitative comparisons are conducted in the same configuration
with different Weber numbers. The maximum spreading diameter of the pancake [Fig. 4(a)], breakup
time, contact time, and spread time [Fig. 4(b)] have been recorded and compared with the results
from Ref. [7]. The maximum spreading diameter and the time are nondimensionalized by the initial
droplet diameter and inertia-capillarity time (τ = D0

3ρl/γ )0.5, respectively.
As shown in Figs. 4(a) and 4(b), in terms of the quantitative comparison, the simulation results are

also in good agreement with the experimental data for a wide range of We. Thus the present model is
proved to be capable of accurately simulating a droplet impacting the mesh array. Besides the current
results, more qualitative and quantitative validations of the proposed simulation methodology were
performed in Refs. [17,23].

III. SIMULATION RESULTS AND DISCUSSION

To further investigate the influence of liquid properties in the droplet impact on the mesh
array, simulations are conducted under different Weber and Ohnesorge numbers. In the following

FIG. 4. Comparison of the maximum dimensionless spreading diameter for experimental and simulation
results (a) and comparison of the dimensionless contact time, break time, and spread time for experimental and
simulation results (b).
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FIG. 5. Dynamics of droplet impacting a mesh array under various conditions: (a) We = 150 and
Oh = 0.04, (b) We = 150 and Oh = 0.08, and (c) We = 250 and Oh = 0.04.

simulations, the geometric parameters of the mesh array, as well as the ratio between the opening
width and the droplet radius, are kept the same as in Secs. II B and II C. And the droplet impact
velocity (V ) and initial droplet diameter (D0) are all fixed as 0.08, 120 in the lattice units. The
density ratio and the kinematic viscosity ratio between the liquid phase and the gas phase are kept
at 500 and 10, respectively. Under low We, the droplet shows the nonpenetration state [8], which is
outside of our research interest. And with high We, the elasticity of the mesh wire cannot be ignored
[21], thus the medium We cases were investigated. By changing the droplet surface tension and
viscosity, We is varied from 75 to 300 and Oh is between 0.02 and 0.08. The static contact angle
between solid and liquid θ is fixed at 155° to reach the superhydrophobic condition.

Figure 5 demonstrates the droplet evolution process for the various We and Oh cases. After
impacting on the mesh, the droplet takes the shape of a pancake in all cases. Then the pancakes
spread horizontally above the mesh array at a different rate depending on the values of Weber
and Ohnesorge numbers. Below the pancake, liquid penetrates through the mesh and forms liquid
jets below the mesh plate continuously. The liquid jets then break up and form satellite droplets.
Figures 5(a) and 5(c) indicate the maximum pancake spreading diameter increases with We, in
agreement with the results in Refs. [7,8]. In contrast, the maximum pancake spreading diameter
decreases with Oh, as shown in Figs. 5(a) and 5(b), which is similar to the finding from a droplet
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FIG. 6. The 3D main view and side view of droplet fragmentation after impact on the mesh array. The rows
in the figure represent different We cases, and the columns indicate various Oh cases.

impacting a solid flat plate [36]. By comparing the evolution of the liquid jets below the mesh plate,
it can be observed that the maximum breakup lengths of the liquid jets significantly increase with
We, in agreement with the findings in Refs. [37,38]. It is also noted that the maximum breakup
lengths decrease slightly with increasing Oh. As the pancake spreads over the mesh, the liquid
penetrates through the mesh openings simultaneously. Moreover, the higher the Weber number, the
higher the pancake spread rate and the higher the penetration rate. On the contrary, the higher the
Ohnesorge number, the lower the pancake spread rate and the lower the penetration rate.

Figure 6 includes the main view and side view of droplet fragmentation under various Weber and
Ohnesorge numbers when T ∗ = 6.5. Similar to the experimental results, the droplet total penetrated
mass increases with We [11,21] but decreases with Oh [20], which is also in agreement with
the pancake’s penetration rate indicated in Fig. 5. In terms of satellite droplets after the liquid
jet breakup, the number significantly increases with We but decreases with Oh, and the size of
the satellite droplets has an uneven distribution. The simulation results confirm the conclusion in
Ref. [9] that the spray from the droplet impacting the mesh is governed by the jet instability, and the
breakup of the capillary jets causes a broad droplet size distribution [9,39].

As indicated in the above qualitative results, the liquid properties affect the droplet spread and
penetration dynamics, and lead to various fragmentation outcomes. In the following, quantitative
analysis will be conducted to investigate the influence of droplet properties. Firstly, the height and
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FIG. 7. The dimensionless pancake diameter as a function of dimensionless time. The evolution is divided
into three stages: spread stage, equilibrium stage, and retraction stage. The evolution of the spread stage in the
inserted figure agrees with the theoretical prediction of Eq. (1) (dashed line).

diameter of the pancake, and the jet length, will be investigated below. Secondly, based on the energy
analysis, the droplet surface area evolution and fragmentation mechanisms will be presented.

FIG. 8. The dimensionless pancake height vs the dimensionless time during the three stages. The insert
figure shows the spread stage and equilibrium stages of the pancake’s height evolution: the dash-dotted
line stands for the power law dependency, the solid line represents linear dependency, and the dashed line
demonstrates the exponential decay dependency [Eq. (2)].
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A. Droplet dynamic evolution

The pancake’s diameter and height evolution are shown in Figs. 7 and 8, respectively. In the
figures, the x axis stands for the dimensionless time (T ∗) and the y axis denotes the dimensionless
diameter (D∗) and height (H∗) of the pancake, respectively. The evolution process is divided into
three stages, which are spread stage, equilibrium stage, and retraction stage.

As indicated in Fig. 7, the pancake diameter rapidly increases to the peak value in the spread
stage to reach a quasiequilibrium. The maximum pancake spreading diameter varies with Oh and
We, and the retraction time varies in different cases and is significantly lower for the smaller We
droplets. This is because the bounce off time of the droplet is proportional to the dimensionless
inertia-capillarity time (τ ∗ = We0.5/2) [40]. During the spread stage, the droplet dynamics for all
cases are very consistent, as these are governed by the inertial effect which is determined by the
impact velocity. The temporal change of the pancake diameter has been discussed in previous studies
[8,41]:

D∗ = C1T ∗0.5. (1)

The fitted constant C1 in our study equals 1.92, which is similar to the experimentally fitted
constant 2.8 in Ref. [41]. As shown in the insert of Fig. 7, the simulation results in all cases achieve
a good agreement with the theoretical prediction [the dashed line represents Eq. (1)].

Regarding the evolution of pancake’s height, as indicated in Fig. 8, it first decreases in the spread
stage and then reaches a quasiequilibrium, followed by a retraction stage. For the lower We cases,
the rebound droplet leads to an increase in the pancake’s height in the retraction stage. In the higher
We cases, the droplets penetrate through the mesh array, resulting in the continuous decrease in the
pancake’s height.

Three different models are adopted to describe the height evolution of the pancakes during the
spread and the equilibrium stages. These are shown in the insert of Fig. 8: the power law dependency
H∗ = AT ∗−2 [42,43], linear dependency H∗ = 1 − BT ∗ [8], and exponential decay dependency
[9]:

H∗ = e−C2T ∗
. (2)

As indicated in Fig. 8, the simulated droplet height evolution agrees well with the power law at
the later spread stage and the equilibrium stage, and the best fitted constant A equals 0.24, which is of
the same magnitude as that in Ref. [42]. Similar to the results in Refs. [8,42], the simulated evolution
of the droplet height at the early stage of the spread can be described by the linear dependency,
and the fitted constant B is 0.81. Finally, the simulated evolution of the droplet height is in good
agreement with the exponential decay dependency during all the spread and equilibrium stages.
The fitted constant C2 equals to 1.25, which is similar to the experimentally fitted constant 1.42 in
Ref. [9].

As a summary of the above results, we find that both liquid surface tension and viscosity
can influence the droplet dynamics in the horizontal and vertical directions, especially after the
equilibrium stage. Owing to the much lower Oh in the previous studies [7–11], the inertia is regarded
as having the dominant effect, and the viscous effect is ignored. However, the minimum Oh = 0.02
in our studies is larger than the critical value 0.018 [20,22]. This suggests that viscosity should play
a role in droplet dynamics. Additionally, the maximum capillary number (ratio between the viscous
force and the capillary force) in our study is Ca = μV/[(1 − φ)γ ] ∼ 0.1 [44,45]. This implies that
the capillary force is 10 times the viscosity force. Thus the capillary effect and viscosity effect can
significantly affect droplet dynamics.

Both the velocity vector and velocity contours of the droplet at the end of the equilibrium stage
(T ∗ = 1.7) are plotted in Fig. 9. By comparing droplets with different surface tensions, Fig. 9(a)
shows that for the larger surface tension droplet, a significant backflow occurs at the edge of
the droplet pancake. And for the lower surface tension droplet [Fig. 9(b)], its horizontal spread
velocity and vertical jet velocity are higher than those of the higher surface tension droplet. This can
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FIG. 9. The velocity vector and velocity contours of the droplet at the later equilibrium stage
(T ∗ =1.7): (a) We=100, Oh=0.04; (b) We = 300, Oh = 0.04; (c) We = 200, Oh = 0.02; and (d) We = 200,
Oh = 0.08.

explain why the maximum spreading diameter of the larger surface tension droplet is smaller and
its retraction time is shorter. Also, the higher jet velocity implies larger penetration energy, which
is the reason for the larger surface tension droplet to show rebound (see the solid square in Fig. 8)
while the lower surface tension droplet penetrates through the mesh array at the retraction stage
(see the solid inverted triangle in Fig. 8). On the other hand, by comparing droplets with different
viscosities, it can be observed that for the larger viscosity droplet [Fig. 9(d)], its horizontal spread
velocity and vertical jet velocity are significantly lower than those of the smaller viscosity droplet
owing to the viscous energy dissipation, which finally results in a lower maximum spread diameter.

To further quantitatively investigate the influence of the droplet properties on the droplet dynam-
ics, the maximum spreading diameter of the pancake and the maximum liquid jet breakup length
have been recorded. Figure 10(a) represents how the maximum pancake spreading diameters are
affected when impacting the mesh array with different Weber and Ohnesorge numbers. In agreement
with the droplet evolution process shown in Fig. 7, the maximum pancake spreading diameter
increases with We and decreases with the increase of Oh. Kumar et al. [7] and Zhang et al. [8]
proposed that the maximum droplet spreading diameter scales as ∼ We0.25 based on an analysis
of the balance between droplet’s dynamic pressure and capillary pressure in the configuration of
droplet impacting on a flat hydrophobic plate.

In this study the prediction is extended to higher viscosity droplet cases. Following the theory
proposed by Scheller et al. [46], by balancing the droplet dynamic energy, surface energy, and
viscous dissipation energy, the maximum spreading diameter of a droplet impacting on the flat plate
scales as ∼ (We/Oh)0.166 [36,46]. Considering the droplet viscous dissipation is larger when forced
crossing the perforated plate [16,17] than impacting a flat plate, a modified model is obtained by
adding a correction term containing Oh:

D∗
max = 0.61∗

(
We

Oh + 0.063

)0.166

. (3)
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FIG. 10. The effects of Weber and Ohnesorge numbers on the maximum dimensionless pancake spreading
diameter and maximum jet breakup length.

D∗
max is the maximum dimensionless spreading diameter of the pancake. As shown in Fig. 10(a),

the predictions of the modified model agree with the simulation results over a wide range of We at
Oh = 0.02, 0.04, 0.06, and 0.08, respectively.

Figure 10(b) presents the maximum liquid jet breakup length versus different Weber and Ohne-
sorge numbers. As shown in the graph, compared with Oh, We has a dominant effect on the liquid
jet breakup length. According to Grant et al. [38], for the weakly turbulent liquid column, the ratio
of maximum jet breakup length (Lmax) and opening width (w) can be scaled as

Lmax

w
∼ [√

We∗(1 + 3 · Oh∗)
]0.85

, (4)

where We∗ and Oh∗ are the modified Weber and Ohnesorge numbers which integrate the influence
of drop speed and mesh size. According to Wang et al. [21], the droplet penetration velocity (VP)
when impacting the mesh can be expressed as V 2

P ∼ √
2πwV 2/D0. Based on the balance of the

droplet inertial force ∼0.5ρlV 2
P , capillary force ∼ 4γ /w, and viscous drag ∼μVP/w, We∗ and

Oh∗ can be written as We∗ = (
√

2πw2/8D2
0)We and Oh∗ = (D0/2w)0.5Oh, respectively. Due to the

small magnitude of the modified Oh Oh∗ ∼ 10−2, the viscosity term in Eq. (4) can be neglected.
Substituting We∗ into Eq. (4), the maximum dimensionless breakup length (L∗

max) can be described
as

L∗
max = Lmax

D0
∼

(
w

D0

)(√
2πw2

8D2
0

We

)0.425

. (5)

The best fitted Eq. (5) L∗
max = 0.4(We)0.425 is plotted as the dashed line in Fig. 10(b), where the

constant 0.4 is of the same magnitude as the experimentally fitted constant in Ref. [38]. As shown
in the graph, deviations from the model occur mainly under the lower Weber numbers for larger
Oh cases, where the capillary effect dominates the droplet dynamics and the viscosity effect of the
ambient gas cannot be ignored [37]. However, with the larger Weber numbers, in which the inertial
effect governs the droplet dynamics, the modified equation achieves a good agreement with the
simulation results.

B. Droplet energy evolution

The energy analysis is adopted to further investigate the droplet fragmentation mechanism. The
droplet kinetic energy (KE) is represented by

∫∫∫
1
2ρlV 2d�, and surface energy (SE) is calculated by

γ S, where � is the droplet volume and S is the liquid interface area. The viscous energy dissipation
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FIG. 11. The dimensionless kinetic energy (a), surface energy (b), viscous energy dissipation (c), and
penetrated mass (d) evolution for the We = 250 cases.

(DE) is described as

DE =
∫ N

0

∫ �

0
	d�dt, (6)

∫�
0 	d� represents the droplet viscous dissipation rate (VDR), and [47]

	 = μ

[
2

(
∂u

∂x

)2

+ 2

(
∂v

∂y

)2

+ 2

(
∂w

∂z

)2

+
(

∂u

∂y
+ ∂v

∂x

)2

+
(

∂v

∂z
+ ∂w

∂y

)2

+
(

∂w

∂x
+ ∂u

∂z

)2]
,

(7)
where u, v, w stand for the velocity components in x, y, z directions, respectively. The following
Figs. 11 and 12 present the droplet energy and penetrated mass evolution for We = 200 and Oh =
0.04 cases before T ∗ = 8, respectively. The dimensionless energy KE*, SE* are normalized by their
initial values, respectively. DE* equals DE divided by the droplet total energy, which equals the sum
of the initial SE and KE. The dimensionless penetrated mass M* is calculated by the penetrated mass
below the mesh array divided by the droplet initial mass.

As demonstrated in Figs. 11 and 12, upon the droplet contacting with the plate, KE is partly
converted into SE and partly dissipated through DE. With the droplet spreading and the liquid jets
below the plate continuously developing, SE reaches its peak value very quickly. In the meantime,
owing to the interaction between the droplet and the solid array during the spread and permeation
processes, DE significantly increases. Then, due to the capillary instability, the liquid jets break up,
which leads to a lower level of SE [39,48]. The droplet-penetrated mass first increases and then
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FIG. 12. The dimensionless kinetic energy (a), surface energy (b), viscous energy dissipation (c), and
penetrated mass (d) evolution for the Oh = 0.04 cases.

reaches a quasiequilibrium. The evolution of the droplet energy and penetrated mass is consistent
with its dynamic process shown in Fig. 5.

For the same We, Fig. 11(a) indicates that the lower Oh droplet achieves a higher final KE,
which can be explained by the lower viscosity dissipation [see Fig. 11(c)]. It also can be observed
that the lower Oh cases reach higher maximum surface energy [see Fig. 11(b)], which agrees with
the prediction [Eq. (3)] of the maximum pancake spreading diameter. As indicated in Fig. 11(d),
owing to the high We (We = 250) in the presented case, the penetration of the droplet is dominated
by the inertial effect, and thus the liquid viscosity has little influence on its total penetrated mass.
It is also noted that the viscous drag is lower for the lower Oh cases, which eventually results in a
faster penetration rate.

For the same Oh, larger surface tension causes more obstruction to the spread of the droplet
over the plate and to the penetration of liquid through the mesh openings. Thus the final KE and
SE are lower for the smaller We cases [shown in Figs. 12(a) and 12(b)]. Also, owing to the larger
maximum surface area for the higher We droplet, its viscosity dissipation is higher before the droplet
fragmentation [shown in Fig. 12(c)]. Figure 12(d) indicates that the surface tension of the droplet
significantly influences its total penetrated mass. During the droplet penetration, the capillary force
for a single jet scales as 4γ /w; thus a higher surface tension droplet implies a higher capillary force.
As shown in Fig. 14(a), under the same dimensionless time, the droplet jet length is longer for the
higher We cases, which results in a larger total penetrated mass.

As shown in Figs. 11(b) and 12(b), the droplet surface energy significantly decreases after liquid
jet breakup. The value of the droplet surface area can be obtained through dividing the droplet SE by
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FIG. 13. The maximum dimensionless droplet spreading surface area (a) and the total liquid surface area
after jet breakup (b) vs We, for various Oh cases.

its surface tension. Figure 13 shows the maximum droplet spreading surface area and the total liquid
surface area after jet breakup, as the two surface areas are the critical parameters in the application
of materials science and spray cooling [7,8]. The x axis represents We, and the y axis in Figs. 13(a)
and 13(b) stands for the dimensionless form of the maximum droplet spreading surface area and the
total liquid surface area after fragmentation (when T ∗ = 7.5), respectively.

In agreement with the SE evolution results in Figs. 11 and 12, the maximum droplet spreading
surface area increases with We but decreases with Oh. This is because higher surface tension
and viscosity drag tend to prevent the droplet from spreading. However, as shown in Fig. 13(b),
the total liquid surface area after jet breakup is affected by different mechanisms for different
Ohnesorge numbers. For an Oh closes to the critical value of 0.018, the total liquid surface area after
fragmentation is larger than the other cases and increases with We. However, when Oh is greater
than the critical value, the total liquid surface area varies in different cases and is significantly
below the maximum value. The differences can be explained via the mechanism of the jet breakup.

FIG. 14. The droplet velocity contour in the symmetry plane: (a) Oh = 0.04 droplets, with We = 100, 150,
and 250, respectively; (b) We = 200 droplets, with Oh = 0.02, 0.04, and 0.08, respectively. The 3D inserted
figures in (a) represent the droplet remaining above the plate and in (b) show the merged droplets after the jet
fragmentation.
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The unstable wavelength for jet breakup increases with liquid viscosity, which results in a bigger
satellite droplet diameter for a higher Oh [49–51]. When the satellite droplet diameter is smaller
than the width of the solid bridge between neighboring mesh openings, drops drip down dispersedly
[Oh = 0.02, shown in Fig. 14(b)]. Thus a higher We leads to a longer liquid jet [shown in Fig. 14(a)],
finally resulting in a higher total liquid surface area after fragmentation. For a satellite droplet
diameter larger than the solid bridge breadth, the satellite droplets near the bottom of the plate
merge together, which leads to decreased total liquid surface area [the Oh = 0.04 and 0.08 cases in
Fig. 14(b)].

IV. CONCLUSION

In this study we adopt a nonorthogonal multiple-relaxation-time lattice Boltzmann method to
simulate a droplet impacting on a mesh array. The methodology has been validated using exper-
imental data of a droplet impact on a solid surface. The validated method has been employed to
simulate a droplet impacting on a mesh array over a wide range of liquid properties, with a focus on
the influences of the liquid surface tension and viscosity. The results indicate that during the initial
impact and spread stage of the droplet impact, its dynamics is dominated by the inertial effect, and
the liquid properties have little influence. The droplet spreads on the mesh plate to form a pancake
whose diameter and height can be predicted by models of a power law [Eq. (1)] and an exponential
decay dependency [Eq. (2)], respectively. As the droplet continuously spreads, liquid starts to
penetrate through mesh openings and forms jets below the mesh plate. The liquid viscous drag and
surface tension act to prevent the horizontal spread of the droplet and the vertical penetration. The
maximum pancake spreading diameter is a function of Weber and Ohnesorge numbers, as described
by Eq. (3). The liquid jets below the mesh plate are affected by a combination of the inertia force
and capillary force, with the capillary effect being dominant. The liquid jets eventually break up due
to jet instability, and the maximum breakup length can be predicted by Eq. (5).

More quantitative analyses are carried out from the perspective of energy evolution, penetrated
mass, and surface area to further explore the effects of liquid properties. Based on the droplet energy
evolution, the higher surface tension and viscosity result in lower kinetic energy and higher viscous
energy dissipation due to the obstruction of the droplet movement. In terms of the penetrated mass,
the results suggest that the viscous effect reduces the droplet penetration rate but has little influence
on the total penetrated mass. The total penetrated mass significantly decreases with the increasing
surface tension, which can be explained by the capillary effect on the liquid jet. Moreover, based on
the analysis of the droplet surface area, the maximum droplet spreading surface area decreases with
the increasing surface tension and viscosity. Finally, the total liquid surface area after jet breakup
is significantly influenced by the liquid viscosity. A lower viscosity leads to a shorter unstable
wavelength of the liquid jet and thus smaller dispersed satellite droplets, while a higher viscosity
results in a longer unstable wavelength and thus bigger merged satellite droplets. These findings are
expected to be valid for even a wider range of Weber and Ohnesorge numbers, which should be
confirmed in follow-up studies. Also, in the future it would be informative to consider the effects of
mesh array vibration due to droplet impact on the mesh array.
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APPENDIX

The nonorthogonal multiple-relaxation-time lattice Boltzmann model can be described as [31]:

f ∗
i (x, t ) = fi(x, t ) − �

[
fi − f eq

i

]
(x,t ) + �t

2
[F̄i(x, t ) + F̄i(x + ei�t, t + �t )], (A1)

where fi and f ∗
i are discrete distribution functions before and after collision, respectively, x

represents the position vector, t is the time, F̄i stands for the forcing terms in the discrete velocity
space, and ei are the discrete velocities. The collision operator is � = (M−1SM), where M is the
transformation matrix which depends on the raw moment set, and S is a diagonal relaxation matrix
[23,17].

The low-Mach equilibrium distribution function f eq
i is given as [52]

f eq
i = ρω(|ei|2)

[
1 + ei · u

c2
s

+ (ei · u)2

2c4
s

− (u · u)

2c2
s

]
, (A2)

where ρ stands for density, cs is the lattice sound speed and equals 1/
√

3, and u = [ux, uy, uz]
represents the fluid velocity tensor. In this work, the D3Q19 lattice model is used. The weights for
the D3Q19 lattice model are ω(0) = 1/3, ω(1) = 1/18, and ω(2) = 1/36. The discrete velocities
ei = [|eix〉, |eiy〉, |eiz〉,] are defined as follows:

|eix〉 = [0, 1,−1, 0, 0, 0, 0, 1,−1, 1,−1, 1,−1, 1,−1, 0, 0, 0, 0, 1,

−1, 1,−1, 1,−1, 1,−1]T,

|eiy〉 = [0, 0, 0, 1,−1, 0, 0, 1, 1,−1,−1, 0, 0, 0, 0, 1,−1, 1,

−1, 1, 1,−1,−1, 1, 1,−1,−1]T,

|eiz〉 = [0, 0, 0, 0, 0, 1,−1, 0, 0, 0, 0, 1, 1,−1,

−1, 1, 1,−1,−1, 1, 1, 1, 1,−1,−1,−1,−1]T,

where i = 0, 1, . . . ., 18, |·〉 denotes a 19-dimensional column vector, and the superscript T denotes
the transposition. The forcing terms can be written as [52]

F̄i = ω(|ei|2)

[
ei − u

c2
s

+ (ei · u)ei

c4
s

]
· F, (A3)

where F = [Fx, Fy, Fz] is the total force vector imposed on the fluid. Multiplication of the explicit
form of Eq. (A1) by the transformation matrix M leads to the collision equation in the moment
space as follows [23]:

m̄∗ = m̄ − S(m̄ − meq) +
(

I − S
2

)
�tF̃, (A4)

where I is the unit matrix, and the transformation fi = fi − �t F̄i/2 has been used to remove the
implicit scheme in Eq. (A1), m̄ = M f̄ , meq = M f eq, and F̃ = MF̄. Following the collision step,
the discrete distribution functions are obtained by f̄ ∗

i = M−1m̄∗. By moving from position x to
the neighboring positions (x + ei�t) along the discrete velocity directions, the updated discrete
distribution functions are

f̄i(x + ei�t, t + �t ) = f̄ ∗
i (x, t ). (A5)

The fluid properties in the physical space can be calculated by

ρ =
∑

i

f̄i, ρu =
∑

i

f̄iei + �tF
2

. (A6)
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In this paper the corresponding nonorthogonal transformation matrix M following the latest
advances in cascaded lattice Boltzmann scheme [53,54] is employed. It can be proven through a
Chapman-Enskog analysis (see Appendix A in Ref. [23]) that such a nonorthogonal MRT-LBM
recovers the Navier-Stokes equations in the low-Mach-number limit.

To simulate the multiphase flow, the pseudopotential model is adopted in which the molecular
interactions that lead to the phase segregation between phases are represented by a pseudopotential
interaction force [28]:

F int = −Gψ (x)
∑

i

w(|ei|2)ψ (x + ei�t )ei, (A7)

where G is the interaction strength which is usually fixed as −1, ψ is the pseudopotential which
is dependent on density, and the weights are w(|ei|2) = ω(|ei|2)/c2

s . Following Colosqui et al. and
Yuan and Schaefer [55,56], the pseudopotential is expressed as

ψ =
√

2
(
pEOS − ρc2

s

)
Gc2

, (A8)

where c = 1 is the lattice constant, and pEOS is related to the equation of state (EOS). In this work
the piecewise equation of state is adopted [56]. In addition, the following terms are added to F̄i to
describe the interaction between the fluid and a solid surface [31]:

Fads = −Gadsψ (x)
∑

i

w(|ei|2)ψ (x)s(x + ei�t )ei, (A9)

where Gads is the fluid-solid interaction strength to adjust the droplet contact angle, and s(x) is an
indicator function which equals 1 for solid and 0 for fluid, respectively. To achieve a large density
ratio and tunable surface tension for multiphase flow in such a nonorthogonal MRT-LBM, several
elements in F̃ should be modified. The detailed derivations and explanations for such a modification
can be seen in the study of Fei et al. [23].
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