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Quantification of Key Retinal Features in Early
and Late Age-Related Macular Degeneration

Using Deep Learning
BART LIEFERS, PAUL TAYLOR, ABDULRAHMAN ALSAEDI, CLARE BAILEY, KONSTANTINOS BALASKAS,
NARENDRADHINGRA, CATHERINE A. EGAN, FILIPAGOMES RODRIGUES, CRISTINAGONZÁLEZGONZALO,
TJEBO F.C. HEEREN, ANDREW LOTERY, PHILIPP L. MÜLLER, ABRAHAM OLVERA-BARRIOS, BOBBY PAUL,

ROY SCHWARTZ, DARREN S. THOMAS, ALASDAIR N. WARWICK, ADNAN TUFAIL, AND CLARA I. SÁNCHEZ
� PURPOSE: We sought to develop and validate a deep
learning model for segmentation of 13 features associated
with neovascular and atrophic age-related macular degen-
eration (AMD).
� DESIGN: Development and validation of a deep-
learning model for feature segmentation.
� METHODS: Data for model development were obtained
from 307 optical coherence tomography volumes. Eight
experienced graders manually delineated all abnormalities
in 2712 B-scans. A deep neural network was trained with
these data to perform voxel-level segmentation of the 13
most common abnormalities (features). For evaluation,
112 B-scans from 112 patients with a diagnosis of neovas-
upplemental Material available at AJO.com.
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cular AMD were annotated by 4 independent observers.
The main outcome measures were Dice score, intraclass
correlation coefficient, and free-response receiver oper-
ating characteristic curve.
� RESULTS: On 11 of 13 features, the model obtained a
mean Dice score of 0.63 ± 0.15, compared with 0.61 ±
0.17 for the observers. Themean intraclass correlation co-
efficient for the model was 0.66 ± 0.22, compared with
0.62 ± 0.21 for the observers. Two features were not eval-
uated quantitatively because of a lack of data. Free-
response receiver operating characteristic analysis demon-
strated that the model scored similar or higher sensitivity
per false positives compared with the observers.
� CONCLUSIONS: The quality of the automatic segmenta-
tion matches that of experienced graders for most fea-
tures, exceeding human performance for some features.
The quantified parameters provided by the model can be
used in the current clinical routine and open possibilities
for further research into treatment response outside clin-
ical trials. (Am J Ophthalmol 2021;226:1–12.� 2021
The Authors. Published by Elsevier Inc. This is an open
access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).)

A
GE-RELATED MACULAR DEGENERATION (AMD) IS A

complex disease affecting elderly people that can
lead to severe vision loss in the advanced (late)

stages.1 Therapy with intraocular injection of anti–
vascular endothelial growth factor (anti-VEGF) is effective
and reduces the risk of visual loss from the neovascular form
of late AMD, but the costs and number of required injec-
tions form a significant burden on health care systems
and patients.2–4 To reduce the treatment burden, the use
of personalized treatment intervals has been investigated,
which necessitates monitoring of disease activity to guide
treatment and follow-up interval choice.5–7 In the longer
term, what may limit visual outcomes in patients treated
for neovascular AMD is either related to the neovascular
process or caused by progression of the late atrophic form
of AMD.
The monitoring is typically performed by optical coher-

ence tomography (OCT), providing cross-sectional images
1LISHED BY ELSEVIER INC.
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of the retina that allow identification of fluid and other
pathomorphologic features, such as drusen, subretinal
hyperreflective material (SHRM), or atrophy.8–10 In
addition, the extent (size and distribution) of these
features can be measured from OCT, providing improved
diagnostic and prognostic information.11–13 However,
manual volumetric quantification of these features is
problematic because of the large amount of work
required.14 Therefore, treatment decisions in current clin-
ical routine rely largely on estimated parameters, which
are, particularly in comparing follow-up visits, prone to er-
ror, subjectivity, and bias.14,15

Machine learning algorithms can provide a powerful
support tool in automatic quantification of pathologic fea-
tures.9 Promising results in the application of deep learning
algorithms for automated classification of retinal dis-
eases,16,17 referral recommendation,18 and prediction of
conversion to neovascular AMD19 have already been
achieved. These models are generally developed to solve
a specific task, providing global (image or patient-level)
output for the input they receive. On the other hand,
models for volumetric segmentation provide labels to every
voxel in the input. This generates a precise morphologic
signature of the disease, from which features can be assessed
independently and in combination, taking into account
their size and spatial distribution. This can be used tomodel
interactions and to create standardized reports that are flex-
ible for adaptation to different clinical guidelines or treat-
ment protocols. Moreover, automated volumetric
quantification of these parameters enables comprehensive
study of structure/function correlation and the develop-
ment of prediction models for treatment response and
personalized treatment intervals.20,21

Several algorithms for the segmentation or quantifica-
tion of retinal pathology in OCT have been proposed. A
limitation of these algorithms is that they often only focus
on a single feature, or a subset of relevant features, with seg-
mentation of fluid receiving most attention.14,22–25 Other
pivotal work, in which segmentation of a larger set of
normal and abnormal structures is addressed, does not
provide quantitative validation of performance of the
segmentation model.18,19 Validation on large real-world
datasets is an important prerequisite, both for the integra-
tion of these algorithms into the current clinical workflow
and for their application in the study of response to anti-
VEGF therapy outside of clinical trials.

In this article, we present a novel deep learning model
for segmentation of 13 features commonly found in neovas-
cular and atrophic AMD. The model is developed and vali-
dated on a large dataset of OCT volumes collected from
secondary care providers in the United Kingdom (UK).
The performance of the model is compared against 4 inde-
pendent graders to validate the quality of the automatic
segmentation regarding overlap as well as quantification.
2 AMERICAN JOURNAL OF
METHODS

� STUDY POPULATION: Imaging data for this study were
obtained from 30,337 patients at 5 centers in the UK.
The institutional review board (NRES Committee
London, City Road and Hampstead, London) ruled that
approval was not required for this study because all data
were completely anonymized before being released to
research. The study adhered to the Declaration of Helsinki.
Eyes were scanned with either a Topcon 3D OCT-1000

or a Topcon 3D OCT-2000 (Topcon, Tokyo, Japan),
resulting in OCT volumes with a resolution of either
5123 128 A-scans or 2563 256 A-scans, covering a mac-
ular area of 6 mm 3 6 mm. Two independent sets were
created. First, we created a set that was used for model
development, in which all abnormalities in a sparse subset
of B-scans per OCT volume were manually delineated.
Second, we created a test set in which 4 graders indepen-
dently delineated all abnormalities in a single selected B-
scan per OCT volume and that was used to assess agree-
ment between graders and the model.
OCT scans were selected by querying the electronic

medical records database (Medisoft, Leeds, UK). To select
the set of scans that was used for development of the seg-
mentation model, the table with indications for treatment
with anti-VEGF was used to enrich the number of abnor-
malities (more details on the data selection procedure
can be found in the Supplemental Material). This set
included scans with retinal diseases other than AMD,
presenting the model with a diverse representation of fea-
tures. A total of 2712 annotated B-scans from 307 OCT
scans from 307 eyes were used for model development.
Data in the test set were restricted to patients presenting

with neovascular AMD. Inclusion criteria were eyes
receiving 2 mg aflibercept or 0.3 mg to 0.5 mg ranibizumab
for surgical indications associated with neovascular AMD
for patients >_50 years of age and a best-corrected visual acu-
ity of 6/12 to 6/96 or 25 to 73 Early Treatment Diabetic
Retinopathy Study (ETDRS) letters inclusively within
30 days of baseline (first injection), following guideline
NG82 of the UK National Institute for Clinical Excel-
lence. We excluded eyes that 1) received unlicensed Avas-
tin before baseline; 2) were ever affected by clinically
significant macular edema before baseline; 3) underwent
cataract surgery or phacoemulsification within 90 days of
baseline; or 4) had ever received macular laser therapy or
panretinal photocoagulation before baseline. This query
resulted in a set of 1798 patients eligible for inclusion in
the test set. The final test set comprised a random subset
of 112 OCT scans, from 112 eyes, independent of the
development data. Fifty-six scans were obtained from
treatment-naive eyes, just before the first anti-VEGF injec-
tion. The other 56 were acquired approximately 3 months
after the first injection. This provided a varied set of
JUNE 2021OPHTHALMOLOGY



TABLE 1. Included Features, Occurrence in Training, and
Test Seta

Feature

Training B-Scans

(N ¼ 2712), n (%)

Test B-Scans

(N ¼ 112), Mean 6 SD

Ellipsoid loss 930 (34.29) 84.8 6 10.9

IRF 639 (23.56) 31.0 6 5.8

PED 549 (20.24) 54.8 6 4.4

HRD 525 (19.36) 39.2 6 12.6

SRF 406 (14.97) 35.8 6 3.3

ERM 373 (13.75) 25.5 6 9.2

HTR 289 (10.66) 32.8 6 12.2

SDD-RPD 284 (10.47) 28.0 6 16.4

Drusen 265 (9.77) 48.8 6 11.8

RPE loss 249 (9.18) 31.2 6 18.3

OPL descent 150 (5.53) 14.2 6 15.0

SHRM 148 (5.46) 21.2 6 10.6

Fibrosis 81 (2.99) 5.0 6 3.2

ERM ¼ epiretinal membrane; HRD ¼ hyperreflective dot;

HTR ¼ hypertransmission; IRF ¼ intraretinal fluid; OPL ¼ outer

plexiform layer; PED ¼ pigment epithelial detachment; RPE ¼
retinal pigment epithelium; SD ¼ standard deviation; SDD-

RPD ¼ subretinal drusenoid deposits–reticular pseudodrusen;

SHRM ¼ subretinal hyperreflective material; SRF ¼ subretinal

fluid.
aFor the test set, the numbers refer to the means 6 SDs of

number of B-scans containing the feature as annotated by the

4 graders.
representations of different features, as the largest changes
in retinal morphology occur in the early phase of
treatment.26

� MANUAL ANNOTATIONS: Manual delineation of fea-
tures was performed at the Moorfields Reading Centre by
8 experienced graders (medical retinal fellowship–trained)
using a custom annotation platform. The graders had access
to both the OCT volume and a corresponding color fundus
image, and could zoom in for accurate delineation, using
either the mouse or a touch device. Graders were instructed
to delineate all abnormalities in a sparse set of 5 of the 128
or 256 B-scans per OCT volume (including the foveal B-
scan), or they could indicate, per B-scan, that it did not
contain any abnormalities. The annotation platform pro-
vided them with default labels for the most common abnor-
malities and allowed them to add new labels if they
encountered rare abnormalities. This was done to ensure
that all abnormalities were delineated. A document
containing instructions and examples of all abnormalities
of interest was circulated and discussed with the graders
before the start of the data collection process.

Four graders (a subset of the graders that contributed to
the data for model development) independently annotated
the scans in the test set using the same annotation plat-
form. To ensure that everyone graded the same B-scan, a
single B-scan per OCT volume was selected and high-
lighted in the viewer. This B-scan was selected from a
random normal distribution, centered on the central B-
scan and with a sigma of 0.75 mm (16 B-scans for volumes
with 128 B-scans). The higher probability for central slices
was chosen to increase the chances of finding features of
interest.

For evaluation of the model’s performance, the delinea-
tions of the graders were combined to create a consensus
reference. Manual delineation of most of the included fea-
tures is susceptible to the graders’ interpretation, and dis-
crepancies related to inexact outlining of lesion
boundaries can be considerable, especially for small lesions
with indistinct borders. By combining the delineations of
multiple graders, we could obtain a more reliable reference
standard. In addition, this enabled the distinction between
voxels that are genuinely misclassified vs voxels for which
the interpretation is ambiguous.

The delineations of 3 of the 4 graders were used to create
the reference, using the delineations of the fourth grader to
obtain an estimate of human performance. The set of the 3
reference graders was rotated, giving 4 estimates of perfor-
mance, both for the model and for manual grading. The
reference consisted of those voxels where >_2 of 3 reference
graders annotated the respective feature, whereas voxels
that were annotated by only 1 of the 3 graders were ignored.

� MODELDEVELOPMENT: Thirteen of the most commonly
annotated abnormalities were selected to be included in
the development of the automated segmentation model,
VOL. 226 A DEEP-LEARNING MODEL FOR FEA
henceforth referred to as features. Included features were:
intraretinal fluid (IRF), subretinal fluid (SRF), pigment
epithelial detachment (PED), SHRM, fibrosis, drusen and
drusenoid pigment epithelial detachments (PEDs; Drusen),
epiretinal membrane (ERM), outer plexiform layer descent
(OPL descent), ellipsoid loss, retinal pigment epithelium
loss or attenuation (RPE loss), hypertransmission (HTR),
hyperreflective dots and exudates (HRD), and subretinal
drusenoid deposits–reticular pseudodrusen (SDD-RPD).
Some of the features (such as fibrous and serous PED)
were combined, and features occurring in <81 B-scans in
the development data were not modeled. Table 1 summa-
rizes the number of occurrences of each feature in the
training and test sets.
The model was implemented as a convolutional neural

network, with a network architecture inspired by the varia-
tion of U-Net proposed by de Fauw and associates.18 It can
be characterized by an encoder–decoder structure with
shortcut-connections. The encoder converts the high-
resolution input into a low-resolution abstract representa-
tion. The original resolution is reconstructed in the decoder
path. Themodel operates mainly on 2-dimensional B-scans,
but for every B-scan contextual information from 9 adjacent
B-scans is included in the deeper layers.
The network architecture is fully convolutional,

which means it can be applied to images of any
3TURE SEGMENTATION IN AMD



FIGURE 1. Comparison of model and grader output. Selection of B-scans from the test set, with the original B-scan (A), the output of
the model (B), and the delineations of the 4 independent graders (E). For each subfigure, a subset of the features is shown to avoid
clutter. (A). Showing fibrosis (orange), pigment epithelial detachment (PED; green), subretinal hyperreflective material (pink),
drusen (red), and subretinal drusenoid deposits–reticular pseudodrusen (yellow). The graders give different interpretations to the
lesion, while the model highlights multiple possibilities. (B). Showing intraretinal fluid (blue), subretinal fluid (SRF; orange),
PED (green), and epiretinal membrane (brown). (C). Showing intraretinal fluid (blue), SRF (orange), PED (green), and drusen
(red). (D). Showing SRF (orange), subretinal hyperreflective material (pink), and PED (green). (E). Showing intraretinal fluid
(blue), SRF (orange), PED (green), hyperreflective dots (pink), and epiretinal membrane (brown). F. Showing subretinal drusenoid
deposits–reticular pseudodrusen (yellow), hyperreflective dots (pink), outer plexiform layer descent (green), ellipsoid loss (teal),
retinal pigment epithelium loss (blue), and hypertransmission (red).
horizontal or vertical size (rounded to a multiple of 256
voxels), and any number of B-scans (with a minimum of
9 B-scans). During training, patches of 9 3 512 3 512
voxels are used, requiring only the central B-scan to
be fully annotated. At test time, the volumes are padded
to 134 3 768 3 1024 voxels, and the model provides an
output for each included feature for every voxel. Ambi-
4 AMERICAN JOURNAL OF
guity of voxels that could represent multiple colocated
features is resolved by using a sigmoid nonlinearity in
the output layer. This allows the model to predict
output probabilities that are not necessarily mutually
exclusive: each input voxel can have a high probability
for multiple features. This property can be used at infer-
ence time to discern voxels for which the output class is
JUNE 2021OPHTHALMOLOGY



FIGURE 2. Example of the model output on a full optical coherence tomography (OCT) volume. The images on the left represent the
color fundus image and en face projection of the optical coherence tomography volume, followed by 13 overlays representing the 13
segmented features. The brightness of the colors represents the number of segmented voxels per A-scan. (A) A single B-scan (indi-
cated with a green line on the enface optical coherence tomography image) with overlays for all features. ERM [ epiretinal mem-
brane; HRD [ hyperreflective dot; HTR [ hypertransmission; IRF [ intraretinal fluid; OPL [ outer plexiform layer; PED [
pigment epithelial detachment; RPE[ retinal pigment epithelium; SDD[ subretinal drusenoid deposit; SHRM[ subretinal hyper-
reflective material; SRF [ subretinal fluid.
ambiguous (eg, large drusen vs PED, or SHRM vs
fibrosis).

The procedure for tuning the parameters of the model
(training) consisted of 2 stages. The goal of the first stage
was to get amodel that is sensitive to each of the output fea-
tures, by presenting it with a large variety of examples, us-
ing data augmentation. During the second stage, the focus
was on false positive reduction and fine-tuning towards the
expected presentation of data at test time.

During both stages, atrophy-related classes (OPL-
descent, Ellipsoid loss, RPE-loss, and HTR) were treated
separately. Because the axial (vertical) extent of the
feature in the B-scan is not properly defined, and only
the horizontal extent of the lesion is of interest, these
were annotated as a line, roughly at the location where
VOL. 226 A DEEP-LEARNING MODEL FOR FEA
the feature was observed. During training, voxels in a re-
gion of 300 voxels above and below the annotated line
were ignored (ie, no loss was calculated for those voxels).
More implementation details can be found in the
Supplemental Material.
The development data were split into 5 folds, of which 4

folds were used for training the model and 1 for monitoring
its performance. By rotating the folds, 5 different models
were obtained. An ensemble of the 5 models constituted
the final segmentation model that was applied to the test
set for performance evaluation. The ensemble was created
by averaging the output of the individual models, after they
were calibrated on their respective validation folds to
resolve differences in sensitivity between the features and
models.
5TURE SEGMENTATION IN AMD



TABLE 2. Dice and ICC Scores on the Test Set for Model and Observer

Feature (n)

Dice ICC

Model Observer Model Observer

Ellipsoid loss (930) 0.768 6 0.005 0.714 6 0.080 0.638 6 0.029 0.444 6 0.100

IRF (639) 0.637 6 0.022 0.596 6 0.048 0.873 6 0.005 0.728 6 0.124

PED (549) 0.838 6 0.003 0.852 6 0.007 0.943 6 0.003 0.942 6 0.013

SRF (406) 0.783 6 0.007 0.828 6 0.040 0.900 6 0.013 0.915 6 0.069

ERM (373) 0.705 6 0.016 0.715 6 0.086 0.772 6 0.043 0.729 6 0.097

HTR (289) 0.491 6 0.053 0.517 6 0.041 0.424 6 0.076 0.443 6 0.037

Drusen (265) 0.394 6 0.026 0.491 6 0.060 0.338 6 0.036 0.536 6 0.127

RPE loss (249) 0.471 6 0.042 0.364 6 0.096 0.381 6 0.055 0.318 6 0.114

SHRM (148) 0.540 6 0.019 0.410 6 0.132 0.685 6 0.052 0.548 6 0.269

ERM¼ epiretinal membrane; HTR¼ hypertransmission; IRF¼ intraretinal fluid; PED¼ pigment epithelial detachment; RPE¼ retinal pigment

epithelium; SHRM ¼ subretinal hyperreflective material; SRF ¼ subretinal fluid.

Values represent means 6 standard deviations for the 4 rotations of reference standard.
� STATISTICAL ANALYSIS: To measure overlap in
segmented areas, we used the Dice similarity metric, which
is defined as the size of the intersection of 2 areas divided by
their average individual size. Therefore, a Dice-score of 1
indicates perfect agreement and a score of 0 indicates
disjoint areas. For IRF, SRF, PED, SHRM, and drusen,
overlap was calculated on the voxel level. For ellipsoid
loss, HTR, RPE-loss, and ERM, only the lateral location
(A-scan) of the feature was taken into account. That is,
the output of the model was binarized at the optimal
threshold, and A-scans with >_1 voxel above the threshold
were regarded as positives. Because not every feature is pre-
sent in every B-scan in the test set, the Dice score is not al-
ways well-defined. Therefore, we calculated, for each
feature, a single Dice score for the entire test set, rather
than separately per B-scan. The Dice score was not
regarded as an appropriate metric for SDD-RPD and
HRD, because of their small and focal nature. Therefore,
rather than measuring overlap on pixel level, we counted
the number of detected/missed features within each B-
scan and analyzed this using free-response receiver oper-
ating characteristic curves.

The intraclass correlation coefficient (ICC) for absolute
agreement was used to measure agreement in size of the re-
gions. The reference area was calculated as the average area
of the 3 graders, and the fourth grader was used to estimate
human performance. Cases with no segmentation were
included as zero area.

Furthermore, by combining the atrophy-related fea-
tures, it is possible to assess the model’s performance in
detecting and quantifying complete RPE and outer retinal
atrophy (cRORA) as defined by the consensus definition
for atrophy associated with AMD on OCT.13 Following
this definition, a B-scan is considered to contain cRORA
if it contains 1) a region of HTR >_250 mm in diameter; 2)
a zone of attenuation or disruption of the RPE >_250 mm
6 AMERICAN JOURNAL OF
in diameter; and 3) an area of ellipsoid zone loss.
Following these criteria, we constructed the cRORA
feature from the segmentation of RPE-loss, HTR, and
ellipsoid-loss, for both the model and the graders. The
performance of the model for the detection of cRORA
at B-scan level is compared against a reference that re-
quires the consensus of 3 out of 4 graders (>_75% agree-
ment on the presence or absence of cRORA).
Furthermore, the model’s quantification of the extent of
cRORA is compared directly with each grader’s
assessment.
RESULTS

QUALITATIVE RESULTS OF THE OUTPUT OF THE SEGMENTA-

tion model are shown in Figures 1 and 2. More results can
be found in Supplemental Figures 1–3, and results can be
explored interactively online (Supplemental Files
Interactive1.html and Interative2.html).
Quantitative results for the Dice score and ICC can be

found in Table 2, where we summarize, for each feature
and for both the model and observer, the mean and stan-
dard deviation of the 4 metric scores obtained by rotating
the reference. In addition, Bland–Altman analysis for
each feature can be found in the Supplemental Material.
Fibrosis and OPL descent were excluded from the evalua-
tion because no reliable performance estimate could be
made. This was because of the low numbers of annotated
occurrences and large grader disagreement (for both fea-
tures, there were no B-scans in the test set where the
graders unanimously agreed on its presence). Averaged
over the remaining features, the model obtained a Dice
score of 0.63 6 0.15 (median 0.64) compared with 0.61
6 0.17 (median 0.60) for the observers. The average ICC
JUNE 2021OPHTHALMOLOGY



FIGURE 3. Difference in metric score between model and observer for each of the features. Per feature, the distribution of the dif-
ferences (model minus observer) for Dice (A) and intraclass correlation coefficient (ICC) (B) are displayed. Positive values indicate
that the model performs better than the observers. The vertical lines demarcate the 95% confidence intervals of the bootstrapped sam-
ples. The dot (Dice) or cross (ICC) represents the difference in actual metric on the full test set as summarized in Table 2. ERM [
epiretinal membrane; HTR [ hypertransmission; IRF [ intraretinal fluid; PED [ pigment epithelial detachment; RPE [ retinal
pigment epithelium; SHRM [ subretinal hyperreflective material; SRF [ subretinal fluid.
score for the model was 0.66 6 0.22 (median 0.69)
compared with 0.62 6 0.21 (median 0.55) for the
observers.

Differences in metric score between model and observer
for each of the features are summarized in Figure 3, for both
evaluation metrics. Per feature, the distribution of the dif-
ferences (model minus observer) was obtained using boot-
strapping (1000 bootstrap samples). Differences between
model and observer Dice score were within a 95% confi-
dence interval for all features except ellipsoid loss, where
model performance was higher (P ¼ .03). Regarding ICC,
model performance was higher for IRF (P ¼ .04) as well
as ellipsoid loss (P ¼ .006), lower for drusen (P ¼ .03),
and within the 95% confidence interval of the observer
score for other features.

Performance for HRD and SDD-RPD are assessed using
free-response receiver operating characteristic curves,
which can be found in Figure 4. This figure highlights the
sensitivity for both the observers and the model when oper-
ating at varying false positive rates, with confidence inter-
vals obtained by bootstrapping (1000 bootstrap samples).
For both HRD and SDD-RPD, the 95% confidence inter-
vals of the model overlap with the confidence intervals
for each grader. For HRD, the model obtains a sensitivity
that is higher than each grader when operating at the
same false positive rate.
VOL. 226 A DEEP-LEARNING MODEL FOR FEA
Following the consensus of 3 out of 4 (>_75%) graders,
cRORA was present in 7 of 112 B-scans and absent in 96
B-scans (leaving 9 B-scans ambiguous). The model
detected cRORA in 13 B-scans, which comprised 6 of
the 7 B-scans with cRORA (sensitivity 86%), and 3 of
the 96 B-scans without cRORA (specificity 97%). Com-
parison of the extent (horizontal diameter within a B-
scan) of the cRORA for the model and graders is shown
in Figure 5, which shows there is considerable variability
in assessing diameter of cRORA.
DISCUSSION

WE PRESENT A DEEP LEARNING MODEL FOR SEGMENTATION

of 13 features commonly found in neovascular and atrophic
AMD that was developed and validated on a large real-
world dataset. The model’s performance is comparable to,
and for some features possibly better than, independent ob-
servers, both in terms of overlap and correlation between
segmented area and reference area. By comparing against
the combined output of multiple observers, we were able
to set a reference standard that is more reliable than that
of a single observer. Moreover, by rotating the reference
standard, the performance of the model was not just
7TURE SEGMENTATION IN AMD



FIGURE 4. Free-response receiver operating characteristic curves for hyperreflective dots (HRDs) and exudates and subretinal
drusenoid deposits–reticular pseudodrusen (SDD-RPD). The line represents model sensitivity at different thresholds, with the
shaded area representing the 95% confidence interval, obtained by bootstrapping. The dots represent the 4 graders, with error
bars representing 95% confidence intervals.

FIGURE 5. Extent of complete retinal pigment epithelium and outer retinal atrophy (cRORA) on the 13 cases with cRORA detected
by the model, ordered by their diameter. The diameter of cRORA is obtained from the diameter of colocated retinal pigment epithe-
lium loss and hypertransmission, conditioned on the presence of any ellipsoid loss in the same B-scan. The black dots represent the
diameter of the model and the colored shapes represent the diameters obtained by the 4 graders for the same cases.
compared against a single observer whomight, for example,
grade more conservatively than others. Eight independent
graders contributed to the data for model development,
which reduced the risk that the subjective opinion of a spe-
cific grader transferred to the model. However, because the
graders that annotated the test set also contributed to the
development data, future external validation of the perfor-
8 AMERICAN JOURNAL OF
mance of the presented model may still be required for
some applications.
The set of included features in this study is larger than

that of most previous work on segmentation in OCT,
which predominantly focused on fluid.14,24,25 The inclu-
sion of separate constituent features of atrophy (ellipsoid
loss, RPE-loss, and HTR) is another unique aspect of this
JUNE 2021OPHTHALMOLOGY



FIGURE 6. Example of segmentation of intraretinal fluid for the model (A), compared to the 4 graders (B). The overlap between the
output of the model and each grader is higher on average than the average overlap between each pair of graders.
study, distinguishing it from other models that include a
large set of features.18,19 Direct comparison of performance
between models is still challenging because not all models
are evaluated using the same metrics, and there is variation
in the nature of the data that are used, for example in OCT
vendors, included diseases, or annotated features.

In our evaluation, there is a relatively large variability in
performance between features, both in terms of Dice score
and ICC, with model scores (Dice/ICC) ranging from
0.394/0.338 for drusen to 0.838/0.943 for PED (Table 2).
It can be observed from this table that the standard devia-
tion for the model is generally lower than for the observer.
This is an artefact of the evaluation scheme where the
reference and observers are rotated. The standard deviation
for the observer can be interpreted as a measure for the vari-
ability in grader agreement (ie, agreement between graders
can depend on the subset of graders included in the
reference).

Although levels of agreement vary greatly between fea-
tures, model and observer scores generally follow the
same pattern. Therefore, to put model performance in
perspective, it is more informative to look at the difference
with the observer rather than the absolute metric value.
These differences are shown in Figures 3 and 4. The
performance of the model appears to exceed that of the
graders for some of the features, such as IRF, ellipsoid
loss, and HRD. This could be considered remarkable,
because the model was trained on data that were
generated by the same graders. We identify 3 settings in
which the segmentation of the model could outperform
VOL. 226 A DEEP-LEARNING MODEL FOR FEA
that of a human grader. First, the model could have
converged to produce results of an average grader, which
is closer to either grader separately than graders between
themselves (see for example Figure 6). Second, graders
might have overlooked small features, such as HRD, lead-
ing to lower sensitivity. Third, some of the differences be-
tween graders are related to inaccurate delineation of lesion
borders, while the output of the model naturally and
smoothly follows lesion boundaries.
Performance of the model is slightly below observers’

performance for drusen and drusenoid PED. Although
drusen are important features related to progression from
intermediate to advanced AMD, they are less relevant
once the neovascular stage has set in. Therefore, implica-
tions of the lower performance for the purpose of this study
are limited. A possible explanation of the lower perfor-
mance is a relative lack of representative training data, as
the training data were selected based on eyes receiving
treatment with anti-VEGF. The presumption that more
training data will improve model performance is further
corroborated by the excellent performance of the model
for IRF and ellipsoid loss, which were the 2 features with
most samples in the training data. Another consideration
is that larger variability in agreement between observers
could also result in favorable performance for the model.
Implementation of artificial intelligence could therefore
provide a solution to resolve inherent discrepancies caused
by subjective human assessment.
Plausibility of the models’ output in ambiguous regions is

highlighted in some examples in Figure 7. Although all
9TURE SEGMENTATION IN AMD



FIGURE 7. Plausibility of model’s output based on the grade of agreement between observers, shown for intraretinal fluid (A) and
subretinal fluid (B). On the left is the original image; in the center, the heatmap of the graders, with brighter indicating a higher agree-
ment among graders (more graders annotated the voxel); on the right the output of the model, with brighter indicating higher likeli-
hood to belong to the feature as estimated by the model. Assigned likelihood of the model correlates with the agreement of the graders.

FIGURE 8. Fully automatically generated overview of personal disease history, showing quantified morphologic parameters, visual
acuity (black line), and treatment history (vertical lines and black and red dots). (A) A case with initially recurring fluid followed by
onset of atrophy. (B) A case with incidental recurrence of subretinal fluid and enduring good visual function. HRD[ hyperreflective
dot; HTR [ hypertransmission; IRF [ intraretinal fluid; PED [ pigment epithelial detachment; RPE [ retinal pigment epithe-
lium; SDD-RPD [ subretinal drusenoid deposits–reticular pseudodrusen; SHRM [ subretinal hyperreflective material; SRF [
subretinal fluid.
quantitative analyses in this study are carried out on binary
images, the actual output of the model represents a real-
valued probability estimate of presence of each feature for
every voxel. This probability estimate correlates with the
agreement of the graders: the model assigns higher scores
to voxels with univocal grader labels. These scores can be
used to select an operating point for the model at various
levels of sensitivity, which can be tuned depending on
the application.
10 AMERICAN JOURNAL OF
Although there are numerous potential applications,
this study does not provide a direct validation against a
clinically relevant outcome. As an example of a practical
application, the model could generate reproducible results
for improved reporting and decision making when inte-
grated in the current clinical care. Examples of fully auto-
matically generated personal disease history, obtained by
applying the model to all available OCT volumes for pa-
tients receiving anti-VEGF treatment, can be found in
JUNE 2021OPHTHALMOLOGY



Figure 8. This visualization of changes in retinal
morphology could provide the treating clinician with valu-
able information in guiding treatment decisions, for
example in determining treatment intervals or when
considering switching to different treatments or guiding
entry into clinical trials. Besides the added value of auto-
matically estimated parameters in clinical routine, auto-
matic segmentation of retinal morphology could
constitute a pivotal role in the study of underlying disease
mechanisms and the identification of targets for new ther-
apeutic strategies.9,21

A limitation of this study is that the model has been vali-
dated only on neovascular AMD. However, training data
included other diseases in which anti-VEGF therapy is
used, such as diabetic macular edema or retinal vein occlu-
sion.Validation on thesediseases is left for futurework.More-
over, the model was developed and validated specifically on
Topcon OCT volumes. Application of the model to other
OCT vendors has not been explored but would likely require
more data and minor adaptations in methodology.18

Another possible limitation, when applying the
presented model on large-scale real-world data, without
VOL. 226 A DEEP-LEARNING MODEL FOR FEA
any human supervision, is that the model is not able to
detect possible scanning artefacts or poor image quality.
These factors could have a negative impact on the reli-
ability of the produced quantified parameters. Furthermore,
the model does not produce quantified results of the loca-
tion of features with respect to the foveal center, which
would allow for more specific summarizing of volumetric
measures and improved diagnostics. We are currently
investigating how the model can be augmented to also pro-
vide an estimate for scan quality and the location of the
fovea within the scan.
In conclusion, we present a fully automatic segmentation

model for 13 features related to neovascular AMD that per-
forms at the level of experienced graders. The application
of this model will open numerous new opportunities for
study of morphologic retinal changes and treatment effi-
cacy in real-world settings. Furthermore, it can facilitate
structured reporting in the clinic, which will reduce subjec-
tivity in clinicians’ assessments and enable implementation
of refined treatment guidelines. This could ultimately lead
to increased speed of interpretation, a reduction of cost,
and improved personalized care.
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