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ABSTRACT
Robot-assisted surgery has potential advantages over more conventional methods
but lacks any force feedback, which can lead to errors such as broken stitches or
tissue damage. More experienced surgeons are able to judge the tool-tissue forces
visually and finding an automated way of capturing this skill would seem desir-
able. Methods to measure force tend to involve complex measurement devices or
visual tracking of tissue deformation. We investigate whether surgical forces can
be estimated simply from the discrepancy between kinematic prediction and visual
measurement of the tool position. We show that combined visual and kinematic
force estimation can be achieved that does not rely on external measurements or
modelling of tissue deformation. An initial alignment from kinematic pose to the
visual scene is performed when no force is applied to the tool. When a subsequent
force is applied the visual and kinematic estimates of tool position diverge. We plot
visual/kinematic displacement using forces measured with a strain gauge with both
vision and marker based tracking. Graphs of force vs displacement demonstrate
the ability to discern the forces involved in knot tying. We also visualize our dis-
placement force using the publicly available JIGSAWS dataset as well as clinical
examples of knot tying with the da Vinci surgical system. We anticipate that the
ability to visualize or feel forces using this method will offer a significant advantage
to those learning robotic surgery as well as adding to the information available to
more experienced surgeons.
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1. Introduction

Robot-assisted endoscopic surgery has been rapidly gaining acceptance and has many
advantages over conventional laparoscopic surgery. These include features that make
the surgical task easier, including the enhanced dexterity of wrist motion, scaling of
movements and reduction in tremor as well as better outcomes for the patient such
as improved cosmesis and reduced blood loss and infection rates. Such collaborative
robots lack haptic feedback, however, which can be a hindrance to both the learning
and practice of robot-assisted surgery (Okamura 2009).
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Figure 1. Coordinate system definitions, showing the overall experimental setup (a), the endoscope axes with

the origin on the left camera (b) and the tool axes centred on the last wheel with Z-axis in the direction of the
tool (c)

Force torque measurements have been shown to distinguish expert from novice sur-
geons (Richards et al. 2000), which shows that force is a useful indicator of surgical
skill and also suggests that communication of force might help shorten the learning
curve for such procedures. Mechanical sensors placed at or near the robot end effector
can provide accurate force measurement (Lee et al. 2016), but add significant complex-
ity to the robot design and may not be cost effective (Okamura 2009). Forces on the
robotic tool can be estimated using measurements of the currents in the motors and
tool velocities in conjunction with a physical model of the robot. Most of the sensors
are distant from the robot end effector, however, which can lead to inaccuracies and
such methods have been largely restricted to the final grip force (Li et al. 2016).

Experienced surgeons are able to mitigate the effects of lack of haptic feedback using
visual cues. One can emulate this perception by visual estimation of the distortion of
the tissue, coupled with either a mechanical model of the tissue (Haouchine et al. 2018)
or deep learning to provide force estimation (Noohi et al. 2014; Aviles et al. 2017).
Being based solely on the endoscopic video, these methods add no complexity to the
robot design and can potentially resolve very small forces. Most work to date is limited
to a particular tissue type, such as liver (Marban et al. 2019) or brain (Giannarou et al.
2016), but this method shows some promise.

We recently made the observation that the predicted position from kinematic con-
straints and the measured position from vision will diverge when a force is applied
to the robot. Any distortion of the robotic joints will result in inaccurate kinematic
localisation, but this also gives an indication of the force acting upon the tool. In addi-
tion to established surgical cues, such as observation of tissue deformation and suture
shape, observing a reduction of tool motion when moving the manipulator could be
one of the ways experienced surgeons are able to perceive forces visually. This idea has
been proposed in a patent (Zhao et al. US Patent 2010/0169815, Intuitive Surgical
Inc, 2010), but to our knowledge has not been considered in the academic literature
to date.

The purpose of this paper is to document this effect and assess its potential as a
means of achieving force estimation that is independent of the tissue or procedure and
requires no modification of the robotic tools. We concentrate on knot tying. Previ-
ous experiments using external force measurements have shown an improved learning
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curve and a reduction in broken sutures when force is visually communicated to the
trainee (Reiley et al. 2008), making this a good potential application.

2. Method

2.1. Equipment

We use two da Vinci�surgical systems - a “classic” or original da Vinci with PAL
resolution (576i) endoscopic video and a da Vinci Si providing either 720p or 1080i
video. The dVLogger system from Intuitive Surgical, Inc. is used to record times-
tamped stereoendoscopic video and kinematic information. The experimental setup
and corresponding coordinate systems can be seen in Fig. 1.

2.2. Data Processing

We investigate the force-displacement relationship of the da Vinci robot. For our initial
experiments the we approximate the tool position visually using the CSRT tracker from
Lukežič et al. (2017). This is consistently one of the best performing patch-based object
tracking methods and is available in OpenCV (Kristan et al. 2017). The CSRT tracker
provides an initial match from the left to right frame as well as subsequent tracking for
both frames. This gives 3D tool position tracking from stereo. The origin of the tool
provided by the dVLogger is in the centre of the final wheel that enables jaw opening
and closing (see Fig. 1(c)). Though this point is internal and not directly visible, it can
be inferred from the position of the tool parts. The position of this origin is manually
marked using a box in the first frame of the video segment. The CSRT tracker was
able to track subsequent motion of this point an accuracy of better than 5 pixels over
short periods of a few tens of frames. To establish whether improved visual tracking
would enable more accurate estimation of forces, we also attached Aruco markers to
the Si robot to provide consistent tracking over longer periods.

The timestamps from the dVLogger should provide good synchronisation but there
can still be residual mismatches in lag between video and kinematic data. We match
the kinematic motion to the visually tracked tool using Procrustes alignment. The
relative lag between visual and kinematic tracking is optimized so as to minimize the
residual error to provide accurate temporal alignment.

As a simple indicator of the force we use the displacement between the kinematic
and visual positions of the tool origin in pixels. This is a relative measure and gives
an indication of the force rather than an absolute value. To measure forces in the
lab setting we use a spring strain gauge. The gauge measurement is recorded using an
external video camera which is synchronized to the endoscopic video using observations
of the robot motion. The force measurement is then made by observing the position
of the force indicator in the video.

2.3. Experiments

To assess the feasibility and accuracy of force measurement, we have performed four
experimental evaluations. As the force on the end effector increases we expect the
discrepancy between the visual and kinematic positions to increase. It is known that
the kinematics of cable driven robots can have inaccuracies, causing drift or hysteresis
in the predicted position. To overcome this, we perform experiments over a short time
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Figure 2. Spring forces and visual discrepancy for the da Vinci Classic robot. External camera view of the
spring gauge and scene is on the left. The endoscopic view is on the right with OpenCV tracked position in

red for the right and left views, and predicted position and orientation from kinematics shown as axes. The

brightness of the red dot provides an indication of force. Forces are 0N (top), 3N (middle) and 5N (bottom)

period and calculate an approximate hand-eye calibration by matching the visual and
kinematic tool position when no force is present. Subsequent motion with force should
deviate from the visually tracked position. Spring gauges measure the absolute force
on the robot in the lab setting.

2.3.1. OpenCV visual force estimation with the da Vinci Classic

In this experiment we gathered video and kinematic data from the da Vinci Classic.
Stereo calibration is performed using a standard chessboard and OpenCV. In a first
pass, the tool is moved without any force acting up it. The positions of the tool from
vision and kinematics are recorded and registered by Procrustes analysis to orient
and scale the 3D visual position from stereo to provide a best match. This effectively
provides a hand-eye calibration that matches kinematic motion to the visual scene.
After this initial hand-eye calibration, the tool is tracked and the visual and kine-
matic positions should remain well aligned. The strain gauge hook is then grabbed
by the tool and a the spring is extended. The distance between kinematic and visual
position is measured as a displacement in millimetres. This is displayed visually as a
red dot of increasing intensity with increasing force. Experiments are performed in all
3 axes showing that lateral, vertical and depth tracking are possible using the stere-
oendoscopic video. A separate camera captures the overall scene and is able to see
the measurement from the strain gauge. Several time points are chosen and both the
measured and visual force estimations are recorded.

2.3.2. Aruco marker force feedback with the da Vinci Si

To assess the effect of tracking accuracy on the force-displacement relationship we
performed a second experiment using the da Vinci Si. This experiment has a very
similar setup to 2.3.1, but an Aruco marker is attached to the relevant section of
the robot. Aruco markers provide automated marker tracking and identification in
OpenCV (Romero-Ramirez et al. 2018). The da Vinci Si provides images at 1080i which
are then deinterlaced to provide 1080 resolution video data without interlacing issues
such as comb artefact. OpenCV stereo calibration is performed as before. Accurate
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Figure 3. Graphs of displacement vs force for the da Vinci classic showing horizontal motion (a), vertical

motion (b) and depth motion (c). The increasing trend is apparent in all directions.

positional tracking using the markers along with higher resolution video from the da
Vinci Si should enable smaller discrepancies to be found and hence allow more accurate
force estimation. We also display tool orientation as well as position to assess how the
kinematic tracking may be affected by torque forces.

2.3.3. Visual force estimation with the JIGSAWS dataset

We also estimate the forces in surgical knot-tying in training sessions. The JIGSAWS
dataset from Johns Hopkins University provides a standard for surgical gesture recog-
nition and skills assessment (Gao et al. 2014). This dataset consists of videos and
corresponding kinematic poses for the two tools. After an initial synchronisation of
the video and kinematic information, we perform visual tracking using the OpenCV
CSRT tracker previously described. We perform analysis on the left eye. The kinematic
location of the tool should be in endoscope coordinates (see Fig. 1(b)), which are cen-
tred on the left camera facing along the optical axis. In this coordinate system, the
values x/z and y/z should be proportional the pixel coordinates u, v. The scaling factor
is estimated from an initial calibration with no force present. Subsequent discrepancy
between visual and kinematic location represents the estimated force. Without stereo
calibration the analysis is 2D and force is measured in pixels.

2.3.4. Visual force feedback in a clinical dataset

Finally, we have access to clinical data from robot-assisted radical prostatectomies
performed at a collaborating hospital. Though visual tracking of the tool in the real
surgical scene is difficult due to the presence of blood and smoke, we use manual
alignment to provide initial registration and overlay only the kinematic position of the
tool. The surgeon can use their visual perception of the tool to provide an estimation
of force.

3. Results

3.1. OpenCV visual force estimation with the da Vinci Classic

Some example frames from this experiment can be seen in Fig. 2. The visualisation
of increasing discrepancy with increasing force is observed. Fig. 3 shows the force-
displacement relationship when the spring gauge is extended multiple times. A clear
correlation is visible, but there are also significant errors visible. This may be due
to visual tracking errors or hysteresis in the force-displacement relationship for the
robot. Such issues are perhaps to be expected as the robot is not designed exhibit
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Figure 4. The Aruco marker position is shown in red and predicted position and orientation from kinematics

is shown as axes. Above we can see good tracking when no force is applied (top image). In both the examples in
the lower images, the kinematic position shows inaccuracy in both position and orientation as forces increase.
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Figure 5. Scatter plots showing the motion variation as the tool is moved throughout the visual field. The
green and blue lines correspond to no applied force. The residual variation could be further reduced with

improved hand-eye calibration. With maximum spring forces of 6.7N and 5.8N applied (red and orange lines) the

displacement is greater. Roughly linear increase with applied force is seen, though the maximum displacement
varies in each case.

linear elasticity.

3.2. Aruco marker force feedback with the da Vinci Si

Some frames from this experiment can be seen in Fig. 4. It is clear that there is not
only a displacement of the tool from its kinematically predicted position, but also
a rotational inaccuracy. Since the spring is acting towards the end of the tool at a
distance from the origin in the centre of the wheel this is not surprising, but this
observation underlines the need for a more complex model of the robot forces than
mere displacement. When a force is applied the discrepancy increases in a roughly
linear fashion with improved visual tracking. The maximum force as measured by the
spring gauge is 6.7N and 5.8N in the two cases shown. The corresponding maximum
displacement is 4mm and 5mm, so is lower for the higher applied force. This may
be due to hysteresis or changes in the configuration of the robot arms. But overall it
seems that forces greater than 4-5N will produce displacements that can be reliably
differentiated from zero force.

3.3. Visual force estimation with the JIGSAWS dataset

In Fig. 6 we can see captured frames from the JIGSAWS dataset. When a knot is
tightened there is motion of the kinematic position away from the visual position,
resulting in a clearly visualized force. This experiment shows that our method can
be applied to historical data to give an estimate of surgical forces where no force
measurements were made. Endoscopic video and corresponding kinematics are all that
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Figure 6. JIGSAWS knot tying examples. No force on the left, knot tightening on the right. The brightness

of the red dot gives a clear indication of force.

Figure 7. Clinical example of knot tightening during robot-assisted radical prostatectomy. As the knot is
tightened (bottom image) the predicted positions of the tools from kinematics diverge (green arrow)

is required.

3.4. Visual force feedback in a clinical dataset

In clinical examples it has not yet been possible to provide an accurate visual tool
tracker due to the presence of blood. However, manual delineation of a few points is
enough to provide a decent overlay of the kinematic position. It is then up to the
surgeon to provide their own visual tracking of the actual tool position. This can still
be an effective communication of force, as shown in Fig. 7, where the kinematic tool
positions diverge as the knot is tightened.

4. Discussion

This paper highlights an effect that has received little attention in the literature so
far, namely that a discrepancy between the kinematic and visual position of a robotic
tool can provide an estimate of the force applied. The accuracy with which the force
can be detected depends on the flexibility of the robot, which is generally minimized
by design, and the accuracy of visual tool tracking.

The methods used here are simple and used to demonstrate and evaluate the effect.
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Kinematic tracking uses the dVLogger provided by Intuitive Surgical, Inc., which
provides the tool position within the endoscope frame. A more complex kinematic
model showing the position of all parts of the surgical tool may be more illuminating.

Accurate tool tracking is difficult, particularly in real surgical scenes in the presence
of blood contamination and smoke. We used simple block matching from OpenCV
which is effective only over short time periods of a few tens of frames. Tool tracking is
a highly active area of research, however, and the ability to include a force dimension
adds to the motivation for this work. One of the few works to use both kinematic
and visual data is the da Vinci tool tracker from Ye et al Ye et al. (2016). Our future
work will build on this work and other tool tracking methodologies, such as Du et al.
(2016), to incorporate kinematic information and a virtual CAD model to provide
more accurate tracking and improved visualisation. The analysis here incorporates
both stereo views, but not the full visual instrument pose.

The force estimation described in this paper is based purely on displacement. The
absolute force is not estimated. Accurate force estimation would require a physical
model of the robot coupled with 3D visual estimation of the robotic tool. This will
form part of our future research. Such a model may provide a better relationship
between force and displacement. The distortion of both orientation and position that
is apparent in Fig. 4 due to the force being applied near the tip of the instrument
suggests that such a model may provide better force estimation.

However, a full physical model of the robot will be difficult to generate. There may
be differences in tool shaft bending depending on how far the tool extends beyond
the trocar and whether the force applied is along or perpendicular to this shaft, for
example. But external observation of the robot suggests that distortion also occurs in
the set up joints that bear the weight of the robot arms. A combined model taking
into account all of these effects will not be easily achieved.

Perhaps a more feasible solution would be to train a neural network to recognize
this effect and relate it to the force applied at the tool. A regression network may
be able to predict the forces given kinematic and visual data and could learn when
effects such as hysteresis occur. To train such a network would require a wide range
of forces in many positions measured with a more accurate force-torque sensor rather
than spring gauges. The force estimation as it stands may feed into other learning
systems seeking to establish the skill level of the surgeon, for example.

The clinical examples here are limited to knot tying. This requires significant force
in the horizontal plane so is well suited to this implementation. The force estimation
we propose will provide extra and complementary information that may be useful
when assessing surgical skill. In order to limit damage to tissue and provide palpation,
the ability to measure force in the Z direction to a higher accuracy will be necessary. A
machine learning approach that incorporates the information described in this paper
as well as visual cues of surface deformation may be capable this level of accuracy.

Despite the limitations of the experiments described in this paper, we have shown
that forces of 4-5N can be detected and shown to the surgeon. Abiri et al. (2017)
measured the forces required to break sutures used in robotic surgery. Even the finest
5-0 gauge silk sutures had breaking forces of over 8N. This suggests that the effect
observed in this paper could be used as an early warning system for suture failure,
which is a common problem observed when learning robotic surgery (Abiri et al. 2018).

There are many avenues for future development of this method, but the effect
demonstrated in this paper can already provide an indication of robotic surgical forces,
which may be beneficial to trainee and expert surgeons alike.
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Noohi E, Parastegari S, Žefran M. 2014. Using monocular images to estimate interaction
forces during minimally invasive surgery. In: 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems; Sep. p. 4297–4302.

Okamura A. 2009. Haptic feedback in robot-assisted minimally invasive surgery. Current Opin-

10



ion in Urology. 19(1):102–107.
Reiley CE, Akinbiyi T, Burschka D, Chang DC, Okamura AM, Yuh DD. 2008. Effects of

visual force feedback on robot-assisted surgical task performance. The Journal of Thoracic
and Cardiovascular Surgery. 135(1):196 – 202.

Richards C, Rosen J, Hannaford B, Pellegrini C, Sinanan M. 2000. Skills evaluation in mini-
mally invasive surgery using force/torque signatures. Surgical Endoscopy. 14(9):791–798.
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