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Abstract: The state-space representations grant a convenient, compact, and elegant way to examine
the induction and synchronous generator-based wind turbines, with facts readily available for
stability, controllability, and observability analysis. The state-space models are used to look into the
functionality of different wind turbine technologies to fulfill grid code requirements. This paper deals
with the model order reduction of the Variable-Speed Wind Turbines model with the aid of improved
stability preserving a balanced realization algorithm based on frequency weighting. The algorithm,
which is in view of balanced realization based on frequency weighting, can be utilized for reducing
the order of the system. Balanced realization based model design uses a full frequency spectrum
to perform the model reduction. However, it is not possible practically to use the full frequency
spectrum. The Variable-Speed Wind Turbines model utilized in this paper is stable and includes
various input-output states. This brings a complicated state of affairs for analysis, control, and design
of the full-scale system. The proposed work produces steady and precise outcomes such as in contrast
to conventional reduction methods which shows the efficacy of the proposed algorithm.

Keywords: induction generator; synchronous generator; wind turbines; model reduction; limited fre-
quency Gramians; error bound; balanced realization

1. Introduction

Among the available sources of energy such as oil, gas coal, and nuclear, the wind is
recognized as an infinite source of clean energy. Wind energy has reduced the sole reliance
on fossil fuel means. During the last two decades, the rapid growth of wind power plants
is observed all over the world [1–4]. According to the global wind energy council (GWEC),
by the completion of the year 2019, the total cumulative installed capacity of wind energy
was 60.4 GW [5] around the globe, which is a 19 % globally increase from installation in
2018 [6]. Moreover, the second-best year for wind energy historically. The total cumulative
installed capacity for wind energy is 651 GW around the globe, a 10 % increase compared
to 2018 (see GWEC for more detail). Continual change in speed, density, and temperature
round the clock is the main issue with wind energy. Therefore the integration of the wind
masts with the grid needs to be governed by certain policies, known as grid codes, to avoid
the undesirable impact on the grid power [1,7–9]. The developed grid codes are different
for the different countries depending upon their environmental conditions and operational
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constraints [10,11]. However, wind farms need their disturbance less connection with
the grid similar to that of a conventional power plant. In this regard a noble grid code
essentially covers the following [12]:

• Ranges:

1. Voltage operating range;
2. Frequency operating range.

• Controls:

1. Active power control;
2. Frequency control;
3. Voltage control;
4. Reactive power control;
5. Communications and external control.

• Rides Through:

1. Low voltage ride through (LVRT);
2. High voltage ride through (HVRT).

• Power quality;
• Wind farm modeling and verification.

Traditionally three types of power generation machines are used in wind turbines
to convert wind energy into electrical energy. These are Squirrel (single/double) Cage
Induction Generator (SCIG), Doubly Fed (wound rotor) Induction Generator (DFIG),
and Permanent Magnet Synchronous Generator (PMSG). Among the said three generators,
the DFIG has shown a good performance during LVRT and remained connected to the
power grid. DFIGs are frequently being used in the wind energy conversion systems
due to the distinguished features of handling of variable speed, easy to control, higher
energy efficiency, and improved power quality [13]. Nevertheless, Squirrel Cage Induction
Machines (SCIM) equipped with reactive power compensators are also used in wind energy
conversion systems because of their simplicity [14], low cost, and robustness. The SCIM
with an additional cage, also called double squirrel cage, has higher-order complexity as
compared to the single cage machines.

Hence, the computer simulation-based study, investigations and research demands a
realization of a perfect depiction of Double Cage Induction that can address their significant
issues, especially, concerning the integration of wind energy conversion systems to the
grid. Thus, the use of wind energy and its integration with the grid is now an essential
subject to learn about [15].

Comprehensive studies to discover the interplay between wind farms and the power
system are necessary. Different researches are carried out whenever a wind farm is de-
signed, in a comparable way to other new technology amenities [13,15]. In general, the in-
fluences of wind technology are assessed in the course of model planning concerning
voltage profile, electricity flow, short-circuit currents, reactive power capability, Low Volt-
age Ride Through (LVRT), and transient stability [16–19]. A detailed representation of each
unique unit and connections between the units and the system is every so often considered.
Alternatively, the wind farm can also be modeled as a lumped equivalent model as viewed
from the system [17]. The other related work on transient stability improvement and
spinning reserve dispatch in wind-thermal power system is also given in [20,21].

Nevertheless, the response of the system will rely on the type of tools being used.
Several different dynamic models have been derived and are entirely documented in the
literature [22–27]. However, some of them use significant simplification to make use of
control system design techniques [28].

To provide a high-quality tool for energy system studies, the reduced-order mod-
eling of state-space representations of synchronous and induction machines for wind
turbine applications is given [29]. The reduced models are presented as state-space rep-
resentations, allowing a convenient, compact and elegant way to check the induction
and synchronous generator-based wind turbines [30–32], with facts effectively accessible
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for stability, controllability, and observability analyses [33,34]. Natural and steady-state
responses of reduced-order model (ROM) effectively compared with the original system
which shows the effectiveness of ROM by using balanced based realization [35].

Model order reduction (MOR) is a process of reducing the higher-order system to
lower-order systems. A Higher-order system involves lots of complexity for the analysis,
design, and simulations. In control system theory it is a very useful way to reduce the
higher-order model and perform tasks [36–46].

One of the most extensively used technique of MOR is balance truncation (BT) [47].
It is used to acquire the ROM. It grants the stable ROM and also grants error bound formula.
It keeps the properties like input/output behavior and passivity etc while the use of the full
frequency spectrum. The BT approach [47] yields ROM which not only preserves stability
but additionally gives easily computable error bounds [47]. Ideally, the BT [47] approach
tends to approximate the original model and offers ROM with less approximation error for
the entire frequency range. However, there is a certain scenario where approximation error
is required to be small for certain frequency weights alternatively than the entire frequency
range. This motivates to use of frequency weights in a balanced realization algorithm [48].
Enns [48] has extended the BT [47] approach by way of introducing frequency weights
in the given model realization. This technique may additionally include input, output,
and two-sided weighting. However, this method sometime yields unstable reduced order
systems when both sided weighting is present [49]. To overcome this main drawback,
Wang et al’s [50] and Imran and Ghafoor (IG) [51] presented stability preserving methods.
Gawronski and Juang [52] and Wang and Zilouchian (WZ) [53] proposed a frequency
confined balanced MOR technique for the continuous-time and the discrete-time systems
respectively, where weights are not explicitly predefined, but the approximation is con-
sidered in certain frequency intervals. In this technique, Gramians were described for
preferred frequency intervals. However, it can also yield unstable ROM for a stable original
system. Moreover, there is no error bound exists. The instability issues appeared in [52,53]
were carried out by [54–59].

To overcome the instability issue of Enns [48], the proposed scheme effectively per-
forms a model reduction of the DFIG based Variable-Speed Wind Turbines model [24] and
produces stable ROM by ensuring the positive/semi-positive definiteness of some input
and output related matrices respectively, simulation results that are comparable with [48]
and existing stability preserving techniques ([50,51]). Moreover, the proposed technique
provides computable a priori error bounds formula for frequency weighting and limited
frequency-intervals respectively. Simulation results are given to show the usefulness of the
proposed technique when compared with other methods.

The main contributions of this paper are as follows

• Frequency weighted Gramians based MOR approach for the wind turbine power
system is proposed.

• A priori error bound formula for frequency weighted cases is derived.
• ROMs of DFIG (current, flux) models are obtained based on frequency weighted

scenario which ensure the stability.
• Comparison among different existing MOR technique with proposed technique is

presented.

2. Grid Connection Configuration of Induction Machines

This section discusses the grid connection configuration of Double Fed Induction
Generator (DFIG) and Squirrel Cage Induction Generator (SCIG).

2.1. Double Fed Induction Generator (DFIG)

DFIGs are integrated with the grid in a pattern as shown in Figure 1. A low-speed shaft
of the wind turbine is connected to the rotor of the DFIG through a gearbox. The gearbox
enhances the speed to a value required by the generator for power generation. DFIG uses
a wound type rotor which is connected to the grid through, AC-DC-AC, two back-to-
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back voltage source converters of partial rating (usually 30 percent of generator power).
The converter connected to the rotor end is called Rotor Side Converter (RSC) while the
converter connected to the grid end is known as Grid Side Converter (GSC). Both converters
are separated by a DC-link capacitor as energy storage. These converters address the
problem of the variable wind speed, during both sub-synchronous and super-synchronous
modes, and produce fixed output frequency as required at the grid [16]. The stator is
connected to the grid through a step-up transformer [13]. A control system is incorporated
to control input power at the shaft of the wind turbine, reactive power, and the voltage at
the grid terminal. This system generates separate voltage commands Vr and Vgc for RSC
and GSC respectively. The RSC provides the control of both active and reactive power
while GSC manages the voltage at DC-link capacitor in between RSC and GSC for its
operation at unity power factor.

Figure 1. Conventional Integration of DFIG with grid.

2.2. Squirrel Cage Induction Generator (SCIG)

Direct grid-connected wind energy turbines use SCIGs (single or double cage) and op-
erate at a fixed speed [14]. Similar to the other wind energy conversion systems, the turbine
is linked to SCIG through a gearbox to achieve a nominal speed for power generation while
the generator is directly coupled to the grid as displayed in Figure 2. As speed fluctuations
are due to the variations in the rotor slip, the rotor speed changes are minor and the wind
turbine is normally used to drive at a fixed speed. At the instant of voltage variations at the
grid, SCIG acts as an induction motor and absorbs reactive power. Therefore, the power
system is augmented with a reactive power compensator, usually a capacitor bank, to im-
prove the power factor. The pitch angle control is incorporated for the optimum value of
the wind power to address the rotor speed instability of the generator as the wind speed
varies. The Squirrel cage systems are also used in variable-speed wind energy systems.

Figure 2. Conventional Integration of SCIG with grid.
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2.3. Mathematical Model for DFIG and SCIG

The variables indicated by prime are referred to the stator. The stator and rotor
quantities are in arbitrary ‘dq’ (d-axis and q-axis) reference frame. Figure 1 depicts circuit
diagram of DFIG and SCIG.

3. Mathematical Model for Double Cage Induction Machines (DCIM)

Mathematical relations for the conversion of wind energy into electrical energy is
specified in [17–19]. Electrical variables and parameters designated by primes, in the
mathematical model, are referred to as the stator. Parameters for the Double Cage Induction
Machine (DCIM) are shown in Table 1.

Table 1. Parameters used for the Double Cage Induction Machine.

Parameters for Double Cage Induction Machine (DCIM)

Stator Double Cage Rotor

Rs, Lls Stator Resistance and Leakage
Inductance

Ŕr1 , Ĺlr1
Rotor resistance and leakage

inductance of cage 1

Ls Total Stator inductance Ŕr2 , Ĺlr2
Rotor resistance andleakage

inductance of cage 2

Vqs , iqs q-axis stator voltage and
current

Ĺr1 , Ĺr2 Total rotor inductances of
cage1 and 2

Vds , ids d-axis stator voltage and
current

ídr1
, ídr2

d-axis rotor current of cage 1
and 2

ϕds Stator d axis flux íqr1
, íqr2

q-axis rotor current of cage 1
and 2

ϕqs Stator q axis fluxes ϕ́dr1
, ϕ́qr1

d and q-axis rotor fluxes of
cage 1

ϕ́dr2
, ϕ́qr2

d and q-axis rotor fluxes of
cage 2

Lm Magnetizing inductance

H Combined rotor and load inertia constant. Set to infinite to simulate a locked rotor.

ωm Angular velocity of rotor

p Number of pole pairs

Te Electromagnetic torque

Tm Shaft mechanical torque

F Combined rotor and load viscous friction coefficient

Ps Stator active power

Qs Stator reactive power

Pr Rotor active power

Qr Rotor reactive power

Pm Mechanical power

3.1. Electrical System

The electrical system comprises a stator and a double squirrel cage rotor. The ma-
chine is represented by a sixth-order model while the mechanical part is a second-order
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system [22]. The electrical circuit is represented in Figure 3. Stator voltages on quadrature
(q) axis and direct (d) axis can be obtained as following

Vqs = Rsiqs +
dϕqs

dt
+ ωϕds

Vds = Rsids +
dϕds

dt
−ωϕqs

where

ϕqs = Lsiqs + Lm(íqr1
+ íqr2

)

ϕds = Lsids + Lm(ídr1
+ ídr2

)

Ls = L1s + Lm.

Rotor equations for the first cage quadrature (q) axis and direct (d) axis can be obtained
as following

0 = Ŕr1 íqr1
+

dϕ́qr1

dt
+ (ω−ωr)ϕ́dr1

0 = Ŕr1 ídr1
+

dϕdr1

dt
+ (ω−ωr)ϕ́qr1

where

ϕ́qr1
= Ĺr1 íqr1

+ Lmiqs

ϕ́dr1
= Ĺr1 ídr1

+ Lmids

Ĺr1 = Ĺ1r1
+ Lm.

Rotor equations for the second cage quadrature (q) axis and direct (d) axis can be obtained
as following

0 = Ŕr2 íqr2
+

dϕ́qr2

dt
+ (ω−ωr)ϕ́dr2

0 = Ŕr2 ídr2
+

dϕdr2

dt
+ (ω−ωr)ϕ́qr2

where

ϕ́qr2
= Ĺr2 íqr2

+ Lmiqs

ϕ́dr2
= Ĺr2 ídr2

+ Lmids

Ĺr2 = Ĺ1r2
+ Lm.

Electrical torque equations double squirrel cage induction machines be

Te = 1.5p(ωϕds iqs −ωϕqs ids)
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Figure 3. Electrical circuit of a double cage induction machines in the arbitrary two-axis, dq-
reference frame.

Remark 1. During the conversion process of electromechanical energy, some of the energy con-
stitutes as heat due to the resistive loss in the conductors of rotor and stator as well as core losses
(hysteresis and eddy current) and dielectric loss. Technically, core losses are taken into account by
placing a small resistor in parallel with the magnetizing inductance Lm in the per phase equivalent
circuit of the model. However, these losses are ignored in the circuit diagram, as shown in Figure 3,
due to the following reasons [22]:

1. Selected core is made up of ferromagnetic material organized in lamination to minimize the
core losses

2. The core losses are negligible when compared to the stator and rotor copper winding losses

3.2. Mechanical System

A second-order mechanical system of double cage induction machine is represented
as [25]

d
dt

ωm =
1

2H
(Te − Fωm − Tm)

where ωm = d
dt θm

4. Mathematical Model for DFIG and SCIG Systems

For a computer simulations based study it is necessary to understand mathematical
models of the machines for their electrical and mechanical systems [19]. Table 1 displays
all the mathematical symbols and their meaning in the context of the mathematical mod-
els discussed.

4.1. Wind Energy Conversion

The kinetic energy of the wind is converted through the blades of turbine into me-
chanical power Pm and computed as follows [19]

Pm = Tmωm

where Tm is the torque exerted on the mechanical shaft and ωm (rad/sec) is rotational speed
of the turbine. In steady state operation at a fixed speed for a lossless generator, mechanical
torque is equal to electrical torque i.e., Tm = Te = Pm/ωm [17,18]. The power produced by
the wind is given as follows

Pm = 0.5ζp(λ, β)ρπr2ν3

where
ζp = Performance coefficient of the turbine
λ = Tip speed ratio of the rotor blade tip speed to wind speed = ωm/ν
β = Blade pitch angle (deg)
ρ = Density of Air (kg/m)
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r = Radius of the turbine blades (m)
ν = Wind speed (m/s)

4.2. Electrical Systems for Wound Rotor (DFIG) and Squirrel Cage (SCIG) Machine

This section discusses mathematical model of electrical system. The variables indicated
by prime are referred to the stator. The stator and rotor quantities are in arbitrary ‘dq’
(d-axis and q-axis) reference frame. Figure 4 depicts circuit diagram of DFIG and SCIG.

Figure 4. Electrical circuit Diagram of Wound Rotor (DFIG) and Single Cage (SCIG) in the arbitrary
two-axis, dq-reference frame.

The stator voltages are given as follow

Vqs = Rsiqs +
dϕqs

dt
+ ωϕds

Vds = Rsids +
dϕds

dt
−ωϕqs

where

ϕqs = Lsiqs + Lm(íqr )

ϕds = Lsids + Lm(ídr )

Ls = L1s + Lm.

The stator voltages are given as follow

V́qr = Ŕr íqr +
dϕ́qr

dt
+ (ω−ωr)ϕ́dr

V́dr = Ŕr ídr +
dϕdr

dt
+ (ω−ωr)ϕ́qr

where

ϕ́qr = Ĺr íqr + Lmiqs

ϕ́dr = Ĺr ídr + Lmids

Ĺr = Ĺ1r + Lm.

The active and reactive stator and rotor powers are related as follow [19]

Ps = 3/2(Vds ids + Vqs iqs)

Qs = 3/2(Vds ids −Vqs iqs)

Pr = 3/2(Vdr idr + Vqr iqr )

Qr = 3/2(Vdr idr −Vqr iqr )
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5. Balancing Related Model Order Reduction Schemes

Consider a linear time invariant continuous time system

G(s) = C(sI − A)−1B + D, (1)

where A ∈ <n×n, B ∈ <n×p, C ∈ <q×n, D ∈ <q×p and {A, B, C, D} is nth order minimal
realization with p inputs and q outputs. The problem of model reduction is to find

Gtr(s) = Ctr(sI − Atr)
−1Btr + Dtr, (2)

which approximates the actual system (in the full frequency band), where Atr ∈ <r×r,
Btr ∈ <r×p, Ctr ∈ <q×r, Dtr ∈ <q×p with r << n.

5.1. Balance Truncation Technique (Moore, B. 1981)

Let Pcg and Qog be the full frequency controllability and observability Gramians
respectively

Pcg =
∫ ∞

−∞
eAτ BBTeATτdτ

Qog =
∫ ∞

−∞
eATτCTCeAτdτ

are the solution of following Lyapunov equations:

APcg + Pcg AT + BBT = 0 (3)

ATQog + Qog A + CTC = 0 (4)

Let TB be a contragredient matrix obtained as

TT
B QogTB = T−1

B PcgT−T
B =


σ1 0 · · · 0
0 σ2 · · · 0

· · · · · · . . . · · ·
0 0 · · · σn


where σj ≥ σj+1, j = 1, 2, 3, . . . , n− 1 and σr > σr+1, and r is the order of ROM. By applying
the transformation and then partitioning the original system, the ROM Gtr(s) = Ctr(sI −
Atr)−1Btr + Dtr is obtained as:

T−1
B ATB =

[
Atr A12
A21 A22

]
, T−1

B B =

[
Btr
B2

]
, (5)

CTB =
[

Ctr C2
]
, D = Dtr (6)

Remark 2. For the minimal and stable realization the transformed balanced realization is minimal
and the stability of ROM (Atr, Btr, Ctr) is also guaranteed and yields frequency response error
bounds. However, the balance truncation technique [47] uses a full frequency spectrum to perform
MOR which not practically feasible all the time.

5.2. Enns’s Technique (Enns, D.F. 1984)

Consider a stable input weighting stable model of continuous time systems

Vi(s) = Ci(sI − Ai)
−1Bi + Di, (7)
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where Ai ∈ <ni×ni , Bi ∈ <ni×mi , Ci ∈ <pi×ni , Di ∈ <pi×mi and {Ai, Bi, Ci, Di} is its nith
order minimal realization.
Let a stable output weighting model of continuous time systems

Wo(s) = Co(sI − Ao)
−1Bo + Do, (8)

where Ao ∈ <no×no , Bo ∈ <no×mo , Co ∈ <po×no , Do ∈ <po×mo and {Ao, Bo, Co, Do} is its
noth order minimal realization.
The augmented systems are given by

G(s)Vi(s) = Csi(sI − Asi)
−1Bsi + Dsi

Wo(s)G(s) = Cso(sI − Aso)
−1Bso + Dso

where

[
Asi Bsi
Csi Dsi

]
=

 A BCi BDi
0 Ai Bi
C DCi DDi


[

Aso Bso
Cso Dso

]
=

 Ao BoC BoD
0 A B

Co DoC DoD


Let the Gramians

Psi =

[
Pen P12
PT

12 PV

]
, Qso =

[
QW QT

12
Q12 Qen

]
satisfy the following Lyapunov equations:

AsiPsi + Psi AT
si + BsiBT

si = 0 (9)

AT
soQso + Qso Aso + CT

soCso = 0 (10)

Remark 3. In controller reduction, scenario pole-zero cancellation may occur that leads to loss of
controllability and observability of realizations input-augmented {Asi, Bsi, Csi, Dsi} and output-
augmented {Aso, Bso, Cso, Dso} respectively.

By considering the first and fourth block of Equations (9) and (10) respectively,
we have:

APen + Pen AT + Xen = 0 (11)

ATQen + Qen A + Yen = 0 (12)

where

Xen = BenBT
en=BCiPT

12 + P12CT
i BT + BDiDT

i BT (13)

Yen = CT
enCen=CT BT

o QT
12 + Q12BoC + CT DT

o DoC (14)
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By eigenvalues decomposition of Xen and Yen we have following

Xen = Uen

[
Sen1 0

0 Sen2

]
UT

en = UenSenUT
en (15)

Ben = Uen

[
Sen1

1/2 0
0 Sen2

1/2

]
= UenS1/2

en (16)

Yen = Ven

[
Ren1 0

0 Ren2

]
VT

en = VenRenVT
en (17)

Cen =

[
Ren1

1/2 0
0 Ren2

1/2

]
VT

en = R1/2
en VT

en (18)

where

Sen1 =

s1 0 · · · 0
0 s2 · · · 0
0 0 · · · sk

, Sen2 =

sk+1 0 · · · 0
0 sk+2 · · · 0
0 0 · · · sn

,

Ren1 =

r1 0 · · · 0
0 r2 · · · 0
0 0 · · · rq

, Ren2 =

rq+1 0 · · · 0
0 rq+2 · · · 0
0 0 · · · rn


k and q are the number of positive eigenvalues of Xen and Yen respectively. Let Ten be

a contragredient matrix obtained as

TT
enQenTen = T−1

en PenT−T
en =


σ1 0 · · · 0
0 σ2 · · · 0

· · · · · · . . . · · ·
0 0 · · · σn

 (19)

where σj ≥ σj+1, j = 1, 2, 3, . . . , n − 1 and σr > σr+1 and r is the order of ROM. By
applying the transformation and then partitioning the original system, the ROM Gtr(s) =
Ctr(sI − Atr)−1Btr + Dtr is obtained as as similar as way as in (5)–(6).

Remark 4. Pen and Qog are used to obtain the balancing (contragredient) transformation Ten
in (19) subject to only input weights are present. Likewise, Pcg and Qen are used to obtain balancing
(contragredient) transformation Ten in (19) subject to only output weights are present, where Pcg
and Qog are un-weighted Gramians computed as in (3)–(4).

Remark 5. Enns’s technique [48] do not ensure the stability of the ROM since Xen ≤ 0 and
Yen ≤ 0, it may cause sometimes unstable ROMs for both sided weighting case. Furthermore,
the transformed realization may not be minimal due to pole-zero cancellation, therefore, this method
is not useful especially in the controller reduction scenario [49].

5.3. Wang and Sreeram’s Technique (Wang, G. 1999)

Wang and Sreeram [50] provides the solution to the instability issue that appeared
in [48]. This method [50] ensured the positive/semi-positive definiteness of input and
output related matrices Xen (13) and Yen (14) respectively by doing some variation. Let the
improvised controllability and observability Gramians PWS and QWS (calculated by solving
the following Lyapunov equations) respectively.

APWS + PWS AT + BWSBT
WS = 0 (20)

ATQWS + QWS A + CT
WSCWS = 0 (21)
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where the fictitious input BWS and output CWS matrices shown in the above Lyapunov
equations are defined as,

BWS =

{
UWS|Sen|1/2 = UWSSWS for sn < 0
UenS1/2

en for sn ≥ 0
(22)

CWS =

{
|Ren|1/2VT

WS = RWSVT
WS for rn < 0

R1/2
en VT for rn ≥ 0.

(23)

Since the expressions UWS, SWS, VWS, and RWS are calculated by orthogonal
eigenvalues-decomposition of XWS = BWSBT

WS = UWSSWSUT
WS and YWS = CT

WSCWS =
VWSRWSVT

WS, where SWS = |Sen| = diag(|s1|, |s2|, · · · , |sn|), RWS = |Ren| = diag(|r1|, |r2|,
· · · , |rn|), |s1| ≥ |s2| ≥ · · · ≥ |sn| ≥ 0 and |r1| ≥ |r2| ≥ · · · ≥ |rn| ≥ 0. Let TWS be a
contragredient matrix obtained as

TT
WSQWSTWS = T−1

WSPWST−T
WS =


σ̄1 0 · · · 0
0 σ̄2 · · · 0

· · · · · · . . . · · ·
0 0 · · · σ̄n


where σ̄j ≥ σ̄j+1, j = 1, 2, 3, . . . , n − 1 and σ̄r > σ̄r+1 and r is the order of the ROM.
By applying the transformation and then partitioning the original system, the ROM
Gtr(s) = C̄tr(sI − Ātr)−1B̄tr + D̄tr is obtained as similar way as in (5)–(6).

Remark 6. Xen ≤ BWSBT
WS ≥ 0, Yen ≤ CT

WSCWS ≥ 0, PWS > 0 and QWS > 0, ensures
minimality of the realization {A, BWS, CWS}. Moreover, the stability of ROMs in the presence of
both input and output weightings is ensured [50].

Remark 7. The relationship between the system input matrix B and the new fictitious input matrix
BWS, the existence of rank[BWS B] = rank[BWS]. Similarly, the system output matrix C and the
new fictitious output matrix CWS, the existence of rank[CWS C] = rank[CWS] is shown in [50].

Remark 8. The following expression for error bounds holds [50] (subject to fulfillment of rank[
BWS B

]
= rank

[
BWS

]
and rank

[
CWS

C

]
= rank

[
CWS

]
)

‖Wo(s)(G(s)− Gtr(s))Vi(s)‖∞ ≤ 2‖Wo(s)LWS‖∞‖KWSVi(s)‖∞

n

∑
j=r+1

σ̄j

where

LWS=CVWSdiag(|r1|−
1
2 , |r2|−

1
2 , · · · , |rli|−

1
2 , 0, · · · , 0),

KWS=diag(|s1|−
1
2, |s2|−

1
2, · · · , |sko|−

1
2, 0, · · · , 0)UT

WSB,

li = rank[Xen] and ko = rank[Yen].

5.4. Imran and Ghafoor’s Technique (Imran, M. 2014)

Imran and Ghafoor [51] technique also provided the solution to instability issue ap-
peared in [48], by ensuring positive/semi-positive definiteness of input and output related
matrices Xen and Yen respectively. However, this technique produces large approximation
error due to large variation in Xen and Yen. The controllability and observability Gramians
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PIG and QIG (calculated by solving the following Lyapunov equations) respectively can be
obtained as:

APIG + PIG AT + BIGBT
IG = 0 (24)

ATQIG + QIG A + CT
IGCIG = 0 (25)

the fictitious input and output related matrices BIG and CIG respectively are defined as:

BIG =

{
UIG(Sen − sn I)1/2 = UIGS1/2

ig for sn < 0

UenS1/2
en for sn ≥ 0

CIG =

{
(Ren − rn I)1/2VT

IG = R1/2
IG VT for rn < 0

R1/2VT for rn ≥ 0.

The terms UIG, SIG, VIG, and RIG are calculated by the orthogonal eigenvalues-
decomposition of symmetric matrices BIGBT

IG = UIGSIGUT
IG and CT

IGCIG = VIGRIGVT
IG,

where SIG = Sen − sn I = diag(s̄1, s̄2, s3, · · · , s̄n−1, 0), RIG = Ren − rn I = diag(r̄1, r̄2, r3, · · · ,
r̄n−1, 0), s̄1 ≥ s̄2 ≥ · · · ≥ s̄n−1 ≥ 0, and r̄1 ≥ r̄2 ≥ · · · ≥ r̄n−1 ≥ 0. Let TIG be contragredient
matrix obtained as

TT
IGQIGTIG = T−1

IG PIGT−T
IG =


σ̄1 0 · · · 0
0 σ̄2 · · · 0

· · · · · · . . . · · ·
0 0 · · · σ̄n


where σ̄j ≥ σ̄j+1, j = 1, 2, 3, . . . , n − 1 and σ̄r > σ̄r+1 and r is the order of the ROM.
By applying the transformation and then partitioning the original system, the ROM
Gtr(s) = C̄tr(sI − Ātr)−1B̄tr + D̄tr is obtained as similar way as in (5)–(6).

Remark 9. Since Xen ≤ BIGBT
IG ≥ 0, Yen ≤ CT

IGCIG ≥ 0, PIG > 0 and QIG > 0. Therefore,
the realization (A, BIG, CIG, D) is minimal. Moreover, ROMs are stable.

Remark 10. The stability of ROMs in the presence of both input and output weighting is guaran-
teed and the following error bound holds [51]

‖Wo(s)(G(s)− Gtr(s))Vi(s)‖∞ ≤ 2‖Wo[z]LIG‖∞‖KIGVi[z]‖∞

n

∑
j=r+1

σ̄j

where

LIG = CVIGdiag(|r1|−
1
2 , |r2|−

1
2 , · · · , |rli|−

1
2 , 0, · · · , 0),

KIG = diag(|s1|−
1
2, |s2|−

1
2, · · · , |sko|−

1
2 , 0, · · · , 0)UT

IGB,

li = rank[Xen] and ko = rank[Yen].

6. Main Results

In [48], input related and output related matrices Xen and Yen respectively are not
ensured to be positive/semi-positive definite due to negative eigenvalues obtained by using
eigenvalue decomposition of Xen and Yen. Whereas, the proposed technique ensured the
positive/semi-positive definite of the matrices Xen and Yen by introducing small variation
in input related and output related matrices Xen and Yen respectively. This is achieved by
subtracting all the eigenvalues with the negative sum of eigenvalues which results in stable
ROM. The proposed technique also provides computable a priori error bounds formula.
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Let controllability PSB and observability QSB Gramians satisfying the following Lyapunov
equations:

APSB + PSB AT + XSB = 0 (26)

ATQSB + QSB A + YSB = 0 (27)

where XSB = BSBBT
SB and YSB = CT

SBCSB
By eigenvalues decomposition of XSB = USBSSBUT

SB and YSB = VRSBVT . The new
imaginary input and output related matrices BSB and CSB respectively are given
as following

BSB = USB

[
S1/2

en1 0
0 S1/2

SB2

]
= USBS1/2

SB , (28)

CSB =

[
R1/2

en1 0
0 R1/2

SB2

]
VT

SB = R1/2
SB VT

SB (29)

where

SSB2 =

{
(Sen2 − ŝI)1/2 for sn < 0
S1/2

en2 for sn ≥ 0

RSB2 =

{
(Ren2 − r̂ I)1/2 for rn < 0
R1/2

en2 for rn ≥ 0.

where ŝ =
n
∑

i=k+1
si and r̂ =

n
∑

i=q+1
ri. The terms USB, SSB, VSB, and RSB are calculated by the

orthogonal eigenvalues-decomposition of input and output related matrices BSBBT
SB =

USBSSBUT
SB and CT

SBCSB = VSBRSBVT
SB respectively, where SSB = Sen− ŝn I = diag(ŝ1, ŝ2, ŝ3,

· · · , ŝn−1, ŝn), RSB = Ren − r̂n I = diag(r̂1, r̂2, r̂3, · · · , r̂n−1, r̂n), ŝ1 ≥ ŝ2 ≥ · · · ≥ ŝn ≥ 0, and
r̂1 ≥ r̂2 ≥ · · · ≥ r̂n ≥ 0. Note that, the matrices BSB and CSB are constructed by ensuring
similar effect on all eigenvalues of symmetric matrices Xen and Yen. This will guarantee the
preserving of eigenvalue structure of matrices Xen and Yen and therefore, better results are
obtained in proposed technique as compared to Wang and Sreeram [50] and Imran and
Ghafoor [51] technique. A contragradient transformation matrix TSB is obtained as

TT
SBQSBTSB = T−1

SB PSBT−T
SB =


σ̂1 0 · · · 0
0 σ̂2 · · · 0

· · · · · · . . . · · ·
0 0 · · · σ̂n


where σ̂j ≥ σ̂j+1 and σ̂r ≥ σ̂r+1 and r is the order of the ROM. By applying the transforma-
tion and then partitioning the original system, the ROM Gtr(s) = Ĉtr(sI − Âtr)−1B̂tr + D̂tr
is obtained as:

T−1
SB ATSB = Â =

[
Âtr Â12
Â21 Â22

]
, T−1

SB B = B̂ =

[
B̂tr
B̂2

]
, (30)

CTSB = Ĉ =
[

Ĉtr Ĉ2
]
, D = D̂tr (31)

Lemma 1. Xen ≤ BSBBT
SB ≥ 0, Yen ≤ CT

SBCSB ≥ 0, likewise, Pen < PSB > 0 and Qen <
QSB > 0. Therefore, minimal and stable realization (A, BSB, CSB) is obtained which guaranteed
the stability of the ROM.
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Proof of Lemma 1. We will first show that the realization {A, BSB, CSB} is minimal. Since PSB
and QSB are solution of Lyapunov Equations (26) and (27) respectively, so

BSBBT
SB − Xen ≥ 0

PSB − Pen =
∫

eAtBSBBT
SBeAT tdt−

∫
eAtXeneAT tdt

=
∫

eAt(BSBBT
SB − Xen)eAT tdt ≥ 0

Since Pen is positive definite, PSB must be positive definite. Similarly, we can say
QSB is positive definite. Since PSB and QSB are positive definite and A is stable, it follows
immediately that the pair (A, BSB) is controllable and (A, CSB) is observable or in other
words the realization {A, BSB, CSB} is minimal.

Theorem 1. If the following rank conditions (which follows from [50,54]) are satisfied

rank[BSB B] = rank[BSB] and rank
[

CSB
C

]
= rank[CSB] error bound for the proposed scheme holds

(a)‖Wo(s)(G(s)− Gtr(s))Vi(s)‖∞ ≤ 2‖Wo(s)LSB‖∞‖KSBVi(s)‖∞

n

∑
j=r+1

σ̂j

(b)‖(G(s)− Gtr(s))Vi(s)‖∞ ≤ 2‖KSBVi(s)‖∞

n

∑
j=r+1

σ̂j

(c)‖Wo(s)(G(s)− Gtr(s))‖∞ ≤ 2‖Wo(s)LSB‖∞

n

∑
j=r+1

σ̂j

where

LSB =

{
CVSBR−1/2

SB if RSB2 exists
CVenR−1/2

en otherwise

KSB =

{
S−1/2

SB UT
SBB if SSB2 exists

S−1/2
en UT

enB otherwise

Proof of Theorem 1. We will proof (a) part of above theorem (where (b) and (c) are the spe-

cial cases of (a)). Since the rank conditions rank[BSB B] = rank[BSB] and rank
[

CSB
C

]
=

rank[CSB] are satisfied, the following relationships B = BSBKSB and C = LSBCSB holds. By

partitioning BSB =

[
BSB1
BSB2

]
, CSB =

[
CSB1 CSB2

]
and then substituting B̂tr = BSB1 KSB,

Ĉtr = LSBCSB1 respectively yields

‖Wo(s)(G(s)− Gtr(s))Vi(s)‖∞ =‖Wo(s)(C(sI − A)−1B− Ĉtr(sI − Âtr)
−1B̂tr)Vi(s)‖∞

=‖Wo(s)(LSBCSB(sI−A)−1BSBKSB−LSBCSB1(sI−Âtr)
−1BSB1 KSB)Vi(s)‖∞

=‖Wo(s)LSB(CSB(sI − A)−1BSB − CSB1(sI − Âtr)
−1BSB1)KSBVi(s)‖∞

=‖Wo(s)LSB‖∞‖(CSB(sI−A)−1BSB−CSB1(sI−Âtr)
−1BSB1)‖∞‖KSBVi(s)‖∞

If {Âtr, BSB1 , CSB1 , D̂tr} is approximated model obtained by partitioning a balanced realiza-
tion {Â, BSB, CSB, D}, we have from [48]

‖(CSB(sI − A)−1BSB − CSB1(sI − Âtr)
−1BSB1)‖∞ ≤ 2

n

∑
j=r+1

σ̂j
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then

‖Wo(s)(G(s)− Gtr(s))Vi(s)‖∞ ≤ 2‖Wo(s)LSB‖∞‖KSBVi(s)‖∞

n

∑
j=r+1

σ̂j

Corollary 1. For the case G(s)Vi(s), the error bound expression becomes

‖(G(s)− Gtr(s))Vi(s)‖∞ ≤ 2|KSB‖
n

∑
j=k+1

σ̂j

Likewise, Wo(s)G(s), we have

‖Wo(s)(G(s)− Gtr(s))‖∞ ≤ 2‖LSB‖
n

∑
j=k+1

σ̂j

Corollary 2. Theorem 1 holds true subject to the following rank conditions rank[BSB B] =

rank[BSB] and rank
[

CSB
C

]
= rank[CSB] (which follows from [50,54]) are satisfied.

Remark 11. When input and output related matrices Xen ≥ 0 and Yen ≥ 0 respectively, then
Pen = PSB and Qen = QSB. Otherwise Pen < PSB and Qen < QSB. Moreover, frequency weighted
Hankel singular values satisfies: (λj[PenQen])1/2 ≤ (λj[PSBQSB])

1/2

Remark 12. When input Vi(s) and output Wo(s) weights are co-inner and inner respectively [51],
then Pcg = Pen = PSB and Qog = Qen = QSB.

Remark 13. When input and output related matrices Xen ≥ 0 and Yen ≥ 0 respectively, then
approximated models obtained using [48] and proposed technique are the equivalent.

Theorem 2. The following Lyapunov equation for the proposed technique holds

AP(ext) + P(ext)AT + B(ext)B
T
(ext) = 0 (32)

ATQ(ext) + Q(ext)A + CT
(ext)C(ext) = 0 (33)

Proof of Theorem 2. Using (16), (18), (28) and (29) we have following

Sen = diag[Sen1 , Sen2 ] = diag[(s1, .., sk), (sk+1, .., sn)]

SSB = diag[Sen1 , SSB2 ] =diag[(s1, .., sk), (ŝk+1, .., ŝn)]

Ren = diag[Ren1 , Ren2 ] =diag[(r1, .., rq), (rq+1, .., rn)]

RSB = diag[Ren1 , RSB2 ]=diag[(r1, .., rq), (r̂q+1, .., r̂n)]

S(ext) and R(ext) are obtained by subtracting (SSB − Sen) and (RSB − Ren) respectively

S(ext) =

[
0 0
0 S(ext)2

]
, R(ext) =

[
0 0
0 R(ext)2

]
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where
S(ext)2

= SSB2 − Sen2 and R(ext)2
= RSB2 − Ren2 .

B(ext) and C(ext) are obtained by subtracting Equations (16)–(28) and (18)–(29) respectively

B(ext) =U(ext)

[
0 0
0 S(ext)2

1/2

]
= U(ext)S(ext)

1/2,

C(ext) =

[
0 0
0 R(ext)2

1/2

]
VT
(ext) = R(ext)

1/2VT
(ext)

where U(ext) = USB = Uen and V(ext) = VSB = Ven. Since,

X(ext) = B(ext)B
T
(ext) = U(ext)S1/2

(ext)S
1/2
(ext)UT

(ext)

= U(ext)S(ext)U
T
(ext)=U(ext)(SSB−Sen)UT

(ext)

= USBSSBUT
SB −UenSenUT

en = XSB − Xen (34)

Y(ext) = CT
(ext)C(ext) =V(ext)R1/2

(ext)R1/2
(ext)VT

(ext)

= V(ext)R(ext)V
T
(ext)=V(ext)(RSB−Ren)VT

(ext)

= VSBRSBVT
SB −VenRenVT

en = YSB −Yen (35)

substitute ((11) and (26)) in (34) and ((12) and (27)) in (35) we have following

(APSB + PSB AT)− (APen + Pen AT) = −X(ext)

(ATQSB + QSB A)− (ATQen + Qen A) = −Y(ext)

A(PSB − Pen) + (PSB − Pen)AT = −X(ext)

AT(QSB −Qen) + (QSB −Qen)A = −Y(ext)

If controllability Gramian P(ext) = PSB − Pen and observability Gramian Q(ext) = QSB −
Qen, then

AP(ext) + P(ext)AT + B(ext)B
T
(ext) = 0

ATQ(ext) + Q(ext)A + CT
(ext)C(ext) = 0

Corollary 3. Theorem 2 holds true subject to the realization (A, B(ext), C(ext), D) is minimal and
stable.

Remark 14. For the realization {A, B(ext), C(ext), D} to the following Lyapunov equation

AP(ext) + P(ext)AT + B(ext)B
T
(ext) = 0

ATQ(ext) + Q(ext)A + CT
(ext)C(ext) = 0

where the input matrix B(ext) ≥ 0 and output matrix C(ext) ≥ 0 ensure positive (semi-positive)
definiteness of input and output related matrices BSB and CSB respectively, consequently positive
definiteness of P(ext) and Q(ext) in a way leads to positive definiteness of PSB and QSB.

Remark 15. Since the input matrix BSB and output matrix CSB ensure positive (semi-positive)
definiteness of input and output related matrices, consequently positive definiteness of PSB and QSB
in a way leads to transformation matrix TSB which subsequently results in stability preserving
MOR technique. Moreover, LSB and KSB form bases for the derivation of the error bound for the
proposed technique.
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Computational Aspects

Let Ssi and Rso be the Cholesky factors of the augmented system Gramians matrices
Psi and Qso of Equations (9) and (10) respectively,

Psi = SsiST
si =

[
S11 S12
0 S22

][
ST

11 0
ST

12 ST
22

]
=

[
S11ST

11 + S12ST
12 S12ST

22
S22ST

12 S22ST
22

]
=

[
Pen P12
PT

12 PV

]
and

Qso = RT
soRso =

[
RT

11 0
RT

12 RT
22

][
R11 R12
0 R22

]
=

[
RT

11R11 RT
11R12

RT
12R11 RT

22R22 + RT
12R12

]
=

[
QW QT

12
Q12 Qen

]
By making use of the Cholesky factors Sso and Rso calculated above, the Cholesky

factors corresponding to Gramians in frequency weighted model reduction techniques like
[48] and proposed technique can be received as follows:

1. Enns’s Technique [48]: The Cholesky factors Sen = [S11 S12] and Ren =

[
R12
R22

]
satisfy [54]

Pen = SenST
en = S11ST

11 + S12ST
12 =

[
S11 S12

][ ST
11

ST
22

]
and

Qen = RT
enRen = RT

22R22 + RT
12R12 =

[
RT

22 RT
12
][ R22

R12

]
2. Wang and Sreeram’s Technique [50]: The Cholesky factors SWS and RWS satisfy

PWS = SWSST
WS and QWS = RT

WSRWS, where PWS (20) and QWS (21) [51]. Compute
from the realization {A, BWS, CWS} using method of Hammarling [60].

3. Imran and Ghafoor’s Technique [51]: The Cholesky factors SIG and RIG satisfy
PIG = SIGST

IG and QIG = RT
IGRIG, where PIG (24) and QIG (25).

4. Proposed Technique: The Cholesky factors SSB and RSB satisfy PSB = SSBST
SB and

QSB = RT
SBRSB, where PSB (26) and QSB (27). Next we establish a relationship between

Cholesky factors Gramian matrices of Enns and proposed technique. Equations (26)
and (27) can be expressed as:

A(Pen + P(ext)) + (Pen + P(ext))AT + (Xen + X(ext)) = 0, for sn < 0

APen + Pen AT + Xen = 0, for sn ≥ 0

AT(Qen + Q(ext)) + (Qen + Q(ext))A + (Yen + Y(ext)) = 0, for rn < 0

ATQen + Qen A + Yen = 0, for rn ≥ 0

AP(ext) + P(ext) AT + X(ext) = 0, for sn < 0

ATQ(ext) + Q(ext) A + Y(ext) = 0 for rn < 0

Since

XSB = USB (SSB)
1/2(SSB)

1/2 UT
SB = Xen + X(ext) , for sn < 0

XSB = USB (SSB)
1/2(SSB)

1/2 UT
SB = Xen, for sn ≥ 0

YSB = VT
SB (RSB)

1/2(RSB)
1/2 VSB = Yen + Y(ext) , for rn < 0

YSB =VT
SB (RSB)

1/2(RSB)
1/2 VSB = Yen for rn ≥ 0

By using the Hammarling’s technique [60] to calculate the Cholesky factors of the
Gramians P(ext) and Q(ext) from the realization {A, B(ext) , C(ext) , D}, we can write
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P(ext) = S(ext)ST
(ext) and Q(ext) = RT

(ext)R(ext) . Therefore, PSB(26) and QSB (27) can be
expressed as:

PSB = SSBST
SB =Pen + P(ext) =S11ST

11 + S12ST
12 + S(ext)ST

(ext) =
[

S11 S12 S(ext)
] ST

11
ST

12
ST
(ext)


QSB = RT

SBRSB=Qen+Q(ext) =RT
22R22+RT

12R12+RT
(ext)R(ext) =

[
RT

22 RT
12 RT

(ext)

] R22
R12

R(ext)


Remark 16. Note that, the Cholesky factors for the Enns and the proposed technique respectively,
are computed directly from the augmented system realization using Hammarling technique without
calculating the augmented system realization Gramian matrices Psi and Qso. However, Cholesky
factorization for Wang et al’s technique is computed directly from corresponding frequency weighted
realization using the Hammarling technique without calculating associated frequency weighted
Gramians [61].

7. Numerical Examples

In this section, numerical examples of the DFIG based variable-speed wind turbine
(double-cage induction generator) for the power system (induction model, current model)
based on the multi-input multi-output continuous-time are given to show the comparison
of the proposed technique with the existing frequency-limited model reduction technique
for the LTI continuous-time system. Figures 5–8 represent the Bode plot (magnitude,
phase) comparison of corresponding ROMs obtained by existing ([48,50,51]) and the pro-
posed approach with the original system, each Fig contains sub-figures which represent
output/input Bode plot (magnitude, phase). Table 2 provide frequency response error
comparison existing ([48,50,51]) and the proposed approaches. Moreover, Table 3 provide
pole location of ROMs obtained by using [48] and the proposed technique

Example 1. Consider a LTI stable 6th order current model [24] with state-space representations
given as following

A =



−8.387e−5 9.87e4 1.355e−6 0 0.0003364 0
−9.87e4 −8.387e−5 0 1.355e−6 0 0.0003364
1.525e−6 0 −0.001151 9.87e4 0.0004567 0

0 1.525e−6 −9.87e4 −0.001151 0 0.0004567
0.01859 0 0.02243 0 −8.486 9.87e4

0 0.01859 0 0.02243 −9.87e4 8.486



B =



314.2 0 0 0
0 314.2 0 0
0 0 314.2 0
0 0 0 314.2
0 0 0 0
0 0 0 0



C =

[
−8.841e−7 0 0.0006674 0 −0.0002648 0

0 −8.841e−7 0 0.0006674 0 −0.0002648

]

D =

[
0 0 0 0
0 0 0 0

]
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with following input and output weighting state-space and transfer function form

[
Asi Bsi

Csi Dsi

]
=



−3.5 0 0 0 0 0 − 2.7140 − 3.0727
0 − 3.5 0 0 0 0 − 2.1322 − 1.5113
0 0 − 3.5 0 0 0 − 0.0629 − 2.2097
0 0 0 − 3.5 0 0 − 2.4553 − 2.0511
0 0 0 0 − 3.5 0 − 0.0551 − 0.7959
0 0 0 0 0 − 3.5 − 2.3936 − 2.7463

1.2944 1.5014 0.6172 2.3110 0.9883 1.1701 0.3435 0.0242
4.1597 1.0678 0.4249 3.8991 2.3320 3.7967 0.0093 0.5500
1.3431 2.4536 1.3990 4.4122 1.5885 2.6226 0.1924 0.2762
2.4134 0.4846 3.6569 1.4699 3.8676 3.2373 0.5074 0.6962



[
Aso Bso

Cso Dso

]
=



−9.5 0 0 0 0 0 −0.0003 −2.3255
0 −9.5 0 0 0 0 −1.5395 −2.3644
0 0 −9.5 0 0 0 −1.7095 −1.1209
0 0 0 −9.5 0 0 −0.0211 −0.4569
0 0 0 0 −9.5 0 −2.6774 −1.0568
0 0 0 0 0 −9.5 −2.4996 −1.9353

−1.3979 −0.0675 −0.9091 −1.4310 −0.2704 −1.2563 0.3795 0.3168
−0.1400 −1.2630 −1.0162 −0.6166 −0.3007 −1.1226 0.0932 0.2812
−1.1082 −0.2471 −1.4815 −0.3249 −1.0790 −0.8758 0.2591 0.8201
−0.0829 −0.1726 −1.4899 −0.9437 −0.6643 −0.2409 0.3358 0.3421
−1.1357 −0.4073 −1.1363 −0.0223 −1.2682 −0.7933 0.3751 0.8720
−0.6952 −0.4716 −0.4126 −0.0649 −0.5847 −0.6940 0.1463 0.2680


Table 2 give a comparison for the frequency-response error and error bound

σ̂[Wo(s)(G(s)− Gtr(s)Vi(s))] in the given frequency input and output weights, where Gtr(s)
are ROMs current models of 1st to 5th order obtained by using [50,51] and proposed tech-
nique. Pole-locations of ROMs obtained from Enns’s technique [48] and proposed technique
are given in Table 3, it can be observed that Enns [48] gives unstable 3rd, 4th and 5th order
ROMs with pole-location at s = −1.8141e−3 ± 1.3912e6i, 0.0282, s = −2.0750e−3 ± 1.3912e6i,
2.0160e−2 ± 1.3912e6i and s = −2.0750e−3 ± 1.3912e6i, 2.0160e−2 ± 1.3912e6i, −1.2710e4

respectively. However, the proposed technique yields stable 1st, 2nd, 3rd, 4th and 5th order ROMs
with pole-location at s = −0.0037, s = −1.8171e−3 ± 1.3915e6i, s = −1.8171e−3 ± 1.3915e6i,
−0.0387, s = −5.2965e−5 ± 9632.7i, −0.0012433± 9632.7i and s = −5.2972e−5 ± 9632.7i,
−0.0012435± 9632.7i,−4.2996 respectively. Figures 5 and 6 provide a comparison for the fre-
quency response Bode plot (magnitude, phase) in the given frequency weights for 1st and 2nd order
ROMs respectively, which indicates that propsed techniques provide better approximation results
when compared with existing frequency weighted stability preserving MOR approaches ([50,51]).
Furthermore, the proposed technique provide low frequency-response approximation error compara-
ble with existing stability preserving approaches ([50,51]) in the given frequency weights.
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Figure 5. Frequency response Bode plot (magnitude and phase) in the given frequency weights of 1st order for Example 1.

Figure 6. Frequency response Bode plot (magnitude and phase) in the given frequency weights of 2nd order for Example 1.
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Figure 7. Frequency response Bode plot (magnitude and phase) in the given frequency weights of 1st order for Example 1.

Figure 8. Frequency response Bode plot (magnitude and phase) in the given frequency weights of 2nd order for Example 1.
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Table 2. Frequency response error σ̂[Wo(s)(G(s)− Gtr(s))Vi(s)] for Examples 1 and 2 using frequency weighted MOR.

Examples Weights Order
of ROMs

Frequency Response Error σ̂[Wo(s)(G(s)− Gtr(s))Vi(s)] and Error Bound

Error Value Error Bound

Example 1

Input

Enns [48] Wang et
al. [50] IG [51] Proposed Wang et

al [50] IG [51] Proposed

1st 21041 63123 63119 10521 2.5089e7 1.5787e7 6.9691e5

2nd 21041 28691 28691 874.95 1.0394e6 6.5403e5 9.3939e7

3rd 15.192 42.536 42.53 16.682 66711 41977 1.471e7

4th 0.00012504 0.00036244 0.00036553 5.3999e−5 0.45676 0.2874 0.012688

5th 0.00019472 0.00058435 0.00058452 9.7367e−5 0.22828 0.14364 0.0063412

Output

1st 600.83 3605 3605 600.83 7360.1 7360.1 1226.7

2nd 17.468 104.81 104.81 17.468 787.08 787.08 131.18

3rd 781.13 1292.7 1292.7 272.56 33356 20988 7.355e6

4th 0.00012504 0.00013769 0.00023402 5.8358e−5 0.018923 0.011907 0.097036

5th 0.00019472 0.0011334 0.001152 3.997e−5 0.009441 0.0059405 0.048396

Both

1st 21041 63123 63119 10521 2.5089e7 1.5787e7 6.9691e5

2nd 15.192 45.574 45.569 7.5957 1.6103e6 1.0132e6 44730

3rd (Unstable) 2343.4 2343.4 390.57 8.0515e5 5.0662e5 22365

4th (Unstable) 204.75 204.75 34.125 393.54 393.54 65.59

5th (Unstable) 0.0002598 0.00035015 5.0657e−5 0.00013076 0.00013076 2.1794e−5

Example 2

Input

1st 25.423 160.96 133.56 220.41 1174.3 2534 1076.2

2nd 4.7919 9.4436 9.4436 1.5739 154 71.553 41.611

3rd 122.46 23.105 9.4436 11.125 76.999 35.974 20.807

4th 0.0010232 0.0010362 0.001036 0.00017269 0.0025148 0.3957 0.0022101

5th 5.0869e−5 8.5879e−5 0.0001078 2.0143e−5 0.00014916 0.19785 0.00026321

Output

1st 91.661 654.98 549.97 41.26 1136.9 2992.7 1103.5

2nd 3.7281 22.369 22.369 3.52 67.124 1942.3 41.8

3rd 9.8125 22.369 67.155 7.21 33.563 971.17 20.6

4th 0.00026695 0.00064997 0.00071741 0.00010833 0.0013756 0.00098094 0.00041012

5th 5.8325e−5 0.0002288 0.0002288 0.00010653 0.00035221 0.00025725 0.00012167

Both

1st 25.423 100.1 149.21 15.82 8223.2 43426 1384.5

2nd 4.7919 14.376 14.376 42.759 2110.3 28221 780.36

3rd (Unstable) 14.376 303.11 15.82 1055.2 14112 176.26

4th (Unstable) 0.00098241 0.0012763 0.00021014 0.042506 3.3415 0.00083643

5th (Unstable) 5.1359e−5 9.0852e−5 8.5553e−6 0.00090627 0.87629 1.787e−5
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Table 3. Poles locations of ROMs obtained using frequency weighted MOR.

Examples
Order

of
ROMs

Poles Location of Enns [48] and Proposed Technique

Enns’s Technique [48] Proposed Technique

Example 1

1st −0.0035 −0.0037

2nd −1.8141e−3 ± 1.3912e6i −1.8171e−3 ± 1.3915e6i

3rd −1.8141e−3 ± 1.3912e6i, 0.0282 −1.8171e−3 ± 1.3915e6i,−0.0387

4th −2.0750e−3 ± 1.3912e6i, 2.0160e−2 ± 1.3912e6i −5.2965e−5 ± 9632.7i,−0.0012433± 9632.7i

5th −2.0750e−3 ± 1.3912e6i, 2.0160e−2 ±
1.3912e6i,−1.2710e4

−5.2972e−5 ± 9632.7i,−0.0012435±
9632.7i,−4.2996

Example 2

1st −0.0017 −0.0019

2nd −0.0017,−0.0017 −0.0022± 0.0004i

3rd 0.0001,−0.0017,−0.0023 −0.0017,−1.5561e−3 ± 9.8696e4i

4th 1.5561e−3 ± 9.8696e4i,−0.0017,−0.0017 −1.7761e−3 ± 9.9879e4i,−0.0017,−0.0017

5th 1.5561e−3 ±
9.8696e4i,−87.4326,−0.0017,−0.0017

−1.7761e−3 ±
9.9879e4i,−87.4326,−0.0017,−0.0017

Example 2. Consider a LTI stable 6th order flux model [24] with state-space representations given
as following

A =



−0.0016 9.8696e4 −1.8597e−5 0 0.0062 314.1593
−9.8696e4 −0.0016 0 −1.8597e−5 0 0
−2.0922e−5 0 −0.0018 0 0.0070 0

0 −2.0922e−5 0 −0.0018 0 0.0070
0.3442 0 0.3460 0 −87.4326 0

0 0.3442 0 0.3460 0 0



B =



314.1593 0 0 0
0 314.1593 0 0
0 0 314.1593 0
0 0 0 314.1593
0 0 0 0
0 0 0 0


C =

[
1.2130e−5 0 0.0010 0 −0.0041 0

0 1.2130e−5 0 1.2130e−5 0 −0.0041

]

D =

[
0 0 0 0
0 0 0 0

]
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with following input and output weighting state-space and transfer function form

[
Asi Bsi

Csi Dsi

]
=



−3.5 0 0 0 0 0 −0.4779 −2.5026
0 −3.5 0 0 0 0 −2.5243 −3.1630
0 0 −3.5 0 0 0 −0.3737 −3.1182
0 0 0 −3.5 0 0 −2.2882 −1.1696
0 0 0 0 −3.5 0 −1.7296 −2.4456
0 0 0 0 0 −3.5 −2.7267 −0.6923

0.0458 1.3571 1.2082 1.3298 1.4680 0.0894 0.5216 0.7224
1.1161 0.9148 0.8651 0.0430 1.0690 1.0230 0.0967 0.1499
0.7500 0.9265 0.2744 0.7349 0.7507 0.0636 0.8181 0.6596
0.7199 1.2892 0.3599 0.2519 0.7066 0.1072 0.8175 0.5186


,

[
Aso Bso

Cso Dso

]
=



−9.5 0 0 0 0 0 −1.8674 −2.5329
0 −9.5 0 0 0 0 −1.7611 −0.5843
0 0 −9.5 0 0 0 −0.6232 −0.6778
0 0 0 −9.5 0 0 −0.9037 −0.5121
0 0 0 0 −9.5 0 −1.4128 −0.6830
0 0 0 0 0 −9.5 −0.6915 −1.3071

0.4667 0.6583 0.9043 0.6363 1.3933 1.4446 0.6791 0.9133
1.3851 0.1667 1.0668 0.7618 1.0955 0.8202 0.3955 0.7962
0.6453 0.3871 0.3326 0.1283 0.7329 0.7817 0.3674 0.0987
0.2772 0.6131 0.1761 0.3937 0.8678 0.3474 0.9880 0.2619
1.3573 0.8923 0.4450 1.2015 0.3559 0.7333 0.0377 0.3354
1.4696 0.3933 0.4782 0.0438 0.6883 0.9361 0.8852 0.6797


Table 2 give a comparison for the frequency-response error and error bound

σ̂[Wo(s)(G(s)− Gtr(s)Vi(s))] in the given frequency input and output weights, where Gtr(s)
are ROMs current models of 1st to 5th order obtained by using [50,51] and proposed technique.
Pole-locations of ROMs obtained from Enns’s technique [48] and proposed technique are given in
Table 3, it can be observed that Enns [48] gives unstable 3rd, 4th and 5th order ROMs with pole-
location at s = 0.0001, −0.0017, −0.0023, s = 1.5561e−3 ± 9.8696e4i, −0.0017, −0.0017 and
s = 1.5561e−3± 9.8696e+ 04i,−87.4326,−0.0017,−0.0017 respectively. However, the proposed
technique yields stable 1st, 2nd, 3rd, 4th and 5th order ROMs with pole-location at s = −0.0019,
s = −0.0022± 0.0004i, s = −0.0017, −1.5561e−3 ± 9.8696e4i, s = −1.7761e−3 ± 9.9879e4i,
−0.0017, −0.0017 and s = −1.7761e−3 ± 9.9879e4i, −87.4326, −0.0017, −0.0017 respectively.
Figures 7 and 8 provide a comparison for the frequency response Bode plot (magnitude, phase)
in the given frequency weights for 1st and 2nd order ROMs respectively, which indicates that
propsed techniques provide better approximation results when compared with existing frequency
weighted stability preserving MOR approaches ([50,51]). Furthermore, the proposed technique
provide low frequency-response approximation error comparable with existing stability preserving
approaches ([50,51]) in the given frequency weights.

8. Analysis and Discussion

It can be seen that in the given input/output frequency weights in the proposed
technique compare well with Enns’s technique [48]. From Table 3 it can be seen that 3rd,
4th and 5th order ROMs of example 1 and 3rd, 4th and 5th order ROMs of Example 2
obtained by using Enns’s technique [48] yields unstable in the given both-sided frequency
weights. However, the proposed technique yield stable ROMs in given frequency weights.
Figures 5 and 6) of Example 1 and Figures 7 and 8 of Example 2 respectively provide a
comparison for the frequency response Bode plot (magnitude, phase) in the given frequency
weights for (1st, 2nd) and (1st, 2nd) order ROMs respectively, which indicates that the
proposed technique provide better approximation results when compared with existing
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frequency weighted stability preserving MOR approaches ([50,51]). Moreover, the proposed
technique also carry error bounds formula with low frequency-response approximation
error along-with error bound value. From Table 2 it can be observed that frequency response
approximation error attained by the proposed technique is mostly low as compared with
other MOR techniques.

9. Conclusions

In this work, the frequency weighted MOR technique is presented which approxi-
mates the Variable-Speed Wind Turbines model in the presence of frequency weights. The
proposed method is used to derived a stable ROMs and frequency response error com-
parison at different order is provided which is well comparable with the existing stability
preserving MOR techniques (frequency weighted MOR). The frequency response error
and error bound comparison of the proposed technique with existing methods is provided
which shows that the proposed method provides better results. Numerical analysis of
DCIM has proven that ROMs obtained by using the proposed method are stable. However,
analysis, control, and design of the original large scale model is not an easy task to do,
whereas, it can be performed easily for approximated systems. This paper produces steady
and precise outcomes by using the proposed method which shows the effectiveness of the
proposed method.
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11. Andrić, I.; Koc, M.; Al-Ghamdi, S.G. A review of climate change implications for built environment: Impacts, mitigation measures
and associated challenges in developed and developing countries. J. Clean. Prod. 2019, 211, 83–102. [CrossRef]

12. Qiao, W.; Harley, R.G. Grid connection requirements and solutions for DFIG wind turbines. In Proceedings of the 2008 IEEE
Energy 2030 Conference, Atlanta, GA, USA, 17–18 November 2008; pp. 1–8.

13. Hlaing, S. Basic Concepts of Doubly Fed Induction Generator Driven by Wind Energy Conversion System. Int. J. Sci. Eng.
Technol. Res. 2014, 3, 3242–3246.

14. Tiwari, A.R.; Shewale, A.J.; Gagangras, A.; Lokhande, N.M. Comparison of various wind turbine generators. Multidiscplinary J.
Res. Eng. Technol. 2014, 1, 129–135.

15. Yang, B.; Jiang, L.; Wang, L.; Yao, W.; Wu, Q. Nonlinear maximum power point tracking control and modal analysis of DFIG
based wind turbine. Int. J. Electr. Power Energy Syst. 2016, 74, 429–436. [CrossRef]

16. Tande, J.O.; Di Marzio, G.; Uhlen, K. System Requirements for Wind Power Plants; SINTEF: Trondheim, Norway, 2007.
17. Kazachkov, Y.; Feltes, J.W.; Zavadil, R. Modeling wind farms for power system stability studies. In Proceedings of the 2003

IEEE Power Engineering Society General Meeting (IEEE Cat. No. 03CH37491), Toronto, ON, Canada, 13–17 July 2003; Volume 3.
pp. 1526–1533.

18. Rodríguez, J.M.; Fernández, J.L.; Beato, D.; Iturbe, R.; Usaola, J.; Ledesma, P.; Wilhelmi, J.R. Incidence on power system dynamics
of high penetration of fixed speed and doubly fed wind energy systems: study of the Spanish case. IEEE Trans. Power Syst. 2002,
17, 1089–1095. [CrossRef]

19. Ullah, N.R.; Larsson, A.; Petersson, A.; Karlsson, D. Detailed modeling for large scale wind power installations-a real project case
study. In Proceedings of the 2008 Third International Conference on Electric Utility Deregulation and Restructuring and Power
Technologies, Nanjing, China, 6–9 April 2008; pp. 46–56.

20. Reddy, S.S.; Prathipati, K.; Lho, Y.H. Transient stability improvement of a system connected with wind energy generators. Int. J.
Emerg. Electr. Power Syst. 2017, 18. [CrossRef]

21. Maity, D.; Chowdhury, A.; Reddy, S.S.; Panigrahi, B.K.; Abhyankar, A.R.; Mallick, M.K. Joint energy and spinning reserve
dispatch in wind-thermal power system using IDE-SAR technique. In Proceedings of the 2013 IEEE Symposium on Swarm
Intelligence (SIS), Singapore, 16–19 April 2013; pp. 284–290.

22. Ekanayake, J.B.; Holdsworth, L.; Wu, X.; Jenkins, N. Dynamic modeling of doubly fed induction generator wind turbines.
IEEE Trans. Power Syst. 2003, 18, 803–809. [CrossRef]

23. Akhmatov, V.; Nielsen, A.H.; Pedersen, J.K.; Nymann, O. Variable-speed wind turbines with multi-pole synchronous permanent
magnet generators. Part I: Modelling in dynamic simulation tools. Wind. Eng. 2003, 27, 531–548. [CrossRef]

24. Ugalde-Loo, C.E.; Ekanayake, J.B. State-space modelling of variable-speed wind turbines: A systematic approach. In Proceedings
of the 2010 IEEE International Conference on Sustainable Energy Technologies (ICSET), Kandy, Sri Lanka, 6–9 December 2010;
pp. 1–6.

25. Ackermann, T. Wind Power in Power Systems; John Wiley and Sons: Hoboken, NJ, USA, 2005.
26. Ramtharan, G.; Jenkins, N.; Anaya-Lara, O. Modelling and control of synchronous generators for wide-range variable-speed

wind turbines. Wind. Energy Int. J. Prog. Appl. Wind. Power Convers. Technol. 2007, 10, 231–246. [CrossRef]
27. Holdsworth, L.; Wu, X.; Ekanayake, J.B.; Jenkins, N. Comparison of fixed speed and doubly-fed induction wind turbines during

power system disturbances. IEE Proc. Gener. Transm. Distrib. 2003, 150, 343–352. [CrossRef]
28. Quang, N.P.; Dittrich, J.A. Vector Control of Three-Phase AC Machines; Springer: Berlin/Heidelberg, Germany, 2008; Volume 2.
29. Ekanayake, J.B.; Holdsworth, L.; Jenkins, N. Comparison of 5th order and 3rd order machine models for doubly fed induction

generator (DFIG) wind turbines. Electr. Power Syst. Res. 2003, 67, 207–215. [CrossRef]
30. Pulgar-Painemal, H.A.; Sauer, P.W. Reduced-order model of type-c wind turbine generators. Electr. Power Syst. Res. 2011,

81, 840–845. [CrossRef]

http://dx.doi.org/10.3390/electronics9071143
http://dx.doi.org/10.3390/electronics9061043
https://gwec.net/global-wind-report-2019/
https://gwec.net/global-wind-report-2019/
https://gwec.net/global-wind-report-2018/
http://dx.doi.org/10.1016/j.enpol.2019.111147
http://dx.doi.org/10.3390/su12125078
http://dx.doi.org/10.1016/j.jclepro.2019.119260
http://dx.doi.org/10.1016/j.scitotenv.2019.05.274
http://dx.doi.org/10.1016/j.jclepro.2018.11.128
http://dx.doi.org/10.1016/j.ijepes.2015.07.036
http://dx.doi.org/10.1109/TPWRS.2002.804971
http://dx.doi.org/10.1515/ijeeps-2017-0063
http://dx.doi.org/10.1109/TPWRS.2003.811178
http://dx.doi.org/10.1260/030952403773617490
http://dx.doi.org/10.1002/we.219
http://dx.doi.org/10.1049/ip-gtd:20030251
http://dx.doi.org/10.1016/S0378-7796(03)00109-3
http://dx.doi.org/10.1016/j.epsr.2010.11.014


Electronics 2021, 10, 44 28 of 29

31. Slootweg, J.; Polinder, H.; Kling, W. Reduced-order modelling of wind turbines. Wind. Power Power Syst. 2005, 25. [CrossRef]
32. Rezaei, M.M.; Behzad, M.; Haddadpour, H.; Moradi, H. Development of a reduced order model for nonlinear analysis of the

wind turbine blade dynamics. Renew. Energy 2015, 76, 264–282. [CrossRef]
33. García Planas, M.I. Input observability analysis of fixed speed wind turbine. In Proceedings of the 3rd International Conference

on Energy, Environment, Devices, Systems, Communications, Computers, Rovaniemi, Finland, 18–20 April 2012; WSEAS Press:
Athens, Greece, 2012; pp. 13–19.

34. Zhao, X.; Weiss, G. Well-posedness and controllability of a wind turbine tower model. IMA J. Math. Control. Inf. 2011, 28, 103–119.
[CrossRef]

35. Al-Iedani, I.; Gajic, Z. Order reduction of a wind turbine energy system via the methods of system balancing and singular
perturbations. Int. J. Electr. Power Energy Syst. 2020, 117, 105642. [CrossRef]

36. Lee, K.; Carlberg, K.T. Model reduction of dynamical systems on nonlinear manifolds using deep convolutional autoencoders.
J. Comput. Phys. 2020, 404, 108973. [CrossRef]

37. Lin, K.K.; Lu, F. Data-driven model reduction, Wiener projections, and the Koopman-Mori-Zwanzig formalism. J. Comput. Phys.
2020, 424, 109864. [CrossRef]

38. Idiart, M.I.; Lahellec, N.; Suquet, P. Model reduction by mean-field homogenization in viscoelastic composites. I. Primal theory.
Proc. R. Soc. 2020, 476, 20200407. [CrossRef]

39. Klus, S.; Nüske, F.; Peitz, S.; Niemann, J.H.; Clementi, C.; Schütte, C. Data-driven approximation of the Koopman generator:
Model reduction, system identification, and control. Phys. Nonlinear Phenom. 2020, 406, 132416. [CrossRef]

40. Parish, E.J.; Wentland, C.R.; Duraisamy, K. The Adjoint Petrov–Galerkin method for non-linear model reduction. Comput. Methods
Appl. Mech. Eng. 2020, 365, 112991. [CrossRef]

41. Campbell, K.; Sreeram, V.; Wang, G. A Frequency-weighted discrete system balanced truncation method and an error bound.
In Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No. 00CH36334), Chicago, IL, USA, 28–30 June 2000;
Volume 4. pp. 2403–2404.

42. Varga, A.; Anderson, B.D. Accuracy enhancing methods for the frequency-weighted balancing related model reduction.
In Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228), Orlando, FL, USA, 4–7 December
2001; Volume 4. pp. 3659–3664.

43. Imran, M.; Ghafoor, A.; Sreeram, V. Frequency weighted model order reduction technique and error bounds for discrete time
systems. Math. Probl. Eng. 2014, 2014, 498453. [CrossRef]

44. Haider, K.S.; Ghafoor, A.; Imran, M.; Malik, F.M. Model reduction of large scale descriptor systems using time limited gramians.
Asian J. Control 2017, 19, 1217–1227. [CrossRef]

45. Imran, M.; Ghafoor, A. Frequency weighted passivity preserving model reduction technique. IMA J. Math. Control. Inf. 2018,
35, 837–844. [CrossRef]

46. Haider, S.; Ghafoor, A.; Imran, M.; Malik, F.M. Time-limited Gramians-based model order reduction for second-order form
systems. Trans. Inst. Meas. Control 2019, 41, 2310–2318. [CrossRef]

47. Moore, B. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE Trans. Autom.
Control 1981, 26, 17–32. [CrossRef]

48. Enns, D.F. Model reduction with balanced realizations: An error bound and a frequency weighted generalization. In Proceedings
of the 23rd IEEE Conference on Decision and Control, Las Vegas, NV, USA, 12–14 December 1984; pp. 127–132.

49. Sreeram, V.; Anderson, B.; Madievski, A. New results on frequency weighted balanced reduction technique. In Proceedings of
the 1995 American Control Conference-ACC’95, Seattle, WA, USA, 21–23 June 1995; Volume 6. pp. 4004–4009.

50. Wang, G.; Sreeram, V.; Liu, W. A new frequency-weighted balanced truncation method and an error bound. IEEE Trans.
Autom. Control 1999, 44, 1734–1737. [CrossRef]

51. Imran, M.; Ghafoor, A.; Sreeram, V. A frequency weighted model order reduction technique and error bounds. Automatica 2014,
50, 3304–3309. [CrossRef]

52. Gawronski, W.; Juang, J.N. Model reduction in limited time and frequency intervals. Int. J. Syst. Sci. 1990, 21, 349–376. [CrossRef]
53. Wang, D.; Zilouchian, A. Model reduction of discrete linear systems via frequency-domain balanced structure. IEEE Trans.

Circuits Syst. Fundam. Theory Appl. 2000, 47, 830–837. [CrossRef]
54. Gugercin, S.; Antoulas, A.C. A survey of model reduction by balanced truncation and some new results. Int. J. Control 2004,

77, 748–766. [CrossRef]
55. Ghafoor, A.; Sreeram, V. A survey/review of frequency-weighted balanced model reduction techniques. J. Dyn. Syst. Meas. Control

2008, 130, 061004. [CrossRef]
56. Ghafoor, A.; Sreeram, V. Model reduction via limited frequency interval Gramians. IEEE Trans. Circuits Syst. Regul. Pap. 2008,

55, 2806–2812. [CrossRef]
57. Imran, M.; Ghafoor, A. Stability preserving model reduction technique and error bounds using frequency-limited Gramians for

discrete-time systems. IEEE Trans. Circuits Syst. II Express Briefs 2014, 61, 716–720. [CrossRef]
58. Imran, M.; Ghafoor, A. A frequency limited interval Gramians-based model reduction technique with error bounds. Circuits Syst.

Signal Process. 2015, 34, 3505–3519. [CrossRef]
59. Imran, M.; Ghafoor, A. Frequency limited model reduction techniques with error bounds. IEEE Trans. Circuits Syst. II Express

Briefs 2017, 65, 86–90. [CrossRef]

http://dx.doi.org/10.1002/0470012684.ch25
http://dx.doi.org/10.1016/j.renene.2014.11.021
http://dx.doi.org/10.1093/imamci/dnq034
http://dx.doi.org/10.1016/j.ijepes.2019.105642
http://dx.doi.org/10.1016/j.jcp.2019.108973
http://dx.doi.org/10.1016/j.jcp.2020.109864
http://dx.doi.org/10.1098/rspa.2020.0407
http://dx.doi.org/10.1016/j.physd.2020.132416
http://dx.doi.org/10.1016/j.cma.2020.112991
http://dx.doi.org/10.1155/2014/498453
http://dx.doi.org/10.1002/asjc.1444
http://dx.doi.org/10.1093/imamci/dnx001
http://dx.doi.org/10.1177/0142331218798893
http://dx.doi.org/10.1109/TAC.1981.1102568
http://dx.doi.org/10.1109/9.788542
http://dx.doi.org/10.1016/j.automatica.2014.10.062
http://dx.doi.org/10.1080/00207729008910366
http://dx.doi.org/10.1109/81.852936
http://dx.doi.org/10.1080/00207170410001713448
http://dx.doi.org/10.1115/1.2977468
http://dx.doi.org/10.1109/TCSI.2008.920092
http://dx.doi.org/10.1109/TCSII.2014.2346688
http://dx.doi.org/10.1007/s00034-015-0031-7
http://dx.doi.org/10.1109/TCSII.2017.2703117


Electronics 2021, 10, 44 29 of 29

60. Hammarling, S.J. Numerical solution of the stable, non-negative definite lyapunov equation lyapunov equation. IMA J.
Numer. Anal. 1982, 2, 303–323. [CrossRef]

61. Ghafoor, A. Frequency-Weighted Model Reduction and Error Bounds; University of Western Australia: Crawley, WA, Australia, 2007.

http://dx.doi.org/10.1093/imanum/2.3.303

	Introduction
	Grid Connection Configuration of Induction Machines
	Double Fed Induction Generator (DFIG)
	Squirrel Cage Induction Generator (SCIG)
	Mathematical Model for DFIG and SCIG

	Mathematical Model for Double Cage Induction Machines (DCIM)
	Electrical System
	Mechanical System

	Mathematical Model for DFIG and SCIG Systems
	Wind Energy Conversion
	Electrical Systems for Wound Rotor (DFIG) and Squirrel Cage (SCIG) Machine 

	Balancing Related Model Order Reduction Schemes
	Balance Truncation Technique (Moore, B. 1981)
	Enns's Technique (Enns, D.F. 1984)
	Wang and Sreeram's Technique (Wang, G. 1999)
	Imran and Ghafoor's Technique (Imran, M. 2014)

	Main Results
	Numerical Examples
	Analysis and Discussion
	Conclusions
	References

