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SUMMARY
Intentional control over external objects is informed by our sensory experience of them. To study how causal
relationships are learned and effected, we devised a brain machine interface (BMI) task using wide-field cal-
cium signals. Mice learned to entrain activity patterns in arbitrary pairs of cortical regions to guide a visual
cursor to a target location for reward. Brain areas that were normally correlated could be rapidly reconfigured
to exert control over the cursor in a sensory-feedback-dependent manner. Higher visual cortex was more
engaged when expert but not naive animals controlled the cursor. Individual neurons in higher visual cortex
responded more strongly to the cursor when mice controlled it than when they passively viewed it, with the
greatest response boosting as the cursor approached the target location. Thus, representations of causally
controlled objects are sensitive to intention and proximity to the subject’s goal, potentially strengthening sen-
sory feedback to allow more fluent control.
INTRODUCTION

How does the brain infer a causal relationship between its activ-

ity and the sensed world, and how does this affect the sensory

encoding of controlled external objects? Actions and percep-

tions reciprocally affect one another in a mutual dialog (Dewey,

1896). The sense of control can be operationalized to inferring

a causal relationship between a subject’s internally generated

actions or activity and their outcome in the external world

(Haggard, 2017). In motor learning, for example, the relationship

between an action and its outcome can be learned and re-

learned throughout adulthood as animals acquire new motor

skills. Brain machine interfaces (BMIs) are a method for investi-

gating how subjects learn arbitrary action-outcome relationships

(Fetz, 1969; Bakay and Kennedy, 1998; Nicolelis, 2001; Donog-

hue, 2002; Carmena et al., 2003; Sitaram et al., 2017). When

learning to control a BMI, rodents have been found to use the

same mechanisms as implicated in motor learning (Koralek

et al., 2012; Neely et al., 2018). However, unlike motor learning,

wherein animals learn a task and researchers must search for

correlates of the behavior in patterns of neural activity, BMIs

allow the experimenter to precisely control sensory feedback

and prescribe the requisite activity patterns necessary for suc-

cessful task execution, which can then be changed day to day.

Thus, animals learning neuroprosthetic control of external ob-

jects must engage in continuous self-monitoring to assess the

contingency between their neural activity and its outcome, pre-

venting them from executing a habitual or fixed motor pattern,
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and encouraging animals to learn arbitrary new sensorimotor

mappings on the fly.

A key aspect of this self-monitoring is the sensory feedback

from the object being controlled by the agent. However, little is

known about how causally controlled objects are represented

in the brain. Studies have implicated the parietal cortex in inten-

tion and in the subjective assessment of agency over outcome.

In human subjects, disrupting activity in the parietal cortex

temporarily ablates self-reported agency (Chambon et al.,

2015). Parietal activity has been found to be involved in repre-

senting task rules, the value of competing actions, and visually

guided real-time motor plan updating, both in humans (Pisella

et al., 2000; Kahnt et al., 2014; Wisniewski et al., 2015; Zapparoli

et al., 2020) and non-human primates (Andersen et al., 1997; Su-

grue et al., 2004). Motor plans can be decoded from parietal

activity, and its responses are task, expectation, and goal

dependent, in humans, (Rushworth et al., 2001; Desmurget

et al., 2009; Aflalo et al., 2015), non-human primates (Mountcas-

tle et al., 1975; Gnadt and Andersen, 1988; Lacquaniti et al.,

1995; Johnson et al., 1996; Churchland et al., 2008), and rodents

(Licata et al., 2017; Pho et al., 2018; Mohan et al., 2018, 2019). All

of this evidence suggests that, across multiple species, the pa-

rietal cortex plays a role in intentional, goal-directed behaviors

(Rizzolatti et al., 1997; Andersen and Buneo, 2002; Andersen

and Cui, 2009). However, previous studies of the role of the pa-

rietal cortex in intention have not examined how causal control

affects sensory representations across different sensorimotor

contingencies.
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To address this, we devised a mouse model of adaptive

causal control. Control is traditionally studied through the lens

of motor actions, which makes comparing sensory responses

across control and passive conditions difficult, given that the

former involves movement-related signals. By using a BMI

task, we minimized movement-related differences in the neural

responses between the conditions. Animals learned to guide a

visual feedback cursor to a target location to obtain a reward

using neural activity in experimenter-defined cortical areas, re-

corded with wide-field imaging. This had the added benefit of

acting as an unbiased screen to identify dorsal cortical areas

involved in learning the task. We found that higher visual areas,

including the anteromedial cortex (AM), were more engaged

when expert animals controlled the BMI. These higher areas

are considered by some to be a putative homolog of parietal

cortex in mice (Harvey et al., 2012; Licata et al., 2017; Mohan

et al., 2018; Pho et al., 2018; Lyamzin and Benucci, 2019; Gilis-

sen et al., 2020). To gain insight into what this task-related ac-

tivity looks like on an individual neuron level, we targeted single-

cell recordings to the functionally identified task-relevant region

AM, and found that the visual cursor elicited larger responses

when an animal was controlling it in a closed-loop configuration

than when passively viewing it in an open-loop configuration

(Bagur et al., 2018). Responses were highest when the cursor

was closest to the target zone and were sensitive to the cur-

sor’s instantaneous trajectory: they were greater when the

cursor was moving toward the target than away from it. Thus,

the sensory representation of the visual object was sensitive

to the subject’s intention and its perception of the object’s

instantaneous trajectory with respect to its goal. Given that an-

imals had to relearn a changing sensorimotor contingency on

the fly, we surmised that the heightened sensory representation

of the cursor may serve to strengthen the signal to adjudicating

areas for informing fluent control over external objects. The

neural activity in AM during the task condition carried signifi-

cantly more information about the cursor identity than during

the passive playback condition.

RESULTS

Goal-directed control of a visual cursor using areal
signals
To investigate how causal control over external objects is ef-

fected and encoded in mammalian cortex, we trained mice to

control a visual feedback cursor using real-time calcium signals

recorded with wide-field imaging (largely reflecting the summed

spiking of local cells; Makino et al., 2017; Clancy et al., 2019). We

imaged the dorsal cortex in transgenic mice expressing the

calcium indicator GCamp6s in CaMKII+ pyramidal neurons

(Wekselblatt et al., 2016), assigning two small frontal regions to

control the cursor (Figures 1A and 1B; Videos S1, S2, and S3),

similar to a task described previously (Clancy et al., 2014; Kora-

lek et al., 2012). Animals were head-fixed under the wide-field

microscope, and free to run on a styrofoam wheel. The animal’s

goal was to bring the cursor (a copy of which was presented to

both eyes on two separate monitors flanking each side of the

mouse) to a target position in the center of its visual field (Fig-

ure 1C). Animals could achieve this by increasing activity in con-
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trol region 1 (R1) relative to control region 2 (R2). If activity in R2

was greater than R1, then the cursor moved toward the back of

the animal’s visual field. Thus, in this design, animals could not

hit the target simply by generally increasing or decreasing activ-

ity across the cortex, but had to differentially modulate the activ-

ity of these specific regions (Figures 1D–1F, S1A, and S1B). The

control regions were usually placed over ipsilateral motor areas

and were changed from day to day (Figure 1B; Table S1). Control

regions were deliberately small (�0.1 mm2) as we reasoned that

it would be easier for animals to control a smaller area, but this

was not systematically tested. We avoided using the anterior

lateral motor cortex (ALM) in the control regions, to minimize

the effect of licking.

The visual feedback cursor could take one of eight positions

on the monitors (Figure 1C), and the cursor had to be held at

the target for 300 ms to count as a hit. When animals succeeded

in holding the cursor at the target position, a soya milk reward

was delivered after a 1-s delay. If animals failed to bring the

cursor to the target position within 30 s, then the trial was a

miss, and a white noise miss-cue was followed by a time out.

Chance performance was assessed using spontaneous activity

recorded before the task began and represented the estimated

hit rate that the animal would have achieved using spontaneous

fluctuations of neural signals alone. Mice improved their perfor-

mance over training (Figure 2A; n = 7 mice) and took less time

to reach a criterion performance of 50% hit trials over days

(Figure 2B).

Animals could perform the task without overt movements,

licking, or eye saccades (Figures S1C–S1E). Several recent pa-

pers have shown that many motor activities can influence

cortical activity (Stringer et al., 2019; Musall et al., 2019; Orsolic

et al., 2019; Salkoff et al., 2020), raising the possibility that mice

may adopt a motor strategy to control the activation of cortical

regions used for BMI. Our analyses show that animals could

perform the task without gross overt movements that were de-

tected by monitoring licking, eye saccades, or running speed

(Figures S1C–S1E), although it is possible that subtler movement

were not detected. This is a question common to all BMI studies

that is ultimately unanswerable without recordings from every

muscle in the body. We did not take body videos of the

animals performing the task, but future work that included video

monitoring would offer insights on subtler motor outputs. Never-

theless, animals in this study could discover arbitrary activation

patterns of different brain areas within and between training ses-

sions and use these activations to control a visual cursor in a

manner dependent on sensory feedback: that is, they could flex-

ibly work out the arbitrary coupling of action patterns (whether

purely confined to the brain, or involving peripheral muscle con-

tractions) with sensory feedback to achieve a goal. The flexibility

with which the animals could readjust their control of arbitrary

brain areas suggests some degree of adaptability in reducing

correlations of otherwise highly correlated brain areas (see

below), although this varied for different regions.

Control regions could be changed from day to day or within a

session: hit rates improved over time within a session and recov-

ered after control regions were changed, indicative of learning

(Figures 2C, S2A, and S2B). After recovery, the animals’ hit rates

before and after the switch were unchanged (Figure S2C). The
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Figure 1. A widefield-imaging-based brain machine interface

(A) Task schematic. Clockwise starting from illustration of mouse: wide-field signals were imaged from head-fixed animals in real time and transmuted into the

position of a visual cursor. Two small regions (R1 and R2) were used for controlling the cursor, and activity recorded from these areas was fed into a decoder such

that their activity opposed one another. Example dF/F for the 2 regions is shown at top, with blue arrows denoting trial starts, and pink arrows denoting target hits.

Activity averaged around hits for 1 example animal, 1 day, shown for R1 and R2. Animals had to increase activity in R1 relative to R2 to bring the cursor to a

rewarded position at the center of their visual field, at which point they could collect a reward after a 1-s delay.

(B) Positions of control ROIs (R1 in blue, R2 in green) for all 7 animals over the course of training (averaging 15 days each), superimposed on the Allen Brain Atlas

(totaling 104 pairs).

(C) Feedback schematic: the cursor could take 1 of 8 potential positions on screen, with position 8, the target, rewarded.

(D)DF/F in control regions triggered around hits for 3 example animals on 1 day of training, indicating different strategies that animals use to achieve reward. Pink

line indicates the time of target hit and gray line indicates reward delivery.

(E) Activity in R1 subtracted by activity in R2, averaged around target hits for all mice on a day of training (n = 7 mice, shading represents SEM).

(F) Animals could not control cursor using lick alone.DF/F triggered around lick bouts in spontaneous activity for the same 3 example animals on 1 day of training,

indicating animals could not achieve the differential activation of R1 and R2 using lick alone. Gray line indicates time of lick.
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decoder transformation for both the pre- and post-switch condi-

tionswas calculated using the same spontaneous baseline taken

before the training session. To test whether the behavior was

goal directed, we dissociated the reward from the target posi-

tion. On day 8 of training, animals were allowed to perform the

task as usual, but the training session was constrained to

30 min. Thereafter, the visual feedback was coupled to the ani-

mal’s neural activity as before, but rewardswere given randomly,

at the same rate as an expert animal engaged in the task (�1.3

hits/min). Given random rewards, the animals’ target hit rate

dropped to chance, indicating that target hits were goal oriented

(Figure 2D). The fluorescence signals representing the difference

between R1 and R2 increased over the normal training session,

indicative of the increased efficacy of control and decreased

when the rewardwas randomized, again suggesting that animals

were effecting the requisite neural patterns in a goal-directed

manner (Figures S2D and S2E). Animals were able to recover
their performance following reinstatement of the normal task

on the next day of training (Figure 2D). For a subset of animals,

the visual feedback was then randomized: the visual cursor

was presented at random positions, although animals could still

achieve the target with the appropriate neural activity patterns.

The animals’ ability to bring the cursor to the target dropped to

chance levels without meaningful visual feedback (Figure 2D).

Activity leading to hits did not resemble activity induced by

licking around reward collection, as evidenced in both the

normal task and random-reward conditions (Figure S2F). This

suggests that animals performed the task in a flexible, goal-

directed, visual feedback-dependent manner.

Exploration and exploitation in neural activity space
As control regions were changed day to day, the activity patterns

necessary for successful BMI control had to be re-learned each

session. Example fluorescence traces from control regions
Neuron 109, 1–13, February 17, 2021 3
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Figure 2. Animals learn to control a visual cursor using areal neural activity
(A) Behavioral performance (percentage of trials the animal successfully reached the target within the 30-s trial window) increased above chance over the course

of days. Shaded region denotes chance SEM, assessed as how often spontaneous activity would achieve hits, averaged across 7 mice.

(B) Animals achieve 50% performance faster over the course of days of training, calculated by taking a moving average of the number of times the animal

successfully reached the target per trial. Error bars denote SEM averaged across 7 mice.

(C) Average hits per minute (gray) increased over the course of a training session and recovered within minutes when control regions were changed (n = 7mice on

day 6 of training; shading denotes 95% confidence interval, see Table S1). Individual hit times, pooled for all animals, shown below rate curves. At chance

baseline, animals should perform ~0.3 hits/min (here, animals started at slightly worse than chance, likely due to the fact that some of the control region positions

had been changed from the previous day). After R1 and R2 were swapped mid-session, the estimate of how well the animals would have done using the original

control regions is shown in teal: the performance of the previous (‘‘ghost’’) decoder starts near the hit rate prior to the switch, suggesting that mice persist with

their original strategy, but this drops off as animals discover the new rewarded contingency and recover their performance.

(D) Performance dropped to near chance when rewards were given randomly but recovered when target and reward was again coupled on a subsequent day (n =

5 mice). Performance also dropped to chance when the visual feedback cursor was uncoupled from neural activity and presented at random (n = 3 mice), even

though animals could still achieve reward using the previously learned neural activity pattern (i.e., reward was no longer linked to cursor position). Error bars

denote standard deviation. Shaded region denotes chance SEM, assessed as how often spontaneous activity would achieve hits (n = 7 mice).
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indicate that the areas were initially highly spontaneously corre-

lated (Figures 3A [top trace], S1A, and S1B; Video S3). Early in

the training session, hits were preceded by diverse activity pat-

terns (Figure 3A, center trace). By late in the training session, ac-

tivity patterns leading to hits were more consistent (Figure 3A,

bottom trace). Animals found different ways to achieve this con-

sistency, sometimes by sweeping activity through R1 toward R2,

or by depressing R2 while activating R1 (Figure 1D; Videos S1,

S2, and S3).
4 Neuron 109, 1–13, February 17, 2021
To achieve the prescribed activity pattern, animals had to

functionally decorrelate the two control regions, which were

usually spontaneously correlated. Activity in the dorsal cor-

tex was globally correlated pre-task, as indicated by corre-

lation maps using R1 and R2 as seed pixels (Figures 3B and

S1B). Correlations between these areas decreased during

task performance (Figures 3B and S3B), as did the correla-

tions between the control regions and the primary visual

cortex, V1 (Figure S3C). Correlations between the control
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(legend on next page)
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regions and the primary somatosensory cortex, S1, as well

as between S1 and V1, were unchanged between sponta-

neous activity and the task (Figures S3C and S3D). Only

periods of task performance, and not reward collection or

inter-trial waiting periods, were included in these analyses.

Animals could arbitrarily reduce correlations between

different regions sufficient to perform the task. In a separate

cohort of animals trained using auditory feedback instead of

visual feedback, animals could also decorrelate visual con-

trol areas (Figures 3B, rightmost panel, and S4). Interest-

ingly, the task-induced correlation patterns were invariably

bilateral, even when control regions were ipsilateral to

each other. Not every training session resulted in the kind

of decorrelated maps evident in Figure 3B; reflecting that

some areas are harder for the animals to decorrelate than

others. Animals took longer to reach criterion 50% perfor-

mance when control regions were spontaneously highly

correlated (Figure 3C). The distance between control regions

did not affect the time animals required to reach 50% per-

formance (Figure S3A), suggesting that areas that were the

most spontaneously correlated, irrespective of their distance

from one another, were the hardest to use to perform

the task.

The variance in R1 and R2 activity peaked around hits early

in a training session as animals explored strategies that would

yield reward, as has been shown previously for the activity of

individual cells learning to control a BMI device using a fixed

decoder (Zacksenhouse et al., 2007; Athalye et al., 2017).

This variance decreased later in the session as animals

discovered and exploited reliable, reproducible strategies

(Figure 3D). Early in the session, the spectral entropy of activ-

ity (a measure of the spectral power distribution of a signal,

and a proxy for its complexity; see Method details) around

the control regions increased as animals explored activity pat-

terns that would yield reward, then dramatically dropped as

they discovered successful patterns and reliably exploited

them (Figure 3E). At the start of a session, or when control re-

gions were changed, animals faced with uncertain task rules

‘‘explored’’ activity space stochastically, and gradually

switched to effecting stereotyped patterns they could reliably

exploit after having probed the rules of their environment

(Tervo et al., 2014).
Figure 3. Exploration and exploitation of neural activity patterns
(A) Areal signals were highly spontaneously correlated before the training session

session (center trace) to discover and exploit successful patterns by the end of th

between R1 and R2 indicated on the right of each trace. Right: run, lick, and sacc

confidence interval around mean. Pink arrow denotes target hits, black arrow de

(B) Correlation map across cortex for 3 animals using activity in R1 (top row) and R

Mouse 3 was part of a separate cohort trained on an auditory task (see Metho

formance.

(C) Animals took longer to reach criterion performance (50% hits/attempt) if contro

mice, 9 days of training starting on day 4).

(D) The average variance of activity for R1 (top panel) and R2 (bottom panel) was g

day 8 of training; shading indicates 95%confidence interval aroundmean), indicat

the course of a single training session.

(E) Early in the session, neural activity around the control regions had high spectr

activity to explore the neural patterns that would yield reward. By late in the sessio

entropy in control area activity decreased. Shaded area indicates 95% confiden
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Expert performance correlated with increased activity
in higher visual areas
We sought to determine what cortical areas were most active

during task performance, and how this changed over learning.

On the first day of training, the primary visual cortex was most

active during the task, but as animals became expert in the

task, higher visual areas were recruited (Figures 4A–4C): in

particular, AM, posteromedial cortex (PM), and rostrolateral vi-

sual cortex (RL), similar to previous studies of learning visually

guided tasks in mice (Wekselblatt et al., 2016; Orsolic et al.,

2019). Areas AM and RL are considered by some to be parietal

cortex homologs in the mouse cortex, although there is no wide-

spread agreement on this point (Harvey et al., 2012; Licata et al.,

2017; Mohan et al., 2018; Pho et al., 2018; Lyamzin and Benucci,

2019; Gilissen et al., 2020). After the final day of training, animals

were shown the playback of the cursor positions using their pre-

vious task performance (hereafter referred to as the passive

playback condition). Activity in these higher areas was not

evident in animals passively watching the cursor, suggesting

that their recruitment was specific to goal-oriented task engage-

ment (Figure 4). A separate cohort of animals trained using an

auditory feedback cursor had variable task-active areas (Fig-

ure S4A, n = 4 mice), but, as with the visual task, higher activity

was also evident in RL, which is a multimodal associative area

with neurons responsive to visual, touch, and auditory stimuli

(Mohan et al., 2018).

Population tuning of neurons shifted toward target
position
Having identified brain areas implicated in BMI control, we re-

corded spiking from individual units while animals performed

the task, to investigate the task-dependent increase in calcium

signals with cellular resolution. We chose to record from func-

tionally identified area AM, due to its recruitment over learning,

and used multi-channel silicon probes to record spikes from in-

dividual neurons while simultaneously imaging the rest of the

dorsal cortex (Figure 5A; see Method Details; Xiao et al., 2017;

Clancy et al., 2019; Barson et al., 2020; Peters et al., 2019). We

obtained 16–49 single units per recording, spanning all cortical

layers. Units could be classified as regular-spiking (RS) or fast-

spiking, putative interneurons (FS), depending on spike width

(see Method Details; Figure 5A). We recorded from 131 units in
(top trace). Animals explored different activation patterns early in the training

e session (bottom trace). Pink arrows denote target hits. Pearson’s correlation

ade averaged around hits for this training session; gray shading denotes 95%

notes reward delivery.

2 (bottom row) as seeds, during spontaneous activity and during the BMI task.

d Details). Animals could decorrelate normally correlated areas for task per-

l regions were highly spontaneously correlated (linear regression on data from 7

reater around hits early in a training session than late in the session (n = 7 mice,

ing that mice honed in onmore reliable and reproducible control strategies over

al entropy (a proxy of signal randomness) as animals used stochastic bursts of

n, animals had discovered a successful activity pattern to exploit, and spectral

ce interval around mean.
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Figure 4. Higher visual areas were more active during expert task performance

(A) Activation maps for individual animals on day 1 of training (top row), when animals were naive, versus day 9 of training (bottom row), when animals performed

the task expertly, calculated using the normalized activity difference for task-on minus task-off periods. Each map has been registered to the Allen Brain Atlas

(overlaid) using stereotaxic marks. Control regions are shown as slightly larger than they actually were for better visibility.

(B) Activation maps during task performance on day 1, day 9, and during passive playback of a previous session (representing the normalized activity difference

for task-on minus task-off periods). Each map has been registered to the Allen Brain Atlas by stereotaxic marks and then averaged across 7 mice.

(C) The relative ratio of task activation in higher visual areas versus V1 increased over training. When animals passively viewed playback of the same session,

higher visual areas were less active. Red bars indicate mean ratios (n = 7 mice, paired t test, Bonferroni corrected).
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7 mice performing the task (example recording shown in Fig-

ure 5B), and 128 units from the same animals passively viewing

a playback of the previous training session’s cursor positions.

Due to electrode shift over the recording sessions, we do not

have recordings of the same units across both conditions, thus

our analyses are limited to population response differences. Dur-

ing the task, population firing was significantly increased for

cursor positions closer to the target, and this was true both of

FS and RS units (Figures 5C–5E and S5A–S5C). The target-

dependent increased spiking could not be explained by reward

expectation, as a subset of animals were also given rewards at

the target position during passive playback (Figure S5C). Re-

sponses were dependent on the preceding cursor position—

firing to the cursor positions closest to the target was higher if

the cursor swept toward the target, but lower if the cursor swept

away from it. The opposite was true for the cursor positions

farther from the target: firing was higher if the cursor swept

away from the target (Figures 6A and 6B).

We surmised that the heightened neural responses around the

target location could reflect a strengthening of relevant sensory

feedback, disambiguating neural activity representing different

cursor positions, and making the cursor identify more interpret-

able-by-recipient areas. This may allow downstream areas to
more effectively decode the cursor position for better behavioral

performance. To test this idea, we performed a classifier analysis

on the population neural responses to confirm whether this was

the case (Meyers, 2013). The cursor identity was much more

effectively decoded from AM neural responses during task per-

formance versus playback (Figure 6C). During the task, the clas-

sifier performed above chance (12.5%) even before the cursor

was present, suggesting that the neural responses also encode

intention or expectation. In the passive playback condition, the

classifier only performed above chance after the cursor had

been presented. However, the classifier failed to decode the

travel direction of the cursor (toward or away from the target)

in either the task or playback conditions (Figure 6D). Thus, the

cursor direction-dependent difference in neural activity may

reflect a role other than improving the decodability of the cursor

movement direction—reflecting some interplay of the animal’s

expectations and goal-direction (e.g., whether the cursor was

moving in the direction the animal expected and/or intended).

Pupil diameter and running velocity were significantly decorre-

lated during task performance compared to playback (Fig-

ure S5F), suggesting that distinct mechanisms underlie pupil

size modulation in the two conditions. At the population level,

firing rates were uncorrelated with both pupil diameter and pupil
Neuron 109, 1–13, February 17, 2021 7
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Figure 5. Cursor tuning shifts to target location

(A) Electrophysiological recordings were targeted to AM while animals were performing the imaging-based BMI task, with control regions in the anterior motor

cortex. Inset shows example waveforms from 3 isolated units (fast spiking unit in red).

(B) Example spiking during 2 successful trials (trials denoted in blue, hits denoted with pink arrows). At top, traces, from top to bottom, are pupil diameter, running

velocity, and visual cursor position.

(C) Normalized tuning to cursor positions for all single units. Each row represents the normalized firing responses to each of 8 cursor positions for every recorded

unit in the task (top, N = 131 units) and playback (bottom, N = 128 units) conditions. Firing responses were taken as the average firing rate for a period from 80 to

200 ms from the onset of the cursor presentation.

(D) Average population firing rates for each cursor position during task performance (red) and passive playback (blue). Shaded regions indicate 95% confidence

levels.

(E) Left: mean firing rate for regular spiking (RS) units to different cursor positions during task performance (95% confidence interval indicated by shading, n = 7

mice). Right: mean firing rate for fast spiking (FS) units to different cursor positions during task performance (95% confidence interval indicated by shading, n =

7 mice).
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position during the task, while firing rates were weakly correlated

with pupil diameter during playback (Figures S5G and S5H). The

fluorescence activity of the control regions was also uncorre-

lated with running velocity and pupil diameter (Figures S5I

and S5J).

To understand the relationship between the firing rate of

individual neurons and dorsal cortex-wide activity, we corre-

lated the spike trains of individual units with fluorescence

activity across the brain to build affiliation maps for each

unit (Xiao et al., 2017; Clancy et al., 2019; Barson et al.,

2020; Peters et al., 2019). We aligned these maps to the
8 Neuron 109, 1–13, February 17, 2021
common coordinate framework of the Allen Brain Atlas using

stereotaxic marks on the skull and sorted these maps by

units’ preference for different cursor locations. During task

performance, the cells most responsive to the target and

target-adjacent cursor position were significantly more

correlated with activity across the dorsal cortex (Figure S6A).

This could mean that the boosting around the target may be

the result of a cortex-wide signal, or that units tuned to the

target correlate more strongly with the rest of dorsal cortex

during task performance, but not playback (Figures S6B

and S6C).
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Figure 6. Cursor identity was more decodable from neural activity during task performance

(A) Mean firing rate to different cursor positions depended on whether the preceding cursor position was sweeping toward (red) or away (black) from the direction

of the target during task (t test, Bonferroni corrected, *p < 0.05 and **p < 0.01; error bars indicate SEM; n = 131 units).

(B) Cursor sweep direction had little effect on firing rateswhen animals were passively viewing playback (t test, Bonferroni corrected, **p < 0.01; error bars indicate

SEM; n = 128 units.)

(C) Classification accuracy for cursor identity, from population responses trained on real (blue) and shuffled data (gray), for neural responses during task per-

formance (left panel) and passive playback (right panel). Shaded regions denote 95% confidence interval (n = 7 mice). During task performance, the classifier

could infer the upcoming cursor position even before presentation (chance level at 12.5%), and rose higher after presentation, suggesting that neural responses

encode expectation. This was not true of the passive playback condition, in which case the classifier only performed above chance during the cursor presentation

period.

(D) Classification accuracy for cursor direction, from population responses trained on real (blue) and shuffled labels data (gray), for neural responses during task

performance (left panel) and passive playback (right panel). Shaded regions denote 95% confidence interval (n = 7 mice). A trained classifier could not perform

above chance (50%) in predicting, from firing alone, the direction that the visual cursor was moving, in either the task or playback conditions.
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DISCUSSION

The idea of representation is fundamental to the idea of compu-

tation, and the neocortex appears to use hierarchies of trans-

formed representations. It has become increasingly clear that

cortical sensory representations are not strictly veridical repro-

ductions of the outside world but are shaped by a subject’s inter-

nal states and goals. We sought to understand how having

causal control over an external object affects the cortical sensory

representation of that object, given that fluent control must be

informed by a constant dialog between action and sensation

(Haggard, 2017). Animals learned to causally control an external

object using neural calcium signals recorded by widefield imag-

ing and did so by discovering and exploiting experimentally

defined mappings between their neural activity and the visual

feedback that led to reward. This technique enabled us to iden-

tify cortical areas involved in task performance and then to target

recordings from individual cells in these areas while animals

were engaged in the task. We found that higher visual cortical

areas, including area AM, were recruited during expert BMI con-

trol, and that single units in AM encoded the same visual cursor

differently, depending on whether the animal was causally con-

trolling it or passively viewing it. These results lend evidence to

the idea that activity in AM, a potential homolog of the parietal

cortex, encodes a subject’s intention and self-monitoring of

sensorimotor transformations (Andersen and Buneo, 2002; An-

dersen and Cui, 2009; Desmurget et al., 2009; Aflalo et al.,

2015; Cui, 2016).

Previous work indicates that subjects can learn to control

neuroprosthetic devices using single cells or bulk electrophys-

iological signals (Fetz, 1969; Bakay and Kennedy, 1998; Nicole-

lis, 2001; Serruya et al., 2002; Carmena et al., 2003; Weiskopf

et al., 2003; Sitaram et al., 2007; Koralek et al., 2012; Hochberg

et al., 2012; Collinger et al., 2013; Clancy et al., 2014; Sadtler

et al., 2014; Prsa et al., 2017; Sitaram et al., 2017; Trautmann

et al., 2019), but this is the first work, to our knowledge, to

apply control using population calcium signals. This technique

allowed us to monitor much of the dorsal cortical network as

animals learned neuroprosthetic control, whereas previous

BMI work has been limited to recording from neighboring neu-

rons. This lends evidence to the idea that manipulating neuro-

prosthetic devices using aggregate population signals (e.g.,

from infrared imaging or ultrasound; Shevelev, 1998; Abdelnour

and Huppert, 2009), rather than electrophysiological recordings

from individual neurons, may afford more stable and minimally

invasive control that is robust to losing signals from or damage

to individual control cells.

To learn the arbitrary action-outcome relationships required to

perform BMI tasks, animals must match internally generated ac-

tions or activity with their sensory consequences. To probe how

animals learned these contingencies, we changed the regions

that controlled the BMI between and within training sessions,

meaning that animals could not rely on a habitual activity pattern

or strategy, but had to continually explore different neural pat-

terns to achieve reward on different training days. Animals did

so by ‘‘exploring’’ with variable neural activity patterns early in

a training session, until they discovered a successful activity

pattern to exploit (Figure 3). Target hit rates dropped when the
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reward was dispensed randomly, unlinked to the target zone,

indicating that the animals’ task performance was goal directed

and not habitual.

The spontaneous activity correlations between the control re-

gions were predictive of the animals’ fluency of performance,

which is instructive for BMI design considerations (Figure 3C;

Sadtler et al., 2014; Clancy et al., 2014; Oby et al., 2019). Animals

could modestly decorrelate normally correlated brain areas dur-

ing task execution, although spontaneous activity was widely

correlated across the cortex, as seen in prior work (Ledocho-

witsch et al., 2013). We found this to be true of both anterior

and posterior cortical areas—in mice trained to control an audi-

tory cursor, for example, posterior visual control areas could also

be decorrelated during the task (Figure 3B). Pupil and locomo-

tion also became decorrelated during task performance, indi-

cating that task engagement and locomotion may engage

distinct arousal mechanisms (Figure S5; Vinck et al., 2015; Re-

imer et al., 2016; Clancy et al., 2019).

By imaging dorsal cortex as animals performed this task, we

were able to screen for cortical areas engaged during expert

BMI control. On the first day of training, V1 was most active dur-

ing the task, but as animals learned the task over days, higher vi-

sual areas, including the AM, PM, and RL, became more active

as animals controlled the cursor. When the same cursors were

played back to animals in an open-loop fashion (e.g., not

controlled by animals), activation was again mainly evident in

V1, suggesting that these higher areas were involved in the

goal-directed aspect of task performance. AM and RL are

considered by some to be rodent homologs of the parietal cortex

(Glickfeld and Olsen, 2017; Wang et al., 2011), which has been

shown in humans to be involved in intention and monitoring

the mapping between action and outcome (Andersen and Bu-

neo, 2002; Desmurget et al., 2009; Andersen and Cui, 2009;

Aflalo et al., 2015; Cui, 2016). However, it was unclear whether

the recruitment of these higher visual areas over learning was

related to the fact that they are involved in sensorimotor transfor-

mations generally or because they are involvedmore specifically

in planning and intentional control.

We targeted extracellular recordings in one of the functionally

identified task-active areas, AM, to probe task-related changes

in the spiking of single units. We found that units were more

active during task performance than passive cursor playback

of the animal’s recent performance. In particular, units were

more responsive to the cursor when it was at the target and

target-adjacent positions during the BMI task compared to pas-

sive playback, similar to the spatial attention boosting evident in

previous work (Moran and Desimone, 1985; Engel et al., 2016),

and in accordance with evidence that attention can reshape

stimulus representations in a manner that more effectively

guides decisions (Ruff and Cohen, 2019). A classifier trained

on neural responses to the different cursor positions could effec-

tively classify responses to the visual cursor and could do sowith

better accuracy when the animal was actively engaged in the

task versus passively viewing a playback of the same cursor.

In the task condition, the classifier ramped up in accuracy

even before the cursor was presented, suggesting that neural re-

sponses were prospective, but whether this represents an inten-

tion (e.g., a control signal) or an expectation (e.g., a passive
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prediction) remains to be determined in future work. This boost-

ing did not reflect reward expectation, and the animal did not use

saccades or overt movements to perform the task. This boosting

was also sensitive to the task goal: if the cursor was positioned

close to the target and sweeping toward it, responses were

boosted relative to when it was sweeping away. If the cursor

was far from the target and sweeping away from it, then re-

sponses were also boosted relative to the cursor at the same po-

sition sweeping toward the target. This suggests that firing rates

reflect intention and may also reflect a valence of the animal’s

perceived fluency of cursor control—that is, whether it was suc-

cessfully guiding the cursor toward its intended goal (Lee and

Dan, 2012).

We present a novel task and imaging method for exploring

the encoding of action-outcome assessments, which allowed

us to simultaneously monitor—with both dorsal cortex-wide

and cell-level resolution—what activity patterns support the

causal control of external objects. This is a promising proof-

of-principle for exploring the potential and limitations of future

imaging- and population-activity-based BMIs. Imaging-based

BMIs can also serve as a useful paradigm for studying the

cortical dynamics involved in flexible learning, affording exper-

imental control of what is learned and by what areas or molec-

ularly defined cell types. This makes it an excellent system to

probe how the brain adjusts to sensory and rule manipulations

through altering activity patterns within and across areas.

Future work could more systematically examine questions

including how effectively animals can decorrelate different brain

areas depending on underlying anatomical networks. Another

promising avenue is credit assignment: BMI affords one less

‘‘translational’’ step in the mapping of neural activity and its

sensory consequences than traditional motor learning para-

digms. When animals learn a new motor pattern, this is accom-

panied by changes in neural activity that researchers must first

identify (finding where the changes occur and what they are)

and then show that this activity is necessary for the new

behavior. With BMI learning, researchers can prescribe what

neurons are learning what patterns, and also identify exactly

when the new pattern emerges and when it is driving the

rewarded behavior. For instance, rather than studying how neu-

rons infer credit in limb movements, which result from brain ac-

tivity across multiple areas, in BMI learning, defined activity

patterns of a small group of cortical cells is directly rewarded,

reducing the complexity of the problem.

While using wide-field imaging afforded us a view of the dorsal

cortex as animals learned neuroprosthetic control, there are a

number of limitations to this method. While wide-field fluores-

cence signals largely reflects neural firing, there is also a contri-

bution from neuropil and hemodynamic effects that were uncor-

rected in this study, as in our previous work we found it did not

significantly affect our findings (Clancy et al., 2019). However,

there is clearly some component of the signal contributed by

blood vessels (e.g., in Figure 3B), so this is a limitation of the

study. Another limitation is that wide-field imaging is limited to

recording from the dorsal cortex. Cortical neuroprosthetic con-

trol requires interactions with basal ganglia (Koralek et al.,

2012; Neely et al., 2018), from which we cannot record using

this method. Furthermore, we know from work in humans that
the prefrontal cortex (PFC) is involved in the sense of control

over external stimuli, but we cannot record signals from the

PFC using this preparation due to its obscuration by the fron-

tal sinus.

While we found increased evoked spiking to a visual cursor in

the target location using this preparation, we do not know the

exact cellular or neuromodulatory mechanisms giving rise to

this difference. We found task-related increases in activity

emerge over learning specifically in AM, PM, and RL, and are

not present during passive visual playback or when visual feed-

back was randomized. However, as we only recorded neuronal

responses in AM, we do not know whether the changes in neu-

ral tuning in AM are specific to this area, nor whether they are

specifically required for task performance. Future work may

address this by using mesoscale 2-photon imaging to record

from or manipulate activity in molecularly defined neural sub-

populations in parietal and control areas during task

performance.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Experimental Models: Organisms/Strains

Mouse: TRE-Gcamp6s Jackson labs JAX 024742; RRID: IMSR_JAX:024742

Mouse: B6.CBA-Tg(Camk2a-tTA)1Mmay/

DboJ mice

Jackson labs JAX 007004; RRID: IMSR_JAX:007004

Software and Algorithms

Allen Brain Atlas API Allen Institute http://help.brain-map.org/display/api/

Allen+Brain+Atlas+API

MATLAB 2015 MATLAB https://uk.mathworks.com/help/matlab/

release-notes-

R2015b.html

Labview 2012 National Instruments https://www.ni.com/en-gb/support/

downloads/software-

products.html

OpenEphys Siegle et al., 2017 https://open-ephys.org/store

Klustakwik Schmitzer-Torbert et al., 2005 https://github.com/klusta-team/klustakwik

Mapped Tensor (MATLAB) Muir and Kampa, 2015 https://uk.mathworks.com/matlabcentral/

fileexchange/

29694-better-memory-mapped-files-in-

matlab
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to Kelly Clancy, the lead contact (k.clancy@ucl.

ac.uk).

Materials availability
This study did not generate new unique reagents or mouse lines.

Data and code availability
The data and code used in this study are available from the lead contact upon reasonable request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
All experimental procedures were carried out in accordance with institutional animal welfare guidelines and licensed by the

Swiss cantonal veterinary office. TRE-Gcamp6s mice (Wekselblatt et al., 2016) (Jackson Laboratories, RRID: IM-

SR_JAX:024742) were crossed with B6.CBA-Tg(Camk2a-tTA)1Mmay/DboJ mice (Jackson Laboratories, RRID: IM-

SR_JAX:007004), to drive the expression of gCamp6s in CamKII+ pyramidal neurons. Animals were housed in a facility using

a reversed light cycle, and recordings were taken during their active period. Eleven female mice were trained on the task,

and we took electrophysiological recordings from seven of these, ranging between P55-P75. All animals were healthy,

had never undergone previous procedures, and ranged in weight from 15-19 g. Sample sizes were not statistically deter-

mined, but were consistent with previous papers using related methodology (Clancy et al., 2019; Xiao et al., 2017). Animals

were group housed with same-sex littermates in enriched environments (including running wheels, cardboard tubes and

chewing toys).
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METHOD DETAILS

Surgery
Aweek before training, mice were prepared for imaging. Animals were anaesthetised with amixture of fentanyl (0.05mg per kg), mid-

azolam (5.0 mg per kg), and medetomidine (0.5 mg per kg). The animal’s scalp was resected and a head plate was secured to the

skull. Four stereotaxically placed marks were made to enable alignment of the imaged brain with the Allen Brain Atlas (http://mouse.

brain-map.org/static/atlas) post hoc, using the Allen Brain API (http://help.brain-map.org/display/api/Allen+Brain+Atlas+API). The

exposed skull was cleaned and covered with transparent dental cement to avoid infection, and to cover the cut scalp edges

(C&B Metabond). This was polished to enhance the transparency of the preparation. A custom-made 3D printed light shield was ce-

mented to the skull and head plate to avoid light leaks from the visual feedback presented on two computer monitors.

Behavioral setup and recordings
The recording chamber was sound-isolated and shielded from outside light. Mice were head-fixed under the microscope and free to

run on a Styrofoam running wheel (diameter = 20 cm, width = 12 cm). The animals’ movements were recorded using a rotary encoder

in the wheel axis (pulse rate 1000, Kubler). Two monitors were placed side by side in front of the mouse, angled toward one another

(21.5’’ monitors, �20 cm from mouse, covering �100x70 degrees of visual space), similarly to the setup described in Poort et al.

(2015). A reward port was place in front of the animal, where reward delivery was triggered via pinch solenoid one second after target

hit (NResearch) and animal lickswere detected using a custom piezo element coupled to the spout. All behavioral data were recorded

using custom MATLAB software and a PCI-6320 acquisition board (National Instruments).

On electrophysiological recording days, pupil recordings were taken by illuminating the animal’s right eye with a custom IR-light

source and imaging with a CMOS camera (DMK22BUC03, Imaging Source, 30 Hz) using custom MATLAB software. Pupil size was

determined as described in Orsolic et al. (2019): images were first smoothed with a 2-D Gaussian filter and thresholded to low lumi-

nance areas. These thresholded regions were then filtered by circularity and size to automatically detect the pupil region. Pupil edges

were detected using the canny method, and ellipses were iteratively fit to the region, tasked to minimize the geometric distance be-

tween the area outline and the fit ellipse using nonlinear least-squares (MATLAB function fitellipse, Richard Brown). The pupil diam-

eter was taken to be themajor axis of the ellipse, then normalized by animal. Pupil recordings from one animal had to be discarded, as

the video was not sufficiently in focus.

Behavioral training
After recovery, mice were acclimatised to head fixation for a minimum of two days, and started on food restriction. Awake animals

were head-fixed under the microscope and free to run on a Styrofoam wheel. A baseline of spontaneous activity was taken on every

training day (10-20 minutes) in order to estimate spontaneous hit rates. The decoder was calibrated such that animals achieved

�25% performance on their first day. Two small control regions were chosen for real-time read out. In the case of visual feedback

task, thesewere all located in primary and secondarymotor cortex, avoiding ALM. In the auditory feedback task, control regionswere

placed in posterior cortex, over visual and retrosplenial areas. The placement of the two control regions was usually ipsilateral but

sometimes contralateral to each other. The same control regions were used for the first few days of training, then changed from

day to day, or within sessions, so that animals did not learn a fixed control strategy (see Table S1).

Activity was imaged at 40 Hz and the mean fluorescence from each control region was transmuted to the cursor’s position on

screen with a simple transform:

pðtÞ = A1FR1 � A2FR2 +B (Equation 1)

where p is the cursor position at time t, FR1 and FR2 are the instantaneous fluorescence (DF/F) of control regions one and two, respec-

tively, and A1, A2 and B are coefficients set based on the daily spontaneous baseline recordings (minimum 10 minutes). P was

rounded to the nearest integer to determine the discrete cursor location. A1 and A2 were determined by dividing the full dynamic

range of each recorded area during the baseline by half the number of cursor positions:

A1 = ½maxðFR1Þ�minðFR1Þ�=4; = ½maxðFR2Þ�minðFR2Þ�=4; (Equation 2)

B represents the activity baseline of both areas. The chance performance was then assessed by running the baseline data through

the decoder to estimate how often the animal would have achieved the target with spontaneous activity.

DF/F was calculated using a moving baseline, set as the tenth percentile of points from the preceding 20 s of data. The raw fluo-

rescence was converted to DF/F using a moving baseline of 5 minutes of activity. The display updated at approximated 10 Hz, with a

latency of 300 ms from camera to screen, measured using a photodiode placed on one of the monitors (Thorlabs, PDA100A-EC).

Activity in R1 would cause the cursor to move toward the target location in the center of the animal’s visual field, while increased

activity in R2 would cause the cursor to move away from the target zone. The cursor was presented on two monitors so that the an-

imal could track the cursor with both eyes; its goal was tomove the cursors presented on the two screens on either side to themiddle

of its visual field. These changes were binned, such that the cursor could take one of eight possible locations on the screen. The

cursor had to be held at the target position for 0.3 s to count as a hit, at which point the cursor disappeared. When a target was

hit, a MATLAB-controlled Data Acquisition board (National Instruments, Austin, TX) triggered the administration of a soyamilk reward
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following a 1 s delay. The next trial could be initiated within 5 s of reward delivery, but only when the activation of R1 relative to R2

returned to the mean value recording during spontaneous activity (to ensure enough time had passed for large transients to decay,

given slow calcium dynamics). This was return to baseline condition was rarely triggered (�5% of trials) and on average lasted under

2 s. If the animal did not bring the cursor to the target within a 30 s trial, the cursor disappeared, and the animal received a white noise

tone and a 10 s ‘time out.’

We trained a separate cohort of four mice using an auditory, rather than visual, feedback cursor, where activity was transmuted to

the pitch of a feedback tone (Clancy et al., 2014). As with the visual feedback task, a spontaneous baseline was recorded every day

(10-20 minutes) to assess chance levels of performance and calibrate the decoder. Activity from two arbitrarily chosen regions was

entered into an online transform algorithm that related neural activity to the pitch of an auditory cursor:

fðtÞ = A1e
FR11 � A2e

RFR2 +B (Equation 3)

Where f is the cursor frequency, FR1 is the instantaneous DF/F of R1, FR2 the instantaneous DF/F of R2, and A1, A2, and B are co-

efficients set based on the daily baseline recording. As above, DF/F was calculated using a moving baseline, set as the tenth percen-

tile of points from the preceding 20 s of data. Linear changes in firing rate resulted in exponential changes in cursor frequency, and

frequency changes were binned in quarter-octave intervals to match rodent psychophysical discrimination thresholds. As with the

visual task, a trial was marked incorrect if the target pitch was not achieved within 30 s of trial initiation. The auditory feedback was

played using speakers mounted on 2 sides of the imaging platform.

Task and control conditions
In the task condition, the position of the presented cursor was determined by the control regions’ instantaneous activity, according to

Equation 1 above. Rewards were given when the cursor hit the target zone (cursor position 8). Similarly, in the random reward con-

dition, intended to test whether animal’s task engagement was goal-directed or habitual, the position of the presented cursor was

determined by the control regions’ instantaneous activity, according to Equation 1 above. However, here rewards were not linked

to the cursor position, but given out at random time intervals at a rate matched to an expertly performing animal (approximately

1.5 rewards/minute). In the random feedback condition, intended to confirm that the animal was using the visual feedback to inform

its behavior, the position of the presented cursor was not linked to the control regions’ instantaneous activity, but instead was drawn

randomly from a Gaussian distribution matching the mean and variance of a typical task condition. The animal could still receive re-

wards if they achieved the correct neural activity pattern, but their performance drop suggests they could not achieve that in the

absence of appropriately linked sensory feedback. In the passive playback condition, the presented cursor position was no longer

linked to the control regions’ activity, but was purely a replay of the cursor positions from a training session the animal had undergone

previously. Thus, the cursor positions and timing of trials in the playback condition were matched to those of the task condition.

Because the statistics of the sensory presentations between the task and playback conditions (e.g., cursor position identity, and like-

lihood of transition between different positions) were identical, this allowed a cleaner comparison of neural responses in these

conditions.

Widefield imaging
Widefield imaging was performed through the intact skull using a custom-built epifluorescence macroscope with photographic

lenses in a face-to-face configuration (85mm f/1.8D objective, 50mm f/1.4D tube lens; Ratzlaff and Grinvald, 1991). Data were re-

corded using a CMOS camera (Pco.edge 5.5, PCO, Germany) in global shutter mode. 16-bit images were acquired at a rate of

40 Hz and binned 2x2 online using custom-made LABVIEW software. A constant illumination at 470 nmwas provided (M470L3, Thor-

lands, excitation filter FF02-447/60-25), with average power �0.05 mW/mm2 (emission filter 525/50-25, Semrock). The imaging site

was shielded from light contamination using a 3D-printed blackout barrier glued to the animal’s skull. Signals from the two control

regions were sent via UDP to a computer providing visual or auditory feedback to the mouse, using custom MATLAB software.

Electrophysiological recordings
The day before recording, mice were anesthetised with isofluorane and a small craniotomy was opened over AM, which was func-

tionally identified during task performance, and stereotaxically confirmed. The craniotomy was kept damp with Ringer’s solution and

sealedwith KwikSil (World Precision Instruments). Recordingswere taken on the following day to avoid residual effects of anesthesia.

On the recording day, animals were head-fixed under a custom-built widefield microscope, the skull and cortex were cleaned with

Ringer’s solution, and the KwikSil plug removed from the craniotomy. A custom-designed silicon probe (64 channels, 2 shanks, Neu-

ronexus, as described in Clancy et al., 2019) was inserted at an angle of�45 degrees from normal to cortex. The probe consisted of

two shanks with 64 sites total, organized into 16 ‘tetrodes’, each consisting of 4 sites located 25 um apart from each other within-

tetrode, and tetrodes spaced 130 um apart from each other. A small amount of KwikSil or agar was used to cover the exposed cortex

after the probe was in place. After allowing the probe to settle for 20-30 minutes, neural activity was recorded using the OpenEphys

recording system (Siegle et al., 2017). Behavioral and stimulation data, including pulses representing each camera frame, were re-

corded using OpenEphys, enabling the alignment of electrophysiological signals with imaging and behavioral data. Ephys recordings

were filtered between 700 and 7000 Hz, and spikes detected using the Klustakwik suite (Schmitzer-Torbert et al., 2005). Clusters
e3 Neuron 109, 1–13.e1–e4, February 17, 2021
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were assigned to individual units by manual inspection, excluding any units without a clear refractory period. Units were separated

into fast and broad spiking units by their peak-to-trough time, using a cutoff of 0.66 ms (Barthó et al., 2004).

Data analysis
Raw imaging data were checked for dropped frames, spatially binned 2x2, and loaded into MATLAB as a mapped tensor (Muir and

Kampa, 2015). The raw fluorescence was converted to DF/F using a moving baseline, calculated as the tenth percentile of points

from the preceding 20 s of data. We did not perform hemodynamic correction as previous work indicates that hemodynamic and

flavoprotein signals contribute minimally compared to the calcium responses (Vanni and Murphy, 2014; Xiao et al., 2017; Clancy

et al., 2019).

Task-activation maps were calculated by taking the normalized average of fluorescence movies during the task, or visual cursor

playback period, subtracted by periods when animals were not performing the task or viewing any visual stimuli (including periods of

spontaneous activity, and reward collection). To ensure that differences between early and late in training were not influenced by

possible differences in the statistics of the visual feedback cursor, we randomly excluded success trials on late training days in order

to have comparable numbers of success and failure trials between early and late training, however, including or excluding these trials

did not influence the result. To build the single-unit affiliation maps (Figure S6; see also Clancy et al., 2019), spike trains were binned

to match imaging frames, and maps were calculated by taking the correlation of each unit’s spike train with each pixel’s DF/F.

Spectral entropy was calculated in 10 s windows, each overlapping by 5 s. The calcium signal of the control areas was transformed

into power spectral density (PSD) during these windows (the magnitude squared of the signal’s Fourier transform). This was then

used to calculate the spectral entropy for that time span:

SE = �
Xf = fs

2

f = 0

PSDn fð Þlog2 PSDn fð Þ½ �

Where SE is the spectral entropy, PSDn is the normalized PSD, and fs is the sampling frequency.

Classifier analysis
Spike data were binned into 50 ms bins, and split into 40 segments for training: 39 of these splits were used for training the classifier

and 1 was used for testing. The data were z-score normalized so that high firing rate units didn’t bias the classifier results. This data

was then used, along with the cursor position labels, to train the classifier: a mean vector was created for each cursor position class

based on the training data, and predictions were made on the test data by choosing the label class with the maximum correlation

between the test and training mean vectors. These predicted labels were compared with the true labels to generate an average clas-

sifier accuracy over each tested time bin. This process was repeated 20 times using different training/test splits to cross-validate the

results. The final reported classification accuracy is the mean of these 20 runs.

QUANTIFICATION AND STATISTICAL ANALYSIS

All data were analyzed using custom code in MATLAB. The statistical tests used in our analyses are indicated in the figure legends,

which also includes the value of n, and whether it refers to animals or single units. Differences were tested using Student’s t test, and

Bonferroni corrected where apropriate. P values are reported in the figures as well as legends, and significance is herein defined as p

less than 0.05. The pupil video for one animal, taken on the final day of recording, had to be excluded as it was too out of focus to

determine the pupil size. Sample sizes were not statistically determined, but were consistent with previous papers using related

methodology (Clancy et al., 2019; Xiao et al., 2017). Data were assumed to be normal but this was not systematically tested. Animals

were trained in three separate cohorts (the first, a cohort of four animals trained on the auditory feedback task, the second, a cohort of

5 animals trained on the visual feedback task, and the third, a cohort of 2 animals trained on the visual feedback test) as an internal

replication.
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