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Abstract—Spectral computed tomography acquires energy-
resolved data that allows recovery of densities of constituents
of an object. This can be achieved by decomposing the measured
spectral projection into material projections, and passing these
decomposed projections through a tomographic reconstruction
algorithm, to get the volumetric mass density of each material.
Material decomposition is a nonlinear inverse problem that has
been traditionally solved using model-based material decompo-
sition algorithms. However, the forward model is difficult to
estimate in real prototypes. Moreover, the traditional regular-
izers used to stabilized inversions are not fully relevant in the
projection domain.

In this study, we propose a deep-learning method for material
decomposition in the projection domain. We validate our method-
ology with numerical phantoms of human knees that are created
from synchrotron CT scans. We consider four different scans for
training, and one for validation. The measurements are corrupted
by Poisson noise, assuming that at most 105 photons hit the
detector. Compared to a regularized Gauss-Newton algorithm,
the proposed deep-learning approach provides a compromise
between noise and resolution, which reduces the computation
time by a factor of 100.

Index Terms—Spectral computed tomography, Convolutional
neural network, Material decomposition, Knee phantom
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I. INTRODUCTION

Spectral computed tomography (SCT) acquires energy-
resolved data based on photon-counting detectors, which al-
lows decomposition of a sample into maps of its different
materials [1], [2]. Among other applications [3], SCT has been
proposed for detection of atherosclerosis in cardiovascular
disease [4], [5], and more recently for osteoarthritis, with
iodine used for contrast [6]. With SCT, the contrast between
the different types of soft tissues is improved.

Material decomposition is a nonlinear, nonconvex, ill-posed
inverse problem [7]. Regularized variational methods are state-
of-the-art for material decomposition [7], [8]. The regularized
Gauss-Newton (RGN) method was shown to outperform the
commonly used maximum likelihood estimation. In our pre-
vious study, we investigated the use of the RGN approach for
application to osteoarthritis [9]. However, such model-based
material decomposition methods require knowledge of the
detector response function of the scanner, the source spectrum,
and the attenuation of each material with the energy, which
cannot be accurately known in practice. Moreover, the detector
response function suffers from pixel-to-pixel deviations, and
can change over time [1], [8].

Deep-learning methods have been proposed to solve inverse
problems, including image denoising and image reconstruc-
tion, with limited or noisy data [10]–[12]. Recently, deep-
learning methods were proposed to solve the material decom-



position problem in the image domain [13]. As decomposition
in the image domain can lead to artifacts, decomposition
in the projection domain is to be preferred [3]. However,
decomposition in the projections has not been addressed
using deep-learning approaches. Moreover, in previous stud-
ies, deep-learning methods were not compared to variational
approaches.

In this study, we propose a deep-learning approach for
solving the material decomposition problem of SCT in the
projection domain, and we compare this to the RGN method
[8], [9]. Our deep-learning approach is based on a U-net
convolutional neural network [14], to decompose projections
at different energy bins into projections for different materi-
als. Our method is assessed for application to osteoarthritis
using unique human knee numerical phantoms created from
synchrotron CT acquisitions that were presented in [9]. The
methods are then compared in terms of mean squared error
(MSE), structural similarity (SSIM), and noise, computed as
the standard deviation within a homogeneous region.

II. SPECTRAL COMPUTED TOMOGRAPHY

A. Forward model

We assume an object that is composed of M materials with
V voxels scanned with a sensor that acquires I energy bins
over P pixels and Θ projections. Let

s = (s1
1,1, . . . , s

θ
i,p, . . . , s

Θ
I,P )>

be the spectral measurement vector, where sθi,p is the data
acquired in the i-th energy bin, at the p-th pixel, and for the
θ-th projection. Similarly, let

ρ = (ρ1,1, . . . , ρm,v, . . . , ρM,V )>

be the unknown mass densities vector, where ρm,v is the mass
density of the m-th material at the v-th voxel of the sample.
We note

s = G(ρ) (1)

where G is the full forward model that maps ρ onto s. The
goal of SCT is to invert (1).

B. Two-step inverse problem

The forward model G can be seen as the composition of
the X-ray transform X and a spectral mixing operator F . The
X-ray transform X applies to each material independently. If
we let am = (a1

m,1, . . . , a
θ
m,p, . . . , a

Θ
m,P )> be the projected

mass density of the m-th material, we have

am = X(ρm), 1 ≤ m ≤M, (2)

where ρm = (ρm,1, . . . , ρm,v, . . . , ρm,V )> is the mass density
of the m-th material.

Spectral mixing applies to each projection angle indepen-
dently; i.e.,

sθ = F (aθ), 1 ≤ θ ≤ Θ, (3)

where sθ = (sθ1,1, . . . , s
θ
i,p, . . . , s

θ
I,P )> is the spectral

measurement for the θ-th projection angle, and aθ =

(aθ1,1, . . . , a
θ
m,p, . . . , a

θ
M,P )> are the mass densities projected

at the θ-th projection angle. We consider the standard nonlinear
mixing used in [1], [8]; i.e.,

sθi,p =

∫
E

n0(E)di(E) exp

[
−

M∑
m=1

aθm,pτm(E)

]
dE (4)

where E is the energy range of the source, n is the source
energy spectrum, di is the detector response function of
the i-th bin, and τm is the m-th material mass attenuation
coefficient.

Equations (2) and (3) suggest a two-step approach where
the spectral projections are first decomposed into material
projections, and then a standard CT algorithm is used to
reconstruct each material density volume from the decomposed
material projections. The first step, which is referred to as
material decomposition, is the main focus of this work.

C. Model-based material decomposition

Material decomposition aims to invert (3). Assuming the
sample is composed of M = 2 materials, as bone and soft
tissue here, we seek the solution by minimizing the cost
function

C(aθ) =
1

2
||F (aθ)− sθ||2W + αR(aθsoft, a

θ
bone), (5)

where α is a regularization parameter, R is a regularization
functional, and aθsoft and aθbone are the projected mass densities
of soft tissues and bone, respectively. The first term of the cost
function is a weighted least squares data fidelity term, with
W = Diag(1/sθ), which is chosen to handle data corrupted
by Poisson noise [15]. The second term is the regularization
term that conveys prior knowledge of the solution. As in
[8], regularization consists of first-order and second-order
Tikhonov regularization for bone and soft tissue, respectively,
which has a denoising effect.

To minimize (5), we use the Gauss-Newton algorithm
implemented in the Matlab toolbox SPRAY [8], [16].

III. DEEP LEARNING FOR MATERIAL DECOMPOSITION

A. Proposed approach

In this study, we propose to learn mapping from the mea-
sured spectral projection to the projected material maps; i.e.,

hβ : ŝθ 7→ aθ (6)

where ŝ is the normalized data with ŝθ = ln
(
s̄ θ/sθ

)
, where

s̄ θ represents the measurement in the absence of the object,
i.e., s̄ θ = F (0), and β represents the parameters of the
mapping. The log allows the data to be linearized, as the CT
model is exponential [17], and the data space to be restricted
[18]. As shown in Fig. 1, we consider a convolutional neural
network with a U-net architecture.

Given N training input-output pairs {ŝ(n),a(n)}, 1 ≤ n ≤
N , where N is the number of samples multiplied by the



Fig. 1: U-Net architecture used to recover M material images from I spectral images at a given projection angle.

Fig. 2: Representative numerical phantom of the material mass
densities obtained from the synchrotron CT scans. Single slices
are shown for soft tissue (left) and bone tissue (right).

number of projections Θ, we consider the following loss
function

L(β) =

N∑
n=1

‖hβ(ŝ(n))− γa(n)‖2. (7)

where γ is a normalization parameter to put soft tissue and
bone at the same level. This provides weighting of 8 for the
soft tissue image, and 3 for the bone image. This weighting
corresponds to the average maximum level of each material
map. The inputs of the networks are I = 4 energy channels,
each of size 51 × 161, and the outputs are M = 2 material
channels, each of size 51 × 161. We minimize (7) using the
adaptive moment estimation, or Adam algorithm [19], using
PyTorch [20] running on a GeForce NVIDIA RTX 2080 Ti
graphics card. The learning rate is set to 10−3, and the batch
size to 15. We use an early stopping criterion of 200 epochs.

B. Data

1) Knee acquisitions: Scans of eight knee samples at
different stages of osteoarthritis were provided by the Institut
d’Anatomie Paris Descartes. All of the knees were scanned
using the synchrotron CT at the European Synchrotron Ra-
diation Facility (Grenoble, France) [21]. The synchrotron
CT scans were performed with a voxel size of 50µm and
at 55 keV, an energy that provides improved contrast for
cartilage visualization. The study was approved by the Ethics
Committee of Descartes University, Paris.

2) Generation of material mass density phantoms: We
create eight realistic numerical phantoms from the synchrotron
CT scans. All of the synchrotron volumes are subsampled by a

factor of 5 to reach a resolution of 250 µm, which corresponds
to the resolution of current SCT prototypes. For each knee,
we automatically segment soft tissue and bone using a K-
means algorithm [22]. After segmentation, the density of each
material is taken from the synchroton volume, assuming that
only one material is present in each voxel. Fig. 2 shows a
representative slice of the numerical phantoms obtained.

3) Training data: The material mass density phantoms
are used to simulate SCT data according to (2) and (3).
First, we again subsample the volumes, here by a factor
of 4, to obtain a final resolution of 1 mm. We implement
data augmentation by rotating the volumes around an axis
perpendicular to the detector plane (−10◦ to 10◦). We also
perform two-dimensional scaling of the volumes using a factor
ranging from 0.55 to 1.45. Then, the material density volumes
are projected according to (2). We use the Matlab function
radon and consider Θ = 720 projections over 180◦. Each
volume is augmented to obtain 156 volumes, which leads to
N = 156 × 720 = 112, 320 projections of size 51 × 161.
Finally, spectral measurements are simulated according to (4)
using the Matlab toolbox SPRAY [16]. We consider the same
detector response function as in [1] (I = 4 energy bins) and a
conventional 120 kVp X-ray source. Spectral measurements
are corrupted by Poisson noise; the maximum number of
photons is set to 105.

4) Training procedure: The knee phantoms are split as fol-
lows: four for training (449,280 projections), one for validation
(720 projections), and three for testing (2,160 projections). We
use the training dataset to update the weights of the network,
the validation dataset to control for overfitting during training,
and the test dataset to determine whether our algorithm can
be generalized to unseen samples.

After material decomposition, we reconstruct the three-
dimensional density volumes using filtered back projection
(Matlab function iradon).

IV. RESULTS

Fig. 3 shows the material projections decomposed using
the model-based RGN algorithm and the convolutional neural
network methods, together with the decompostion error. For
the RGN method, we display the results for two regularization
parameters (α = 0.03, α = 3). Table I gives the MSE,
SSIM, and noise values for both of the decomposed material



projections at 90◦ (as it is consistent along all projections),
and the reconstructed material maps. We evaluate noise as
the standard deviation in a (homogeneous) region of interest.
The SSIM is also computed in a homogeneous region of
interest, and the MSE is computed for the whole projection.
The RGN algorithm with the lowest regularization parameter
has higher MSE and SSIM, but also higher noise, compared
to the higher regularization parameters. U-Net leads to low-
noise decompositions with good compromise for the MSE and
SSIM. In Fig. 3, it can be seen that for the RGN method, a
low regularization parameter gives noisy decomposition and
a high regularization parameter gives blurry images. Visually,
U-net gives better results, as the images have both low noise
and sharp detail. Moreover, U-net decomposes a whole knee,
i.e., 720 projections, in 40 s, while the RGN method needs 1
h for central processing units. Using graphic processing units,
the U-net decomposition of the whole knee is reduced to only
2 s.

V. DISCUSSION

Here, we propose a convolutional neural network approach
based on the U-net architecture for learning material decompo-
sition for SCT, and we compare this to the RGN method. The
algorithms are assessed on numerical phantoms created from
human knee synchrotron CT data [9]. A similar approach has
already been applied for material decomposition in the image
domain [13]. Here, we applied the projection domain, and we
show that this gives comparable results to those for the model-
based RGN method. Moreover, the RGN method decomposes
materials under the assumption of ideal energy responses of
the scanner, which is not realistic in practice. Thus, we expect
model-based approaches to underperform learning approaches
in nonideal situations.

The RGN method with low regularization leads to the
best results in terms of the MSE and SSIM, but the images
are highly corrupted by noise. The RGN method with high
regularization is better in terms of noise, but the images
are very blurred. U-net gives a good compromise between
noise and recovery of detail. This can be explained because

TABLE I: Quantitative data for the decomposed projections
and the reconstructed materials.

Projected
soft tissue

Projected
bone

Soft
tissue

Bone

MSE
RGN

α = 0.03
0.020 0.009 0.0013 0.0006

RGN α = 3 0.021 0.010 0.0038 0.0018
U-net 0.038 0.015 0.0032 0.0015

SSIM
RGN

α = 0.03
0.89 0.84 0.96 0.96

RGN α = 3 0.91 0.67 0.51 0.52
U-net 0.91 0.72 0.69 0.69

Noise
RGN

α = 0.03
0.76 0.43 0.32 0.26

RGN α = 3 0.74 0.39 0.18 0.18
U-net 0.71 0.46 0.21 0.19

U-net implictly learns the prior probability density of the
decomposed materials, while this is assumed for the RGN
method. Moreover, deep learning allows the computation time
to be reduced (after training) by a factor of 100 compared to
the RGN method.

Our methodology has some limitations. The low resolution
of the phantom used does not allow us to visualize all of the
detail in the cartilage, and thus to assess possible improve-
ments in cartilage characterization. The level of noise used
can also be considered to be low in comparison to realistic
acquisition conditions. In addition, the simulations used are
phantoms with only two materials.

For further studies, we will assess the potential applications
of the proposed approach for early detection of cartilage dete-
rioration in osteoarthritis. For this, we will use high-resolution
images and lower numbers of photons, which corresponds to
more realistic conditions. We expect that the convolutional
neural network approach will be more robust to noise, while
the RGN method will be highly compromised. To visualize the
finer structures, such as the cartilage in the knee joint, we will
need to work at the same resolution as the SCT (i.e., 250µm).
In addition, this method should be validated on experimental
data. Finally, a possible improvement to the proposed method
will be to decompose the images into three materials within
the cartilage, which would lead to automatic segmentation of
the cartilage.

VI. CONCLUSION

In this study, we propose a U-net approach for material
decomposition in the projection domain for application to
knee osteoarthritis. We compare this to a RGN method. Our
neural network provides a compromise between image noise
and recovery of detail, which can be essential for detection
of cartilage deterioration in osteoarthritis. In addition, our
approach is rapid and does not require knowledge of the energy
response of the scanner, which makes it a good candidate for
future scanners.
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