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Abstract. Biomedical text tagging systems are plagued by the dearth of labeled
training data. There have been recent attempts at using pre-trained encoders to
deal with this issue. Pre-trained encoder provides representation of the input text
which is then fed to task-specific layers for classification. The entire network is
fine-tuned on the labeled data from the target task. Unfortunately, a low-resource
biomedical task often has too few labeled instances for satisfactory fine-tuning.
Also, if the label space is large, it contains few or no labeled instances for ma-
jority of the labels. Most biomedical tagging systems treat labels as indexes, ig-
noring the fact that these labels are often concepts expressed in natural language
e.g. ‘Appearance of lesion on brain imaging’. To address these issues, we propose
constructing extra labeled instances using label-text (i.e. label’s name) as input for
the corresponding label-index (i.e. label’s index). In fact, we propose a number
of strategies for manufacturing multiple artificial labeled instances from a single
label. The network is then fine-tuned on a combination of real and these newly
constructed artificial labeled instances. We evaluate the proposed approach on an
important low-resource biomedical task called PICO annotation, which requires
tagging raw text describing clinical trials with labels corresponding to different
aspects of the trial i.e. PICO (Population, Intervention/Control, Outcome) charac-
teristics of the trial. Our empirical results show that the proposed method achieves
a new state-of-the-art performance for PICO annotation with very significant im-
provements over competitive baselines.

Keywords: Biomedical Text Tagging - PICO Annotation - Artificial Data - Trans-
fer Learning.

1 Introduction

Biomedical text is often associated to terms that are drawn from a pre-defined vocab-
ulary and indicate the information contained in the text. As these terms are useful for
extracting relevant literature, biomedical text tagging has remained an important prob-
lem in BioNLP [284]] and continues to be an active area of research [21,20]. Currently,
a standard text tagging model consists of an encoder that generates a context-aware
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vector representation for the input text [23U1126], which is then fed to a 2-layered neural
network or multi-layered perceptron that classifies the given text into different labels.
The encoder is generally based on CNN [[10/11123]], RNN [[L1]], or (more recently) multi-
head self-attention network e.g. Transformer [[1]. This works well for tasks that have a
lot of labeled data to train these models.
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Fig. 1. An illustration of the PICO annotation task. The model receives input text describing a
clinical trial and applies concepts from a pre-defined vocabulary corresponding to Population,
Intervention and Outcome characteristics of the trial.

Unfortunately, lack of labeled data is a common issue with many biomedical tagging
tasks. We focus on one such low-resource biomedical text tagging task called PICO an-
notation [20]. It requires applying distinct sets of concepts that describe complementary
clinically salient aspects of the underlying trial: the population enrolled, the interven-
tions administered and the outcomes measured, i.e. the PICO elements. Currently, these
PICO annotations are obtained using manual effort, and it can take years to get just a
few thousand documents annotated. Not surprisingly, there are not enough PICO anno-
tations available to train a sophisticated classification model based on deep learning.

Recently, there have been attempts to address this issue of low-resource biomedical
text tagging using transfer learning [[19125]]. These methods begin by training a (large)
deep neural network model on a high-resource biomedical task followed by fine-tuning
on the low-resource target task. One such work from Zeng et al. [25] proposed training
a deep CNN on the source task of applying MeSH tags to biomedical abstracts, and
then used this pre-trained network for applying ICD-9 codes to clinical text after fine-
tuning. They used a freely available repository of biomedical abstracts on Pubmed,
which are annotated with medical concepts called MeSH tags (i.e. Medical Subject
Heading) for source task. In a similar work, Rios et al. [[19] focused on a different target
task and experimented with ablations of network architectures. There have also been
attempts in the past to solve PICO annotation using concept embeddings pre-trained
using deepwalk on the vocabulary graph [20].

One drawback of above methods is that they treat labels as indexes, despite the fact
that these labels are concepts expressed in natural language e.g. ‘Finding Relating To
Institutionalization’. After training on the source task, the encoder is retained, while
the task specific deeper layers are replaced with new layers, and the entire network
is fine-tuned. Consequently, task-specific layers have to be re-trained from the very
beginning on a low-resource biomedical task. This poses problems, not only because
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there is insufficient labeled data for fine-tuning, but there are few or no labeled instances
for a large number of labels.

To address this, we propose constructing additional artificial instances for fine-
tuning by using the label-text as an input for the corresponding label-index. We propose
various strategies to construct artificial instances using label-text, which are then used
in combination with real instances for fine-tuning. This is based on the hypothesis that
an encoder pre-trained on a related biomedical source task can be used to extract good
quality representations for the label-text, where these label-texts are concepts expressed
in natural language.

To summarize the contribution of this work:

— To address the scarcity of labeled data for PICO annotation, we construct addi-
tional artificial labeled instances for fine-tuning using label-texts as inputs for label-
indexes.

— In order to obtain rich encoder representations for label-text, we pre-train the en-
coder on a related source task i.e. MeSH annotation.

2 Related Works

We focus on the problem of low-resource biomedical multi-label text classification us-
ing transfer learning. As such there are three broad areas pertinent to our work: (1)
multi-label text classification; (2) biomedical text annotation; (3) transfer learning for
classification. We will give an overview of relevant literature in these three areas.

2.1 Multi-label Text Classification

The task of PICO annotation can be seen as an instance of multilabel classification,
which has been an active area of research for a long time, and therefore has a rich body
of work [13I8.9l18]. One of the earliest works [13] in multi-label text classification
represented multiple labels comprising a document with a mixture model. They use ex-
pectation maximization to estimate the contribution of a label in generating a word in
the document. The task is then to identify the most likely mixture of labels required
to generate the document. Unfortunately, when the set of labels is prohibitively large,
these label mixture models are not practical. Then, a kernel based approach for multi-
label classification based on using a large margin ranking system was proposed [7]. In
particular, it suggests a SVM like learning system for direct multi-label classification,
as opposed to breaking down these into many binary classification problems.

More recently, there has been a shift towards using deep learning based methods for
multilabel classification [[15012124]. One such work [[15] proposes using a simple neu-
ral network approach, which consists of two modules: a neural network that produces
label scores, and a label predictor that converts labels scores into classification using
threshold. Later, [12]] focused on the problem of assigning multiple labels to each doc-
ument, where the labels are drawn from an extremely large collection. They propose
using a CNN with dynamic max-pooling to obtain document representation, which is
then fed to an output layer of the size of label vocabulary, with sigmoid activation and
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binary cross-entropy loss. In [24]], they propose learning a joint feature and label em-
bedding space by combining DNN architectures of canonical correlation analysis and
autoencoder, coupled with correlation aware loss function. This neural network model
is referred to as Canonical Correlated AutoEncoder (C2AE).
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Fig. 2. A pictorial representation of the model architecture and training process. Left: The model
takes as input an unstructured piece of text e.g. abstract, and applies the assigned labels. Right:
To address scarcity of labeled data for fine-tuning, we construct artificial inputs for labels using
the label-text as input for the label-index.

2.2 Biomedical Text Annotation

Biomedical text annotation is a very broad and active area of research [4.2819/2025]],
e.g. PICO annotations and MeSH tagging. The authors in Singh er al. [20] focused
on the problem of PICO annotation under the constraint of sparse labelled data. Their
approach is based on generating a list of candidate concepts and then filtering this list
using a deep neural network. The candidates concepts for a given abstract are generated
using a biomedical software called Metamap, which uses various heuristic, rules and
IR-based techniques to generate a list of concepts that might be contained in a piece of
text.

Another work [21]] focused on the similar task of MeSH tagging such that the tags
are drawn from a tree-structured vocabulary. They treat biomedical text tagging as an
instance of seq-to-seq modelling so that the input text sequence is encoded into a vector
representation, which is then decoded into a sequence corresponding to the path of a
label from the root of the Ontology. A similar work [14] on applying ICD (diagnostic)
codes to clinical text broke down the multilabel classification problem into many binary
classification problems. They use a CNN to obtain feature maps of the input text, and
then apply per-label attention to obtain a contextual representation, which is then fed
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to a single-neuron output layer with sigmoid activation. They focus on explaining pre-
dictions using the attention distribution over the input text and share the feature maps
generated using CNN across different labels.

2.3 Transfer Learning for Text Classification

There have been various attempts to use transfer learning for text classification in the
past [643U1712]], but with very limited success. Some of these earlier methods were based
on inferring parameters of the classification model from dataset statistics [6], thus elim-
inating the need to train on every task. While this is an interesting approach, these
statistics are often unable to transfer anything more than general characteristics of the
model that are available e.g. mean or variance. In a different line of work [[16]], authors
proposed an algorithm based on projecting both source and target domain onto the same
latent space before classification.

Lately, the popularity of deep learning models for solving various NLP tasks has
multiplied manifolds. As a matter of fact, the two works closest to us from Rios et al.
[19] and Zeng et al. [25] are based on CNNs. Both the methods begin by pre-training
a CNN on tagging abstracts with MeSH terms, which is then used for applying ICD-
9 (disease codes) codes to unstructured EMRs. More recently, significant success has
been achieved on variety of NLP tasks [[1/19125]] by using pre-trained bidirectional en-
coders. Hence, instead of CNN, we use one such pre-trained bidirectional encoder in
this work.

3 Method

In this section, we begin with a brief description of the model architecture used in PICO
annotation. This includes a description of the encoder architecture used for both, source
and target task. Then, we give details of the source task (i.e. MeSH annotation) used for
pre-training the encoder. This is followed by a discussion on the target task (i.e. PICO
annotation) where we provide motivations for constructing artificial instances. We also
describe our proposed strategies for constructing artificial instances to be used in fine-
tuning. Finally, we briefly mention our fine-tuning strategy that uses a mixture of real
and artificial data.

3.1 Model

We provide an overview of the model architecture used for PICO annotation in Figure
[2l The model consists of a bidirectional encoder (i.e. Transformer encoder), followed
by a shared hidden layer and three task-specific output layers - one each for concepts
corresponding to aspects P, I/C and O.

The encoder provides contextual representation of the input text (e.g. abstract),
which is then passed through the shared hidden layers, and then to the task-specific
output layers. We append a [CLS] token to the beginning of the input text, and the
vector representation of this token is taken to be the vector representation of the input
text. The task specific output layers then classify the text into pre-defined vocabulary of
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PICO concepts. The shared hidden layer is used to leverage correlations between differ-
ent P, I/C and O concepts, for example, if the trial Population is ‘Male’ then Outcome
will not generally be ‘Breast Cancer’.

Encoder. We use the encoder of the Transformer [22] network to generate contextual
representations of input text. It consists of repeating blocks and each block consists
of two sublayers: multi-head self-attention layer and position-wise convolution layer.
There are residual connections and layer normalization after every sublayer. The input
is a sequence of word embeddings added with positional embeddings before being fed
to the encoder.

Recently, it has been shown that pre-trained transformer encoder i.e. BERT [5]], can
generate rich representations for input text, leading to superior results over a number of
low-resource target NLP tasks. Hence, we pre-trained BERT on a biomedical task sim-
ilar to PICO annotation, this task applies MeSH terms to biomedical abstracts available
on PubMed’]

3.2 Source Task: MeSH Annotation

We extract over 1 million abstracts from Pubmed along with the annotated MeSH tags,
where these MeSH terms correspond to specific characteristics of a biomedical text.
The extracted dataset covered the entire vocabulary of MeSH terms with ~ 29K unique
terms. These terms are arranged in the from of a tree-structured hierarchy e.g. Disease
— Virus Diseases — Central Nervous System Viral Diseases — Slow Virus Diseases.
These MeSH terms are similar in functionality to the PICO tags, but they are more
coarse and not based on PICO characteristics. The model consisted of BERT as the
encoder, followed by a hidden layer and an output layer of the size of MeSH vocabulary.
Afterwards, the hidden layer and the output layer are replaced with new layers. Please
note that the vocabulary of PICO and MeSH is completely different. We trained the
model using binary cross-entropy loss for over 45 days on a single GPU (2080) with a
minibatch size of 4.

3.3 Target Task: PICO Annotation

We use the BERT encoder trained on the MeSH annotation task for PICO annotations.
BERT generates vector representation of a document, these representations are then
passed through a new hidden layer followed by three separate output layers - one each
corresponding to P, I/C and O aspects of the trial - and the entire model is fine-tuned on
the PICO annotation task.

As the task-specific layers are completely replaced, these layers have to be re-trained
from scratch on the PICO annotation task. This would not be an issue if there was
sufficient labeled data available for effectively fine-tuning these task-specific layers.
Unfortunately, biomedical tasks - such as PICO annotation - have scarce labeled data
available for fine-tuning. Also, if the label space is large then a number of labels never
appear in the fine-tuning set.

3 An online repository of biomedical abstracts.
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Interestingly, labels in PICO annotation are often self-explanatory biomedical con-
cepts expressed in natural language e.g. ‘Finding Relating To Institutionalization’. Since
the encoder has been pre-trained on a large corpora of biomedical abstracts, we hypoth-
esize that it can be used to obtain rich contextual representations for these PICO labels.
A label-text can then be used as an input for the label-index; in other words, we are
constructing artificial instances for labels using the label-text as input and label-index
as output. We propose different strategies for constructing artificial labeled instances in
this fashion.

Artificial Instance Construction In this section we describe our proposed strategies
for constructing artificial inputs for label-indexes. These strategies are based on using
label-text to construct artificial inputs. These newly created artificial instances can then
be used in combination with real instances for fine-tuning. Here, we describe these
strategies in details:

— LI: We refer to the first strategy as LI which stands for Label as Input. In this
strategy, we feed the network with the label-text (e.g. ‘Finding Relating To Insti-
tutionalization’) as an input for the label-index. We also append the [CLS] token
to the beginning of the resulting string. The encoder generated representation for
the label-text is then passed on to the shared hidden layer and then to the (three)
output layers for classification. This way we have generated extra labeled instances
for labels, which helps in effective fine-tuning of the task-specific layers, especially
for labels that are rare.

— LIS: LIS stands for LI + Synonyms. We randomly replace different words in the
label-text with their synonyms. More specifically, we randomly select one of the
words in the label-text and replace it with its synonym, we then select another word
from the label-text and repeat the same process over to generate multiple instances
from a single label-text. As an example, ‘Finding Relating To Institutionalization’
— ‘Conclusion Relating To Institutionalization’. We only replace one word at a
time to ensure that semantics of the label-text do not venture too far from the orig-
inal meaning. These synonyms are extracted from the WordNet corpus.

— LISA: LISA stands for LIS + Aspect, where Aspect is the P, I/C and O characteristic
of the trial. In this strategy, we append one of the aspects to the label-text e.g.
‘Outcome’+ ‘Finding Relating To Institutionalization’, which is then classified as
the label in the output layer corresponding to that specific aspect - we have three
output layers corresponding to P, I/C and O aspects.

— LISAAS: LISA+AS stands for LIS + Aspect + Auxiliary Sentences. As opposed to
the previous strategy of simply appending the aspect to the label-text, we construct
artificial sentences by prepending a pre-defined fixed aspect-based sentence to the
label-text. For example, ‘The population of the trial consists of patients with’ + ‘Di-
abetes’ as an input text for the label *Diabetes’, where the first part is the sentence
containing the aspect of the label and last part is the label-text. We prepare a fixed
set of three aspect-sentences, one corresponding to each P, I/C and O aspect.

— LISAAS + Noise: While LISAAS is closer to a real abstract than other strategies, it
can still bias the model towards expecting the exact sentence structure at test time.
We can not possibly construct all possible input texts in this manner to train the
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network. To address this issue, we add random Gaussian noise to the vector repre-
sentations of the input text generated by the encoder. The encoder should be able
to attend to important bits of information at test time but due to the differences in
sentence structure the vector representation might be slightly different. By adding
noise we wanted to replicate that scenario during training. We apply layer normal-
ization after adding noise to ensure the norm of the signal remains similar to the
real input text.

Training We randomly choose to construct a minibatch from either all real or all ar-
tificial instances for the first 50% epochs during fine-tuning. Afterwards, we continue
with only real data until the end. This training process is followed with all the different
strategies for constructing artificial instances.

4 Experimental Setup

In this section, we describe in details the dataset used for experiments, the baseline
models used for comparison and the evaluation setup and the metrics used to assess the
performance.

4.1 Dataset

samples (clinical trials) 10137
distinct population concepts 1832
distinct intervention concepts 1946
distinct outcome concepts 2556

population concepts 15769
intervention concepts 10537
outcome concepts 19547

Table 1. Dataset statistics.

We use a real-world dataset provided by Cochranef_f] which consists of manual anno-
tations applied to biomedical abstracts. More specifically, as we have outlined through-
out this paper, trained human annotators have applied tags from a subset of the Unified
Medical Language System (UMLS) to free-text summaries of biomedical articles, cor-
responding to the PICO aspects. We should recall that PICO stands for Population,
Intervention/Comparator and Outcomes. Population refers to the characteristics of clin-
ical trial participants (e.g., diabetic males). Interventions are the active treatments being
studied (e.g., aspirin); Comparators are baseline or alternative treatments to which these
are compared (e.g., placebo) — the distinction is arbitrary, and hence we collapse I and

# Cochrane is an international organization that focusses on improving healthcare decisions
through evidence: http://www.cochrane.org/|
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C. While the Outcomes are the variables measured to assess the efficacy of treatments
(e.g., headache severity).

These annotations are performed by trained human annotators, who attached con-
cept terms corresponding to each PICO aspect of individual trial summaries.

4.2 Baselines

We use three straightforward baselines for comparison, these are: (1) training a CNN-
based multitask classifier that directly predicts the output labels based on the input text,
(2) BERT pre-trained on Wikipedia and BookCorpus, and, (3) BERT pre-trained on
MeSH tagging task.

The CNN-based model consists of an embeddings layer, which is followed by three
parallel convolution layers with filter sizes 1, 3 and 5. Each of these convolution layers
are followed by a ReLU activation and max-pooling layer, after which the outputs from
these 3 layers are concatenated. We then apply: a dropout layer, dense layer, ReLU ac-
tivation layer; in that order. Finally, we pass the hidden representation to three different
output layers for classification.

The other obvious choice for a baseline is to use BERT pre-trained on BookCorpus
[27] and English Wikipedia, which are the same datasets used in the original paper [5].
The encoder consists of 12 consecutive blocks where each such block consists of 12
multihead attention heads and position-wise convolution layers. The encoder represen-
tations are then passed through three separate dense layers where the output of each
layer is passed to one of the three output layers. These three output layers classify the
input text into corresponding P, I/C and O elements.

There have been works in the past using CNNs pre-trained on MeSH tagging for
separate biomedical annotation tasks. Hence, we decided to pre-train BERT on a dataset
of over one million abstracts tagged with MeSH terms. The architecture of the model
exactly resembles the one described above. All the baselines are only trained on real
data.

4.3 Evaluation Details

We divided the dataset into 80/20 for train/test split. We had ground truth annotations
for all instances corresponding to PICO aspects of the trial i.e. all texts have been an-
notated by domain experts with labels from the UMLS vocabulary. The texts here are
summaries of each element extracted for previous reviews; we therefore concatenate
these summaries to form continuous piece of text that consists of text spans describ-
ing respective elements of the trials. The exhaustive version of vocabulary used by
Cochrane consists of 366,772 concepts, but we restricted the vocabulary to labels that
are present in the dataset. We summarize some of these statistics in Table[T]

We performed all of the hyper-parameter tuning via nested-validation. More specif-
ically, we separated out 20% of training data for validation, and kept it aside for tuning
over hyper-parameters, which included iteratively experimenting with various values
for different hyper-parameters and also the structure of the network. The values for
dropout were fixed for all dropout layers to reduce the workload of optimization, and
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Category Model Macro-Pr Macro-Re Macro-F1 Micro-Pr Micro-Re Micro-F1
CNN 0.031 0.027 0.027 0.614  0.506 0.555
BERT 0.040 0.036 0.037 0.714  0.572 0.635
BERT-MeSH| 0.043 0.038 0.038 0.719  0.560 0.629
Population 5 S 0.048 ~ 0.044 ~ 0.044 0726  0.604 0.659
LIS 0.046 0.042 0.043 0.733 0.596 0.658
LISA 0.046 0.042 0.042 0.757  0.606 0.673
LISAAS 0.048 0.044 0.045 0.740  0.603 0.664
+ Noise 0.049 0.046 0.046 0.737  0.613 0.670
CNN 0.027 0.023 0.024 0.671 0418 0.515
BERT 0.032 0.028 0.029 0.717  0.465 0.564
BERT-MeSH| 0.035 0.032 0.032 0.729 0483 0.581
Interventions/Comparator it 0.043 0041 ~ 0.041 0700 0549  0.616
LIS 0.044 0.040 0.041 0.753  0.528 0.621
LISA 0.042 0.037 0.038 0.743 0.526 0.616
LISAAS 0.044 0.041 0.041 0.748  0.540 0.627
+ Noise 0.045 0.043 0.042 0.740  0.550 0.631
CNN 0.037 0.030 0.030 0.530  0.333 0.409
BERT 0.043 0.035 0.036 0.603 0.398 0.480
BERT-MeSH| 0.048 0.039 0.041 0.612 0412 0.492
Outcomes 5 0.052 0046 ~ 0.046 0.611  0.468  0.530
LIS 0.052 0.044 0.045 0.621 0.442 0.517
LISA 0.050 0.042 0.043 0.629  0.442 0.519
LISAAS 0.054 0.046 0.047 0.620 0453 0.523
+ Noise 0.053 0.047 0.047 0.620  0.455 0.525

Table 2. Precisions, recalls and f1 measures realized by different models on the respective PICO
elements. Best result for each element and metric is bolded. CNN refers to the CNN-based mul-
titask classifier, BERT refers to the transformer encoder pre-trained using BookCorpus and En-
glish Wikipedia in the original paper [3]], while BERT-MeSH refers to the transformer encoder
pre-trained on MeSH tagging task. Please note that all methods used the same subword tokenizer
provided by BERT. Also, all baselines were trained on only real data.

that value was optimized over 10 equidistant steps in the range of [0, 1]. The threshold
of binary classification in the output layer of all the networks was also tuned over 10
equidistant values in the range [0, 1]. We trained for a maximum of 150 epochs and
used early stopping to get the optimal set of parameters that performed the best on the
nested-validation set. We optimized for the highest micro-f1 score for all of the tuning.

4.4 Metrics

We evaluated our approach on 3 standard metrics (1) Precision, (2) Recall and (3) F1
score. We computed macro and micro versions of these three metrics for each of the
three aspects i.e. P, I/C and O separately. Finally, we compute the average of Micro-
F1 scores for all the three aspects, and this was the ultimate metric used for tuning
hyper-parameters and to decide for early stopping while training.
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Model Avg. Micro-F1 Avg. Macro-F1
CNN 0.493 0.027
BERT 0.559 0.034
BERT-MeSH 0.567 0.037
[ 0.601 0.044
LIS 0.599 0.043
LISA 0.603 0.041
LISAAS 0.605 0.044
+ Noise 0.609 0.045

Table 3. Average of macro-fl/micro-f1 scores for all three aspects of a clinical trial i.e. Popula-
tion, Intervention/Control and Outcome. Best result for each metric is bolded.
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Fig. 3. Performance in terms of average micro and macro-f1 scores versus the norm of the noise
added to encoder representations. We scale the norm of the random noise prior to adding it.
Hence, the x-axis represents the norm of the noise as a fraction of the norm of the encoder
representation.

5 Results

We report results for all the models using various metrics in Table 2] CNN refers to a
standard CNN-based multitask classifier that directly maps an input text into the output
labels. Also, we use two separate variants of BERT, one that was trained on the Book-
Corpus and Wikipedia - as described in the original paper on BERT, and the other one
referred to as BERT-MeSH was pre-trained on a subset of MeSH-tagged biomedical
abstracts. We compare our proposed method with these competitive baselines.

Our proposed artificial instance based approaches uniformly beat the three compet-
itive baselines in terms of macro and micro values of precision, recall and f1 score, as
can be seen in Table [2] This means that the model not only correctly predicts frequent
labels, but also improves performance on infrequent labels. Please note that for biomed-
ical annotation tasks that have a large proportion of rare labels even slightly improving
macro-f1 score can be very challenging, therefore, these results are encouraging. In ad-
dition, we also compute the average of micro-fl score and macro-fl score for all three
PICO aspects in Table 3] Our proposed approach LISAAS+Noise beats all the other
baselines, especially in terms of macro metrics. Implying, the strategy of adding noise
to encoder representations helps the model classify rare labels more accurately.
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Another interesting insight is that pre-training BERT on biomedical abstracts (i.e.
MeSH-tagged Pubmed abstracts) performs better in comparison to simply using the
original BERT pre-trained on English Wikipedia. Therefore, we can safely infer that
pre-training encoders on biomedical abstracts can lead to slightly improved perfor-
mance over target biomedical tasks.

We have described the motivations for adding noise to encoder representations in the
Section on Methodology. We draw the noise vector from a standard normal distribution
and then scale its norm to a certain fraction of the norm of the encoder representation.
In order to find out what level of noise leads to best results, we plot the average micro-
fl and macro-fl scores for various values of this fraction. We tune this fraction over
the validation set and obtain a value of 1.0, i.e. the noise has the same norm as the
encoder vector representation. We were expecting the noise to be much lower for best
results, but contrary to our expectations larger noise was needed by the model to handle
artificial data.

6 Conclusion

We proposed a new method for biomedical text annotation that can work with limited
training data. More specifically, our model uses pre-trained bidirectional encoders for
mapping clinical texts to output concepts. Generally, such models require fine-tuning
on the target task, but there is often insufficient labeled data for fine-tuning. To address
this we proposed constructing extra artificial instances for fine-tuning using the labels
themselves. We describe various strategies for constructing these artificial instances.
Our proposed methodology leads to significantly improved results in comparison to
competitive baselines. We are releasing the codeﬂ used for these experiments.

Recently, there have been works that proposed models for generating input-text,
which can be used for training text classification models. These text-generation models
are trained using publically available datasets e.g. Wikipedia. Going forward, we can
build upon some of these text generation methods to generate artificial abstracts for
either a given biomedical concept or a group of biomedical concepts. The artificially
generated abstract can then be used to train the classifier. We would investigate these
research directions in the future.
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