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Abstract 24 

An exploration-exploitation trade-off, the arbitration between sampling a lesser-known 25 

against a known rich option, is thought to be solved using computationally demanding 26 

exploration algorithms. Given known limitations in human cognitive resources, we hypothesised 27 

the presence of additional cheaper strategies. We examined for such heuristics in choice 28 

behaviour where we show this involves a value-free random exploration, that ignores all prior 29 

knowledge, and a novelty exploration that targets novel options alone. In a double-blind, 30 

placebo-controlled drug study, assessing contributions of dopamine (400mg amisulpride) and 31 

noradrenaline (40mg propranolol), we show that value-free random exploration is attenuated 32 

under the influence of propranolol, but not under amisulpride. Our findings demonstrate that 33 

humans deploy distinct computationally cheap exploration strategies and where value-free 34 

random exploration is under noradrenergic control.  35 
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Introduction  36 

Chocolate, Toblerone, spinach or hibiscus ice-cream? Do you go for the flavour you like 37 

the most (chocolate), or another one? In such an exploration-exploitation dilemma, you need to 38 

decide whether to go for the option with the highest known subjective value (exploitation) or opt 39 

instead for less known or valued options (exploration) so as to not miss out on possibly even 40 

higher rewards. In the latter case, you can opt to either chose an option that you have previously 41 

enjoyed (Toblerone), an option you are curious about because you do not know what to expect 42 

(hibiscus), or even an option that you have disliked in the past (spinach). Depending on your 43 

exploration strategy, you may end up with a highly disappointing ice cream encounter, or a life-44 

changing gustatory epiphany.  45 

A common approach to the study of complex decision making, for example an 46 

exploration-exploitation trade-off, is to take computational algorithms developed in the field of 47 

artificial intelligence and test whether key signatures of these are evident in human behaviour. 48 

This approach has revealed humans use strategies that reflect an implementation of 49 

computationally demanding exploration algorithms (1, 2). One such strategy, directed 50 

exploration, involves awarding an ‘information bonus’ to choice options, a bonus that scales with 51 

uncertainty. This is captured in algorithms such as the Upper Confidence Bound (UCB) (3, 4) 52 

and leads to an exploration of choice options the agent knowns little about (1, 5) (e.g. the 53 

hibiscus ice-cream). An alternative strategy, sometimes termed ‘random’ exploration, is to 54 

induce stochasticity after value computations in the decision process. This can be realised using a 55 

fixed parameter as a source of stochasticity, such as a softmax temperature parameter (6, 7), 56 

which can be combined with the UCB algorithm (1). Alternatively, one can use a dynamic 57 

source of stochasticity, such as in Thompson sampling (8), where stochasticity adapts to an 58 
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uncertainty about choice options. This exploration is essentially a more sophisticated, 59 

uncertainty-driven, version of a softmax. By accounting for stochasticity when comparing choice 60 

options’ expected values, in effect choosing based on both uncertainty and value, these 61 

exploration strategies increase the likelihood of choosing ‘good’ options that are only slightly 62 

less valuable than the best (e.g. the Toblerone ice-cream if you are a chocolate lover).  63 

The above processes are computationally demanding, especially when facing real-life 64 

multiple-alternative decision problems (6, 9, 10). Human cognitive resources are constrained by 65 

capacity limitations (11), metabolic consumption (12), but also because of resource allocation to 66 

parallel tasks (e.g. (13, 14)). This directly relates to an agents’ motivation to perform a given task 67 

(11, 15, 16), as increasing an information demand in one process automatically reduces its 68 

availability for others (12). In real-world highly dynamic environments, this arbitration is critical 69 

as humans need to maintain resources for alternative opportunities (i.e. flexibility; (11, 17, 18)). 70 

This accords with previous studies showing humans are demand-avoidant (17, 19) and suggests 71 

that exploration computations tend to be minimised. Here, we examine the explanatory power of 72 

two additional computationally less costly forms of exploration, namely value-free random 73 

exploration and novelty exploration. 74 

Computationally, the least resource demanding way to explore is to ignore all prior 75 

information and to choose entirely randomly, de facto assigning the same probability to all 76 

options. Such ‘value-free’ random exploration, as opposed to the two previously considered 77 

‘value-based’ random explorations (for simulations comparing their effects cf. Figure 1 – Figure 78 

supplement 2) that add stochasticity during choice value computation, forgoes any costly 79 

computation (i.e. value mean and uncertainty), known as an ϵ-greedy algorithmic strategy in 80 

reinforcement learning (20). Computational efficiency, however, comes at the cost of sub-81 
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optimality due to occasional selection of options of low expected value (e.g. the repulsive 82 

spinach ice cream).  83 

Despite its sub-optimality, value-free random exploration has neurobiological 84 

plausibility. Of relevance in this context is a view that exploration strategies depend on 85 

dissociable neural mechanisms (21). Influences from noradrenaline and dopamine are plausible 86 

candidates in this regard based on prior evidence (9, 22). Amongst other roles (such as memory 87 

(23), or energisation of behaviour (24, 25)), the neuromodulator noradrenaline has been ascribed 88 

a function of indexing uncertainty (26–28) or as acting as a ‘reset button’ that interrupts ongoing 89 

information processing (29–31). Prior experimental work in rats shows boosting noradrenaline 90 

leads to more value-free-random-like random behaviour (32), while pharmacological 91 

manipulations in monkeys indicates reducing noradrenergic activity increases choice consistency 92 

(33).  93 

In human pharmacological studies, interpreting the specific function of noradrenaline on 94 

exploration strategies is problematic as many drugs, such as atomoxetine (e.g. (34)), impact 95 

multiple neurotransmitter systems. Here, to avoid this issue, we chose the highly specific β-96 

adrenoceptor antagonist propranolol, which has only minimal impact on other neurotransmitter 97 

systems (35–37). Using this neuromodulator, we examine whether signatures of value-free 98 

random exploration are impacted by administration of propranolol. 99 

An alternative computationally efficient exploration heuristic to random exploration is to 100 

simply choose an option not encountered previously, which we term novelty exploration. 101 

Humans often show novelty seeking (38–41), and this strategy can be used in exploration as 102 

implemented by a low-cost version of the UCB algorithm. Here a novelty bonus (42) is added if 103 
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a choice option has not been seen previously (i.e. it does not have to rely on precise uncertainty 104 

estimates). The neuromodulator dopamine is implicated not only in exploration in general (43), 105 

but also in signalling such types of novelty bonuses, where evidence indicates a role in 106 

processing and exploring novel and salient states (39, 44–47). Although pharmacological 107 

dopaminergic studies in humans have demonstrated effects on exploration as a whole (48), they 108 

have not identified specific exploration strategies. Here, we used the highly specific D2/D3 109 

antagonist, amisulpride, to disentangle the specific role of dopamine and noradrenaline on 110 

different exploration strategies.  111 

Thus, in the current study, we examine the contributions of value-free random 112 

exploration and novelty exploration in human choice behaviour. We developed a novel 113 

exploration task combined with computational modeling to probe the contributions of 114 

noradrenaline and dopamine. Under double-blind, placebo-controlled, conditions we assessed the 115 

impact of two antagonists with high affinity and specificity for either dopamine (amisulpride) or 116 

noradrenaline (propranolol) respectively. Our results provide evidence that both exploration 117 

heuristics supplement computationally more demanding exploration strategies, and that value-118 

free random exploration is particularly sensitive to noradrenergic modulation, with no effect of 119 

amisulpride.  120 
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Results 121 

Probing the contributions of heuristic exploration strategies 122 

We developed a novel multi-round three-armed bandit task (Figure 1; bandits depicted as 123 

trees), enabling us to assess the contributions of value-free random exploration and novelty 124 

exploration in addition to Thompson sampling and UCB (combined with a softmax). In 125 

particular, we exploited the fact that both heuristic strategies make specific predictions about 126 

choice patterns. The novelty exploration assigns a ‘novelty bonus’ only to bandits for which 127 

subjects have no prior information, but not to other bandits. This can be seen as a low-resolution 128 

version of UCB, which assigns a bonus to all choice options proportionally to how informative 129 

they are, in effect a graded bonus which scales to each bandits’ uncertainty. Thus, to capture this 130 

heuristic, we manipulated the amount of prior information with bandits carrying only little 131 

information (i.e. 1 vs 3 initial samples) or no information (0 initial samples). A high novelty 132 

exploration predicts a higher frequency of selecting the novel option (Figure 1f). This is in 133 

contrast to high exploration using other strategies which does not predict such a strong effect on 134 

the novel option (cf. Figure 1 - Figure supplement 5).  135 

Value-free random exploration, captured here by 𝜖-greedy, predicts that all prior 136 

information is discarded entirely and that there is equal probability attached to all choice options. 137 

This strategy is distinct from other exploration strategies as it is likely to choose bandits known 138 

to be substantially worse than the other bandits. Thus, a high value-free random exploration 139 

predicts a higher frequency of selecting the low-value option (Figure 1e), whereas high 140 

exploration using other strategies does not predict such effect (cf. Figure 1 - Figure supplement 141 

3). A second prediction is that choice consistency, across repeated trials, is directly affected by 142 

value-free random exploration, in particular by comparison to other more deterministic 143 
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exploration strategies (e.g. directed exploration) that are value-guided and thus will consistently 144 

the most informative and valuable options. Given that value-free random exploration splits its 145 

choice probability equally (i.e. 33.3% of choosing any bandit out of the three displayed), an 146 

increase in such exploration predicts a lower likelihood of choosing the same bandit again, even 147 

under identical choice options (Figure 1e). This contrasts to other strategies that make consistent 148 

exploration predictions (e.g. UCB would consistently explore the choice option that carries a 149 

high information bonus; Figure 1 - Figure supplement 4). 150 

We generated bandits from four different generative processes (Figure 1c) with distinct 151 

sample means (but a fixed sampling variance) and number of initial samples (i.e. samples shown 152 

at the beginning of a trial for this specific bandit). Subjects were exposed to these bandits before 153 

making their first draw. The ‘certain-standard bandit’ and the (less certain) ‘standard bandit’ 154 

were bandits with comparable means but varying levels of uncertainty, providing either three or 155 

one initial samples (depicted as apples; similar to the horizon task (7)). The ‘low-value bandit’ 156 

was a bandit with one initial sample from a substantially lower generative mean, thus appealing 157 

to a value-free random exploration strategy alone. The last bandit, with a mean comparable with 158 

that of the standard bandits, was a ‘novel bandit’ for which no initial sample was shown, 159 

primarily appealing to a novelty exploration strategy (cf. Materials and Methods for a full 160 

description of bandit generative processes). To assess choice consistency, all trials were repeated 161 

once. In the pilot experiments (data not shown), we noted some exploration strategies tended to 162 

overshadow other strategies. To effectively assess all exploration strategies, we opted to present 163 

only three of the four different bandit types on each trial, as different bandit triples allow 164 

different explorations to manifest. Lastly, to assess whether subjects’ behaviour captured 165 

exploration, we manipulated the degree to which subjects could interact with the same bandits. 166 
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Similar to previous studies (7), subjects could perform either one draw, encouraging exploitation 167 

(short horizon condition) or six draws encouraging more substantial explorative behaviour (long 168 

horizon condition) (7, 34). 169 

170 
Figure 1. Study design. In the Maggie’s farm task, subjects had to choose from three bandits 171 

(depicted as trees) to maximise an outcome (sum of reward). The rewards (apple size) of each 172 

bandit followed a normal distribution with a fixed sampling variance. (a) At the beginning of 173 

each trial, subjects were provided with some initial samples on the wooden crate at the bottom of 174 

the screen and had to select which bandit they wanted to sample from next. (b) Depending the 175 

condition, they could either perform one draw (short horizon) or six draws (long horizon). The 176 

empty spaces on the wooden crate (and the suns’ position) indicated how many draws they had 177 

left. The first draw in both conditions was the main focus of the analysis. (c) In each trial, three 178 

bandits were displayed, selected from four possible bandits, with different generative processes 179 

that varied in terms of their sample mean and number of initial samples (i.e. samples shown at 180 

the beginning of a trial). The ‘certain-standard bandit’ and the ‘standard bandit’ had comparable 181 

means but different levels of uncertainty about their expected mean: they provided three and one 182 

initial sample respectively; the ‘low-value bandit’ had a low mean and displayed one initial 183 

sample; the ‘novel bandit’ did not show any initial sample and its mean was comparable with 184 
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that of the standard bandits. (d) Prior to the task, subjects were administered different drugs: 185 

400mg amisulpride that blocks dopaminergic D2/D3 receptors, 40mg propranolol to block 186 

noradrenergic β-receptors, and inert substances for the placebo group. Different administration 187 

times were chosen to comply with the different drug pharmacokinetics (placebo matching the 188 

other groups’ administration schedule). (e) Simulating value-free random behaviour with a low 189 

vs high model parameter (𝜖) in this task shows that in a high regime, agents choose the low-value 190 

bandit more often (left panel; mean ± SD) and are less consistent in their choices when facing 191 

identical choice options (right panel). (f) Novelty exploration exclusively promotes choosing 192 

choice options for which subjects have no prior information, captured by the ‘novel bandit’ in 193 

our task. For details about simulations cf. Materials and Methods. For details about the task 194 

display cf. Figure 1 – Figure supplement 1. For simulations of different exploration strategies 195 

and their impact of different bandits cf. Figure 1 – Figure supplement 2-5.  196 

 197 

Testing the role of catecholamines noradrenaline and dopamine 198 

In a double-blind, placebo-controlled, between-subjects, study design we assigned 199 

subjects (N=60) randomly to one of three experimental groups: amisulpride, propranolol or 200 

placebo. The first group received 40mg of the 𝛽-adrenoceptor antagonist propranolol to alter 201 

noradrenaline function, while the second group was administered 400mg of the D2/D3 202 

antagonist amisulpride that alters dopamine function. Because of different pharmacokinetic 203 

properties, these drugs were administered at different times (Figure 1d) and compared to a 204 

placebo group that received a placebo at both drug times to match the corresponding antagonists’ 205 

time. One subject (amisulpride group) was excluded from the analysis due to a lack of 206 

engagement with the task. Reported findings were corrected for IQ and mood, as drug groups 207 

differed marginally in those measures (cf. Appendix 2 Table 1), by adding WASI (49) and 208 

PANAS (50) negative scores as covariates in each ANOVA. Similar results were obtained in an 209 

analysis that corrected for physiological effects as from the analysis without covariates (cf. 210 

Appendix 1). 211 
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Increased exploration when information can subsequently be exploited 212 

Our task embodied two decision-horizon conditions, a short and a long. To assess whether 213 

subjects explored more in a long horizon condition, in which additional information can inform 214 

later choices, we examined which bandit subjects chose in their first draw (in accordance with 215 

the horizon task (7)), irrespective of their drug group. A marker of exploration here is evident if 216 

subjects chose bandits with lower expected values, computed as the mean value of their initial 217 

samples shown (trials where the novel bandit was chosen were excluded). As expected, subjects 218 

chose bandits with a lower expected value in the long compared to the short horizon (repeated-219 

measures ANOVA for the expected value: F(1, 56)=19.457, p<.001, η2=.258; Figure 2a). To 220 

confirm that this was a consequence of increased exploration, we analysed the proportion of how 221 

often the high-value option was chosen (i.e. the bandit with the highest expected reward based on 222 

its initial samples) and we found that subjects (especially those with higher IQ) sampled from it 223 

more in the short compared to the long horizon, (WASI-by-horizon interaction: F(1,54)=13.304, 224 

p=.001, η2=.198; horizon main effect: F(1, 54)=3.909, p=.053, η2=.068; Figure 3a), confirming 225 

a reduction in exploitation when this information could be subsequently used. Interestingly, this 226 

frequency seemed to be marginally higher in the amisulpride group, suggesting an overall higher 227 

tendency to exploitation following dopamine blockade (cf. Appendix 1). This horizon-specific 228 

behaviour resulted in a lower reward on the 1
st
 sample in the long compared to the short horizon 229 

(F(1, 56)=23.922, p<.001, η2=.299; Figure 2c). When we tested whether subjects were more 230 

likely to choose options they knew less about (computed as the mean number of initial samples 231 

shown), we found that subjects chose less known (i.e. more informative) bandits more often in 232 

the long horizon compared to the short horizon (F(1, 56)=58.78, p<.001, η2=.512; Figure 2b).  233 
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Next, to evaluate whether subjects used the additional information beneficially in the long 234 

horizon condition, we compared the average reward (across six draws) obtained in the long 235 

compared to short horizon (one draw). We found that the average reward was higher in the long 236 

horizon (F(1, 56)=103.759, p<.001, η2=.649; Figure 2c), indicating that subjects tended to 237 

choose less optimal bandits at first but subsequently learnt to appropriately exploit the harvested 238 

information to guide choices of better bandits in the long run. Additionally, when looking 239 

specifically at the long horizon condition, we found that subjects earned more when their first 240 

draw was explorative versus exploitative (Figure 2 - Figure supplement 1c-d; cf. Appendix 2 for 241 

details).  242 
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 243 

244 
Figure 2. Benefits of exploration. To investigate the effect of information on performance we 245 

collapsed subjects over all three treatment groups. (a) The expected value (average of its initial 246 

samples) of the first chosen bandit as a function of horizon. Subjects chose bandits with a lower 247 

expected value (i.e. they explored more) in the long horizon compared to the short horizon. (b) 248 

The mean number of samples for the first chosen bandit as a function of horizon. Subjects chose 249 

less known (i.e. more informative) bandits more in the long compared to the short horizon. (c) 250 

The first draw in the long horizon led to a lower reward than the first draw in the short horizon, 251 

indicating that subjects sacrificed larger initial outcomes for the benefit of more information. 252 

This additional information helped making better decisions in the long run, leading to a higher 253 

earning over all draws in the long horizon. For values and statistics cf. Appendix 2 Table 3. For 254 

response times and details about all long horizons’ samples cf. Figure 2 – Figure supplement 1. 255 

*** =p<.001. Data are shown as mean ± SEM and each dot/line represent a subject. 256 

 257 

Subjects demonstrate value-free random behaviour  258 

Value-free random exploration (analogue to 𝜖-greedy) predicts that 𝜖 % of the time each 259 

option will have an equal probability of being chosen. In such a regime (compared to more 260 

complex strategies that would favour options with a higher expected value with a similar 261 

uncertainty), the probability of choosing bandits with a low expected value (here the low-value 262 

bandit; Fig. 1e) will be higher (cf. Figure 1 – Figure supplement 3). We investigated whether the 263 

frequency of picking the low-value bandit was increased in the long horizon condition across all 264 

subjects (i.e. when exploration is useful), and we found a significant main effect of horizon (F(1, 265 

54)=4.069, p=.049, η2=.07; Figure 3b). This demonstrates that value-free random exploration is 266 

utilised more when exploration is beneficial. 267 
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Value-free random behaviour is modulated by noradrenaline function 268 

When we tested whether value-free random exploration was sensitive to neuromodulatory 269 

influences, we found a difference in how often drug groups sampled from the low-value option 270 

(drug main effect: F(2, 54)=7.003, p=.002, η2=.206; drug-by-horizon interaction: F(2, 271 

54)=2.154, p=.126, η2=.074; Figure 3b). This was driven by the propranolol group choosing the 272 

low-value option significantly less often than the other two groups (placebo vs propranolol: 273 

t(40)=2.923, p=.005, d=.654; amisulpride vs propranolol: t(38)=2.171, p=.034, d=.496) with no 274 

difference between amisulpride and placebo: (t(38)=-0.587, p=.559, d=.133). These findings 275 

demonstrate that a key feature of value-free random exploration, the frequency of choosing low-276 

value bandits, is sensitive to influences from noradrenaline. 277 

To further examine drug effects on value-free random exploration, we assessed a second 278 

prediction, namely choice consistency. Because value-free random exploration ignores all prior 279 

information and chooses randomly, it should result in a decreased choice consistency when 280 

presented identical choice options (cf. Figure 1 – Figure supplement 2 & 4, compared to more 281 

complex strategies which are always biased towards the rewarding or the information providing 282 

bandit for example). To this end, each trial was duplicated in our task, allowing us to compute 283 

the consistency as the percentage of time subjects sampled from an identical bandit when facing 284 

the exact same choice options. In line with the above analysis, we found a difference in 285 

consistency by which drug groups sampled from different option (drug main effect: F(2, 286 

54)=7.154, p=.002, η2=.209; horizon main effect: F(1, 54)=1.333, p=.253, η2=.024; drug-by-287 

horizon interaction: F(2, 54)=3.352, p=.042, η2=.11; Figure 3c), driven by the fact that the 288 

propranolol group chose significantly more consistently than the other two groups (pairwise 289 

comparisons: placebo vs propranolol: t(40)=-3.525, p=.001, d=.788; amisulpride vs placebo: 290 



 

 15 

t(38)=1.107, p=.272, d=.251; amisulpride vs propranolol: t(38)=-2.267, p=.026, d=.514). Please 291 

see Appendix 1 for further discussion and analysis of the drug-by-horizon interaction. Taken 292 

together, these results indicate that value-free random exploration depends critically on 293 

noradrenaline functioning, such that an attenuation of noradrenaline leads to a reduction in value-294 

free random exploration. 295 

 296 

Figure 3. Behavioural horizon and drug effects. Choice patterns in the first draw for each 297 

horizon and drug group (propranolol, placebo and amisulpride). (a) Subjects sampled from the 298 

high-value bandit (i.e. bandit with the highest average reward of initial samples) more in the 299 

short horizon compared to the long horizon indicating reduced exploitation. (b) Subjects sampled 300 

from the low-value bandit more in the long horizon compared to the short horizon indicating 301 

value-free random exploration, but subjects in the propranolol group sampled less from it 302 

overall, and (c) were more consistent in their choices overall, indicating that noradrenaline 303 

blockade reduces value-free random exploration. (d) Subjects sampled from the novel bandit 304 

more in the long horizon compared to the short horizon indicating novelty exploration. Please 305 

note that some horizon effects were modulated by subjects’ intellectual abilities when 306 

additionally controlling for them (cf. Appendix 2 Table 4). Horizontal bars represent rm-307 

ANOVA (thick) and pairwise comparisons (thin). † =p<.07, * =p<.05, ** =p<.01. Data are 308 
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shown as mean ± SEM and each line represent one subject. For values and statistics cf. Appendix 309 

2 Table 4. For response times and frequencies specific to the displayed bandits cf. Figure 3 – 310 

Figure supplement 1-2.  311 

 312 

Novelty exploration is unaffected by catecholaminergic drugs 313 

Next, we examined whether subjects show evidence for novelty exploration by choosing 314 

the novel bandit for which there was no prior information (i.e. no initial samples), as predicted 315 

by model simulations (Figure 1f). We found a significant main effect of horizon (F(1, 54)=5.593, 316 

p=.022, η2=.094; WASI-by-horizon interaction: F(1, 54) =13.897, p<.001, η2=.205; Figure 3d) 317 

indicating that subjects explored the novel bandit significantly more often in the long horizon 318 

condition, and this was particularly strong for subjects with a higher IQ. We next assessed 319 

whether novelty exploration was sensitive to our drug manipulation, but found no drug effects on 320 

the novel bandit (F(2, 54)=1.498, p=.233, η2=.053; drug-by-horizon interaction: F(2, 54)=.542, 321 

p=.584, η2=.02; Figure 3d). Thus, there was no evidence that an attenuation of dopamine or 322 

noradrenaline function impact novelty exploration in this task.  323 

Subjects combine computationally demanding strategies and exploration heuristics 324 

To examine the contributions of different exploration strategies to choice behaviour, we 325 

fitted a set of computational models to subjects’ behaviour, building on models developed in 326 

previous studies (1). In particular, we compared models incorporating UCB, Thompson 327 

sampling, an 𝜖-greedy algorithm and the novelty bonus (cf. Materials and Methods). Essentially, 328 

each model makes different exploration predictions. In the Thompson model, Thompson 329 

sampling (8, 51) leads to an uncertainty-driven value-based random exploration, where both 330 

expected value and uncertainty contribute to choice. In this model higher uncertainty leads to 331 

more exploration such that instead of selecting a bandit with the highest mean, bandits are 332 
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chosen relative to how often a random sample would yield the highest outcome, thus accounting 333 

for uncertainty (2). The UCB model (3, 4), capturing directed exploration, predicts that each 334 

bandit is chosen according to a mixture of expected value and an additional expected information 335 

gain (2). This is realised by adding a bonus to the expected value of each option, proportional to 336 

how informative it would be to select this option (i.e. the higher the uncertainty in the options’ 337 

value, the higher the information gain). This computation is then passed through a softmax 338 

decision model, capturing value-based random exploration. Novelty exploration is a simplified 339 

version of the information bonus in the UCB algorithm, which only applies to entirely novel 340 

options. It defines the intrinsic value of selecting a bandit about which nothing is known, and 341 

thus saves demanding computations of uncertainty for each bandit. Lastly, the value-free random 342 

𝜖-greedy algorithm selects any bandit 𝜖 % of the time, irrespective of the prior information of this 343 

bandit. For additional models cf. Appendix 1.  344 

We used cross-validation for model selection (Figure 4a) by comparing the likelihood of 345 

held-out data across different models, an approach that adequately arbitrates between model 346 

accuracy and complexity. The winning model encompasses uncertainty-driven value-based 347 

random exploration (Thompson sampling) with value-free random exploration (𝜖-greedy 348 

parameter) and novelty exploration (novelty bonus parameter 𝜂). The winning model predicted 349 

held-out data with a 55.25% accuracy (SD=8.36%; chance level =33.33%). Similarly to previous 350 

studies (1), the hybrid model combining UCB and Thompson sampling explained the data better 351 

than each of those processes alone, but this was no longer the case when accounting for novelty 352 

and value-free random exploration (Figure 4a). The winning model further revealed that all 353 

parameter estimates could be accurately recovered (Figure 4b; Figure 4 – Figure supplement 3). 354 

Interestingly, although the 2
nd

 and 3
rd

 place models made different prediction about the complex 355 
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exploration strategy, using a directed exploration with value-based random exploration (UCB) or 356 

a combination of complex strategies (hybrid) respectively, they share the characteristic of 357 

benefitting from value-free random and novelty exploration. This highlights that subjects used a 358 

mixture of computationally demanding and heuristic exploration strategies. 359 

360 
Figure 4. Subjects use a mixture of exploration strategies. (a) A 10-fold cross-validation of the 361 

likelihood of held-out data was used for model selection (chance level =33.3%; for model 362 

selection at the individual level cf. Figure 4 – Figure supplement 1). The Thompson model with 363 

both the 𝜖-greedy parameter and the novelty bonus 𝜂 best predicted held-out data (b) Model 364 

simulation with 47 simulations predicted good recoverability of model parameters (for 365 

correlations between behaviour and model parameters cf. Figure 4 – Figure supplement 2); 𝜎0 is 366 

the prior variance and 𝑄0 is the prior mean (for parameter recovery correlation plots cf. Figure 4 367 

– Figure supplement 3). 1 stands for short horizon-, and 2 for long horizon-specific parameters. 368 

For values and parameter details cf. Appendix 2 Table 5.  369 

 370 

Noradrenaline controls value-free random exploration 371 

To more formally compare the impact of catecholaminergic drugs on different exploration 372 

strategies, we assessed the free parameters of the winning model between drug groups (Figure 5, 373 

cf. Appendix 2 Table 6 for exact values). First, we examined the 𝜖-greedy parameter that 374 

captures the contribution of value-free random exploration to choice behaviour. We assessed 375 

how this value-free random exploration differed between drug groups. A significant drug main 376 

effect (drug main effect: F(2, 54)=6.722, p=.002, η2=.199; drug-by-horizon interaction: F(2, 377 
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54)=1.305, p=.28, η2=.046; Figure 5a) demonstrates that the drug groups differ in how strongly 378 

they deploy this exploration strategy. Post-hoc analysis revealed that subjects with reduced 379 

noradrenaline functioning had the lowest values of 𝜖 (pairwise comparisons: placebo vs 380 

propranolol: t(40)=3.177, p=.002, d=.71; amisulpride vs propranolol: t(38)=2.723, p=.009, 381 

d=.626) with no significant difference between amisulpride vs placebo: (t(38)=.251, p=.802, 382 

d=.057). Critically, the effect on 𝜖 was also significant when the complex exploration strategy 383 

was a directed exploration with value-based random exploration (2
nd

 place model) and, 384 

marginally significant, when it was a combination of the above (3
rd

 place model; cf. Appendix 385 

1). 386 

The 𝜖-greedy parameter was also closely linked to the above behavioural metrics 387 

(correlation between the 𝜖-greedy parameter with draws from the low-value bandit: 388 

𝑅𝑃𝑒𝑎𝑟𝑠𝑜𝑛=.828, p<.001; and with choice consistency: 𝑅𝑃𝑒𝑎𝑟𝑠𝑜𝑛=-.596, p<.001; Figure 4 – Figure 389 

supplement 2), and showed a similar horizon effect (horizon main effect: F(1, 54)=1.968, 390 

p=.166, η2=.035; WASI-by-horizon interaction: F(1, 54)=6.08, p=.017, η2=.101; Figure 5a). Our 391 

findings thus accord with the model-free analyses and demonstrate that noradrenaline blockade 392 

reduces value-free random exploration. 393 

  394 
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 395 

 396 

Figure 5. Drug effects on model parameters. The winning model’s parameters were fitted to 397 

each subject’s first draw (for model simulations cf. Figure 5 – Figure supplement 1). (a) Subjects 398 

had higher values of 𝜖 (value-free random exploration) in the long compared to the short horizon. 399 

Notably, subjects in the propranolol group had lower values of 𝜖 overall, indicating that 400 

attenuation of noradrenaline functioning reduces value-free random exploration. Subjects from 401 

all groups (b) assigned a similar value to novelty, captured by the novelty bonus η, which was 402 

higher (more novelty exploration) in the long compared to the short horizon. (c) The groups had 403 

similar beliefs 𝑄0 about a bandits’ mean before seeing any initial samples and (d) were similarly 404 

uncertain 𝜎0 about it (for gender effects cf. Figure 5 – Figure supplement 2). Please note that 405 

some horizon effects were modulated by subjects’ intellectual abilities when additionally 406 

controlling for them (cf. Appendix 2 Table 6). ** =p<.01. Data are shown as mean ± SEM and 407 

each dot/line represent one subject. For parameter values and statistics cf. Appendix 2 Table 6. 408 

 409 

No drug effects on other parameters 410 

The novelty bonus 𝜂 captures the intrinsic reward of selecting a novel option. In line with 411 

the model-free behavioural findings, there was no difference between drug groups in terms of 412 
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this effect (F(2, 54)=.249, p=.78, 𝜂2=.009; drug-by-horizon interaction: F(2, 54)=.03, p=.971, 413 

𝜂2=.001). There was also a close alignment between model-based and model-agnostic analyses 414 

(correlation between the novelty bonus 𝜂 with draws from the novel bandit: 𝑅𝑃𝑒𝑎𝑟𝑠𝑜𝑛=.683, 415 

p<.001; Figure 4 – Figure supplement 2), and we found a similarly increased novelty bonus 416 

effect in the long horizon in subjects with a higher IQ (WASI-by-horizon interaction: F(1, 54) 417 

=8.416, p=.005, 𝜂2=.135; horizon main effect: F(1, 54)=1.839, p=.181, 𝜂2=.033; Figure 5b). 418 

When analysing the additional model parameter, we found that subjects had similar prior 419 

beliefs about bandits, given by the initial estimate of a bandit’s mean (prior mean 𝑄0: F(2, 420 

54)=.118, p=.889, 𝜂2=.004; Figure 5c) and their uncertainty about it (prior variance 𝜎0: horizon 421 

main effect: F(1, 54)=.129, p=.721, 𝜂2=.002; drug main effect: F(2, 54)=.06, p=.942, 𝜂2=.002; 422 

drug-by-horizon interaction: F(2, 54)=2.162, p=.125, 𝜂2=.074; WASI-by-horizon interaction: 423 

F(1, 54)=.022, p=.882, 𝜂2<.001; Figure 5d). Interestingly, our dopamine manipulation seemed to 424 

affect this uncertainty in a gender-specific manner, with female subjects having larger values of 425 

𝜎0 compared to males in the placebo group, and with the opposite being true in the amisulpride 426 

group (cf. Appendix 1). Taken together, these findings show that value-free random exploration 427 

was most sensitive to our drug manipulations.  428 
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Discussion 429 

Solving the exploration-exploitation problem is non trivial, and one suggestion is that 430 

humans solve it using computationally demanding exploration strategies (1, 2), taking account of 431 

the uncertainty (variance) as well as the expected reward (mean) of each choice. Although 432 

tracking the distribution of summary statistics (e.g. mean and variance) is less resource costly 433 

than keeping track of full distributions (52), it nevertheless carries considerable costs when one 434 

has to keep track of multiple options, as in exploration. Indeed, in a three-bandit task such as that 435 

considered here, this results in a necessity to compute 6 key-statistics, drastically limiting 436 

computational resources when selecting among choice options (10). Real-life decisions often 437 

comprise an unlimited range of options, which results in a tracking of a multitude of key-438 

statistics, potentially mandating a deployment of alternative more efficient strategies. Here, we 439 

demonstrate that two additional, less resource-hungry heuristics are at play during human 440 

decision-making, value-free random exploration and novelty exploration.  441 

By assigning intrinsic value (novelty bonus (42)) to an option not encountered before 442 

(53), a novelty bonus can be seen as an efficient simplification of demanding algorithms, such as 443 

UCB (3, 4). It is interesting to note that our winning model did not include UCB, but instead 444 

novelty exploration. This indicates humans might use such a novelty shortcut to explore unseen, 445 

or rarely visited, states to conserve computational costs when such a strategy is possible. A 446 

second exploration heuristic that also requires minimal computational resources, value-free 447 

random exploration, also plays a role in our task. Even though less optimal, its simplicity and 448 

neural plausibility renders it a viable strategy. Indeed, we observe an increase in performance in 449 

each model after adding 𝜖, supporting the notion that this strategy is a relevant additional human 450 

exploration heuristic. Interestingly, the benefit of 𝜖 is somewhat smaller in a simple UCB model 451 
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(without novelty bonus), which probably arises because value-based random exploration 452 

partially captures some of the increased noisiness. We show through converging behavioural and 453 

modelling measures that both value-free random and novelty exploration were deployed in a 454 

goal-directed manner, coupled with increased levels of exploration when this was strategically 455 

useful. Importantly, these heuristics were observed in all best models (1
st
, 2

nd
 and 3

rd
 position) 456 

even though each incorporated different exploration strategies. This suggests that the complex 457 

models make similar predictions in our task. This is also observed in our simulations, and 458 

demonstrates that value-free random exploration is at play even when accounting for other value-459 

based forms of random exploration (1, 7), whether fixed or uncertainty-driven.  460 

Exploration was captured in a similar manner to previous studies (7), by comparing in the 461 

same setting (i.e. same prior information) the first choice in a long decision horizon, where 462 

reward can be increased in the long term through information gain, and in a short decision 463 

horizon where information cannot subsequently be put to use. This means that by changing the 464 

opportunity to benefit from the information gained for the first sample, the long horizon invites 465 

extended exploration (7), what we find also in our study. This experimental manipulation is a 466 

well-established means for altering exploration and has been used extensively in previous studies 467 

(7, 21, 34, 54). Nevertheless, there remains a possibility that a longer horizon may also affect the 468 

psychological nature of the task. In our task, reward outcomes were presented immediately after 469 

every draw, rendering it unlikely that perception of reward delays (i.e. delay discounting) is 470 

impacted. Moreover, a monetary bonus was given only at the end of the task, and thus did not 471 

impact a horizon manipulation. We also consider our manipulation was unlikely to change effort 472 

in each horizon, because the reward (i.e. size of the apple) remains the same at every draw, 473 
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resulting in an equivalent reward-effort ratio (55–58). However, this issue can be addressed in 474 

further studies, for example, by equating the amount of button presses across both conditions.  475 

Value-free random exploration might reflect other influences, such as attentional lapses 476 

or impulsive motor responses. We consider these as unlikely to a significant factor at play here. 477 

Indeed, there are two key features that would signify such effects. Firstly, these influences would 478 

be independent of task condition. Secondly, they would be expected to lead to shorter, or more 479 

variable, response latencies. In our data, we observe an increase in value-free exploration in the 480 

long horizon condition in both behavioural measures and model parameters, speaking against an 481 

explanation based upon simple mistakes. Moreover, we did not observe a difference in response 482 

latency for choices that were related to value-free random exploration (cf. Appendix 1), further 483 

arguing against mistakes. Lastly, the sensitivity of value-free random exploration to propranolol 484 

supports this being a separate process, and previous studies using the same drug did not find an 485 

effect on task mistakes (e.g. on accuracy (59); (33, 58–60)). However, future studies could 486 

explore these exploration strategies in more detail including by reference to subjects’ own self-487 

reports. 488 

It is still unclear how exploration strategies are implemented neurobiologically. 489 

Noradrenaline inputs, arising from the locus coeruleus (63) (LC) are thought to modulate 490 

exploration (2, 64, 65), though empirical data on its precise mechanisms and means of action 491 

remains limited. In this study, we found that noradrenaline impacted value-free random 492 

exploration, in contrast to novelty exploration and complex exploration. This might suggest that 493 

noradrenaline influences ongoing valuation or choice processes that discards prior information. 494 

Importantly, this effect was observed whether the complex exploration was an uncertainty-driven 495 

value-based random exploration (winning model), a directed exploration with value-based 496 
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random exploration (2
nd

 place model) or a combination of the above (3
rd

 place model; cf. 497 

Appendix 1). This is consistent with findings in rodents where enhanced anterior cingulate 498 

noradrenaline release leads to more random behaviour (32). It is also consistent with 499 

pharmacological findings in monkeys that show enhanced choice consistency after reducing LC 500 

noradrenaline firing rates (33). It would be interesting for future studies to determine, in more 501 

detail, whether value-free random exploration is corrupting a value computation itself, or 502 

whether it exclusively biases the choice process.  503 

We note that pupil diameter has been used as an indirect marker of noradrenaline activity 504 

(66), although the link between the two it not always straightforward (36). Because the effect of 505 

pharmacologically induced changes of noradrenaline levels on pupil size remains poorly 506 

understood (36, 67), including the fact that previous studies found no effect of propranolol on 507 

pupil diameter (36, 68), we opted against using pupillometry in this study. However, our current 508 

findings align with previous human studies that show an association between this indirect marker 509 

and exploration, but that study did not dissociate between the different potential exploration 510 

strategies that subjects could deploy (69). Future studies might usefully include indirect 511 

measures of noradrenaline activity, for example pupillometry, to examine a potential link 512 

between natural variations in noradrenaline levels and a propensity towards value-free random 513 

exploration. 514 

The LC has two known modes of synaptic signalling (63), tonic and phasic, thought to 515 

have complementary roles (31). Phasic noradrenaline is thought to act as a reset button (31), 516 

rendering an agent agnostic to all previously accumulated information, a de facto signature of 517 

value-free random exploration. Tonic noradrenaline has been associated, although not 518 

consistently (70), with increased exploration (64, 71), decision noise in rats (72) and more 519 
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specifically with random as opposed to directed exploration strategies (34). This later study 520 

unexpectedly found that boosting noradrenaline decreased (rather than increased) random 521 

exploration, which the authors speculated was due to an interplay with phasic signalling. 522 

Importantly, the drug used in that study also affects dopamine function making it difficult to 523 

assign a precise interpretation to the finding. A consideration of this study influenced our 524 

decision to opt for drugs with high specificity for either dopamine or noradrenaline (59), 525 

enabling us to reveal highly specific effects on value-free random exploration. Although the 526 

contributions of tonic and phasic noradrenaline signalling cannot be disentangled in our study, 527 

our findings align with theoretical accounts and non-primate animal findings, indicating that 528 

phasic noradrenaline promotes value-free random exploration.  529 

Aside from this ‘reset signal’ role, noradrenaline has been assigned other roles, including 530 

a role in memory function (23, 73, 74). To minimise a possible memory-related impact, we 531 

designed the task such that all necessary information was visible on the screen at all times. This 532 

means subjects did not have to memorise values for a given trial, rendering the task less 533 

susceptible to forgetting or other memory effects. Another role for noradrenaline relates to 534 

volatility and uncertainty estimation (26–28), as well as the energisation of behaviour (24, 25). 535 

Non-human primates studies demonstrate a higher LC activation for high effort choices, 536 

suggesting that noradrenaline release facilitates energy mobilisation (24). Theoretical models 537 

also suggest that the LC is involved in the control of effort exertion. Thus, it is thought to 538 

contribute to trading off between effortful actions leading to large rewards and “effortless” 539 

actions leading to small rewards by modulating “raw” reward values as a function of the required 540 

effort (25). Our task can be interpreted as encapsulating such a trade-off: complex exploration 541 

strategies are effortful but optimal in terms of reward gain, while value-free random exploration 542 
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requires little effort while occasionally leading to low reward. Applying this model, a 543 

noradrenaline boost could optimise cognitive effort allocation for high reward gain (25), thereby 544 

facilitating complex exploration strategies compared to value-free random exploration. In such a 545 

framework, blocking noradrenaline release should decrease usage of complex exploration 546 

strategies, leading to an increase of value-free random exploration which is the opposite of what 547 

we observed in our data. Another interpretation of an effort-facilitation model of noradrenaline is 548 

that a boost would help overcoming cost, i.e. the lack of immediate reward when selecting the 549 

low-value bandit, essentially providing a significant increase to the value of information gain. In 550 

line with our results, a decrease would interrupt this boost in valuation, removing an incentive to 551 

choose the low-value option. However, this theory is currently limited by the absence of 552 

empirical evidence for noradrenaline boosting valuation.  553 

Noradrenaline blockade by propranolol has been shown previously to enhance 554 

metacognition (75), decrease information gathering (59), and attenuate arousal-induced boosts in 555 

incidental memory (36). All of these findings, including a decrease in value-free random 556 

exploration found here, suggests propranolol may influence how neural noise affects information 557 

processing. In particular, the results indicate that under propranolol behaviour is less stochastic 558 

and less influenced by ‘task-irrelevant’ distractions. This aligns with theoretical ideas, as well as 559 

recent optogenetic evidence (32), that proposes noradrenaline infuses noise in a temporally 560 

targeted way (31). It also accords with studies implicating noradrenaline in attention shifts (for a 561 

review cf. (76)). Other gain-modulation theories of noradrenaline/catecholamine function have 562 

proposed an effect on stochasticity (64, 65), although a hypothesized direction of effect is 563 

different (i.e. noradrenaline decreases stochasticity). Several aspects of noradrenaline functioning 564 

may explain the contradictory accounts of its link with stochasticity. For example, they might be 565 
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capturing different aspects of an assumed U-shaped noradrenaline functioning curve, and/or 566 

distinct activity modes of noradrenaline (i.e. tonic and phasic firing) (64). Further studies can 567 

shed light on how different modes of activity affect value-free random exploration. This idea can 568 

be extended also to tasks where propranolol has been shown to attenuate a discrimination 569 

between different levels of loss (with no effect on the value-based exploration parameter, 570 

referred to in these studies as consistency) (62) and a reduction in loss aversion (60). This hints 571 

at additional roles for noradrenaline on prior information and task-distractibility during 572 

exploration in loss frame environments. Future studies investigating exploration in loss contexts 573 

might provide important additional information on these questions.  574 

It is important to mention here that β-adrenergic receptors, the primary target of 575 

propranolol, have been shown (unlike 𝛼-adrenergic receptors) to increase synaptic inhibition 576 

within rat cortex (77), specifically through inhibitory GABA-mediated transmission (78). 577 

Additionally 𝛽-adrenergic receptors are more concentrated in the intermediate layers in the 578 

prefrontal area (79), within which inhibition is favoured (80). Thus inhibitory mechanisms might 579 

account for noradrenaline-related task-distractibility and randomness, or the role of β-adrenergic 580 

receptors in executive function impairments (81). This raises the question of whether blocking β-581 

adrenergic receptors might lead to an accumulation of synaptic noradrenaline, and therefore act 582 

via α-adrenergic receptors. To the best of our knowledge, evidence for such an effect is limited. 583 

A second question is whether the observed effects are a pure consequence of propranolol’s 584 

impact on the brain, or whether they reflect peripheral effects of propranolol. When we examined 585 

peripheral markers (i.e. heart rate) and behaviour we found no evidence for an effect on any of 586 

our findings, rendering such influences unlikely. However, future studies using drugs that 587 
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exclusively targets peripheral, but not central, noradrenaline receptors (e.g. (82)) are needed to 588 

answer this question conclusively.  589 

Dopamine has been ascribed multiple functions besides reward learning (83), such as 590 

novelty seeking (46, 84, 85) or exploration in general (43). In fact, studies have demonstrated 591 

that there are different types of dopaminergic neurons in the ventral tegmental area, and that 592 

some contribute to non-reward signals, such as saliency and novelty (44). This suggests a role in 593 

novelty exploration. Moreover, dopamine has been suggested as important in an exploration-594 

exploitation arbitration (21, 86, 87), although its precise role remains unclear, given reported 595 

effects on random exploration (88), on directed exploration (45, 89), or no effects at all (90). A 596 

recent study found no effect following dopamine blockade using haloperidol (87), which 597 

interestingly also affects noradrenaline function (e.g. (91, 92)). Our results did not demonstrate 598 

any main effect of dopamine manipulation on exploration strategies, even though blocking 599 

dopamine was associated with a trend level increase in exploitation (cf. Appendix 1). We believe 600 

it unlikely this reflects an ineffective drug dose as previous studies have found neurocognitive 601 

effects with the same dose (36, 59, 93, 94).  602 

One possible reason for an absence of significant findings is that our dopaminergic 603 

blockade targets D2/D3 receptors rather than D1 receptors, a limitation due a lack of available 604 

specific D1 receptor blockers for use in humans. An expectation of greater D1 involvement 605 

arises out of theoretical models (95) and a prefrontal hypothesis of exploration (89). 606 

Interestingly, we observed a weak gender-specific differential drug effect on subjects’ 607 

uncertainty about an expected reward, with women being more uncertain than men in the 608 

placebo setting, but more certain in the dopamine blockade setting (cf. Appendix 1). This might 609 

be meaningful as other studies using the same drug have also found behavioural gender-specific 610 
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drug effects (96). Upcoming, novel drugs (97) might be able help unravel a D1 contribution to 611 

different forms of exploration. Additionally, future studies could use approved D2/D3 agonists 612 

(e.g. ropinirole) in a similar design to probe further whether enhancing dopamine leads to a 613 

general increase in exploration.  614 

In conclusion, humans supplement computationally expensive exploration strategies with 615 

less resource demanding exploration heuristics, and as shown here the latter include value-free 616 

random and novelty exploration. Our finding that noradrenaline specifically influences value-617 

free random exploration demonstrates that distinct exploration strategies may be under specific 618 

neuromodulator influence. Our current findings may also be relevant to enabling a richer 619 

understanding of disorders of exploration, such as attention-deficit/hyperactivity disorder (22, 620 

98) including how aberrant catecholamine function might contribute to its core behavioural 621 

impairments.   622 
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Materials and Methods 623 

Subjects 624 

Sixty healthy volunteers aged 18 to 35 (mean =23.22, SD =3.615) participated in a 625 

double-blind, placebo-controlled, between-subjects study. The sample size was determined using 626 

power calculation taking effect sizes from our prior studies that used the same drug 627 

manipulations (36, 59, 75). Each subject was randomly allocated to one of three drug groups, 628 

controlling for an equal gender balance across all groups (cf. Appendix 1). Candidate subjects 629 

with a history of neurological or psychiatric disorders, current health issues, regular medications 630 

(except contraceptives), or prior allergic reactions to drugs were excluded from the study. 631 

Subjects had (self-reported) normal or corrected-to-normal vision. The groups consisted of 20 632 

subjects each matched (cf. Appendix 2 Table 1) for gender and age. To evaluate peripheral drug 633 

effects, heart rate, systolic and diastolic blood pressure were collected to at three different time-634 

points: ‘at arrival’, ‘pre-task’ and ‘post-task’, cf. Appendix 1 for details. At 50 minutes after 635 

administrating the 2
nd

 drug, subjects were filled in the PANAS questionnaires (50) and 636 

completed the WASI Matrix Reasoning subtest (49). Subjects differed in mood (PANAS 637 

negative affect, cf. Appendix 1 for details) and marginally in intellectual abilities (WASI), and so 638 

we control for these potential confounders in our analyses (cf. Appendix 1 for uncorrected 639 

results). Subjects were reimbursed for their participation on an hourly basis and received a bonus 640 

according to their performance (proportional to the sum of all the collected apples’ size). One 641 

subject from the amisulpride group was excluded due to not engaging in the task and performing 642 

at chance level. The study was approved by the UCL research ethics committee and all subjects 643 

provided written informed consent. 644 

Pharmacological manipulation 645 
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To reduce noradrenaline functioning, we administered 40mg of the non-selective β-646 

adrenoceptor antagonist propranolol 60 minutes before the task (Fig 1D). To reduce dopamine 647 

functioning, we administered 400mg of the selective D2/D3 antagonist amisulpride 90 minutes 648 

before the task. Because of different pharmacokinetic properties, drugs were administered at 649 

different times. Each drug group received the drug on its corresponding time point and a placebo 650 

at the other time point. The placebo group received placebo at both time points, in line with our 651 

previous studies (36, 59, 75). 652 

Experimental paradigm 653 

To quantify different exploration strategies, we developed a multi-armed bandit task 654 

implemented using Cogent (http://www.vislab.ucl.ac.uk/cogent.php) for MATLAB (R2018a). 655 

Subjects had to choose between bandits (i.e. trees) that produced samples (i.e. apples) with 656 

varying reward (i.e. size) in two different horizon conditions (Figure 1a-b). Bandits were 657 

displayed during the entire duration of a trial and there was no time limit for sampling from 658 

(choosing) the bandits. The sizes of apples they collected were summed and converted to an 659 

amount of juice (feedback), which was displayed during 2000 ms at the end of each trial. 660 

Subjects were instructed to endeavour to make the most juice and that they would receive a cash 661 

bonus proportional to their performance. Overall subjects received £10 per hour and a mean 662 

bonus of £1.12 (std: £0.06). 663 

Similar to the horizon task (7), to induce different extents of exploration, we manipulated 664 

the horizon (i.e. number of apples to be picked: 1 in the short horizon, 6 in the long horizon) 665 

between trials. This horizon-manipulation, which has been extensively used to modulate 666 

exploratory behaviour (21, 34, 54, 99), promotes exploration in the long horizon condition as 667 

there are more opportunities to gather reward.  668 

http://www.vislab.ucl.ac.uk/cogent.php
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Within a single trial, each bandit had a different mean reward 𝜇 (i.e. apple size) and 669 

associated uncertainty as captured by the number of initial samples (i.e. number of apples shown 670 

at the beginning of the trial). Each bandit (i.e. tree) 𝑖 was from one of four generative processes 671 

(Figure 1c) characterised by different means 𝜇𝑖 and number of initial samples. The rewards 672 

(apple sizes) for each bandit were sampled from a normal distribution with mean 𝜇𝑖, specific to 673 

the bandit, and with a fixed variance, 𝑆2=0.8. The rewards were those sampled values rounded to 674 

the closest integer. Each distribution was truncated to [2, 10], meaning that rewards with values 675 

above or below this interval were excluded, resulting in a total of 9 possible rewards (i.e. 9 676 

different apple sizes; cf. Figure 1 - Figure supplement 1 for a representation). The ‘certain 677 

standard bandit’ provided three initial samples and on every trial its mean 𝜇𝑐𝑠 was sampled from 678 

a normal distribution: 𝜇𝑐𝑠 ~ 𝑁(5.5, 1.4). The ‘standard bandit’ provided one initial sample and to 679 

make sure that its mean 𝜇𝑠 was comparable to 𝜇𝑐𝑠, the trials were split equally between the four 680 

following: {𝜇𝑠 = 𝜇𝑐𝑠 + 1; 𝜇𝑠 = 𝜇𝑐𝑠 − 1; 𝜇𝑠 = 𝜇𝑐𝑠 + 2; 𝜇𝑠 = 𝜇𝑐𝑠 − 2}. The ‘novel bandit’ 681 

provided no initial samples and its mean 𝜇𝑛 was comparable to both 𝜇𝑐𝑠 and 𝜇𝑠 by splitting the 682 

trials equally between the eight following:{𝜇𝑛 = 𝜇𝑐𝑠 + 1; 𝜇𝑛 = 𝜇𝑐𝑠 − 1; 𝜇𝑛 = 𝜇𝑐𝑠 + 2; 𝜇𝑛 =683 

𝜇𝑐𝑠 − 2; 𝜇𝑛 = 𝜇𝑠 + 1; 𝜇𝑛 = 𝜇𝑠 − 1; 𝜇𝑛 = 𝜇𝑠 + 2; 𝜇𝑛 = 𝜇𝑠 − 2}. The ‘low bandit’ provided one 684 

initial sample which was smaller than all the other bandits’ means on that trial: 𝜇𝑙 =685 

𝑚𝑖𝑛(𝜇𝑐𝑠, 𝜇𝑠, 𝜇𝑛) − 1. We ensured that the initial sample from the low-value bandit was the 686 

smallest by resampling from each bandit in the trials were that was not the case. To make sure 687 

that our task captures heuristic exploration strategies, we simulated behaviour (cf. Figure 1). 688 

Additionally, in each trial, to avoid that some exploration strategies overshadow other ones, only 689 

three of the four different groups were available to choose from. Based on the mean of the initial 690 
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samples, we identified the high-value option (i.e. the bandit with the highest expected reward) in 691 

trials where both the certain-standard and the standard bandit were present.  692 

There were 25 trials of each of the four three-bandit combination making it a total of 100 693 

different trials. They were then duplicated to measure choice consistency, defined as the 694 

frequency of making the same choice on identical trials (in contrast to a previous propranolol 695 

study where consistency was defined in terms of a value-based exploration parameter (60)). Each 696 

subject played these 200 trials both in a short and in a long horizon setting, resulting in a total of 697 

400 trials. The trials were randomly assigned to one of four blocks and subjects were given a 698 

short break at the end of each of them. To prevent learning, the bandits’ positions (left, middle or 699 

right) as well as their colour (8 sets of 3 different colours) where shuffled between trials. To 700 

ensure subjects distinguished different apple sizes and understood that apples from the same tree 701 

were always of similar size (generated following a normal distribution), they needed to undergo 702 

training prior to the main experiment. In training, based on three displayed apples of similar size, 703 

they were tasked to guess between two options, namely which apple was most likely to come 704 

from the same tree and then received feedback about their choice. 705 

Statistical analyses  706 

All statistical analyses were performed using the R Statistical Software (100). For 707 

computing ANOVA tests and pairwise comparisons the ‘rstatix’ package was used, and for 708 

computing effect sizes the ‘lsr’ package (101) was used. To ensure consistent performance across 709 

all subjects, we excluded one outlier subject (belonging to the amisulpride group) from our 710 

analysis due to not engaging in the task and performing at chance level (defined as randomly 711 

sampling from one out of three bandits, i.e. 33%). Each bandits’ selection frequency for a 712 

horizon condition was computed over all 200 trials and not only over the trials where this 713 
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specific bandit was present (i.e. 3/4 of 200 = 150 trials). In all the analysis comparing horizon 714 

conditions, except when looking at score values (Figure 2c), only the 1
st
 draw of the long horizon 715 

was used. We compared behavioural measures and model parameters using (paired-samples) t-716 

tests and repeated-measures (rm-) ANOVAs with a between-subject factor of drug group 717 

(propranolol group, amisulpride group, placebo group) and a within-subject factor horizon (long, 718 

short). Information seeking, expected values and scores were analysed using rm-ANOVAS with 719 

a within-subject factor horizon. Measures that were horizon-independent (e.g. prior mean), were 720 

analysed using one-way ANOVAs with a between-subject factor drug group. As drug groups 721 

differed in negative affect (cf. Appendix 2 Table 1), which, through its relationship to anxiety 722 

(102) is thought to affect cognition (103) and potentially exploration (104). We corrected for 723 

negative affect (PANAS) and IQ (WASI) in each analysis by adding those two measures as 724 

covariates in each ANOVA mentioned above (cf. Appendix 1 for analysis without covariates and 725 

analysis with physiological effect as an additional covariates). We report effect sizes using 726 

partial eta squared (η2) for ANOVAs and Cohen’s d (d) for t-tests (105). 727 

Computational modelling 728 

We adapted a set of Bayesian generative models from previous studies (1), where each 729 

model assumed that different characteristics account for subjects’ behaviour. The binary 730 

indicators (ctr, cn) indicate which components (value-free random and novelty exploration 731 

respectively) were included in the different models. The value of each bandit is represented as a 732 

distribution 𝑁(𝑄, 𝑆) with 𝑆 = 0.8, the sampling variance fixed to its generative value. Subjects 733 

have prior beliefs about bandits’ values which we assume to be Gaussian with mean 𝑄0 and 734 

uncertainty 𝜎0. The subjects’ initial estimate of a bandit’s mean (𝑄0; prior mean) and its 735 

uncertainty about it (𝜎0; prior variance) are free parameters.  736 
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These beliefs are updated according to Bayes rule (detailed below) for each initial sample (note 737 

that there are no updates for the novel bandit).  738 

Mean and variance update rules  739 

At each time point 𝑡, in which a sample 𝑚, of one of the bandits is presented, the 740 

expected mean 𝑄 and precision 𝜏 =
1

𝜎2 of the corresponding bandit 𝑖 are updated as follows: 741 

𝑄𝑖,𝑡+1 =
𝜏𝑖,𝑡 ∗  𝑄𝑖,𝑡 + 𝜏𝑠𝑎𝑚𝑝 ∗ 𝑚

𝜏𝑖,𝑡 +  𝜏𝑠𝑎𝑚𝑝
 

𝜏𝑡+1
𝑖 = 𝜏𝑠𝑎𝑚𝑝 +  𝜏𝑡

𝑖  

where 𝜏𝑠𝑎𝑚𝑝 =
1

𝑆2 is the sampling precision, with the sampling variance 𝑆 = 0.8 fixed. Those 742 

update rules are equivalent to using a Kalman filter (106) in stationary bandits.  743 

We examined three base models: the UCB model, the Thompson model and the hybrid 744 

model. The UCB model encompasses the UCB algorithm (captures directed exploration) and a 745 

softmax choice function (captures a value-based random exploration). The Thompson model 746 

reflects Thompson sampling (captures an uncertainty-driven value-based random exploration). 747 

The hybrid model captures the contribution of the UCB model and the Thompson model, 748 

essentially a mixture of the above. We computed three extensions of each model by either adding 749 

value-free random exploration (cvf, cn) = (1,0), novelty exploration (cvf, cn) = (0,1) or both 750 

heuristics (cvf, cn) = (1,1), leading to a total of 12 models (see the labels on the x-axis in Figure 751 

4a; (cvf, cn) = (0,0) is the model with no extension). For additional models cf. Appendix 1. A 752 

coefficient cvf=1 indicates that a ϵ-greedy component was added to the decision rule, ensuring 753 

that once in a while (every ϵ % of the time), another option than the predicted one is selected. A 754 

coefficient 𝑐𝑛=1 indicates that the novelty bonus 𝜂 is added to the computation of the value of 755 

novel bandits and the Kronecker delta 𝛿 in front of this bonus ensures that it is only applied to 756 



 

 37 

the novel bandit. The models and their free parameters (summarised in Appendix 2 Table 5) are 757 

described in detail below. 758 

Choice rules 759 

UCB model. In this model, an information bonus 𝛾 is added to the expected reward of each 760 

option, scaling with the option’s uncertainty (UCB). The value of each bandit 𝑖 at timepoint t is: 761 

𝑉𝑖,𝑡  = 𝑄𝑖,𝑡 + 𝛾𝜎𝑖,𝑡 + 𝑐𝑛𝜂𝛿[𝑖=𝑛𝑜𝑣𝑒𝑙] 

The probability of choosing bandit 𝑖 was given by passing this into the softmax decision 762 

function: 763 

𝑃(𝑐𝑡 = 𝑖) =
e𝛽𝑉𝑖,𝑡

∑ e𝛽𝑉𝑖,𝑡
𝑥

∗ (1 − cvf𝜖) + cvf

𝜖

3
 

where 𝛽 is the inverse temperature of the softmax (lower values producing more value-764 

based random exploration), and the coefficient cvf adds the value-free random exploration 765 

component. 766 

Thompson model. In this model, based on Thompson sampling, the overall uncertainty can be 767 

seen as a more refined version of a decision temperature (1). The value of each bandit 𝑖 is as 768 

before: 769 

𝑉𝑖,𝑡 = 𝑄𝑖,𝑡 + 𝑐𝑛𝜂𝛿[i=𝑛𝑜𝑣𝑒𝑙] 

A sample 𝑥𝑖,𝑡~𝑁(𝑉𝑖,𝑡 , 𝜎𝑖,𝑡
2 ) is taken from each bandit. The probability of choosing a 770 

bandit 𝑖 depends on the probability that all pairwise differences between the sample from bandit 𝑖 771 

and the other bandits 𝑗 ≠ 𝑖 were greater or equal to 0 (see the probability of maximum utility 772 

choice rule (107)). In our task, because three bandits were present, two pairwise differences 773 

scores (contained in the two-dimensional vector u) were computed for each bandit. The 774 

probability of choosing bandit 𝑖 is:  775 
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𝑃(𝑐𝑡 = 𝑖) = 𝑃(∀𝑗: 𝑥𝑖,𝑡 > 𝑥𝑗,𝑡) ∗ (1 − cvf𝜖) + cvf

𝜖

3
 

𝑃(𝑐𝑡 = 𝑥𝑖) = ∫ ∫ ɸ(𝑢; 𝑀𝑖,𝑡 , 𝐶𝑖,𝑡) 𝑑𝑢 
∞

0

∞

0

∗ (1 − cvf𝜖) + cvf

𝜖

3
 

where ɸ is the multivariate Normal density function with mean vector 776 

𝑀𝑖,𝑡 = 𝐴𝑖 (

𝑉1,𝑡

𝑉2,𝑡

𝑉3,𝑡

)  

and covariance matrix  777 

𝐶𝑖,𝑡 = 𝐴𝑖 (

𝜎1,𝑡 0 0

0 𝜎2,𝑡 0

0 0 𝜎3,𝑡

) 𝐴𝑖
𝑇  

Where the matrix 𝐴𝑖 computes the pairwise differences between bandit 𝑖 and the other bandits. 778 

For example, for bandit 𝑖 = 1:  779 

𝐴1 = (
1 −1 0
1 0 −1

) 

Hybrid model. This model allows a combination of the UCB model and the Thompson model. 780 

The probability of choosing bandit 𝑖 is:  781 

𝑃(𝑐𝑡 = 𝑖) = (𝑤𝑃𝑈𝐶𝐵(𝑐𝑡 = 𝑖) + (1 − 𝑤)𝑃𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛(𝑐𝑡 = 𝑖)) ∗ (1 − cvf𝜖) + cvf

𝜖 

3
  

where 𝑤 specifies the contribution of each of the two models. 𝑃𝑈𝐶𝐵 and 𝑃𝑇ℎ𝑜𝑚𝑝𝑠𝑜𝑛 are 782 

calculated for cvf=0. If 𝑤=1, only the UCB model is used while if 𝑤=0 only the Thompson 783 

model is used. In between values indicate a mixture of the two models.  784 
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All the parameters besides 𝑄0 and 𝑤 were free to vary as a function of the horizon (cf. 785 

Appendix 2 Table 5) as they capture different exploration forms: directed exploration 786 

(information bonus 𝛾; UCB model), novelty exploration (novelty bonus 𝜂), value-based random 787 

exploration (inverse temperature 𝛽; UCB model), uncertainty-directed exploration (prior 788 

variance 𝜎0; Thompson model) and value-free random exploration (𝜖-greedy parameter). The 789 

prior mean 𝑄0 was fitted to both horizons together as we do not expect the belief of how good a 790 

bandit is to depend on the horizon. The same was done for 𝑤 as assume the arbitration between 791 

the UCB model and the Thompson model does not depend on horizon.  792 

Parameter estimation.  793 

To fit the parameter values, we used the maximum a posteriori probability (MAP) estimate. The 794 

optimisation function used was fmincon in MATLAB. The parameters could vary within the 795 

following bounds: 𝜎0 = [0.01, 6], 𝑄0 = [1, 10], 𝜖 = [0, 0.5], 𝜂 = [0, 5]. The prior distribution 796 

used for the prior mean parameter 𝑄0 was the normal distribution: 𝑄0 ~ 𝑁(5, 2) that 797 

approximates the generative distributions. For the 𝜖-greedy parameter, the novelty bonus 𝜂 and 798 

the prior variance parameter 𝜎0, a uniform distribution (of range equal to the specific parameters’ 799 

bounds) was used, which is equivalent to performing MLE. A summary of the parameter values 800 

per group and per horizon can be found in Appendix 2 Table 6. 801 

Model comparison.  802 

We performed a K-fold cross-validation with 𝐾 = 10. We partitioned the data of each subject 803 

(𝑁𝑡𝑟𝑖𝑎𝑙𝑠 =400; 200 in each horizon) into K folds (i.e. subsamples). For model fitting in our 804 

model selection, we used maximum likelihood estimation (MLE), where we maximised the 805 

likelihood for each subject individually (fmincon was ran with 8 randomly chosen starting point 806 
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to overcome potential local minima). We fitted the model using K-1 folds and validated the 807 

model on the remaining fold. We repeated this process K times, so that each of the K fold is used 808 

as a validation set once, and averaged the likelihood over held out trials. We did this for each 809 

model and each subject and averaged across subjects. The model with the highest likelihood of 810 

held-out data (the winning model) was the Thompson sampling with (ctr, cn) = {1,1}. It was 811 

also the model which accounted best for the largest number of subjects (Figure 4 – Figure 812 

supplement 1). 813 

Parameter recovery.  814 

To make sure that the parameters are interpretable, we performed a parameter recovery analysis. 815 

For each parameter, we took 4 values, equally spread, within a reasonable parameter range 816 

(𝜎0 = [0.5, 2.5], 𝑄0 = [1, 6], 𝜖 = [0, 0.5], 𝜂 = [0, 5]). All parameters but 𝑄0 were free to vary as 817 

a function of the horizon. We simulated behaviour with one artificial agent for each 47 818 

combinations using a new trial for each. The model was fitted using MAP estimation (cf. 819 

Parameter estimation) and analysed how well the generative parameters (generating parameters 820 

in Figure 5) correlated with the recovered ones (fitted parameters in Figure 5) using Pearson 821 

correlation (summarised in Figure 5c). In addition to the correlation we examined the spread 822 

(Figure 4 – Figure supplement 3) of the recovered parameters. Overall the parameters were well 823 

recoverable. 824 

Model validation 825 

To validate our model, we used each subjects’ fitted parameters to simulate behaviour on our 826 

task (4000 trials per agent). The stimulated data (Figure 5 – Figure supplement 1), although not 827 

perfect, resembles the real data reasonably well. Additionally, to validate the behavioural 828 

indicators of the two different exploration heuristics we stimulated the behaviour of 200 agents 829 
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using the winning model on one horizon condition (i.e. trials = 200). For the indicators of value-830 

free random exploration, we stimulated behaviour with low (𝜖 = 0) and high (𝜖 = 0.2) values of 831 

the ϵ-greedy parameter. The other parameters were set to the mean parameter fits (𝜎0 =832 

1.312, 𝜂 = 2.625, 𝑄0 = 3.2). This confirms that higher amounts of value-free random 833 

exploration are captured by the proportion of low-value bandit selection (Figure 1f) and the 834 

choice consistency (Figure 1e). Similarly, for the indicator of novelty exploration, we simulated 835 

behaviour with low (𝜂 = 0) and high (𝜂 = 2) values of the novelty bonus 𝜂 to validate the use of 836 

the proportion of the novel-bandit selection (Figure 1g). Again, the remaining parameters were 837 

set to the mean parameter fits (𝜎0 = 1.312, 𝜖 = 0.1, 𝑄0 = 3.2). Parameter values for high and 838 

low exploration were selected empirically from pilot and task data. Additionally, we simulated 839 

the effects of other exploration strategies in short and long horizon conditions (Figure 1 – Figure 840 

supplement 3-5). To simulate a long (versus short) horizon condition we increased the overall 841 

exploration by increasing other exploration strategies. Details about parameter values can be 842 

found in Appendix 2 Table 7.   843 
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Appendix 1 1091 

 1092 

Drug effect on response times 1093 
There were no differences in response times (RT) between drug groups in the one-way ANOVA. Neither in the 1094 

mean RT (ANOVA: F(2, 54)=1.625, p=.206, η2=.057) nor in its variability (standard deviation; F(2, 54)=1.85, 1095 

p=.16, η2=.064).  1096 

 1097 

Bandit effect on response times 1098 

There was no difference in response times between bandits in the repeated-measures ANOVA (bandit main effect: 1099 

F(1.78 , 99.44)=1.634 , p=.203, η2=.028; Figure 3 – Figure supplement 1). 1100 

 1101 

Interaction effects on response times  1102 

When looking at the 1st choice in both conditions, no differences were evident in RT in the repeated-measures 1103 

ANOVA with a between-subject factor drug group and within-subject factors horizon and bandit (bandit main 1104 

effect: F(1.71,92.46)=1.203, p=.3, η2=.022; horizon main effect: F(1,54)=.71, p=.403, η2=.013; drug main effect: 1105 

F(2,54)=2.299, p=.11, η2=.078; drug-by-bandit interaction: F(3.42,92.46)=.431, p=.757, η2=.016; drug-by-horizon 1106 

interaction: F(2,54)=.204, p=.816, η2=.008; bandit-by-horizon interaction: F(1.39,75.01)=.298, p=.662, η2=.005; 1107 

drug-by-bandit-by-horizon interaction: F(2.78,75.01)=1.015, p=.387, η2=.036). 1108 

In the long horizon, when looking at all 6 samples, no differences were evident in RT between drug group in the 1109 

repeated-measures ANOVA with a between-subject factor drug group and within-subject factors bandits and 1110 

samples (drug main effect: F(2,56)=.542, p=.585, η2=.019). There was an effect of bandit (bandit main effect: 1111 

F(1.61,90.12)=7.137, p=.003, η2=.113), of sample (sample main effect: F(1.54,86.15)=427.047, p<.001, η2=.884) 1112 

and an interaction between the two (bandit-by-sample interaction: F(3.33,186.41)=4.789, p=.002, η2=.079; drug-by-1113 

bandit interaction: F(3.22,90.12)=.525, p=.679, η2=.018; drug-by-sample interaction: F(3.08,86.15)=1.039, p=.381, 1114 

η2=.036; drug-by-bandit-by-sample interaction: F(6.66,186.41)=.645, p=.71, η2=.023). Further analysis (not 1115 

corrected for multiple comparisons) revealed that the interaction between bandit and sample reflected the fact that 1116 

when looking at samples individually, there was a bandit main effect in the 2nd sample (bandit main effect: 1117 

F(1.27,70.88)=27.783, p<.001, η2=.332; drug main effect: F(2,56)=.201, p=.819, η2=.007; drug-by-bandit 1118 

interaction: F(2.53,70.88)=.906, p=.429, η2=.031) and in the 3rd sample (bandit main effect: F(1.23,68.93)=21.318, 1119 

p<.001, η2=.276; drug main effect: F(2,56)=.102, p=.903, η2=.004; drug-by-bandit interaction: F(2.46,68.93)=.208, 1120 

p=.855, η2=.007), but not in the other samples (1st sample: drug main effect: F(2,56)=1.108, p=.337, η2=.038; bandit 1121 

main effect: F(2,112)=.339, p=.713, η2=.006; drug-by-bandit interaction: F(4,112)=.414, p=.798, η2=.015; 4th 1122 

sample: (drug main effect: F(2,56)=.43, p=.652, η2=.015; bandit main effect: F(1.36,76.22)=1.348, p=.259, η2=.024; 1123 

drug-by-bandit interaction: F(2.72,76.22)=.396, p=.737, η2=.014; 5th sample: drug main effect: F(2,56)=.216, 1124 

p=.806, η2=.008; bandit main effect: F(1.25,69.79)=.218, p=.696, η2=.004; drug-by-bandit interaction: 1125 

F(2.49,69.79)=.807, p=.474, η2=.028; 6th sample: drug main effect: F(2,56)=1.026, p=.365, η2=.035; bandit main 1126 

effect: F(1.05,58.81)=.614, p=.444, η2=.011; drug-by-bandit interaction: F(2.1,58.81)=1.216, p=.305, η2=.042). In 1127 

the 2nd sample, the high-value bandit was chosen faster (high-value bandit vs low-value bandit : t(59)=-5.736, 1128 

p<.001, d=.917; high-value bandit vs novel bandit: t(59)=-6.24, p<.001, d=.599) and the low-value bandit was 1129 

chosen slower (low-value bandit vs novel bandit: t(59)=3.756, p<.001, d=.432). In the 3rd sample, the low-value 1130 

bandit was chosen slower (high-value bandit vs low-value bandit : t(59)=-5.194, p<.001, d=.571; low-value bandit 1131 

vs novel bandit: t(59)=4.448, p<.001, d=.49; high-value bandit vs novel bandit: t(59)=-1.834, p=.072, d=.09).  1132 

 1133 

Horizon effect on response times 1134 

There were no differences in RT between horizon conditions in the repeated-measures ANOVA with the between-1135 

subject factor drug group, the within-subject factor horizon condition and the covariates WASI and PANAS 1136 

negative score (horizon main effect: F(1, 54)=1.443, p=.235, η2=.026; drug main effect: F(2 , 54)=1.625, p=.206, 1137 

η2=.057; drug-by-horizon interaction: F(2, 54)=.431, p=.652, η2=.016. In the long horizon, the RT decreased with 1138 

each sample (sample main effect: F(1.36, 73.5)=13.626, p<.001, η2=0.201; Pairwise comparisons: sample 1 vs 2: 1139 

t(59)=20.968, p<.001, d=2.73; sample 2 vs 3: t(59)=11.825, p<.001, d=1.539; sample 3 vs 4: t(59)=7.862, p<.001, 1140 

d=1.024; sample 4 vs 5: t(59)=4.117, p<.001, d=1.539; sample 5 vs 6: t(59)=2.646, p=.01, d=1.024; Figure 2 – 1141 

Figure supplement 1b). 1142 

 1143 

PANAS 1144 
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The Positive Affect and Negative Affect scale (PANAS; (50)) was completed 50 minutes after the 2nd drug 1145 

administration and 10 minutes prior to the task. Groups had similar positive affect but differed in negative affect (cf. 1146 

Appendix 2 Table 1), driven by a higher score in the placebo group (pairwise comparisons: placebo vs propranolol: 1147 

t(56)=2.801, p=.007, d=.799; amisulpride vs placebo: t(56)=-2.096, p=.041, d=.557; amisulpride vs propranolol: 1148 

t(56)=.669, p=.506, d=.383). It is unclear whether this difference was driven by the drug manipulation, but similar 1149 

studies have not reported such an effect (e.g. (36, 59, 61, 62, 75)). We controlled for a possible influence of these 1150 

measures in all our analyses. 1151 

 1152 

Physiological effects 1153 

Heart rate, systolic and diastolic pressure were obtained at 3 time points: at the beginning of the experiment before 1154 

giving the drug (‘at arrival’), after giving the drug just before the task (‘pre-task’), and after finishing task and 1155 

questionnaires (‘post-task’). The post-task heart rate was lower for participants who received propranolol compared 1156 

to the other 2 groups (1-way ANOVA: F(2, 55)=7.249, p=.002, η2=.209; cf. Appendix 2 Table 2). A two-way 1157 

ANOVA with the between-subject factor of drug group and within-subject factor of time (all three time points), 1158 

showed a time-dependent decrease in heart rate (F(1.74, 95.97)=99.341, p<.001, η2= .644), in systolic pressure (F(2, 1159 

110)=8.967, p<.001, η2=.14) and in diastolic pressure (F(2, 110)=.874, p=.42, η2=.016), indicating subjects relaxed 1160 

across the course of the study. Those reductions did not differ between drug group (drug main effect: heart rate: F(2, 1161 

55)=1.84, p=.169, η2=.063; systolic pressure: F(2, 55)=1.08, p=.347, η2=.038; diastolic pressure: F(2, 55)=.239, 1162 

p=.788, η2=.009; drug-by-time interaction: heart rate: F(3.49, 95.97)=1.928, p=.121, η2=.066; systolic pressure: F(4, 1163 

110)=1.6, p=.179, η2=.055; diastolic pressure: F(4, 110)=.951, p=.438, η2=.033).  1164 

  1165 

Task performance score 1166 

The performance did not differ between drug groups (total score: drug main effect: F(2, 5 )=2.313, p=.109, η2=.079) 1167 

but it was increased in subjects with higher IQ scores (WASI main effect: F(1, 54)=17.172, p<.001, η2=.241).  1168 

In the long horizon, the score increased with each sample (sample main effect: F(3.12, 174.97)=103.469, p<.001, 1169 

η2=.649; Pairwise comparisons: sample 1 vs 2: t(59)=-6.737, p<.001, d=.877; sample 2 vs 3: t(59)=-3.69, p<.001, 1170 

d=.48; sample 3 vs 4: t(59)=-5.167, p<.001, d=.673; sample 4 vs 5: t(59)=-2.832, p=.006, d=.48; sample 5 vs 6: 1171 

t(59)=-2.344, p=.022, d=.673; Figure 2 – Figure supplement 1a). The increase in reward was larger in trials where 1172 

the first draw was exploratory (linear regression slope coefficient: mean=.118, sd=.038) compared to when it was 1173 

exploitative (linear regression slope coefficient: mean=.028, sd=.041; t-tests for slope coefficients: t(58)=-12.161, 1174 

p<.001, d=-1.583; Figure 2 - Figure supplement 1d), suggesting that exploration was used beneficially and subjects 1175 

benefitted from their initial exploration. 1176 

 1177 

Dopamine effect on high-value bandit sampling frequency  1178 
The amisulpride group had a marginal tendency towards selecting the high-value bandit, meaning that they were 1179 

disposed to exploit more overall (propranolol group excluded: horizon main effect: F(1, 35)=3.035, p=.09, η2=.08; 1180 

drug main effect: F(1, 35)=3.602, p=.066, η2=.093; drug-by-horizon interaction: F(1, 35)=2.15, p=.151, η2=.058). 1181 

This trend effect was not observed when all 3 groups were included (horizon main effect: F(1, 54)=3.909, p=.053, 1182 

η2=.068; drug main effect: F(2, 54)=1.388, p=.258, η2=.049; drug-by-horizon interaction: F(2, 54)=.834, p=.44, 1183 

η2=.03).  1184 

Gender effects 1185 
When adding gender as a between-subjects variable in the repeated-measures ANOVAs, none of the main results 1186 

changed. Interestingly, we observed a drug-by-gender interaction in the prior variance σ0 (drug-by-gender 1187 

interaction: F(2, 51)=5.914, p=.005, η2=.188; Figure 5 – Figure supplement 2), driven by the fact that, female 1188 

subjects in the placebo group had a larger average σ0 (across both horizon conditions) compared to males 1189 

(t(20)=2.836, p=.011, d=1.268), whereas male subjects have a larger σ0 compared to females in the amisulpride 1190 

group, (t(19)=-2.466, p=.025, d=1.124; propranolol group: t(20)=-.04, p=.969, d=.018). This suggests that in a 1191 

placebo setting, females are on average more uncertain about an option’s expected value, whereas in a dopamine 1192 

blockade setting males are more uncertain. Besides this effect, we observed a trend-level significance in response 1193 

times (RT), driven primarily by female subjects tending to have a faster RT in the long horizon compared to male 1194 

subjects (gender main effect: F(1, 51)=3.54, p=.066, η2=.065). 1195 

Horizon and drug effects without covariate 1196 



 

 49 

When analysing the results without correcting for IQ (WASI) and negative affect (PANAS), similar results are 1197 

obtained. The high-value bandit is picked more in the short-horizon condition indicating exploitation (F(1, 1198 

56)=44.844, p<.001, η2=.445), whereas the opposite phenomenon is observed in the low-value bandit (F(1, 1199 

56)=24.24, p<.001, η2=.302) and the novel bandit (horizon main effect: F(1, 56)=30.867, p<.001, η2=.355), 1200 

indicating exploration. In line with these results, the model parameters for value-free random exploration (ϵ: F(1, 1201 

56)=10.362, p=.002, η2=.156) and novelty exploration (η: F(1, 56)=38.103, p<.001, η2=.405) are larger in the long 1202 

compared to the short horizon condition. Additionally, noradrenaline blockade reduces value-free random 1203 

exploration as can be seen in the two behavioural signatures, frequency of picking the low-value bandit (F(2, 1204 

56)=2.523, p=.089, η2=.083; Pairwise comparisons: placebo vs propranolol: t(40)=2.923, p=.005, d=.654; 1205 

amisulpride vs placebo: t(38)=-.587, p=.559, d=.133; amisulpride vs propranolol: t(38)=2.171, p=.034, d=.496), and 1206 

in the consistency (F(2, 56)=3.596, p=.034, η2=.114; Pairwise comparisons: placebo vs propranolol: t(40)=-3.525, 1207 

p=.001, d=.788; amisulpride vs placebo: t(38)=1.107, p=.272, d=.251; amisulpride vs propranolol: t(38)=-2.267, 1208 

p=.026, d=.514), as well as in the model parameter for value-free random exploration (ϵ: F(2, 56)=3.205, p=.048, 1209 

η2=.103; Pairwise comparisons: placebo vs propranolol: t(40)=3.177, p=.002, d=.71; amisulpride vs placebo: 1210 

t(38)=.251, p=.802, d=.057; amisulpride vs propranolol: t(38)=2.723, p=.009, d=.626). 1211 

 1212 

Horizon and drug effects with heart rate as covariate 1213 

When analysing results but now correcting for the post-experiment heart rate (cf. Appendix 2 Table 1) in addition to 1214 

IQ (WASI) and negative affect (PANAS), we obtained similar results. Noradrenaline blockade reduced value-free 1215 

random exploration as seen in two behavioural signatures, frequency of picking the low-value bandit (F(2, 52)= 1216 

4.014, p=.024, η2=.134; Pairwise comparisons:(placebo vs propranolol: t(40)= 2.923, p=.005, d=.654; amisulpride 1217 

vs propranolol: t(38)= 2.171, p=.034, d=.496; amisulpride vs placebo: t(38)= -.587, p=.559, d=.133), and 1218 

consistency (F(2, 52)= 5.474, p=.007, η2=.174; Pairwise comparisons: placebo vs propranolol: t(40)= -3.525, 1219 

p=.001, d=.788; amisulpride vs propranolol: t(38)= -2.267, p=.026, d=.514; amisulpride vs placebo: t(38)= 1.107, 1220 

p=.272, d=.251), as well as in a model parameter for value-free random exploration (ϵ: F(2, 52)= 4.493, p=.016, 1221 

η2=.147; Pairwise comparisons: placebo vs propranolol: t(40)= 3.177, p=.002, d=.71; amisulpride vs propranolol: 1222 

t(38)= 2.723, p=.009, d=.626; amisulpride vs placebo: t(38)=.251, p=.802, d=.057). 1223 

 1224 

Other model results 1225 

When analysing the fitted parameter values of both the 2nd winning model (UCB + ϵ + η) and 3rd winning model 1226 

(hybrid + ϵ + η), similar results pertain. Thus, a value-free random exploration parameter was reduced following 1227 

noradrenaline blockade in the 2nd winning model (ϵ: F(2, 54)=4.503, p=.016, η2=.143; Pairwise comparisons: 1228 

placebo vs propranolol: t(38)=2.185, p=.033, d=.386; amisulpride vs propranolol: t(40)=1.724, p=.089, d=.501; 1229 

amisulpride vs placebo: t(40)=-.665, p=.508, d=.151) and was affected at a trend-level significance in the 3rd 1230 

winning model (ϵ: F(2, 54 )=3.04, p=.056, η2=101). These results highlight our finding that value-free random 1231 

exploration is modulated by noradrenaline and additionally demonstrates this is independent of the complex 1232 

exploration strategy used as well as the value function.  1233 

 1234 

Bandit combination effect 1235 

Behavioural results were analysed additionally for each bandit combination separately. The high-value bandit was 1236 

chosen more when there was no novel bandit (pairwise comparisons: [certain-standard, standard, low] vs [certain-1237 

standard, standard, novel]: t(59)=15.122, p<.001, d=1.969; [certain-standard, standard, low] vs [certain-standard, 1238 

novel, low]: t(59)=12.905, p<.001, d=2.389; [certain-standard, standard, low] vs [standard, novel, low]: 1239 

t(59)=18.348, p<.001, d=1.68), and less when its value was less certain ([standard, novel, low] vs [certain-standard, 1240 

standard, novel]: t(59)=-6.986, p<.001, d=.407; [standard, novel, low] vs [certain-standard, novel, low] : t(59)=-1241 

5.44, p<.001, d=.708; bandit combination main effect: F(1.81, 101.33)=237.051, p<.001, η2=.809; [certain-standard, 1242 

standard, novel] vs [certain-standard, novel, low]: t(59)=.364, p=.717, d=.909; Figure 3 – Figure supplement 2a). 1243 

The novel bandit was chosen most often when the high-value bandit was less certain, then when the high-value 1244 

bandit was more certain and was chosen least when both certain and certain standard bandits were present 1245 

([standard, novel, low] vs [certain-standard, novel, low]: t(59)=5.001, p<.001, d=.651; [standard, novel, low] vs 1246 

[certain-standard, standard, novel]: t(59)=9.414, p<.001, d=1.226; [certain-standard, novel, low] vs [certain-1247 

standard, standard, novel]: t(59)=4.146, p<.001, d=.54; bandit combination main effect: F(2, 112)=42.44, p<.001, 1248 

η2=.431; Figure 3 – Figure supplement 2b). The low-value bandit was chosen less when the high-value bandit was 1249 

more certain ([certain-standard, novel, low] vs [certain-standard, standard, low]: t(59)=-2.731, p=.008, d=.356; 1250 

[certain-standard, novel, low] vs [standard, novel, low]: t(59)=-1.958, p=.055, d=.255; bandit combination main 1251 
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effect: F(1.66, 92.74)=4.534, p=.019, η2=.075; [certain-standard, standard, low] vs [standard, novel, low]: 1252 

t(59)=1.32, p=.192, d=.172; Figure 3 – Figure supplement 2c). 1253 

 1254 

Other effects on choice consistency 1255 

Our results demonstrate a drug-by-horizon interaction on choice consistency (F(2, 54)=3.352, p=.042, η2=.110; 1256 

Figure 3c), mainly driven by the fact that frequency of selecting the same option is increased in the long (compared 1257 

to the short) horizon in the amisulpride group, while there is no significant horizon difference in the other two drug 1258 

groups (pairwise comparison for horizon effect: amisulpride group: t(19)=2.482, p=.023, d=.569; propranolol group: 1259 

t(20)=-1.91, p=.071, d=.427; placebo group: t(20)=.505, p=.619, d=.113). It is not entirely clear why catecholamines 1260 

would increase the differentiation between the horizon conditions and this relatively weak effect should be 1261 

replicated before interpreting. 1262 

 1263 

Stand-alone heuristic models 1264 

We also analysed stand-alone heuristic models, in which there is no value computation (value of each bandit i: 1265 

Vi  =  0). The held-out data likelihood for such heuristic model combined with novelty exploration had a mean of 1266 

m=0.367 (sd=0.005). The model in which we added value-free random exploration on top of novelty exploration 1267 

had a mean of m=0.384 (sd=0.006). These models performed poorly, although better than chance level. Importantly, 1268 

adding value-free random exploration improved performance. This highlights that subjects’ combine complex and 1269 

heuristic modules in exploration.  1270 
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Appendix 2 1271 

Appendix 2 Table 1.  1272 

Characteristics of drug groups. The drug groups did not differ in gender, age, nor in intellectual abilities (adapted 1273 

WASI matrix test). Groups differed in negative affect (PANAS), driven by a higher score in the placebo group 1274 

(pairwise comparisons: placebo vs propranolol: t(56)=2.801, p=.007, d=.799; amisulpride vs placebo: t(56)=-2.096, 1275 

p=.041, d=.557; amisulpride vs propranolol: t(56)=.669, p=.506, d=.383). For more details cf. Appendix 1. Mean 1276 

(SD).  1277 

 Propranolol Placebo Amisulpride  

Gender (M/F) 10/10 10/10 10/9  

Age 22.80 (3.59) 23.80 (4.23) 23.05 (3.01) F(2,56)=.404, p=.669, 𝜂2=.014 

Intellectual abilities 22.8 (1.85) 22.6 (3.70) 24.37 (2.45) F(2,56)=2.337, p=.106, 𝜂2=.077 

Positive affect 24.55 (8.99) 28.90 (7.56) 29.58 (10.21) F(2,56)=1.832, p=.170, 𝜂2=.061 

Negative affect 10.65 (.81) 12.75 (3.63) 11.16 (1.71) F(2,56)=4.259, p=.019, 𝜂2=.132 
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Appendix 2 Table 2.  1278 

Physiological effects on drug groups. The drug groups also differed in post-experiment heart rate, driven by lower 1279 

values in the propranolol group (pairwise comparisons: placebo vs propranolol: t(55)=3.5, p=.001, d=1.293; 1280 

amisulpride vs placebo: t(55)= -.394, p=.695, d=.119 ; amisulpride vs propranolol: t(55)=3.013, p=.004, d=.921). 1281 

For detailed statistics and analysis accounting for this cf. Appendix 1. Mean (SD).  1282 

 Propranolol Placebo Amisulpride  

 

Heart rate (BPM) 

At arrival 74.9 (10.8) 77,2 (12,6) 

 

77.7 (13.8) F(2, 55)=.290, p=.749, 𝜂2=.010 

Pre-task 62,6 (8,5) 

 

65,8 (8,3) 

 

64,6 (9,8) 

 
F(2, 55)=.667, p=.517, 𝜂2=.024 

Post-task 55,7 (6,7) 

 

64,4 (6,9) 

 

63,4 (10,0) 

 
F(2, 55)=7.249, p=.002, 𝜂2=.209 

 

Systolic blood 

pressure 

At arrival 117,2 (10,4) 

 

115,0 (9,7) 

 

117,9 (9,7) 

 
F(2, 55)=.438, p=.648, 𝜂2=.016 

Pre-task 109,4 (9,2) 

 

111,8 (8,6) 

 

114,9 (8,6) 

 
F(2, 55)=1.841, p=.168, 𝜂2=.063 

Post-task 109,5 (8,2) 

 

113,9 (11,3) 

 

114,6 (9,3) 

 
F(2, 55)=1.584, p=.214, 𝜂2= .054 

 

Diastolic blood 

pressure 

At arrival 71,5 (7,8) 

 

71,2 (6,7) 

 

72,3 (6,7) 

 
F(2, 55)=.115, p=.891, 𝜂2=.004 

Pre-task 68,3 (7,0) 

 

71,1 (10,6) 

 

72,0 (5,9) 

 
F(2, 55)=1.111, p=.337, 𝜂2= .039 

Post-task 70,8 (7,3) 

 

70,9 (8,0) 

 

70,3 (6,6) 

 
F(2, 55)=.037, p=.964, 𝜂2=.001 
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Appendix 2 Table 3.  1283 

Table of statistics and behavioural values of Figure 2. All of those measures were modulated by the horizon 1284 

condition.  1285 

 Horizon Mean (sd) 

Two-way repeated-measures ANOVA 

Main effect of horizon 

Expected value 
short 6.368 (0.335) 

F(1, 56)=19.457, p<.001, 𝜂2=.258 
long 6.221 (0.379) 

Initial samples 
short 1.282 (0.247) 

F(1, 56)=58.78, p<.001, 𝜂2=.512 
long 1.084 (0.329) 

Score (1st sample) 
short 5.904 (0.192) 

F(1, 56)=58.78, p<.001, 𝜂2=.512 
long 5.82 (0.182) 

Score (average) 
short 5.904 (0.192) 

F(1, 56)=103.759, p<.001, 𝜂2=.649 
long 6.098 (0.222) 
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Appendix 2 Table 4.  1286 

Table of statistics and behavioural measure values of Figure 3. The drug groups differed in low-value bandit picking 1287 

frequency (pairwise comparisons: placebo vs propranolol: t(40)=2.923, p=.005, d=.654; amisulpride vs placebo: 1288 

t(38)=-.587, p=.559, d=.133; amisulpride vs propranolol: t(38)=2.171, p=.034, d=.496) and choice consistency 1289 

(placebo vs propranolol: t(40)=-3.525, p=.01, d=.788; amisulpride vs placebo: t(38)=1.107, p=.272, d=.251; 1290 

amisulpride vs propranolol: t(38)=-2.267, p=.026, d=.514). The main effect is either of drug group (D) or of horizon 1291 

(H). The interaction is either drug-by-horizon (DH) or horizon-by-WASI (measure of IQ; HW).  1292 

 

 Mean (sd) Two-way repeated-measures ANOVA 

Horizon Amisulpride Placebo Propranolol Main effect Interaction 

H
ig

h
-v

al
u
e 

b
an

d
it

 

short 54.55 (8.87) 49.38 (9.10) 50.98 (11.4) D 
F(2, 54)=1.388, 

p=.258, 𝜂2=.049 
DH 

F(2, 54)=.834, 

p=.440, 𝜂2=.030 

long 41.90 (8.47) 44.10 (13.88) 41.90 (13.57) H 
F(1, 54)=3.909, 

p=.053, 𝜂2=.068 
HW 

F(1, 54)=13.304, 

p=.001, 𝜂2=.198 

L
o
w

-v
al

u
e 

b
an

d
it

 

short 3.32 (2.33) 4.28 (2.98) 2.50 (2.48) D 
F(2, 54)=7.003, 

p=.002, 𝜂2=.206 
DH 

F(2, 54)=2.154, 

p=.126, 𝜂2=.074 

long 5.45 (3.76) 5.35 (3.40) 3.45 (2.18) H 
F(1, 54)=4.069, 

p=.049, 𝜂2=.070 
HW 

F(1, 54)=1.199, 

p=.278, 𝜂2=.022 

N
o
v
el

 b
an

d
it

 

short 36.87 (9.49) 39.02 (10.94) 40.15 (12.43) D 
F(2, 54)=1.498, 

p=.233, 𝜂2=.053 
DH 

F(2, 54)=.542, 

p=.584, 𝜂2=.020 

long 46.82 (12.1) 43.62 (16.27) 48.55 (16.59) H 
F(1, 54)=5.593, 

p=.022, 𝜂2=.094 
HW 

F(1, 54)=13.897, 

p<.001, 𝜂2=.205 

C
o
n
si

st
en

cy
 

short 64.16 (12.27) 62.70 (12.59) 73.00 (11.33) D 
F(2, 54)=7.154, 

p=.002, 𝜂2=.209 
DH 

F(2, 54)=3.352, 

p=.042, 𝜂2=.110 

long 68.11 (10.34) 64.00 (8.93) 70.55 (9.91) H 
F(1, 54)=1.333, 

p=.253, 𝜂2=.024 
HW 

F(1, 54)=.409, 

p=.525, 𝜂2=.008 
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Appendix 2 Table 5.  1293 

Table of parameters used for each model compared during model selection (Figure 4). Each of the 12 columns 1294 

indicate a model. The three ‘main models’ studied were the Thompson model, the UCB model and a hybrid of both. 1295 

Variants were then created by adding the 𝜖-greedy parameter, the novelty bonus and a combination of both. All the 1296 

parameters besides 𝑄0 and w were fitted to each horizon separately. Parameters: 𝑄0=prior mean (initial estimate of a 1297 

bandits mean); 𝜎0=prior variance (uncertainty about 𝑄0); 𝑤=contribution of UCB vs Thompson; 𝛾 =information 1298 

bonus; 𝛽=softmax inverse temperature; 𝜖=𝜖-greedy parameter (stochasticity); 𝜂=novelty bonus. Model selection 1299 

measures include the cross-validation held-out data likelihood averaged over subjects, mean (SD), as well as the 1300 

subject count for which this model performed better over either 12 models or over the 3 best models. 1301 

  1302 

 
 

Model 

Thompson UCB Hybrid 

 + 𝜖 + 𝜂 
+𝜖
+ 𝜂 

 + 𝜖 + 𝜂 
+𝜖
+ 𝜂 

 + 𝜖 + 𝜂 
+𝜖
+ 𝜂 

P
a
r
a
m

et
er

s 

Horizon 

independent 

 
𝑄0 𝑄0 𝑄0 𝑄0 𝑄0 𝑄0 𝑄0 𝑄0 𝑤, 𝑄0 𝑤, 𝑄0 𝑤, 𝑄0 𝑤, 𝑄0 

Horizon 

dependent 
𝜎0 𝜎0, 𝜖 𝜎0, 𝜂 

𝜎0, 𝜖, 
𝜂 

𝛾, 𝛽 
𝛾, 𝛽, 

𝜖 

𝛾, 𝛽, 
𝜂 

𝛾, 𝛽, 
𝜖, 𝜂 

𝜎0, 𝛾, 
𝛽 

𝜎0, 𝛾, 
𝛽, 𝜖 

𝜎0, 𝛾, 
𝛽, 𝜂 

𝜎0, 𝛾, 
𝛽, 

𝜖, 𝜂 

M
o
d

el
 s

el
e
ct

io
n

 

Mean held-

out data 

likelihood 

5

50.2 

(8.1) 

 

5

52.7 

(7.1) 

 

5

52,2 

(8.7) 

 

5

55.3 

(8.4) 

 

5

52.9 

(8.0) 

 

5

52.9 

(8.0) 

 

5

53.4 

(8.1) 

 

5

55.1 

(8.8) 

 

5

53.5 

(8.1) 

 

5

53.8 

(8.4) 

 

5

55.0 

(8.4) 

 

 

555.1 

(8.5) 

 

Subjects’ for 

which model 

fits best (out 

of 12) 

0 

 

 

3 

 

 

2 

 

 

20 

 

 

0 

 

 

0 

 

 

1 

 

 

20 

 

 

0 

 

 

0 

 

 

7 

 

 

6 

 

 

Subjects’ for 

which model 

fits best (out 

of 3 best) 

- 

 

 

- 

 

 

- 

 

 

27 

 

 

- 

 

 

- 

 

 

- 

 

 

22 

 

 

- 

 

 

- 

 

 

- 

 

 

10 
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Appendix 2 Table 6.  1303 

Table of statistics and fitted model parameters of Figure 5. The drug groups differed in 𝜖-greedy parameter value 1304 

(pairwise comparisons: placebo vs propranolol: t(40)=3.177, p=.002, d=.71; amisulpride vs placebo: t(38)=.251, 1305 

p=.802, d=.057; amisulpride vs propranolol: t(38)=2.723, p=.009, d=.626). The main effect is either of drug group 1306 

(D) or of horizon (H). The interaction is either drug-by-horizon (DH) or horizon-by-WASI (measure of IQ; HW).  1307 

 

 Mean (sd) Two-way repeated-measures ANOVA 

Horizon Amisulpride Placebo Propranolol Main effect  Interaction 

𝜖-
g
re

ed
y
 

p
ar

am
et

er
 short 0.10 (0.10) 0.12 (0.08) 0.07 (0.08) D 

F(2, 54)=6.722, 

p=.002, 𝜂2=.199 
DH 

F(2, 54)=1.305, 

p=.280, 𝜂2=.046 

long 0.17 (0.14) 0.14 (0.10) 0.08 (0.06) H 
F(1, 54)=1.968, 

p=.166, 𝜂2=.035 
HW 

F(1, 54)=6.08, 

p=.017, 𝜂2=.101 

N
o
v
el

ty
 

b
o
n
u
s 

𝜂
 short 2.07 (0.98) 2.26 (1.37) 2.05 (1.16) D 

F(2, 54)=.249, 

p=.780, 𝜂2=.009 
DH 

F(2, 54)=.03, 

p=.971, 𝜂2=.001 

long 3.24 (1.19) 3.12 (1.63) 2.95 (1.70) H 
F(1, 54)=1.839, 

p=.181, 𝜂2=.033 
HW 

F(1, 54)=8.416, 

p=.005, 𝜂2=.135 

P
ri

o
r 

v
ar

ia
n
ce

 𝜎
0
 

short 1.18 (0.20) 1.12 (0.43) 1.25 (0.34) D 
F(2, 54)=.060, 

p=.942, 𝜂2=.002 
DH 

F(2, 54)=2.162, 

p=.125, 𝜂2=.074 

long 1.41 (0.61) 1.42 (0.59) 1.21 (0.44) H 
F(1, 54)=.129, 

p=.721, 𝜂2=.002 
HW 

F(1, 54)=.022, 

p=.882, 𝜂2<.001 

P
ri

o
r 

m
ea

n
 𝑄

0
 

 

 
3.22 (1.05) 3.20 (1.36) 3.44 (1.05) D F(2, 54)=.118, p=.889, 𝜂2=.004 
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Appendix 2 Table 7 1308 

Parameter values used for simulations on Figure 1- Figure supplement 3-5. Parameter values for high and low 1309 

exploration were selected empirically from pilot and task data. Value-free random exploration and novelty 1310 

exploration were simulated with an argmax decision function, which always selects the value with the highest 1311 

expected value. For simulating the long (versus short) horizon condition, we assumed that not only the key value but 1312 

also the other exploration strategies increased, as found in our experimental data. For each simulation Q0 = 5 and 1313 

unless otherwise stated, 𝜎0 = 1.5.  1314 

 Horizon Low exploration  High exploration  Additional parameters 

Value-free random exploration  
short 𝜖 = 0.1 𝜖 = 0.2 𝜂 = 0 

long 𝜖 = 0.3 𝜖 = 0.4 𝜂 = 2 

Novelty exploration  
short 𝜂 = 0 𝜂 = 1 𝜖 = 0 

long 𝜂 = 2 𝜂 = 3 𝜖 = 0.2 

Thompson-sampling exploration 
short 𝜎0= 0.8 𝜎0= 1.2 𝜂 = 0, 𝜖 = 0 

long 𝜎0= 1.6 𝜎0= 2 𝜂 = 2, 𝜖 = 0.2 

UCB exploration  

short 𝛾 = 0.1 𝛾 = 0.3 𝛽 = 5, 𝜖 = 0 

long 𝛾 = 0.7 𝛾 = 1.5 𝛽 = 1.5, 𝜖 = 0.2 
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 1315 

Figure 1 - Figure supplement 1 1316 

Visualisation of the 9 different sizes that the apples could take. The associated rewards went from 2 1317 

(small apple on the left) to 10 (big apple on the right).  1318 

  1319 
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 1320 

Figure 1 - Figure supplement 2 1321 

Comparison of value-based (softmax) and value-free (𝜖-greedy) random exploration. (a) Changing the 1322 

softmax inverse temperature affects the slope of the sigmoid while changing the 𝜖-greedy parameter (b) 1323 

affects the compression of the sigmoid. Conceptually, in a softmax exploration mode, as each bandits’ 1324 

expected value is taken into account, (c) the 2nd best bandit (medium-value bandit) is favoured over one 1325 

with a lower value (low-value bandit) when injecting noise. In contrast, in an 𝜖-greedy exploration mode, 1326 

(d) bandits are explored equally often irrespective of their expected value. Both simulations were 1327 

performed on trials without novel bandit. When simulating on all trials we observe that this also has a 1328 

consequence for choice consistency. (e) Choices are more consistent in a low (versus high) softmax 1329 

exploration mode (i.e. high and low values of 𝛽 respectively), and similarly (f) choices are more 1330 

consistent in a low (versus high) 𝜖-greedy exploration mode (i.e. low and high values of 𝜖 respectively). 1331 

When comparing the overall consistency of the two random exploration strategies, consistency is higher 1332 

in the value-based mode, reflecting a higher probability of (consistently) exploring the 2nd best option, 1333 

compared to an equal probability of exploring any non-optimal option (inconsistently) in the value-free 1334 

mode.   1335 
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 1336 

Figure 1 - Figure supplement 3  1337 

Simulation illustrations of high and low exploration on the frequency of picking the low-value bandit using different 1338 

exploration strategies shows that (a) a high (versus low) value-free random exploration increases the selection of the 1339 

low-value bandit, whereas neither (b) a high (versus low) novelty exploration, (c) a high (versus low) Thompson-1340 

sampling exploration nor (d) a high (versus low) UCB exploration affected this frequency. To illustrate the long 1341 

(versus short) horizon condition, we accommodated the fact that not only key values but also other exploration 1342 

strategies were enhanced by increasing multiple exploration strategies, as found in our experimental data (cf. 1343 

Appendix 2 Table 7 for parameter values). Please note that the difference between low and high exploration is 1344 

critical here, rather than a comparison of the absolute height of the bars between strategies (which is influences in 1345 

the models by multiple different exploration strategies). For simulations fitting participants’ data, please see Figure 5 1346 

- Figure supplement 1 and 3.  1347 
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 1348 

Figure 1 - Figure supplement 4 1349 

Simulation illustrations of high and low exploration choice consistency using different exploration strategies shows 1350 

that (a) a high (versus low) value-free random exploration decreases the proportion of same choices, whereas neither 1351 

(b) a high (versus low) novelty exploration, (c) a high (versus low) Thompson-sampling exploration nor (d) a high 1352 

(versus low) UCB exploration affected this measure. To illustrate the long (versus short) horizon condition, 1353 

accommodated the fact that not only the key value but also other exploration strategies were enhanced by increasing 1354 

multiple exploration strategies, as found in our experimental data (cf. Appendix 2 Table 7 for parameter values). 1355 

Please note that the difference between low and high exploration is critical here, rather than a comparison of the 1356 

absolute height of the bars between strategies (which is influences in the models by multiple different exploration 1357 

strategies). For simulations fitting participants’ data, please see Figure 5 - Figure supplement 1 and 3. 1358 
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 1359 

Figure 1 - Figure supplement 5 1360 

Simulation illustrations of high and low exploration on the frequency of picking the novel bandit using different 1361 

exploration strategies shows that (a) a high (versus low) value-free random exploration has little effect on the 1362 

selection of the novel bandit, whereas (b) a high (versus low) novelty exploration increases this frequency. (c) A 1363 

high (versus low) Thompson-sampling exploration had little effect and (d) a high (versus low) UCB exploration 1364 

affected this frequency but to a lower extend than novelty exploration. To illustrate the long (versus short) horizon 1365 

condition, we accommodated the fact that not only the key value but also other exploration strategies were enhanced 1366 

by increasing multiple exploration strategies, as found in our experimental data (cf. Appendix 2 Table 7 for 1367 

parameter values). Please note that the difference between low and high exploration is critical here, rather than a 1368 

comparison of the absolute height of the bars between strategies (which is influences in the models by multiple 1369 

different exploration strategies). For simulations fitting participants’ data, please see Figure 5- Figure supplement 1 1370 

and 3.  1371 
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 1372 

Figure 2 - Figure supplement 1 1373 

Further analysis of long horizon draws. (a) The first draw in the long horizon led to a lower reward than the short 1374 

horizon, indicating more exploration, while the subsequent draws led to a higher reward indicating that this 1375 

additional information helped making better decisions in the long run. (b) The first draws’ response time was the 1376 

highest and then decreased for each draw. Long horizon trials in which subjects started with (c) an exploitation draw 1377 

(choose the bandit with the highest expected value) led to little increase in reward (y-axis: difference between 1378 

obtained reward and highest reward of initial samples; linear regression slope coefficient: mean=0.118, sd=0.038), 1379 

whereas trials in which they started with (d) an exploration draw led to an large increase in reward (linear regression 1380 

slope coefficient: mean=0.028, sd=0.041). This larger increase in reward when starting by exploring (slope is 1381 

higher: t(58)=-12.161, p<.001, d=-1.583) indicates that the information that was gained through exploration led to 1382 

higher long-term outcomes. Data are shown as mean ± SEM and each dot represent one subject.   1383 
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 1384 

Figure 3 - Figure supplement 1  1385 

Response time analysis per bandit. There was no difference in RT depending which bandit was chosen. For details 1386 

and statistics cf. Appendix 1.   1387 
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 1388 
Figure 3 - Figure supplement 2  1389 

Proportion of draws per bandit combination (x-axis). (a) The high-value bandit was picked more when there was no 1390 

novel bandit, and less when the high-value bandit was less certain. (b) The novel bandit was picked the most when 1391 

the high-value bandit was less certain, then when the high-value bandit was more certain, and it was picked the least 1392 

when both certain and certain standard bandits were present. (c) The low-value bandit was picked less when the 1393 

high-value bandit was more certain. For statistics see Appendix 1.   1394 
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 1395 

Figure 4 - Figure supplement 1  1396 

Model comparison: further evaluations. (a) The winning model at the group level (the Thompson model with both 𝜖 1397 

and 𝜂) was also the one that accounted best for the largest number of subjects. (b) The Thompson+𝜖+𝜂 model and 1398 

the UCB+𝜖+𝜂 are equally first in subject count when comparing all models, the Thompson+𝜖+𝜂 model is therefore 1399 

still the winning model as it has the highest average likelihood of held-out data.  1400 
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 1401 

Figure 4 - Figure supplement 2  1402 

Correlations between model parameters and behaviour. The behavioural indicators of (a) value-free random 1403 

exploration (left panel: draws from the low-value bandit; right panel: consistency) correlated with the 𝜖-greedy 1404 

parameter values, and of (b) novelty exploration (draws from the novel bandit) correlated with the novelty bonus 𝜂.   1405 
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 1406 

Figure 4 - Figure supplement 3  1407 

Parameter recovery analysis details. For each of the 7 parameters of the winning model, we took 4 values, equally 1408 

spread within the parameter range. We simulated behaviour using every combination (47 =  16384), fitted the 1409 

model and analysed how well the generative parameters (original values) correlated with the recovered ones (fitted 1410 

parameters). Pearson correlation coefficient = r. Each dot represents one simulation.   1411 
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 1412 

Figure 5 - Figure supplement 1  1413 

Simulated behaviour for Thompson+𝜖+𝜂 model. We used each subjects’ fitted parameters to simulate behaviour 1414 

(𝑁𝑡𝑟𝑖𝑎𝑙𝑠=4000). Data are shown as mean ± SEM and each dot/line represent one agent.  1415 
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 1416 

Figure 5 – Figure supplement 2 1417 

Gender effect on prior variance parameter. Mean values (across horizon conditions) of 𝜎0 were larger for female 1418 

subjects, whereas in the amisulpride group, they were larger for male subjects. Data are shown as mean ± SEM and 1419 

each dot represent one subject.  1420 

1421 
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 1422 
Figure 5 - Figure supplement 3 1423 

Simulated behaviour for UCB+𝜖+𝜂 model. We used each subjects’ fitted parameters to simulate behaviour 1424 

(𝑁𝑡𝑟𝑖𝑎𝑙𝑠=4000). Data are shown as mean ± SEM and each dot/line represent one agent. 1425 
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