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COMPLETE ASYMPTOTIC EXPANSIONS OF THE SPECTRAL FUNCTION

FOR SYMBOLIC PERTURBATIONS OF ALMOST PERIODIC

SCHRÖDINGER OPERATORS IN DIMENSION ONE

JEFFREY GALKOWSKI

Abstract. In this article we consider asymptotics for the spectral function of Schrödinger oper-
ators on the real line. Let P : L2(R) → L2(R) have the form

P := −
d2

dx2 +W,

where W is a self-adjoint first order differential operator with certain modified almost periodic
structure. We show that the kernel of the spectral projector, 1(−∞,λ2](P ) has a full asymptotic
expansion in powers of λ. In particular, our class of potentials W is stable under perturbation
by formally self-adjoint first order differential operators with smooth, compactly supported co-
efficients. Moreover, it includes certain potentials with dense pure point spectrum. The proof
combines the gauge transform methods of Parnovski-Shterenberg and Sobolev with Melrose’s
scattering calculus.

1. Introduction

Let
P := D2

x +W1Dx +DxW1 +W0 : L
2(R) → L2(R),

where Wi ∈ C∞(R;R). We study the spectral projection for P , 1(−∞,λ2](P ), when Wi, i = 1, 2
satisfy certain almost periodic conditions. Denote by eλ(x, y) the kernel of 1(−∞,λ2](P ).

We assume that there is Θ ⊂ R countable such that −Θ = Θ, 0 ∈ Θ, and

Wi(x) =
∑

θ∈Θ

eiθxwθ(x), |∂kxwθ(x)| ≤ Ck,N 〈x〉−k〈θ〉−N . (1.1)

Before stating the general conditions on wθ (see §3), we give two consequences of our main theorem
(Theorem 3.1). Let ω := (ω1, . . . ωd) ∈ Rd. We say ω satisfies the diophantine condition if there
are c, µ > 0 such that

|n · ω| > c|n|−µ, n ∈ Zd \ {0}. (1.2)

Theorem 1.1. Suppose ω ∈ Rd satisfies the diophantine condition (1.2) and Wi are as in (1.1)
with Θ = Zd · ω and

|∂kxwn·ω(x)| ≤ Ck,N 〈x〉−k〈n〉−N , n ∈ Zd

then for |x− y| > c,

eλ(x, y) ∼ cos(λ(x− y))
∑

j

λ−jaj(x, y) + sin(λ(x− y))
∑

j

λ−jbj(x, y), eλ(x, x) ∼
∑

j

ãjλ
j+1

(1.3)
where a0 = 0 and b0 = 2

π(x−y) . Moreover, we have an oscillatory integral expression for eλ(x, y)

valid uniformly for (x, y) in any compact subset of R2.

Remark 1.1. It is easy to see that the condition (1.2) is generic in the sense that it is satisfied
for Lebesgue almost every ω ∈ [−1, 1]d.

Next, we state a theorem in the limit periodic case.
1

http://arxiv.org/abs/2011.09245v1


2 J. GALKOWSKI

Theorem 1.2. Let {mn}∞n=1 ⊂ Z+, and Θ = Θ+∪−Θ+∪{0} where Θ+ = {θn}∞n=1, θn := mn/n.
Suppose that Wi are as in (1.1) with

|∂kxwθn(x)| ≤ Ck,N〈x〉−k〈n〉−N , n ≥ 1

then (1.3) holds.

In both Theorems 1.1 and 1.2, one may add any formally self-adjoint first order differential
operator Wsym = a1(x)Dx + b1(x) whose coefficients satisfy |∂kxai(x)| ≤ Ck〈x〉−k to W and
W + Wsym will satisfy the assumptions of the Theorem. In addition, Theorems 1.1 and 1.2
include examples with arbitrarily large embedded eigenvalues and Theorem 1.2 includes examples
with dense pure point spectrum (See Appendix B).

While full asymptotic expansions are known in the the case thatW is compactly supported [PS83,
Vai84] and in the case that Wθ =

∑

θ e
iθxvθ with vθ ∈ C and Θ satisfying the assumptions of

Theorem 1.1 [PS16], to the author’s knowledge Theorems 1.1 and 1.2 are the first to allow for
both types of behavior. The work [PS16] followed the approach developed in [PS12, PS09] for the
study of the integrated density of states a subject whicht, for periodic Schroödinger operators,
has been the focus of a long line of articles (see e.g. [Sob05, Sob06, Kar00, HM98]).

1.1. Discussion of the proof. We choose not to state our general results until all of the necessary
preliminaries have been introduced (see Theorem 3.1). Instead, we outline how our proof draws on
and differs from the work of Parnovski–Shterenberg [PS09, PS12, PS16] and Morozov–Parnovski–
Shterenberg [MPS14]. These papers handle the much more difficult higher dimensional case of the
above problem when W (x,D) is replaced by a potential V (x) =

∑

θ∈Θ vθe
iθx where vθ ∈ C and Θ

is assumed to be discrete and satisfying certain diophantine conditions. The crucial technique used
in those articles is the gauge transform (developed in [Sob05, Sob06, PS10]) i.e. conjugating the
operator P by eiG for some pseudodifferential G constructed so that the conjugated operator takes
the formH0+R whereH0 is a constant coefficient differential operator near frequencies |ξ| ∼ λ and
away from certain resonant zones in the Fourier variable and where R = O(λ−N )H−N→HN . The
authors are then able to make a sophisticated analysis of the operator H0 acting on Besicovitch
spaces. This analysis uses in a crucial way thatH0 acts nearly diagonally i.e. that the operator can
be thought of as a direct sum of operators acting on resonant frequencies and is diagonal away
from these frequencies. The authors write a more or less explicit, albeit complicated, integral
formula for the spectral function and then directly analyze this integral.

In this article, we take a somewhat different approach to the second step of the above analysis.
Namely, we start with our operator P and, after conjugation by eiG, are able to reduce to the
case of H0 + R where H0 is a scattering pseudodifferential operator [Mel94] near the frequencies
|ξ| ∼ λ. However, because we have simplified our problem by working in one dimension, resonant
zones do not occur. In particular, we will prove a limiting absorption principle for H0 at high
enough energies and show that the resulting resolvent operators (H0 − λ2 ∓ i0)−1 satisfy certain
‘semiclassical outgoing/incoming’ properties. These, roughly speaking, state that the resolvent
transports singularities in only one direction along the Hamiltonian flow for the symbol of H0 and
that these singularities do not return from infinity. With this in hand, we are able understand
the spectral projector for H0 using the wave method of Levitan [Lev52], Avakumović [Ava56] and
Hörmander [Hör68] and hence, using an elementary spectral theory argument, to understand the
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spectral function for P . The crucial fact allowing the proof of a limiting absorption principle is
that H0 may be chosen such that the ‘non-scattering pseudodifferential’ part is identically zero
on frequencies near λ.

Acknowledgements. Thanks to Leonid Parnovski for many helpful discussions about the litera-
ture on almost periodic operators and especially for comments on the articles [PS09, PS12, PS16].

2. General assumptions

2.1. Pseudodifferential classes. We work with pseudodifferential operators in Melrose’s scat-
tering calculus [Mel94]. Since we are working in the simple setting of R, we will not review the
construction of an invariant calculus. Instead, we say that a ∈ C∞(R2) lies is Sm,n if for all
α, β ∈ N.

|∂αx ∂βξ a(x, ξ)| ≤ Cαβ〈x〉n−α〈ξ〉m−β . (2.1)

We define the seminorms on Sm,n by

‖a‖m,n
β,α =

α
∑

j=0

β
∑

k=0

sup |∂jx∂βξ a(x, ξ)〈x〉−n+j〈ξ〉−m+k|

When it is convenient, we will say N = (m,n, α, β) ⊂ N4 is a choice of a seminorm on Sm,n.

It will also be convenient to have the standard symbol classes on R. For this, we say a ∈ C∞(R2)
lies in Sm if

|∂αx ∂βξ a(x, ξ)| ≤ Cαβ〈ξ〉m−β .

Note that Sm,n ⊂ Sm. We also define the corresponding classes of pesudodifferential operators:

Ψm,n := {a(x, hD) | a ∈ Sm,n}, Ψm := {a(x, hD) | a ∈ Sm},
where for a ∈ Sm,

a(x, hD)u :=
1

2πh

ˆ

e
i
h
(x−y)ξa(x, ξ)u(y)dydξ.

We sometimes write Oph(a) for the operator a(x, hD).

Our pseudodifferential operators will have polyhomogeneous symbols. That is, they will be
given by a ∈ Sm,n, b ∈ Sm such that there are aj ∈ Sm−j,n−j, bj ∈ Sm−j satisfying

a(x, ξ)−
N−1
∑

j=0

hjaj(x, ξ) ∈ hNSm−N,n−N , b(x, ξ)−
N−1
∑

j=0

hjbj(x, ξ) ∈ hNSm−N .

We will abuse notation slightly from now and and write a ∈ Sm,n, b ∈ Sm to mean that a and b
have such expansions and Ψm,n, Ψm for the corresponding operators.

Note that both Ψm,n and Ψm come with well behaved symbol maps, σm,n : Ψm,n → Sm,n and
σm : Ψm → Sm respectively such that

0 → hSm−1,n−1 a(x,hD)−→ Ψm,n σm,n−→ Sm,n → 0, 0 → hSm−1 a(x,hD)−→ Ψm σm−→ Sm → 0.

are short exact sequences. Moreover,

σm1+m2,n1+n2(AB) = σm1,n1(A)σm2,n2(B), σm(AB) = σm1(A)σm2(B),
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and

σm1+m2−1,n1+n2−1(ih
−1[A,B]) = {σm1,n1(A), σm2 ,n2(B)},

σm1+m2−1(ih
−1[A,B]) = {σm1(A), σm2(B)},

{a, b} := ∂ξa∂xb− ∂ξb∂xa.

For future use, we define norms as follows,

‖u‖Hs1,s2
h

:= ‖〈x〉s2u‖Hs1
h
, ‖u‖Hs1

h
:= ‖〈−h2∂2x〉s1/2u‖L2 .

We recall the following estimates for pseudodifferential operators

Lemma 2.1. Let a ∈ Sm,n, b ∈ Sm. Then

‖a(x, hD)u‖
H

s1−m,s1−n

h

≤ Ca‖u‖Hs1,s2
h

, ‖b(x, hD)u‖
H

s1−m,s2
h

≤ Cb‖u‖Hs1,s2
h

,

The maps Sm,n a(x,hD)−→ L(Hs1,s2
h ,Hs1−m,s2−n

h ) and Sm b(x,hD)−→ L(Hs1
h ,H

s1−m
h ) are continuous.

In preparation for the gauge transform method, we prove two preliminary lemmas on exponen-
tials of elements of Ψ0.

Lemma 2.2. Let G ∈ Ψ0 self-adjoint. Then eiG ∈ Ψ0.

Proof. Let g ∈ S0 such that G = Oph(g) and A0(t) := Oph(e
itg). We compute

Dt(e
−itGA0(t)) = e−itG(−GA0 +Oph(ge

itg)) = e−itGhOph(r1(t))

where r1 ∈ S−1. Now, suppose that we have Bj(t), j = 1, . . . , N − 1, Bj ∈ Ψ−j such that with

AN−1(t) := A0(t) +
∑N−1

j=1 hjBj(t),

Dt(e
−itGAN (t)) = e−itGhNOph(rN (t))

with rN ∈ S−N . Then, putting BN (t) = Oph(−i
´ t
0 e

i(t−s)grN (s)ds) we have

Dt(e
−itG(AN (t) + hNBN (t)) = e−itGhN

(

Oph(rN (t))−GBN (t) +DtBN (t)
)

= e−itGhN+1Oph(rN+1(t))

for some rN+1 ∈ S−N−1. Putting A ∼ A0 +
∑

j h
jBj(t), we have

Dt(e
−itGA(t)) = e−itGOt(h

∞)Ψ−∞ .

In particular, integrating, we have

eitG = A(t) +

ˆ t

0
ei(t−s)GR∞(s)ds, R∞(s) = O(h∞)Ψ−∞

Therefore, since for all N , A(t) : H−N
h → H−N

h and R∞ : H−N
h → HN

h are bounded, the fact that

eitG : L2 → L2 is bounded implies that for N ≥ 0, eitG : H−N
h → H−N

h . But then for u, v ∈ C∞
c ,

|〈eitGu, v〉L2 | = |〈u, e−itGv〉L2 | ≤ ‖u‖HN
h
‖e−itGv‖H−N

h
≤ C‖u‖HN

h
‖v‖H−N

h
.

In particular, by density, we have eitG : HN
h → HN

h is bounded for all N and hence

eitG = A(t) +O(h∞)Ψ−∞ .

From the construction, it is clear that since G is polyhomogeneous, so is eitG. �
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Lemma 2.3. Let G ∈ Ψ0 self adjoint, and P ∈ Ψm,

eiGPe−iG =

N−1
∑

k=0

ik adkG P

k!
+O(hN )Hs

h
→Hs+N−m

h

where adAB = [A,B].

Proof. Note that

(Dt)
keitGPe−itG = eitG adkG Pe

−itG

and in particular,

eitGPe−itG =

N−1
∑

k=0

tkik

k!
adkG P +

ˆ t

0

(t− s)N−1iN

(N − 1)!
eisG adNG Pe

−isGds

Now, adNG P ∈ hNΨm−N and hence, the lemma follows by putting t = 1 and recalling that
eisG ∈ Ψ0. �

2.2. Ellipticity. Next, we recall the notion of the elliptic set for elements of Ψm and Ψm,n. To
this end, we compactify T ∗R in the fiber variables to T ∗R ∼= R × [0, 1] for Ψm and in both the
fiber and position variables to scT ∗R ∼= [−1, 1] × [−1, 1] for Ψm,n. In particular, the boundary
defining functions on scT ∗R are ±x−1 near ±x = ∞ and ±ξ−1 near ±ξ = ∞ and those for T ∗R are
±x−1. We can now define the elliptic set of A ∈ Ψm,n/Ψm, ellsch (A) ⊂sc T ∗R, and ellh(A) ⊂ T ∗R

respectively as follows. We say ρ ∈ ellsch (A) if there is a neighborhood, U ⊂sc T ∗R of ρ such that

inf
(x,ξ)∈U

〈x〉−m〈ξ〉−n|σm,n(A)(x, ξ)| > 0.

We say that ρ ∈ ellh(A) if there is a neighborhood, U ⊂ T ∗R of ρ such that

inf
(x,ξ)∈U

〈ξ〉−n|σm,n(A)(x, ξ)| > 0.

Next, we define the wavefront set for an element of Ψm, WFh(A) ⊂ T ∗R and the scattering
wavefront set of A ∈ Ψm,n, WFsc

h (A) ⊂sc T ∗R. For A ∈ Ψm, we say ρ /∈ WFh(A) if there is
B ∈ Ψ0 such that ρ ∈ ellh(B) and

‖BA‖H−N
h

→HN
h

≤ CNh
N .

For A ∈ Ψm,n, we say ρ /∈ WFsc
h (A) if there is B ∈ Ψ0,0 such that ρ ∈ ellsch (B) and

‖BA‖
H−N,−N

h
→HN,N

h

≤ CNh
N .

We can now state the standard elliptic estimates.

Lemma 2.4. Suppose P ∈ Ψm,n, A ∈ Ψ0,0, with WFsc
h (A) ⊂ ellsch (P ). Then there is C > 0 such

that for all N there is C > 0 such that

‖Au‖
Hs,k

h

≤ C‖Pu‖
Hs−m,k−n

h

+ CNh
N‖u‖

H−N,−N
h

.
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If instead P ∈ Ψm, A ∈ Ψ0, with WFh(A) ⊂ ellh(P ). Then there is C > 0 such that for all N > 0
there is CN > 0 such that

‖Au‖Hs
h
≤ C‖Pu‖Hs−m

h
+ CNh

N‖u‖H−N
h

2.3. Propagation estimates. We next recall some propagation estimates for scattering pseu-
dodifferential operators. Since we will work with operators that are fiber classically elliptic, i.e.
∂(scT ∗R)ξ ⊂ ellsch (P ), we do not need the full scattering calculus here, and will work with operators
that are fiber compactly microlocalized. In particular, we say that A ∈ Ψm,n is fiber compactly
microlocalized and write A ∈ Ψcomp,n if there is C > 0 such that

WFsc
h (A) ∩ {|ξ| > C} = ∅.

For fiber compactly microlocalized operators, all propagation estimates from the standard calculus
(see e.g. [DZ19a, Appendix E.4]) follow using the same proofs but interchanging the roles of x
and ξ.

Throughout, we let P ∈ Ψm,n self-adoint with σm,n(P ) = p, and write

ϕt := exp(t〈ξ〉1−m〈x〉1−nHp) :
sc T ∗R →sc T ∗R

for the rescaled Hamiltonian flow. The following lemma follows as in [DZ19a, Theorem E.47]

Lemma 2.5. Let P ∈ Ψm,n self-adjiont and suppose that A,B,B1 ∈ Ψcomp,0. Furthermore,
assume that for all ρ ∈ WFsc

h (A), there is T ≥ 0 such that

ϕ−T (ρ) ∈ ellsch (B),
⋃

t∈[−T,0]

ϕt(ρ) ⊂ ellsch (B1).

Then for all N there is C > 0 such that for ε ≥ 0, u ∈ S ′ with Bu ∈ Hs,k
h , B1(P − iε〈x〉n)u ∈

Hs,k−n+1
h

‖Au‖
Hs,k

h

≤ C‖Bu‖
Hs,k

h

+ Ch−1‖B1(P − iε〈x〉n)u‖
Hs,k−n+1

h

+ CNh
N‖u‖

H−N,−N
h

.

We will also need the radial point estimates in the setting of fiber compactly microlocalized
operators. The following two lemmas are a combination of [DZ19a, Theorem E.52, E.54] together
with the arguments in [DZ19b, Section 3.1]

Lemma 2.6. Let P ∈ Ψm,n self adjoint with n > 0 and let

L ⋐ {〈x〉−np = 0} ∩ ∂(scT ∗R)x

be a radial source for p. Let k′ > n−1
2 , fix B1 ∈ Ψcomp,0 such that L ⊂ ellsch (B1). Then there

is A ∈ Ψcomp,0(M) such that L ⊂ ellsch (A) and for all N , k > k′, ε ≥ 0, and u ∈ S ′ such that

B1u ∈ Hs,k′

h and B1(P − iε〈x〉n)u ∈ Hs,k−n+1
h ,

‖Au‖
Hs,k

h

≤ Ch−1‖B1(P − iε〈x〉n)u‖
Hs,k−n+1

h

+ CNh
N‖u‖

H−N,−N
h

.

Lemma 2.7. Let P ∈ Ψm,n as above with n > 0, let

L ⋐ {〈x〉−np = 0} ∩ ∂(scT ∗R)x
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be a radial sink for p Let k < n−1
2 , fix B1 ∈ Ψcomp,0 such that L ⊂ ellsch (B1). Then there are

A,B ∈ Ψcomp,0(M) such that L ⊂ ellsch (A), WFsc
h (B) ⊂ ellsch (B1) \ L, and for all N , ε ≥ 0, and

u ∈ S ′ such that Bu ∈ Hs,k
h and B1(P − iε〈x〉n)u ∈ Hs,k−n+1

h ,

‖Au‖
Hs,k

h

≤ C‖Bu‖
Hs,k

h

+ Ch−1‖B1(P − iε〈x〉n)u‖
Hs,k−n+1

h

+ CNh
N‖u‖

H−N,−N
h

.

3. Almost periodic potentials

3.1. Assumptions on the potential. We now introduce the objects necessary for our assump-
tions on the perturbation W . We say that Θ ⊂ R is a frequency set if Θ is countable, Θ = −Θ
and 0 ∈ Θ. We write Θk := Θ× · · ·

k−2
×Θ and Θk := Θ + · · ·

k−2
+Θ and

For a frequency set Θ, and a seminorm N , on Sm,n, we will need a family of maps sk,N :

Θk × (Sm,n)Θ → [0,∞). We denote an element (wθ)θ∈Θ ∈ (Sm,n)Θ by W. Fix a seminorm, N
and define

s0,N (W) = 1, s1,K(θ,W) =

{

‖wθ‖N
|θ| θ 6= 0

0 θ = 0
.

Next, for α ∈ Nj with |α| = k, define βi(α) =
∑i−1

ℓ=1 αℓ. Then, for θ ∈ Θk, we write θα,i :=
(θβi(α)+1, . . . θβi+1(α)) ∈ Θαi . We can now define

sα,N (θ,W) :=

j
∏

i=1

sαi,N (θα,i,W),

sk,N (θ, ,W) =

{

1
|
∑k

i=1 θi|

∑

p∈Sym(k)

∑

|α|=k,αi≤k/2 sα,N (p(θ))
∑k

i=1 θi 6= 0

0
∑

i θi = 0.

where Sym(k) denotes the symmetric group on k elements.

The following two lemmas on the behavior of sk,N will be useful below. Their proofs are
elementary and we postpone them to Appendix A.

Lemma 3.1. There are Ck, Nk > 0 such that for θ ∈ Θk,

|sk,N (θ,W)| ≤ Ck

∏k
i=1 ‖wθi‖N

inf{|ω|Nk | ω ∈ {θ1, 0}+ · · · + {θk, 0} \ 0}
(3.1)

Lemma 3.2. Suppose that W̃ ∈ (Sm,n)Θn with (W̃)θ1+···+θn = w̃θ1...θn such that for all N there
is N ′ satisfying

‖w̃θ1...θn‖N ≤
∏n

i=1 ‖wθi‖N ′

|θi|
.

Then for all N , there is N ′ such that

sk,N (θ1 + · · ·+ θn, W̃) ≤ snk,N ′((θ1, . . . , θn),W).

We say that W ∈ Ψ1 is admissible if

W =
∑

θ∈Θ

eiθxwθ(x, hD) (3.2)
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where wθ ∈ S1,0 and for all 0 ≤ k, N , and N > 0 we have
∑

θ∈Θk

sk,N (θ,W) ≤ Ck,N , ‖wθ‖N < CN,N 〈θ〉−N , (3.3)

where W = (wθ)θ∈Θ.

Remark 3.3. When W is smooth and periodic i.e. Θ = rZ, and ‖wθ‖N ≤ CN,N 〈θ〉−N , then W
is admissible.

Remark 3.4. If W is an approximately almost periodic function of the form

W =
∑

n∈Zd

ein·ωxwn(x, hD)

with ‖wn‖N ≤ CN,N 〈n〉−N and if ω = (ω1, ω2, . . . ωd) satisfies the diophantine condition (1.2),
then W is admissible. To see this, without loss of generality, we assume that ω ∈ B(0, 1). Then
if θ ∈ Θ, θ = n · ω for some n ∈ Zd. In particular, if

θn1 , . . . , θnk
∈ Θ,

k
∑

i=1

θni
=

∑

i

ni · ω,

and hence, if
∑

i θni
6= 0, then |∑k

i=1 θni
| ≥ C|∑i ni|−µ.

Using this, observe that by (3.1) there are Ck, Nk such that

sk,N (θ1, . . . , θk) ≤ Ck(
∑

i

|ni|)µNk

k
∏

i=1

CN 〈ni〉−N ≤ Ck

k
∏

i=1

CN 〈ni〉−N+Nkµ

We thus obtain the desired estimate by taking N > Nkµ+ d and summing over ni, i = 1, . . . k.

Remark 3.5. Next, we verify that certain approximately limit periodic functions are admissible.
Suppose that {mn}∞n=1 ⊂ Z contains 0 and satisfies {mn}∞n=1 = {−mn}∞n=1. Suppose

W =
∑

n

eimnx/nwn(x, hD)

and ‖wn‖K ≤ CN,K〈max(n, |mn|/n)〉−N , then wn satisfies our conditions with µM ≡ 0. Indeed,
in this case, Θ = {mn/n}∞n=1. Now, note that for θi ∈ Θ, θi = mni

/ni

k
∑

i=1

θi 6= 0 ⇒
∣

∣

∣

∑

i

θi

∣

∣

∣
≥ 1

n1n2 · · ·nk
Using this, observe that by (3.1) there are Ck, Nk such that

sk,N (θ1, . . . , θk) ≤ Ck(n1n2 · · ·nk)Nk‖wθ1‖N · · · ‖wθk‖N
In particular, for N > Nk

sk,N (θ1, . . . , θk) ≤ Ck

k
∏

i=1

Ck
Nn

Nk

i 〈max(ni,mni
/ni)〉−N ≤ CN,k

k
∏

i=1

〈ni〉Nk−N .

We thus obtain the desired estimate by taking N > Nk + 1 and summing over ni, i = 1, . . . k.
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Theorem 3.1. Suppose that W (x, hD) ∈ Ψ1 is self-adjoint and admissible (i.e. (3.2) and (3.3)
hold). Let 0 < δ < 1,

P := −h2∆+ hW (x, hD).

Then there are aj ∈ C∞
c (R3) such that for all R > 0 there is T > 0 satisfying for all E ∈

[1− δ, 1 + δ], ρ̂ ∈ C∞
c (R; [0, 1]) with ρ̂ ≡ 1 on [−T, T ], and all x, y ∈ B(0, R) the spectral projector

1(−∞,E](P ) satisfies

1(−∞,E](P )(x, y) = h−2

ˆ E

−∞

ˆ

ρ̂(t)eit(µ−|ξ|2)+(x−y)ξ)/ha(x, y, ξ;h)dξdtdµ +O(h∞)C∞ ,

where a ∼ ∑

j h
jaj.

After putting h = λ−1,W (x, hD) = h(W1(x)hDx+hDxW1(x))+h
2W0(x), an application of the

method of stationary phase, the analysis in Remarks 3.4 and 3.5, and an application Theorem 3.1
proves Theorems 1.1 and 1.2. (See [Ivr18] for a related problem.)

4. Gauge transforms

Before gauge transforming our operator, we need the following symbolic lemma which allows
us to solve away errors.

Lemma 4.1. Suppose that a ∈ Sk,0. Then, there is b ∈ Sk,0 such that (Dx + θ)b− a = r ∈ Sk,−∞

and

‖b‖k,0β,α ≤ Cαβk|θ|−1‖a‖k,0β,α+2, ‖r‖k,−N
β,α ≤ CαβN |θ|−1‖a‖k,0β,α+N+2f

Proof. Case 1: |θ| ≥ 1. Let χ ∈ C∞
c (R) with χ ≡ 1 on [−1/3, 1/3] and suppχ ⊂ (−1, 1). Then

define

b(x, ξ) :=
1

2π

ˆ

ei(x−y)η 1− χ(θ + η)

η + θ
a(y, ξ)dydη.

where the integral in y interpreted as the Fourier transform. Then, (Dy + θ)b− a = r where

r(x, ξ) := − 1

2π

ˆ

ei(x−y)ηχ(θ + η)a(y, ξ)dydη = − 1

2π

ˆ

ei(x−y)ηχ(θ + η)|η|−NDN
y a(y, ξ)dydη

Then, since χ̃θ := χ(θ)|η − θ|−N is smooth and compactly supported with seminorms bounded
uniformly in |θ| ≥ 1,

|Dα
xD

β
ξ r(x, ξ)| =

∣

∣

∣
− 1

2π

ˆ

eiθ(x−y) ˆ̃χθ(y − x)Dα+N
y Dβ

ξ a(y, ξ)dy
∣

∣

∣

≤ CN,M

ˆ

|θ|−1〈x− y〉−M 〈y〉−α−N 〈ξ〉k−β‖a‖k,0β,α+N+1dy

≤ C|θ|−1〈x〉−α−N 〈ξ〉k−β‖a‖k,0β,α+N+1,
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and

|Dα
xD

β
ξ b(x, ξ)| =

∣

∣

∣

1

2π

ˆ

ei(x−y)η
(1− (x− y)Dη

1 + |x− y|2
)N 1− χ(θ + η)

η + θ

(1 + ηDy

1 + |η|2
)2
Dα

yD
β
ξ a(y, ξ)dydη

∣

∣

∣

≤ CN

∣

∣

∣

ˆ

〈x− y〉−N 〈η〉−2〈η + θ〉−1〈ξ〉k−β〈y〉−α‖a‖k,0β,α+2dydη
∣

∣

∣

≤ C|θ|−1〈ξ〉k−β〈x〉−α‖a‖k,0β,α+2.

Case 2: |θ| ≤ 1. Define L : Sk,ℓ → C∞(R2) by

Lã := i

ˆ x

0
eiθ(s−x)ã(s, ξ)ds.

Then, (Dx + θ)Lã = ã.

Moreover, if ã vanishes at x = 0, then

Lã = i

ˆ x

0
[
Ds

θ
eiθ(s−x)]ã(s, ξ)ds = −iθ−1

ˆ x

0
eiθ(s−x)Dsã(s, ξ)ds +

1

θ
ã(x, ξ)

= −θ−1LDxã+ θ−1ã

In particular,

DxLã = ã− θLã = LDxã

Now, suppose that Ã ∈ Sk,0 and ã vanishes to infinite order at x = 0. Then, for xr ≥ 0 with
|x| ≤ |r|

|Lã(x, ξ)| ≤ |r|‖ã‖k,00,0〈ξ〉k

For |x| ≥ |r|,
∣

∣

∣
Lã(x, ξ)

∣

∣

∣
≤

∣

∣

∣

ˆ r

0
eiθsã(s, ξ)ds

∣

∣

∣
+ |θ|−1

(∣

∣

∣

ˆ x

r
eiθsDsã(s, ξ)ds

∣

∣

∣
+ |ã(x, ξ)| + |ã(r, ξ)|

)

≤ (|r|+ 2|θ|−1)‖ã‖k,00,0〈ξ〉k + |θ|−2
(∣

∣

∣

ˆ x

r
eiθsD2

s ã(s, ξ)ds
∣

∣

∣
+ |Dxã(x, ξ)| + |Dxã(r, ξ)|

)

≤ 〈ξ〉k
(

(|r|+ 2|θ|−1)‖ã‖k,00,0 + |θ|−2〈ξ〉k(C‖D2
xã‖k,−2

0,0 〈r〉−1 + 2‖Dxã‖k,−1
0,0 〈r〉−1)

)

Optimizing in r, we obtain |r| = |θ|−1 and in particular,

‖Lã‖k,00,0 ≤ C|θ|−1‖ã‖k,00,2

Therefore, since Dξ commutes with L, if b ∈ Sk,0 vanishes to infinite order at x = 0, we have

‖Lã‖k,0β,0 ≤ C|θ|−1‖ã‖k,0β,2

Now, consider

DxLã = θ−1(−LD2
xã+Dxã)

and define

ã±(ξ) := i

ˆ ±∞

0
eiθsD2

s ã(s)ds.
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Arguing as above, we can see that

|∂βξ ã±(ξ)| ≤ C|θ|‖ã‖k,0β,2〈ξ〉k−β.

Fix c±(x) ∈ C∞
c such that

´

c±dx = 1, supp c± ⊂ {±x > 0}. Then,
ˆ

eiθsD2
sc±(s)ds ≥ c|θ|2,

and putting ãmod(x, ξ) = ã(x, ξ) − c+(x)ã+(ξ)
´

eiθsD2
sc+(s)ds

− c−(x)ã−(ξ)
´

eiθsD2
sc−(s)ds

, we have

ˆ ∞

0
eiθsD2

sD
β
ξ ãmod(x, ξ)ds =

ˆ −∞

0
eiθsD2

sD
β
ξ ãmod(s, ξ)ds = 0.

Moreover, since ãmod vanishes to infinite order at 0, we can integrate by parts to see that
ˆ ∞

0
eiθsDk

sD
β
ξ ãmodds =

ˆ −∞

0
eiθsDk

sD
β
ξ ãmodds = 0, k ≥ 2.

Finally, note that for α ≥ 1,

Dα
xLãmod = θ−1(−LDα+1

x ãmod +Dα
x ãmod)

and we have
∣

∣

∣

ˆ x

0
eisθDα+1

s Dβ
ξ ãmodds

∣

∣

∣
=

∣

∣

∣

ˆ sgnx∞

x
eisθDα+1

s Dβ
ξ ãmodds

∣

∣

∣
≤ CN‖ã‖k.0β,α+1〈x〉−α〈ξ〉k−β.

To complete the proof we let χ ∈ C∞
c (R) with χ ≡ 1 near 0 and put ã = (1 − χ(x))a(x, ξ),

b = Lãmod.

�

Next, we need a lemma which controls scattering symbols after conjugation by eiθx.

Lemma 4.2. Suppose that B ∈ Ψn,m and θ ∈ R, |θ| ≤ Ch−1. Then, there is Bθ ∈ Ψn,m such
that

eiθxBe−iθx = Bθ.

and WFsc
h (Bθ) = WFsc

h (B). Moreover, if B = b(x, hD), then Bθ = bθ(x, hD) where

bθ(x, ξ) = b(x, ξ − hθ) ∼
∞
∑

j=0

hj(−1)j

j!
〈θ, ∂ξ〉jb.

In particular,

‖b− bθ‖n−1,m
α,β ≤ ‖b‖n,mα,β+1h|θ|〈h|θ|〉n−|β|−1.

Proof. Write B = b(x, hD) +O(h∞)Ψ−∞,−∞ . Then,

eiθxb(x, hD)e−iθx = bθ(x, hD), bθ(x, ξ) = b(x, ξ − hθ).

Now,

|∂αx ∂βξ bθ(x, ξ)| =
∣

∣

∣
∂αy ∂

β
η b(y, η)y=x,η=ξ+hθ

∣

∣

∣
≤ Cαβ〈x〉m−|α|〈ξ − hθ〉n−|β|

≤ Cαβ〈hθ〉n−|β|〈x〉m−|α|〈ξ〉n−|β| ≤ C̃αβ〈x〉m−|α|〈ξ〉n−|β|
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and the first part of the lemma follows from Taylor’s theorem.

Note also that

∂αx ∂
β
ξ (b(x, ξ) − bθ(x, ξ)) = h

ˆ 1

0
−〈∂αx∂β+1

ξ b(x, ξ − thθ), θ〉dt

≤ ‖b‖n,mα,β+1h|θ|〈ξ〉n−|β|−1〈x〉m−|α|〈hθ〉n−|β|−1

�

Lemma 4.3. Suppose that θ1, θ2 ∈ B(0,Dh−1) and that a ∈ Sm1,n1 and b ∈ Sm2,n2. Then,

h−1[eiθ1xOph(a), e
iθ2xOph(b)] = ei(θ1+θ2)x(h−1[Oph(a), Oph(b)] + |θ|c2(x, hD))

where the map L : Sm1,n1 ×Sm2,n2 → Sm1+m2−1,n1+n2, (a, b) 7→ c2 is bounded uniformly in h with
bound depending only on the constant D.

Proof. Note that

[eiθ1xOph(a), e
iθ2xOph(b)] = ei(θ1+θ2)x(Oph(a−θ2)Oph(b)−Oph(b−θ1)Oph(a))

= ei(θ1+θ2)x([Oph(a), Oph(b)] + (Oph(a−θ2 − a))Oph(b)

− (Oph(b−θ1 − b))Oph(a))).

We now apply Lemma 4.2 to finish the proof. �

Using Lemma 4.3, we can see that if Θ1,Θ2 ⊂ B(0,Dh−1)

G =
∑

θ∈Θ1

eiθxgθ(x, hD), gθ ∈ Sm1,n1 B =
∑

θ∈Θ2

eiθxbθ(x, hD), bθ ∈ Sm2,n2 (4.1)

then,

h−1[G,B] =
∑

θi∈Θ1,θj∈Θ2

ei(θ1+θ2)xg̃θ1,θ2(x, hD)

where, for all mi, ni, i = 1, 2 and α, β ∈ N, there are K,C > 0 such that

‖g̃θ1,θ2‖m1+m2−1,n1+n2

αβ ≤ C(1 + max(|θ1|, |θ2|)‖gθ1‖m1,n1

β+K,α+K‖bθ2‖m2,n2

β+K,α+K

Thus, applying Lemma 2.3, we have the following lemma:

Lemma 4.4. Let G ∈ Ψ−∞ self-adjoint and B are as in (4.1) with m1 = m2 = −∞ and
n1 = n2 = 0. Then,

eiGBe−iG = B +

k−1
∑

j=1

∑

Φ∈Θj
1

θ∈Θ2

hjei(
∑j

i=1 Φi+θ)xg̃Φ,θ +O(hk)H−N
h

→HN
h

where for any
∑j

i=0Ni = N , α, β there are K and CNαβj such that

‖g̃Φ,θ‖−N,0
β,α ≤ Cjαβ(1 + |θ|)‖bθ‖−N0,0

β+K,α+K

j
∏

i=1

(1 + |Φi|)‖gΦi
‖−Ni,0
β+K,α+K .
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4.1. The gauge transform. We are now in a position to prove the inductive lemma used for
gauge transformation.

Lemma 4.5. Suppose that 0 < a < b and

WFh

(

P̃ − (P0 + hQk + h1+kWk + hNRk

)

∩ {|ξ| ∈ [a, b]} = ∅
where Qk ∈ Ψ−∞,0, Rk ∈ Ψ−∞,

Wk =
∑

θ∈Θ\0

eiθxwθ,k(x, hD)

with {wθ,k}θ∈Θ satisfying (3.3) and Wk, Qk self adjoint. Then there is G ∈ h−δ+k(1−δ)S−∞,0 self
adjoint such that

WFh

(

P̃G − (P0 + hQk+1 + h1+k+1Wk+1 + hNRk+1)
)

∩ {|ξ| ∈ [a, b]} = ∅
where Rk+1 ∈ Ψ−∞,

Qk+1 = Qk + hk+1Q̃k ∈ Ψ−∞,0

with Q̃k self adjoint and Wk+1 is self adjoint with

Wk+1 =
∑

θ∈Θ
⌈ N
k+1

−1⌉
\0

eiθxwθ,k+1(x, hD)

satisfies (3.3) with Θ, replaced by

Θ
⌈

N
k+1−1⌉

.

Proof. Let χ ∈ C∞
c (0,∞) such that χ ≡ 1 near [1/2, 2] and

P̃χ(|hD|) = (P0 + hQk + hkWk − hNRk)χ(|hD|) +O(h∞)Ψ−∞

We aim to use the fact that P0 dominates P̃ to conjugate away Wk. Therefore, we look for G
such that, modulo lower order terms,

ih−1−k[P0, G] =Wk.

To do this, we solve

2ξ∂xg = σ−∞(Wkχ(|hD|)).
Now,

Wkχ(|hD|) =
∑

θ∈Θ\{0}

eiθx(wθχ(|ξ|))(x, hD)

where wθ ∈ S−∞,0 satisfy (3.3). Let χi ∈ C∞
c (0,∞), i = 1, 2, such that χ1, χ2 ≡ 1 near [a, b] and

suppχ2 ⊂ suppχ1 ⊂ suppχ. By, Lemma 4.1, there is gθ ∈ S−∞,0 such that

(Dx + θ)gθ(x, ξ)− iwθ,kχ1(|ξ|)/2ξ ∈ S−∞,−∞, ‖gθ‖−N,0
β,α ≤ CαβN |θ|−1‖wθχ1‖−N,0

β,α+2.

Modifying lower order terms in gθ to make eiθxgθ + e−iθxg−θ self adjoint, we put

G := hk
∑

θ∈Θ\{0}

eiθxgθ(x, hD).
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Then, G ∈ hkS−∞, and, letting k̃ = (k + 1), by Lemma 4.4, for any N1

χ2(|hD|)P̃G = χ2(|hD|)(P0 + hQk) +

N1−1
∑

j=2

∑

Φ∈Θj

ei(
∑j

i=1 Φi)xhjk̃g̃1Φ(x, hD)

+

N1−1
∑

j=1

∑

Φ∈Θj

hjk̃+1ei(
∑j

i=1 Φi)xg̃2Φ(x, hD) +O(hN1k̃)H−N
h

→HN
h

+O(hN )H−N
h

→HN
h

where for Φ ∈ Θn,

‖g̃ℓΦ‖−N,0
αβ ≤ CjαβN (1 + ‖Qk‖−N,0

α+K,β+K)
n
∏

i=1

(1 + |Φi|)|Φi|−1‖wΦi
χ1‖−N,0

β+K,α+K+2.

In particular, putting N1 = ⌈ N
k+1⌉, and

Wk+1 =

N1−1
∑

j=2

∑

Φ∈Θj
∑

Φi 6=0

ei(
∑j

i=1 Φi)xhjk̃g̃1Φ(x, hD) +

N1−1
∑

j=1

∑

Φ∈Θj
∑

Φi 6=0

hjk̃+1ei(
∑j

i=1 Φi)xg̃2Φ(x, hD)

and

Qk+1 = Qk +

N1−1
∑

j=2

∑

Φ∈Θj
∑

Φi=0

hjk̃g̃1Φ(x, hD) +

N1−1
∑

j=1

∑

Φ∈Θj
∑

Φi=0

hjk̃+1g̃2Φ(x, hD)

we have by Lemma 3.2 that Wk+1 satisfies (3.3) with Θ replaced by Θ = Θ⌈N/(k+1)−1⌉. �

The following is now an immediate corollary of the previous lemma

Corollary 4.6. Let P = −h2∆ + hW where W is admissible and 0 < a < b. Then for all N
there is G ∈ Ψ0 self-adjoint such that

eiGPe−iG = −h2∆+ hQ+ (1− χ(h2∆− 1))hW̃ (1− χ(h2∆− 1)) +O(hN )Ψ−∞

where Q ∈ Ψ−∞,0, W̃ ∈ Ψ1, are self adjoint, and χ ∈ C∞
c with χ ≡ 1 on [a, b].

5. Limiting absorption for the gauge transformed operator

Throughout this section, we work with an operator

P = P0 + h(1 − χ(−h2∆− 1))W (x, hD)(1 − χ(−h2∆− 1))),

P0 ∈ S2,0, σ2,0(P0) = |ξ|2, σ1,−1(h
−1 ImP0) = 0.

(5.1)

where χ ∈ C∞
c (R) with χ ≡ 1 in a neighborhood of [−δ, δ]. and W ∈ Ψ1. We will show that for

E ∈ [1 − δ, 1 + δ], R±(E) := (P − E ∓ i0)−1 exist as limiting absorption type limits. Moreover,
we will show that R±(E) satisfy certain outgoing/incoming properties.

Throughout this section, we let χi ∈ C∞
c (R) i = 1, 2, 3 with

χi ≡ 1 near [−δ, δ], suppχi ⊂ {χi−1 ≡ 1}, i = 2, 3, suppχ1 ⊂ {χ ≡ 1},
ψi := (1− χi((−h2∆− 1))), Xi := χi((−h2∆− 1))

(5.2)



ASYMPTOTIC EXPANSIONS OF THE SPECTRAL FUNCTION IN DIMENSION ONE 15

5.1. Elliptic Estimates. We first obtain estimates in the elliptic region where the perturbation
of P0 is supported.

Lemma 5.1. With ψi as in (5.2),

c‖ψ2u‖2Hs+2,k
h

≤ ‖ψ3(P − E ± iε)u‖
Hs,k

h

+ ChN‖u‖2
H−N,−N

h

. (5.3)

Proof. Observe that

ψi(P − E) = ψi(P0 − E) + h(1− χ(−h2∆− 1))W (x, hD)(1 − χ(−h2∆− 1)))

since ψi(1 − χ(−h2∆− 1))) = (1− χ(−h2∆− 1)). Note that WFsc
h (ψ2) ⊂ ellsch (ψ3(P0 − E)), and

hence by Lemma 2.4, for ε > 0,

‖ψ3(P − E ± iε)u‖
Hs,k

h

≥ ‖ψ3(P0 − E ± iε)u‖2
Hs,k

h

−Ch‖(1 − χ)u‖
Hs+1,k

h

≥ c‖ψ2u‖Hs+2,k
h

− Ch‖(1− χ)u‖
Hs+1,k

h

−ChN‖u‖
H−N,−N

h

≥ c‖ψ2u‖2Hs+2,k
h

− ChN‖u‖2
H−N,−N

h

.

Here, in the last line we have used that (1− χ) = (1− χ)ψ2. �

5.2. Propagation estimates. Consider P̃E := 〈x〉1/2(P0 − E)〈x〉1/2 so that P̃E ∈ Ψ−∞,1 is
self-adioint and

σ2,1(P̃E) = 〈x〉(ξ2 − E) =: p̃.

Note that

Hp̃ = 2ξ〈x〉∂x − (ξ2 − E)x〈x〉−1,

and therefore, letting,

L+ =
⋃

±

L+,±, L+,± := {ξ = ±
√
E, x = ±∞},

L− =
⋃

±

L−,±, L−,± := {ξ = ∓
√
E, x = ±∞},

we have that L+,± are radial sinks for p̃ and L−,± are radial sources (see [DZ19a, Definition E.50]).

Lemma 5.2. Let B+, B− ∈ Ψcomp,0,

L± ⊂ ellsch (B±), WFsc
h (B±) ∩ L∓ = ∅, {p = E} ⊂ (ellsch (B−) ∪ ellsch (B+)) (5.4)

and B′
± ∈ Ψcomp,0 with the same property, and WFsc

h (B
′
±) ⊂ ellsch (B±). Then, for all k+ < −1

2

and k− > k′− > −1
2 , and N there is C > 0 and δ > 0 such that for ε ≥ 0, E ∈ [1 − δ, 1 + δ], and

u ∈ S ′(R) with B±(P0 − E − iε) ∈ H
0,k±
h , and B−u ∈ H

0,k′−
h ,

‖B′
+u‖H0,k+

h

+ ‖B′
−u‖H0,k−

h

≤ Ch−1(‖B+(P0 − E − iε)‖
H

0,k++1

h

+ ‖B−(P0 − E − iε)u‖
H

0,k−+1

h

) + ChN‖u‖
H−N,−N

h

.
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Similarly, for all k̃+ > k̃′+ > −1
2 and k̃− < −1

2 , and N there are C > 0 and δ > 0 such that for

ε ≥ 0, E ∈ [1− δ, 1 + δ], and u ∈ S ′(R) with B±(P0 − E + iε) ∈ H
0,k̃±
h , and B+u ∈ H

0,k̃′+
h ,

‖B′
+u‖

H
0,k̃+
h

+ ‖B′
−u‖

H
0,k̃−
h

≤ Ch−1(‖B+(P0 − E + iε)‖
H

0,k̃++1

h

+ ‖B−(P0 − E + iε)u‖
H

0,k̃−+1

h

) + ChN‖u‖
H−N,−N

h

.

Proof. Let B̃− ∈ Ψcomp,0 such that L− ⊂ ellsch (B̃−), WFsc
h (B̃−) ⊂ ellsch (B−). Then, by Lemma 2.6

there is A− ∈ Ψcomp,0 such that L− ⊂ ellsch (A−) and for all k̃− > k̃′− > 0, ε ≥ 0 and v ∈ S ′(R)

with B̃−v ∈ H
0,k̃′−
h , B̃−(P̃E − iε〈x〉)v ∈ H0,k̃−

h ,

‖A−v‖
H

0,k̃−
h

≤ Ch−1‖B̃−(P̃E − iε〈x〉)v‖
H

0,k̃−
h

+ CNh
N‖v‖

H−N,−N
h

. (5.5)

Next, let B̃+ ∈ Ψcomp,0 such that L+ ⊂ ellsch (B̃+), WFsc
h (B̃+) ⊂ ellsch (B+). Then, by Lemma 2.7

there are A+, B ∈ Ψcomp,0 such that L+ ⊂ ellsch (A+), WFsc
h (B) ⊂ ellsch (B̃+) \ L+, and for all

k̃+ < 0, ε ≥ 0 and v ∈ S ′(R) with Bv ∈ H
0,k̃+
h , B̃+(P̃E − iε〈x〉)v ∈ H

0,k̃+
h ,

‖A+v‖
H

0,k̃+
h

≤ C‖Bv‖
H

0,k̃+
h

+ Ch−1‖B̃+(P̃E − iε〈x〉)v‖
H

0,k̃+
h

+ CNh
N‖v‖

H−N,−N

h

. (5.6)

Finally, let B0 ∈ Ψcomp,0 with WFsc
h (B0) ⊂ ellsch (B+),

{p̃ = 0} ⊂ ellsch (B0) ∪ ellsch (B
′
−).

Then, there is A0 ∈ Ψcomp,0 such that WFsc
h (A0) ∩ (L+ ∪ L−) = ∅ and there is T > 0 with

WFsc
h (A0) ⊂

⋃

0≤t≤T

ϕt(ell
sc
h (A−)) ∩ ellsch (B0), (5.7)

{〈x〉−1p̃ = 0} ⊂ ellsch (A0) ∪ ellsch (A−) ∪ ellsch (A+). (5.8)

Now, by (5.7) and Lemma 2.5 for all ε ≥ 0, and u ∈ S ′(R) such that A−v ∈ H
0,k̃−
h , B0(P̃E −

iε〈x〉)v ∈ H
0,k̃−
h ,

‖A0v‖
H

0,k̃−
h

≤ C‖A−u‖
H

0,k̃−
h

+ Ch−1‖B0(P̃E − iε〈x〉)v‖
H

0,k̃−
h

+CNh
N‖v‖

H−N,−N

h

. (5.9)

Next, observe that if Bi ∈ Ψcomp,0 with WFsc
h (B1) ⊂ ellsch (B2), then there is Ck,s > 0 such that

for all w ∈ S ′(R) with B2w ∈ H0,k+s
h ,

‖B1〈x〉sw‖H0,k
h

≤ C‖B2w‖H0,k+s
h

,

Combining (5.5), (5.6), (5.9), and using (5.8) and Lemma 2.4 finishes the proof of the first in-

equality after putting v = 〈x〉−1/2u and letting k̃+ = k+ + 1
2 =, k̃− = k− + 1

2 .

The second inequality follows by replacing P̃ by −P̃ . �
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Now, for each Γ ⊂sc T ∗R, let BΓ ∈ Ψ0,0 such that WFsc
h (BΓ) ⊂ Γ, ellsch (BΓ) = Γo. Then, for

kΓ ≥ k, s ∈ R define the norm,

‖u‖
X

s,kΓ,k

Γ

:= ‖BΓu‖Hs,kΓ
h

+ ‖u‖
Hs,k

h

.

Lemma 5.3. For k− > −1
2 , k+ < −1

2 , Γ−,Γ
′
− ⊂sc T ∗R open with L− ⊂ Γ ⋐ Γ′ ⋐ {χ3(|ξ|2 − 1) ≡

1} \ L+, there is h0 > 0 such that for all u ∈ X s,k−,k+
Γ,+ , ε > 0, and 0 < h < h0

‖u‖
X

s,k−,k+
Γ−

≤ Ch−1‖(P − E − iε)u‖
X

s−2,k−+1,k++1

Γ′
−

.

For k− < −1
2 , k+ > −1

2 and Γ+,Γ
′
+ ⊂sc T ∗R open with L+ ⊂ Γ+ ⋐ Γ′

+ ⋐ {χ3(|ξ|2 − 1) ≡ 1}\L−,

there is h0 > 0 such that for all u ∈ X s,k−,k+
Γ,− , ε > 0, and 0 < h < h0

‖u‖
X

s,k+,k−
Γ+

≤ Ch−1‖(P − E − iε)u‖
X

s−2,k++1,k−+1

Γ′
+

.

Proof. Put fε = (P − E − iε)u. Let Γ− ⋐ Γ1 ⋐ Γ2 ⋐ Γ′
− and AΓ1 , AΓ2 ∈ Ψcomp,0 such that

Γ− ⋐ ellsch (AΓ1) ⊂ WFsc
h (AΓ1) ⊂ Γ1 ⊂ ellsch (AΓ2) ⊂ WFsc

h (AΓ2) ⊂ Γ2,

WFsc
h (Id−AΓi

) ∩ L− = ∅, WFsc
h (Id−AΓ1) ⊂ ellsch (Id−AΓ2).

Next, define

B+ := (Id−AΓ1)X1, B− := AΓ2X1, B′
+ := (Id−AΓ2)X2, B′

− := AΓ1X2. (5.10)

Then, (5.4) is satisfied and by Lemma 5.2 together with the fact that X2P = X2P0,

‖B′
−u‖H0,k−

h

+ ‖B′
+u‖H0,k+

h

≤ Ch−1(‖B+fε‖H0,k++1

h

+ ‖B−fε‖H0,k−+1

h

) + ChN‖u‖
H−N,−N

h

≤ Ch−1(‖fε‖
H

0,k++1

h

+ ‖B−fε‖
H

0,k−+1

h

) + ChN‖u‖
H−N,−N

h

(5.11)

Now, since WFsc
h (AΓi

) ⊂ ellsch (BΓ′
−
), we have by Lemma 2.4

‖B−fε‖
H

s,k−+1

h

+ ‖AΓ1fε‖Hs,k−+1

h

≤ C‖BΓ′
−
fε‖

H
s,k−+1

h

+ CNh
N‖fε‖H−N,−N

h

≤ C‖BΓ′
−
fε‖

H
s,k−+1

h

+ CNh
N‖u‖

H−N,−N
h

.
(5.12)

Next, since WFsc
h (AΓ2) ∩ WFsc

h (Id−X3) = ∅, and WFsc
h (Id−X2) ⊂ WFsc

h (Id−X3), we have
by (5.10), (5.11) and (5.12) that

‖AΓ1u‖Hs,k−
h

≤ Cs‖AΓ1X2u‖
H

0,k−
h

+ ‖AΓ1(Id−X2)u‖
H

s,k−
h

≤ Ch−1‖BΓ′
−
fε‖

H
0,k−+1

h

+ ‖fε‖
H

0,k++1

h

+ ChN‖u‖
H−N,−N

h

≤ Ch−1‖fε‖X s−2,k−+1,k++1

Γ′
−

+ChN‖u‖
H−N,−N

h

.

(5.13)

Now, since WFsc
h (X2) ⊂ ellsch (X1), and {p = E} ⊂ ellsch (Id−AΓ2) ∪ ellsch (AΓ1),

WFsc
h (X2) \ (ellsch (Id−AΓ2) ∪ ellsch (AΓ1)) ⊂ ellsch (X1(P0 −E − iε)),
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with uniform bounds in ε ≥ 0. Therefore, using (5.11), (5.12) together with the the elliptic
estimate from Lemma 2.4, we have

‖X2u‖
H

0,k+
h

≤ Ch−1‖fε‖X s−2,k−+1,k++1

Γ′
−

+ C‖X1fε‖
H

0,k+
h

+ChN‖u‖
H−N,−N

h

≤ Ch−1‖fε‖X s−2,k−+1,k++1

Γ′
−

+ ChN‖u‖
H−N,−N

h

.

So, using (5.3),

‖u‖
H

s,k+
h

≤ Ch−1‖fε‖X s−2,k−+1,k++1

Γ′
−

+ ChN‖u‖
H−N,−N

h

. (5.14)

For h small enough, the first part of the lemma follows from (5.13) and (5.14), the fact that
WFsc

h (BΓ−) ⊂ ellsch (AΓ1), and the elliptic estimate (Lemma 2.4). The second claim follows from
an identical argument. �

5.3. The limiting absorption principle and the outgoing property. We are now in a
position to prove the limiting absorption principle. For this, we define R(λ) := (P − λ)−1 :

Hs,k
h → Hs+2,k

h for Imλ 6= 0.

Lemma 5.4. Let Γ− be a neighborhood of L− satisfying the assumptions of Lemma 5.3, k− > 1
2 ,

k+ < −1
2 , s ∈ R, and E ∈ [1− δ, 1 + δ], the strong limit R(E + i0) : H

s,k−
h → X s+2,k−−1,k+

Γ−
exists

and satisfies the bound

‖R(E + i0)f‖
X

s+2,k−−1,k+
Γ−

≤ Ch−1‖f‖
H

s,k−
h

.

Similarly, for Γ+ a neighborhood of L+ satisfying the assumptions of Lemma 5.3, k− < −1
2 ,

k+ > 1
2 , s ∈ R, and E ∈ [1 − δ, 1 + δ], the strong limit R(E − i0) : H

s,k+
h → X s+2,k+−1,k−

Γ+
exists

and satisfies the bound

‖R(E − i0)f‖
X

s+2,k+−1,k−
Γ+

≤ Ch−1‖f‖
H

s,k+
h

.

Proof. We start by showing that for k− > 1
2 , k+ < −1

2 , R(E + iε) := (P − E − iε)−1 : H
s,k−
h →

H
s+2,k+
h converges as ε→ 0+. First, note that for each fixed ε > 0, R(E + iε) : Hs,k

h → Hs+2,k
h is

well defined. Let Γ′
− be a neighborhood of L− with Γ− ⋐ Γ′

−.

Suppose there is f ∈ H
s,k−
h such that R(E + iε)f is not bounded in H

s+2,k+
h . Then, there

are εn → 0+ such that, defining un := R(E + iεn)f ∈ H
s+2,k−
h , we have ‖un‖

H
s+2,k+
h

→ ∞.

Putting vn = un/‖un‖
H

s+2,k+
h

, we have that ‖vn‖
H

s+2,k+
h

= 1 is bounded and (P − E − iεn)vn =

f/‖uk‖Hs,k+
h

→ 0 in H
s,k−
h .
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Since f ∈ H
s,k−
h , for all ε > 0, R(E + iε) : Hs,k

h → Hs+2,k
h , and k− − 1 > k+, we have

vn ∈ X s+2,k−−1,k+
Γ−

and f ∈ X s,k−,k++1
Γ′
−

. Therefore, by Lemma 5.3 all n,

‖vn‖Hs+2,k+
h

≤ C‖vn‖X s+2,k−−1,k+
Γ−

≤ Ch−1‖f‖
X

s+2,k−,k++1

Γ′
−

/‖uk‖Hs+2,k+
h

≤ Ch−1‖f‖
H

s,k−
h

/‖uk‖Hs+2,k+
h

→ 0

which contradicts the fact that ‖vn‖
H

s+2,k+
h

= 1. In particular, u = R(E + iε)f is uniformly

bounded in H
s+2,k+
h , and, arguing as above

‖u‖
X

s+2,k−−1,k+
Γ−

≤ Ch−1‖f‖
H

s,k−
h

.

Now, we show that R(E + iε)f converges as ε → 0+. To see this, first take any sequence

εn → 0+. Then, R(E + iεn)f is bounded in X
s+2,k−−1,k+
Γ−

and hence, for any s′ < s, 1
2 < k′ < k−,

and k′+ < k+, we may extract a subsequence and assume that un = R(E + iεn)f → u in

X
s′+2,k′−−1,k′+
Γ−

, (P − E)u = f , and un ⇀ u in X
s+2,k−−1,k+
Γ−

.

Suppose that there is another sequence which converges to u′ ∈ X
s′+2,k′−−1,k′+
Γ−

and satisfies

(P −E)u′ = f . But then we have

‖u− u′‖
H

s′+2,k′+
h

≤ C‖u− u′‖
X

s′+2,k′−−1,k′+
Γ−

≤ Ch−1‖(P − E)(u− u′)‖
X

s′+2,k′−+1,k′++1

Γ′
−

= 0,

so u = u′. Now, suppose that there is a sequence εm → 0+ such that u′′m := R(E + iεm)f does

not converge to u in X
s+2,k−−1,k+
Γ−

. Then, extracting a subsequence we may assume that u′′m →
u′′ ∈ X

s′+2,k′−−1,k′+
Γ−

and hence u = u′′, which is a contradiction. In particular, R(E + iε)f → u in

X s+2,k−−1,k+
Γ−

as ε→ 0+. Boundedness of the operator follows from the above estimates. Moreover,

we see that if f ∈ H
s,k−
h , for some k− > 1

2 , then R(E + i0)f ∈ X s+2,k−−1,k+
Γ−

, for any k+ < −1
2 .

The case of R(E − iε) follows by an identical argument. �

Finally, we are in a position to prove that the limiting absorption resolvent satisfies the outgo-
ing/incoming property.

Lemma 5.5. For f ∈ E ′(R),

WFh(R(E ± i0))f ⊂ WFh(f) ∪
⋃

±t≥0

exp(tH|ξ|2)
(

WFh(f) ∩ {|ξ|2 = E}
)

.

Proof. First, note that for A ∈ Ψ0,comp with WFh(A) ⊂ ellh(B) ∩ ellh(P ), and

‖Au‖
Hk,s

h

≤ C‖BPu‖
Hk−2,s

h

+ ChN‖u‖
H−N,−N

h

.

Therefore, letting v± = R(E ± i0)f , we have

WFh(v±) ∩ {|ξ|2 6= E} ⊂ WFh(f).
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Next, note that since f ∈ H−N,∞
h , for some N , by Lemma 5.4 we have v+ ∈ X−N+2,∞,k

Γ−
, and

v− ∈ X−N+2,∞,k
Γ+

, for any k < −1
2 and any Γ± open neighborhoods of L± such that Γ± ∩L∓ = ∅.

In particular, by Lemmas 2.5, 2.6, and 2.7, together with the fact that X3P ∈ Ψ2,0,

WFsc
h (R(E ± i0)f) ∩ {|ξ|2 = E} ⊂

⋃

±t≥0

exp(tHp)
(

WFsc
h (f) ∩ {|ξ|2 = E}

)

∪ L±.

Next, since f ∈ E ′, WFsc
h (f) ⊂ {|x| ≤ C} and in particular, WFsc

h (f) = WFh(f). Therefore, the
claim follows. �

Using the outgoing property, we can write an effective expression for the incoming/outgoing
resolvent (see also [DZ19a, Lemma 3.60])

Lemma 5.6. Let R > 0. Then there is T > 0 such that for all f ∈ E ′ supported in B(0, R) and
B ∈ Ψcomp,−∞ with WFsc

h (B) ⊂ T ∗B(0, R) ∩ {1/2 ≤ |ξ| ≤ 2}, and χ ∈ C∞
c (B(0, R)),

χR(E ± i0)B =
i

h

ˆ ±T

0
χe−it(P−E)/hBf +O(h∞)D′→C∞

c
.

Proof. Let ψ ∈ C∞
c (R) such that ψ ≡ 1 on B(0, R + 10T ). Let

v = R(E + i0)Bf − ih−1

ˆ T

0
ψe−it(P−E)/hBf.

Then,

(P − E)v = Bf − ih−1

ˆ T

0
(hDtψ + [P,ψ])e−it(P−E)/hBfdt

= ψe−iT (P−E)/hBf − ih−1

ˆ T

0
[P,ψ]e−it(P−E)/hBfdt+O(h∞)Ψ−∞,−∞f.

Now,

WFh(e
−it(P−E)/hB) ⊂ {(x+ 2tξ, ξ) | |x| ≤ R, |ξ| ∈ [1/2, 2]}.

In particular, for t ∈ [0, T ],

[P,ψ]e−it(P−E)/hBf = O(h∞)C∞
c

and we have

(P − E)v = ψe−iT (P−E)/hBf +O(h∞)C∞
c
.

Since v − R(E + i0)Bf ∈ C∞
c , for any Γ− a neighborhood of L− satisfying the assumptions of

Lemma 5.3, v ∈ X s,k−,k+
Γ−

for all s, k− and k+ < −1
2 and hence

v = R(E + i0)(ψe−iT (P−E)/hBf +O(h∞)C∞
c
).

But then,

WFh(v) ⊂ {(x+ 2tξ, ξ) | t ≥ 0, (x, ξ) ∈ WFh(ψe
iT (P−E)/hB)}

⊂ {(x+ 2(t+ T )ξ, ξ) | |x| ≤ R, ξ ∈ [1/2, 2]}
⊂ {(x, ξ) | B(0, R+ 4T ) \B(0, T − 2R), ξ ∈ [1/2, 2]}.
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In particular, for T > 3R, χv = O(h∞)C∞
c

and hence

χR(E + i0)Bf =
i

h

ˆ T

0
χe−it(P−E)/hBfdt+O(h∞)C∞

c

as claimed. The proof for R(E − i0) is identical.

�

6. Completion of the proof of Theorem 3.1

We now complete the proof of the main theorem. Let P = −h2∆+ hW where W is admissible
(i.e. satisfies (3.2) and (3.3)). Let 0 < δ < δ′ < 1. Then by Corollary 4.6, for any N > 0, there is
G ∈ Ψ0 self adjoint such that

PG := eiGPe−iG = −h2∆+ hQ+ (1− χ(h2∆− 1))hW̃ (1− χ(h2∆− 1)) +RN

where Q ∈ Ψ−∞,0, W̃ ∈ Ψ1, are self adjoint, RN = O(h3N )Ψ−∞ , and χ ∈ C∞
c with χ ≡ 1 on

[−δ′, δ′]. In particular, P̃G := PG −RN takes the form (5.1).

Next, note that

1(−∞,E](P )(x, y) = 〈1(−∞,E](P )δx, 1(−∞,E](P )δy〉L2 = 〈1(−∞,E](PG)e
iGδx, 1(−∞,E](PG)e

iGδy〉L2 .

Now, by [PS16, Lemma 4.2],

‖(1(−∞,E)(P̃G)−1(∞,E](PG))f‖L2

≤ 2‖1[E−µ,E+µ](P̃G)f‖L2 + Ch3Nµ−1(‖1(−∞,E](P̃G)f‖L2 + ‖(P̃G + 1)−sf‖L2)

Let f ∈ H−ℓ and µ = hN . Then for N, s > ℓ, the last two terms above are bounded by hN .
Therefore, we need only understand 1(−∞,E](P̃G)e

iGδx and ‖1[E−hN ,E+hN ](P̃G)e
iGδx‖L2 .

Before, we examine 1[a,b](P̃G), we consider the distribution eiGδx. By Lemma 2.2, eiG ∈ S0,
and hence for any y ∈ R fixed,

(eiGδy)(x) =
1

2πh

ˆ

e
i
h
(x−y)ξb(x, ξ)dξ (6.1)

where b ∈ S0 with b ∼ ∑

j h
jbj, bj ∈ S−j . In particular, for |x− y| ≥ 1, and N > k + 1,

((hDx)
keiGδy)(x) =

1

2πh

ˆ

e
i
h
(x−y)ξ (−hDξ)

N

|x− y|N ξkb(x, ξ)dξ = O(|x− y|−NhN−1).

and hence for χ ∈ C∞
c with χ(x) ≡ 1 on |x| < R and all |y| < R− 1

(1− χ)(eiGδy) = O(h∞)S .

Therefore,

1[a,b](P̃G)e
iGδx = 1[a,b](P̃G)χe

iGδx +O(h∞)C∞ .

Next, we consider χ1[a,b](P̃G)χ. Let dEh be the spectral measure for P̃G.



22 J. GALKOWSKI

Lemma 6.1. Let χ1 ∈ C∞
c and ψ ∈ C∞

c with ψ ≡ 1 on [−1, 1]. Then, there is T > 0 such that
for E ∈ [1− δ′, 1 + δ′], and h small enough,

χ1dEhχ1 =
1

2πh

ˆ T

−T
χ1e

−it(P̃G−E)/hψ(hD)χ1dt+O(h∞)D′→C∞
c
.

In particular,

χ1dEh(E)χ1 =
1

(2πh)2

ˆ T

−T

ˆ

e
i
h
(−t(|ξ|2−E)−〈x−y,ξ〉)aE(t, x, y, ξ)dξdt +O(h∞)D′→C∞

c

where aE ∼ ∑

j h
jaj,E with aj,E ∈ C∞

c .

Proof. We will use Lemma 5.6. In particular, by Stone’s formula

1[a,b](P̃G) =
1

2πi

ˆ b

a
(R(E + i0)−R(E − i0))dE,

so we need to understand dEh := (2πi)−1(R(E+ i0)−R(E− i0)). For this, let χ2 ∈ C∞
c (B(0, R))

with χ2 ≡ 1 on suppχ1. Then consider

χdEhχ =
1

2πi
χ2(R(E + i0)−R(E − i0))(ψ(hD) + 1− ψ(hD))χ2

=
1

2πh

ˆ T

−T
χ2e

−it(P−E)/hψ(hD)χ+
1

2πi
χ2(R(E + i0)−R(E − i0))(1 − ψ(hD))χ2

Let v± = R(E ± i0)(1 − ψ(hD))χ2f. Then, since (1 − ψ(hD))χ2f is rapidly decaying, v± is
semiclassically outgoing/incoming and

(P̃G − E)v± = (1− ψ(hD))χ2f.

In particular, since WFsc
h ((1 − ψ(hD))χ2f) ∩ {p = E} = ∅, we have WFsc

h (v±) ∩ {p = E} = ∅.
Now,

(P̃G − E)(v+ − v−) = 0 ⇒ WFh(v+ − v−) \ {p = E} = ∅.
In particular, since, a priori both terms have WFh(v±) ∩ {p = E} = ∅, we obtain

WFh(v+ − v−) = ∅
and hence

1

2πi
χ2(R(E + i0)−R(E − i0))(1 − ψ(hD))χ2f = O(h∞)C∞

c
.

Therefore,

χ2idEhχ2 =
1

2πh

ˆ T

−T
χ2e

−it(P−E)/hψ(hD)χ2dt+O(h∞)D′→C∞
c
.

The lemma follows from the oscillatory integral formula for eit(P−E)/h ([Zwo12, Theorem 1.4]). �

As a corollary of Lemma 6.1, we obtain for t, s ∈ [1− δ, 1 + δ],

|(hDx)
α(hDy)

βχ11(s,t](P̃G)χ1(x, y)| ≤ Cαβh
−2|t− s|.

In particular, this implies

‖1[E−hN ,E+hN ](P̃G)e
iGδx‖L2 ≤ ChN−ℓ
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for some ℓ > 0 and hence it only remains to have an asymptotic formula for χ11(−∞,E](P̃G)χ1.

Let ρ̂ ∈ C∞
c ((−2T, 2T )) with ρ̂ ≡ 1 on [−T, T ] and put ρh,k(t) = h−kρ(th−k). Define

R1(E, x, y) := χ1(ρh,k ∗ 1(−∞,·](P̃G)− 1(−∞,E](P̃G))χ1(x, y) (6.2)

R2(E, x, y) := χ1(ρh,k − ρh,1) ∗ 1(−∞,·](P̃G)χ1(E, x, y). (6.3)

Then, we will show for E ∈ [1− δ/2, 1 + δ/2]

|(hDx)
α(hDy)

βR1(E, x, y)| = Oαβ(h
k−2), |(hDx)

α(hDy)
βR2(E, x, y)| = Oαβ(h

k−2) (6.4)

In order to show the first inequality in (6.4) we recall that standard estimates also show that
there is M > 0 such that for t ∈ R

|(hDx)
α(hDy)

βχ11(−∞,t](P̃G)χ1(x, y)| ≤ Cαβh
−M 〈t〉M .

Then, for E ∈ [1− δ/2, 1 + δ/2]

|(hDx)
α(hDy)

βR1(E, x, y)|

=
∣

∣

∣

ˆ

h−kρ(sh−k)(hDx)
α(hDy)

βχ1(1(E−s,E](P̃G))χ1ds
∣

∣

∣

≤
∣

∣

∣

ˆ

|s|≤δ/2
h−k〈sh−k〉−NCαβh

−2|s|ds
∣

∣

∣
+

∣

∣

∣

ˆ

|s|≥δ/2
h−k〈sh−k〉−NCαβh

−M |s|Mds
∣

∣

∣

Choosing N large enough, the first inequality in (6.4) follows.

To obtain the second inequality, we observe that, since P̃G is bounded below,

R2(E) = χ1

ˆ E

−∞
(h−k(ρ((s − P̃G)/h

k)− h−1(ρ((s − P̃G)/h))χ1

=
1

2πi

ˆ

t−1ρ̂(thk−1)(1− ρ̂(t))χ1e
it(E−P̃G)/hχ1dt = χ1fh

(E − P̃G

h

)

χ1

where

fh(λ) =
1

2πi

ˆ

t−1ρ̂(thk−1)(1 − ρ̂(t))eitλdt
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In particular, note that |fh(λ)| ≤ CN 〈λ〉−N . Now, let ψ ∈ C∞
c (−δ, δ) with ψ ≡ 1 near 0. Then,

χ1fh

(E − P̃G

h

)

χ1 =

ˆ

fh

(E − s

h

)

χ1dEh(s)χ1

=

ˆ

ψ(E − s)fh

(E − s

h

)

χ1dEh(s)χ1 +

ˆ

(1− ψ(E − s))fh

(E − s

h

)

χ1dEhχ1(s)

=

ˆ

fh

(E − s

h

)

ψ(E − s)χ1dEh(s)χ1 +O(h∞)D′→C∞
c

= − 1

2π

ˆ T

−T

ˆ

fh(w)χ1e
−it(P̃G−E+hw)/hψ(hD)χ1dwdt+O(h∞)D′→C∞

c

=
1

2π

ˆ T

−T

ˆ

it−1ρ̂(thk−1)(1− ρ̂(t))χ1e
−it(P̃G−E)/hψ(hD)χ1dt+O(h∞)D′→C∞

c

= O(h∞)D′→C∞
c
.

Therefore, the second inequality in (6.4) holds.

Together, the inequalities in (6.4) imply that

χ1(1(−∞,E](P̃G)− ρh,1 ∗ 1(−∞,·](P̃G)(E))χ1 = O(h∞)D′→C∞
c

and we finish the proof of the main theorem by observing that

χ1ρh,1 ∗ 1(−∞,·](P̃G)(E)χ1 =
1

2πh

ˆ E

−∞

ˆ

ρ̂(t)χ1e
it(µ−P̃G)/hχ1dtdµ

=
1

(2πh)2

ˆ E

−∞

ˆ

ρ̂(t)χ1(x)e
i(t(µ−|ξ|2)+(x−y)ξ)/ha(x, y, ξ)χ1(y)dξdtdµ

(6.5)
where a ∼ ∑

j ajh
j and aj ∈ C∞

c . Conjugating by eiG using the formula from (6.1) completes the
proof.

Appendix A. Properties of sk,N

In this appendix, we collect the proofs of the required properties of sk,N .

Proof of lemma 3.1. The case k = 1, 0 are clear with N0 = 0, N1 = 1. Suppose (3.1) holds for
k = n− 1. Then,

sn,N (θ, ,W) =

{

1
|
∑k

i=1 θi|

∑

p∈Sym(k)

∑

|α|=k,αi≤k/2 sα,N (p(θ))
∑k

i=1 θi 6= 0

0
∑

i θi = 0.
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The statement is trivial when
∑

i θi = 0. Therefore, we assume the opposite. In that case

sn,N (θ,W)

≤ 1

|∑n
i=1 θi|

∑

p∈Sym(n)

∑

|α|=n,αi≤n/2

j
∏

i=1

C|αi|

∏|αi|
ℓ=1 ‖wp(θ)βi(α)+ℓ

‖N
inf{|ω|N|αi| | ω ∈ {p(θ)βi(α)+1, 0} + · · ·+ {p(θ)βi+1(α), 0} \ 0}

≤ 1

|∑n
i=1 θi|

∑

p∈Sym(k)

∑

|α|=n,αi≤n/2

n
∏

ℓ=1

‖wθℓ‖N
j
∏

i=1

C|αi|

inf{|ω|N|αi| | ω ∈ {θ1, 0} + · · ·+ {θn, 0} \ 0}

Then, defining N0 = 0, N1 = 1 and

Nk := sup
{

1 +
∑

i

N|αi| | |α| = n, |αi| ≤
n

2
},

we have

sn,N (θ,W) ≤
∏n

ℓ=1 ‖wθℓ‖K
inf{|ω|Nk | ω ∈ {θ1, 0}+ · · · + {θn, 0} \ 0}

∑

p∈Sym(k)

∑

|α|=n,αi≤n/2

j
∏

i=1

C|αi|,

and hence the lemma follows by induction. �

Proof of Lemma 3.2. For k = 0 the claim is clear. For k = 1, observe that

s1,N (θ1 + · · ·+ θn, W̃) =

{

‖w̃θ1...θn
‖N

|
∑n

i=1 θi|

∑

i θi 6= 0

0
∑

i θi = 0
.

Note that

‖w̃θ1...θn‖N
|∑n

i=1 θi|
≤ 1

|∑n
i=1 θi|

n
∏

i=1

‖wθi‖N ′

|θi|
≤ sn,N ′((θ1, . . . , θn),W).

Suppose that the claim holds for k − 1 ≥ 1. Then, when
∑

i

∑k
j=1(θi)j 6= 0

sk,N (θ1 + · · · + θn, W̃)

=
1

|∑i,j(θi)j |
∑

p∈Sym(k)

∑

|α|=k,αi≤k/2

j
∏

i=1

sαi,N ((p(θ1 + · · ·+ θn))α,i, W̃)

≤ 1

|∑i,j(θi)j |
∑

p∈Sym(k)

∑

|α|=k,αi≤k/2

j
∏

i=1

snαi,N ((p(θ1))α,i, . . . (p(θn))α,i),W)

≤ 1

|∑i,j(θi)j |
∑

p∈Sym(nk)

∑

|α|=nk,αi≤nk/2

j
∏

i=1

sαi,N ((p(θ1, . . . θn))α,i),W)

= snk,N ′(θ1, . . . , θn,W)
�
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Appendix B. Examples with infinitely many embedded eigenvalues

We now construct some examples to which our main theorem applies that, nevertheless, have
arbitrarily large eigenvalues.

Theorem B.1. Let ω ∈ Rd satisfy the diophantine condition (1.2) and Θ = Zd · ω. Then there

is W ∈ C∞(R;R) satisfying the assumptions of Theorem 1.1 and such that {θ2

4 | θ ∈ Θ \ {0}} is
contained in the point spectrum of −∆+W .

Theorem B.2. Let {mn}∞n=1 ⊂ Z+ and Θ as in Theorem 1.2. Then there is W ∈ C∞(R;R)

satisfying the assumptions of Theorem 1.2 and such that for all n, m2
n

4n2 is contained in the point
spectrum of −∆ +W . In particular, if Q ∩ R+ = {mn

n }∞n=1, then this operator has dense pure
point spectrum.

Theorems B.1 and B.2 follow easily from the following theorem.

Theorem B.3. Let {κn}∞n=1 be an arbitrary sequence of positive real numbers. Then there is
W ∈ C∞(R;R) such that κ2n is an eigenvalue of −∆+W . Moreover, we can find W such that

W =
∑

n

e2iκnxw2κn(x) +
∑

n

e−2iκnxw−2κn(x) + w0(x)

where w0 ∈ C∞
c and for any N ,

|∂kxw±2κn(x)| ≤ CN 〈n〉−N 〈κn〉−N 〈x〉−k. (B.1)

We follow the construction in [Sim97] with a few modifications to guarantee smoothness. First,
we need to replace [Sim97, Theorem 5] to allow for smoothness in V .

Recall that the Prüfer angles , φ(x), are defined by

u′(x) = kA(x) cos(φ(x)), u(x) = A(x) sin(φ(x))

where −u′′ + V (x)u = k2u. Then, φ(x) satisfies

φ′(x) = k − k−1V (x) sin2(φ(x)). (B.2)

For any N ≥ 0, a < b ∈ R. let F : CN ([a, b])×Rn ×Tn → Tn to be the generalized Prüfer angles
with potential V , φi(x;V, k, θ)|x=b, where φi(0;V, k, θ) = θi and we put k = ki in (B.2).

Lemma B.1. Fix [a, b] ⊂ (0,∞), U ⋐ (a, b) open, N > 0, k1, . . . kn > 0 distinct, θ(0) ∈ Tn, and
ε > 0. Then there is δ > 0 such that for all angles θ(1) ∈ Tn satisfying

|θ(1) − kb− θ(0)| < δ,

there is V ∈ C∞
c (U) with ‖V ‖CN < ε and F (V, k, θ(0)) = θ(1).

Proof. Note that F (0, k, θ0) = (θ
(0)
1 + k1b, . . . θ

(0)
n + knb) and φi(x;V = 0) = θ

(0)
i + kix. Therefore,

we need only show that the differential (in V ) is surjective when restricted to functions in C∞
c (U).

For this, let χ ∈ C∞
c (U) with χ ≡ 1 on a nonempty open interval I. Note that if Vε = εχV (x),

∂εφ
′
i(x;Vε)|ε=0 = −k−1

i χ(x)V (x) sin2(kix+ θ
(0)
i ), ∂εφi(0;Vε)|ε=0 = 0.
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Hence,

∂εFi(Vε)|ε=0 = −k−1
i

ˆ

χ(x)V (x) sin2(kix+ θ
(0)
i )dx.

We claim that ui(x) := χ(x) sin2(kix + θ
(0)
i ) are linearly independent in L2. Indeed, suppose

0 < k1 < . . . kn and
∑K

i=1 αiui(x) = 0 a.e. with αK 6= 0 (and hence, by continuity for all x).
Differentiating enough times, we see that αK ≡ 0, a contradiction.

Thus, there are V1, . . . Vn ∈ C∞ such that (∂εF (εχVi))
n
i=1 is a basis for Rn and the implicit

function theorem finishes the proof. �

Proof of Theorem B.3. We work on the half line and find W (x) vanishing to infinite order at 0
such that there are L2 solutions, un of

−u′′n(x) +W (x)un(x) = κ2nun(x), x ∈ [0,∞) un(0) = 0.

The case of the line then follows by extending W to an even function and un to an odd function.

Let χ ∈ C∞(R) with χ ≡ 1 on [2,∞), suppχ ⊂ (1,∞) and define χn(x) := χ(R−1
n x) where

Rn → ∞, Rn ≥ 1 are to be chosen later. We put

(∆Ln)(x) := 4κn
χn(x)

x
sin(2κnx+ ϕn)

where ϕn is also to be chosen. We will also find ∆Sn to be smooth function supported on
(2−n, 2−n+1) with ‖∆Sn‖Cn ≤ 1

2n and put

Wm(x) =

m
∑

n=1

(∆Ln +∆Sn)(x), W (x) := lim
m→∞

Wm(x), W̃m :=Wm −∆Sm.

Note that by construction
∑

n ∆Sn ∈ C∞([0, 1)),
∑

n∆Sn vanishes to infinite order at 0, and

∆Ln(x) = −e2iκnx2iκne
iϕnχn(x)x

−1 + e−2iκnx2iκne
−iϕnχn(x)x

−1.

In particular,

∆Ln(x) = e2iκnxw2κn(x) + e−2iκnxw−2κn(x)

with w±2κn = ∓2iκne
±iϕnχn(x)x

−1. In particular,

|∂kxw±2κn | ≤ CkκnR
−1
n 〈x〉−k. (B.3)

In order to obtain the estimate (B.1), we fix a positive Schwartz function f and choose Rn Rn ≥
1

f(〈κn〉〈n〉)
. The estimate (B.3) then guarantees that

∑

n∆Ln is bounded with all derivatives. The

fact that ∆Sn ∈ C∞
c (2−n, 2−n+1) and ‖∆Sn‖Cn ≤ 1

2n guarantees that w0 =
∑

n ∆Sn ∈ C∞([0, 1))
and w0 vanishes to infinite order at 0.

Now, note that χ̃n(ξ) := F((·)−1χn(·))(ξ) is smooth away from ξ = 0. Therefore, for each
m 6= n, we can find ψn,m ∈ C∞

c (0, 1) such that

F(ψn.m)(0) = −2iκn(−χ̃(2κn)eiϕn − χ̃(2κn)e
−iϕn)

F(ψn,m)(±2κm) = −2iκn(χ̃(2(±κm − κn))e
iϕn − χ̃(2(κn ± κm))e−iϕn).
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Then, letting ψn,n = 0 and defining L̃n,m := ∆Ln − ψn,m, there are An,m, A±
n,m such that

|L̃n,m| ≤ C|x|−1, L̃n,m = A′
n.m, |An,m| ≤ C|x|−1,

e±2iκmxL̃n,m = (A±
n,m)′, |A±

n,m(x)| ≤ C|x|−1.
(B.4)

By the conditions (B.4) and [Sim97, Theorem 3], there is a unique function u
(m)
n (x) satisfying

−(u(m)
n )′′ +Wm(x)u(m)

n = κ2nu
(m)
n ,

∣

∣

∣

∣

∣

∣

∣

∣

∣
u(m)
n − sin((κn + 1

2ϕn)·)(1 + | · |)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣
<∞. (B.5)

where |||u||| = ‖(1+x2)u‖∞+‖(1+x2)u′‖∞. Similarly, there is a unique function ũ
(m)
n (x) satisfying

−(ũ(m)
n )′′ + W̃m(x)ũ(m)

n = κ2nũ
(m)
n ,

∣

∣

∣

∣

∣

∣

∣

∣

∣
ũ(m)
n − sin((κn + 1

2ϕn)·)(1 + | · |)−1
∣

∣

∣

∣

∣

∣

∣

∣

∣
<∞. (B.6)

Now, we construct ∆Ln, ∆Sn such that
∣

∣

∣

∣

∣

∣

∣

∣

∣
u(m)
n − u(m−1)

n

∣

∣

∣

∣

∣

∣

∣

∣

∣
≤ 2−m, n = 1, 2, . . . ,m− 1, u(m)

n (0) = 0, n = 1, . . . ,m. (B.7)

Once we have done this, we can let un = limm u
(m)
n (in the |||·||| norm) to obtain L2 eigenfunctions

with eigenvalue κn.

Let m ≥ 1 and suppose we have chosen {(Rn, ϕn)}m−1
n=1 , and ∆S1, . . .∆Sm−1 ∈ C∞

c with
supp∆Sn ⊂ (2−n, 2−n+1) and ‖∆Sn‖Cn ≤ 1

2n such that (B.7) holds and Rn ≥ 1/f(〈n〉〈κn〉).
By [Sim97, Theorem 3], there are εm R̃m such that for all Rm ≥ R̃m, and ϕm ∈ [0, 2π/(2κm)],

if ‖∆Sm‖C0 ≤ εm, then

|||umi − ũmi ||| ≤ 2−m−1.

Observe that by Lemma B.1, there is δm > 0 small enough such that if |θ(1)i − κi2
−m+1| < δm

and θ
(1)
i are the Prüfer angles of the solutions ũmi , i = 1, . . . ,m at 2−m+1, then there is ∆Sm ∈

C∞
c (2−m, 2−m+1) with ‖∆Sm‖Cm ≤ min(2−m, εm) and such that u

(m)
i (0) = 0. Therefore, if we

can find Rm ≥ R̃m and ϕm such that |θ(1)i − κi2
−m+1| < δm, and

∣

∣

∣

∣

∣

∣um−1
i − ũmi

∣

∣

∣

∣

∣

∣ ≤ 2−m−1,

the proof will be complete.

Once again by [Sim97, Theorem 3], forRm large enough, we have (uniformly in ϕm ∈ [0, 2π/(2κm)]),
∣

∣

∣

∣

∣

∣

∣

∣

∣
u
(m−1)
i − ũ

(m)
i

∣

∣

∣

∣

∣

∣

∣

∣

∣
< 2−m−1 for i = 1, . . . ,m − 1 and the Prüfer angles for ũ

(m)
i at 2−m+1 satisfy

|θ(1)i − κibi| < δ for i = 1, . . . m− 1).

Finally, we choose ϕm so that ũ
(m)
m (0) = 0. The existence of such a ϕm again follows from [Sim97,

Theorem 3]. In particular, note that by part (b) there, we have (B.6) uniformly over Rm large

enough, x large enough, and ϕm ∈ [0, 2π/(2κm)]. In particular, the Prüfer angles for ũ
(m)
m , φ̃m(x)

run through a full circle. Therefore, we can choose Rm large enough and ϕm such that the φ̃m(Rn)
agrees with the Prüfer angle of the solution to u to −u′′+Wm−1(x)u = κ2mu, u(0) = 0 and hence,

since Wm−1 = W̃m on x ≤ Rn, we have that ũm(0) = 0.

�



ASYMPTOTIC EXPANSIONS OF THE SPECTRAL FUNCTION IN DIMENSION ONE 29

References
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