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We present a study in which mathematicians and undergraduate students were asked

to explain in writing what mathematicians mean by proof. The 175 responses were
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via further qualitative analysis, to identify which features of responses the judges col-

lectively valued. We establish the reliability of comparative judgement in this context

and provide evidence for the validity of this approach to investigating beliefs about

proof. Substantively, our findings reveal that despite the variety of views found in the

literature, mathematicians broadly agree on what people should say when asked what
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1. Introduction

Proof is central to mathematics education and is a well-known stumbling block

for many students (Moore, 1994; Weber, 2001; Alcock and Weber, 2005). It has been

argued that one reason for this is that students’ beliefs about proof often do not align with

those accepted by the community of practising mathematicians (Dawkins and Weber,

2017; Harel and Sowder, 1998; Healy and Hoyles, 2000; McLeod, 1992). However,

despite the growing literature on proof, we have limited evidence documenting students’

beliefs (Stylianou et al., 2015). Relevant research does exist: Healy and Hoyles (2000)

for instance, asked a large number of secondary school students for ‘written descriptions

of the purposes of proof’ (p. 404). Their coding, however, was based on a simplified

version of the taxonomy of de Villiers (1990) and captured only purposes related to

truth, explanation or discovery. Questionnaire-based studies also offer only coarse-

grained analyses: Stylianou, Blanton and Rotou (2015), for instance, administered a

closed-form test of proof conceptions comprising five prejudged multiple-choice items.

To understand the role of proof conceptions in learning, Stylianou et al. compared these

test scores to self-efficacy beliefs and attainment on more standard proof comprehension

tasks. Both Healy and Hoyles and Stylianou et al. provide important initial insights

into students’ conceptions of proof and their role in the complex process of learning.

However, both approaches necessarily miss the variety in beliefs about proof; we lack

fine-grained analyses of what individuals say when offered the opportunity to express

their views freely. Moreover, studies to date provide no systematic empirical evidence

on mathematicians’ beliefs about proof. This weakens investigations we might wish to

undertake in which student and expert views are compared.

We address these gaps in the literature by investigating beliefs about proof as

expressed by undergraduate and research-active mathematicians. Our study asked

students and mathematicians to ‘explain what mathematicians mean by proof in 40

words or less’. We evaluated the responses to the task using a technique based on

comparative judgement which we describe later in the manuscript. First, we summarise

the literature on beliefs and mathematical proof.
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2. Theoretical Background

2.1. Defining mathematical proof

Understanding beliefs about proof is not straightforward, in part because a definition

of proof is elusive. Various definitions have been proposed, from the strictly formalistic

to more socially oriented, context-dependent definitions such as those offered by Ab-

erdein (2009) and Dawkins and Weber (2017). Consequently, emphases in research vary.

Aberdein, for instance, focused on proof as a form of argument, intended as nothing

more than communication between mathematicians. Dawkins and Weber also noted the

communicative role of proofs, while emphasising their role in establishing knowledge in

the field by turning mathematical assertions into theorems. Others have emphasised the

role of proof in ascertaining and persuading (Harel and Sowder, 1998), in systematising

mathematics (de Villiers, 1990), and as the fundamental mechanism for mathematical

progress (Fawcett, 1938; de Villiers, 1990).

Researchers in mathematics education have also operationalised the notion in differ-

ent ways for different research contexts. In a survey of the various definitions of proof

present in the education literature, Balacheff (2008) observed that a multitude of episte-

mologies motivate the various definitions and that we ‘need an organisation of our work

at an international level, beyond our idiosyncratic views or possible tendency to accept

ready-made ideas’ (p. 16). Both Reid and Knipping (2010) and Hanna and de Villiers

(2012) responded to the need identified by Balacheff, providing comprehensive reviews

of progress in the field. Both reviews serve as resources for future researchers to situate

their work within the field, but do not resolve the problem of diversity identified by

Balacheff.

One might ask, however, whether this apparent lack of consensus on the meaning

of proof is important in understanding the behaviour of mathematicians. Weber and

Czocher (2019) investigated this question, asking nearly 100 mathematicians in an online

study to evaluate five proofs with varied characteristics. Of the five, two were described

as prototypical textbook proofs, one was exclusively visual, one was computer-assisted

and one based on empirical evidence alone. Consistent with the theoretical diversity

discussed above, the authors reported that mathematicians were divided on both the
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computer-assisted and visual proof, deemed valid by 62% and 39% of participants,

respectively. However, the other three proofs yielded near-total agreement (> 98%).

The prototypical proofs were accepted by mathematicians. The empirical argument was

unanimously rejected. These findings paint a picture of a centralised consensus with

ambiguity and diversity at its periphery, suggesting that mathematicians likely agree on

validity for the majority of the proofs that they ‘typically encounter’ (p. 12).

Based on such observations of the mathematical community, Czocher and Weber

(2019) adopted a different approach to defining proof. The authors argued that criteria-

based accounts of proof are necessarily doomed to failure and that proof can be more

profitably be viewed as a cluster category (Lakoff, 1987). Lakoff’s notion of a cluster

category is an extension of Wittgenstein’s family resemblance (Wittgenstein, 1953),

built on the premise that an object with more properties consistent with membership

is more likely to belong than one with less. By extension, a cluster category is then

a collection of properties that an object can satisfy, ‘counting toward’ membership of

the given category. This probabilistic (as opposed to deterministic) structure denies the

binary notion of belonging inherent in criteria-based accounts.

Czocher and Weber (2019) defined a cluster account of proof as a convincing,

perspicuous, a priori, transparent ‘justification that has been sanctioned by the mathe-

matical community’ (p. 20). This account acknowledges the diversity in the literature

by embedding various criteria-based definitions as properties indicating membership

of the category ‘proof’, without dictating that any given property be satisfied by every

member. Further, as noted by the authors, this definition is consistent with the findings

that mathematicians agree on the validity of many but not all purported proofs, and that

some proofs are more ‘typical’ than others.

We agree with the approach of Czocher and Weber (2019), but note that this is a

theoretical resolution to the problem of defining proof; it does not solve the problem of

how to research how people do, can or should think about it. Of course, this problem is

no worse than that encountered in any area of social science in which a human concept

must be operationalised. But it demands careful attention, and preferably methods that

allow us to assess the quality of knowledge and understanding while respecting diversity

in the detail. Comparative judgement, as used here, can do exactly that. It permits a
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meaningful evaluation of responses to open-ended questions without specifying criteria

for what should or should not be included. To date, its use in mathematics education

has been commonly directed at assessing conceptual understanding (Bisson et al., 2016;

Jones and Karadeniz, 2016) and problem solving (Jones and Inglis, 2015). In the

wider psychological literature, it has been applied to the investigation of beliefs (e.g.

Thurstone, 1928, 1954). Here, we apply comparative judgement to investigating beliefs

about mathematical proof.

2.2. Evaluating students’ beliefs about proof

Epistemological beliefs are considered important in understanding students’ engage-

ment with educational opportunities. They have a long history in education research,

with much work traceable to Perry (1968), who mapped the developmental trajectory

of Harvard undergraduates from simple ‘dualistic’ thinkers to believers in complex,

dynamic and tentative knowledge. In recent decades, the study of beliefs in mathematics

education has grown into its own subfield of educational research. In her review, Muis

(2004) summarised this body of work into five categories: beliefs, effects of beliefs,

development of beliefs, changing beliefs, and beliefs as domain-specific vs. domain-

general entities. Depaepe et al. (2016) added a further category focused on teachers’

mathematical epistemologies, reflecting the research published in the intervening years

between reviews.

Across this research, there is a general view that some beliefs are more naive and

some more sophisticated. Naive epistemological beliefs often characterise knowledge in

terms of absolute truths that are handed down by authorities; more sophisticated beliefs

characterise it as evolving in social contexts (Perry, 1968). Naive mathematical beliefs

often characterise mathematics as a set of procedures to be memorised; more sophis-

ticated beliefs characterise it as a web of logically connected information (Crawford

et al., 1998). Naive beliefs about proof are often empiricist; more sophisticated beliefs

recognise the value of deductive arguments (Harel and Sowder, 1998; Muis, 2004).

Methodologically, interest in beliefs in relation to other constructs generates a

need for reliable measures. The result of this has been a natural shift from more

detailed, qualitative studies to the development of quantitative scales: Depaepe et al.
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(2016) observed that recent research evaluating students’ beliefs about mathematics has

been dominated by large-scale questionnaires (Healy and Hoyles, 2000; Nasser and

Birenbaum, 2005; Schommer-Aikins, 2004; Stylianou et al., 2015). Implementations

vary between the extremes: Healy and Hoyles (2000) requested open-ended descriptions

of ‘proof and its purposes’ then categorised these based on a pre-defined taxonomy;

Stylianou et al. (2015) asked students both to identify the purposes of given proofs and

to select responses that matched their beliefs about proof and themselves as learners

thereof; Muis (2008) used inventories reflecting students’ epistemic profiles and learning

strategies. Results from these studies broadly reflect what we would expect: where

data are related to students’ performance on other mathematical tasks, those assessed

as having more sophisticated beliefs typically performed better (Stylianou et al., 2015;

Healy and Hoyles, 2000).

Large-scale questionnaire-based work thus provides useful insights into how students

view the world of mathematics and into how these views relate to performance. However,

pre-defining responses to a question limits the scope of research for accessing new ideas.

This is disadvantageous where simple categories do not do justice to the complex reality

of the situation, as is the case with beliefs about proof. Research has established that

professional mathematicians do not always think in terms of deductive inference: they

also make sophisticated use of empirical evidence, visual information and authoritative

sources (Weber et al., 2014). Undergraduate students who offer empirical evidence

for a claim often know that this form of evidence is not adequate for proof (Weber,

2010). Such nuances merit attention if we are to establish ways to engage students with

authentic mathematical activity and to assess their performance. However, researchers

who have explicitly asked students to express beliefs on mathematical topics (Knuth,

2002; Zaslavsky and Shir, 2005) have to date lacked a systematic way to compare

responses. Through our comparative judgment-based approach, we capture the richness

of individuals’ beliefs about proof with an open-ended task while using a systematic

tool to evaluate and score responses.
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2.3. Comparative judgement

Comparative judgement addresses a specific need in assessment and thereby in

educational research: it offers a systematic way to quantify responses to tasks for which

success criteria are hard to define and rubric-based scoring is likely to fall short (Jones

et al., 2019). It works by asking judges to make pairwise comparisons of responses to a

task. For each comparison, the judges simply decide which response is better, meaning

that they can make global judgements without having to decide that any specific content

should always be present or always be equally valued. The judgements are then fitted

to the Bradley-Terry Model to generate a scaled rank order in which each response

receives a parameter estimate reflecting its quality (Bramley, 2007). Scores are therefore

‘grounded in the collective expertise of the judges’ (Bisson et al., 2016, p. 143).

In mathematics education, comparative judgement has been used to assess constructs

including conceptual understanding (Jones and Karadeniz, 2016; Jones et al., 2019;

Bisson et al., 2016), problem solving (Jones and Inglis, 2015) and general reasoning in

primary school (Hunter and Jones, 2018). In all cases, the construct being assessed is

considered important but resists rubric-based assessment. In all cases, the researchers

reported evidence for satisfactory reliability and validity of their comparative judgement-

based analyses.

Our work differs from these studies in that beliefs about proof are not the same

as conceptual understanding or problem solving. However, assessing beliefs presents

similar methodological challenges: beliefs, too, are considered important but resist

criterion-based assessment. Comparative judgement is therefore a suitable approach

because we do not need to force respondents to choose between pre-defined responses,

so we do not constrain their ability to respond authentically. We do not need to classify

their responses according to pre-defined categories, so we do not lose nuances of

meaning. We do not need to decide a priori what constitutes a ‘correct’ or ‘good’ or

‘sophisticated’ view of proof, so we do not need to align ourselves with any specific

view in the existing literature. We do not need our judges to agree to a set of pre-defined

criteria, so we respect their individual professional expertise and collective diversity,

while also capitalising on shared understanding of typical cases.
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3. Methods

3.1. Task, participants and procedures.

Our research used a task in which participants were asked to ‘explain what mathe-

maticians mean by proof in 40 words or less’. Respondents were 130 undergraduate

students and 45 research-active mathematicians. Student respondents were all enrolled

in the same introductory real analysis course at a UK university. Their responses were

collected during a lecture in week eight, when they were given 10 minutes to complete

the task1. All attendees completed the task; research participation was made voluntary

by providing an opt-out option. No module credit was associated with the task. Mathe-

matician respondents were invited to participate by email or in person after academic

presentations at UK universities. An e-version of the ‘explain’ task was produced using

onlinesurveys.com to facilitate remote recruitment. All responses to the ‘explain’ task

were typeset in an identical format to remove the potential influence of handwriting.

3.2. Judging data

The typeset task responses were judged twice, each time by an independent group

of judges. One group of judges were experts and the other were non-experts.

Expert judges. The 29 expert judges were research-active mathematicians. They

were asked to complete between 20 and 100 judgements each. The minimum was given

to encourage judges not to perform a trivial number of judgments and the software was

set to allow no more than 100 judgements per judge. The expert judges completed a total

of 1941 judgements, with each completing between 11 and 100 judgements (median

86). Each response received between 20 and 27 expert judgements (median 22), and the

median time spent on each judgement was 10.6 seconds. The expert judges were not

compensated for their time.

1The task appeared third in a three-task booklet also containing a proof and two associated comprehension

tasks. Students had 40 minutes to complete the booklet, of which 10 minutes were nominally allocated to the

‘explain’ task.
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Non-expert judges. The 10 non-expert judges comprised eight post-graduate students

and two working professionals deemed expert in the English language. Importantly,

the non-experts had not studied mathematics beyond the age of 16 and so were unable

to make judgments based on specialist mathematical knowledge. We expected the

non-experts to be unable to replicate the outcomes of the expert judges, thereby enabling

us to check that the experts did not base their judgements solely on surface features

such as quality of prose (Jones and Alcock, 2014). The non-expert judges were asked

to complete 175 judgments each. In practice, each performed between 172 and 175

judgements resulting in 1740 judgements. Each response received between 20 and

23 non-expert judgments (median 21), and the median time per judgement was 14.9

seconds. The non-expert judges were compensated for their time based on a pre-defined

rate of 20 seconds per judgement.

For each group of judges, the binary decision data were fitted to the Bradley-Terry

Model (Firth, 2005) to generate a parameter estimate of the perceived quality of each

response. The parameter estimates were then used to construct scaled rank orders of

responses. The experts’ scale had a mean of 0.07 and standard deviation of 1.48, and

the non-experts’ scale had a mean of 0.08 and standard deviation of 0.93.

4. Analysis and results

4.1. Reliability

To investigate whether the expert judgement-based parameter estimates formed a

meaningful measure of response quality, we first examined the internal consistency and

the inter-rater reliability of the scaled rank orders.

Internal consistency was measured by calculating the Scale Separation Reliability

(SSR), which is often considered analogous to Cronbach’s α (Pollitt, 2012). Inter-

rater reliability was measured using a split-half comparison technique described in

Bisson et al. (2016). Briefly, the judges were randomly divided into two groups, a new

scale constructed for the judgements of each group, and the Pearson Product-Moment

correlation coefficient was calculated for the two sets of parameter estimates. The
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process was repeated 100 times and we report the median correlation coefficient here.

We also considered judge and response misfit (Pollitt, 2012) as secondary measures of

reliability.

For the expert judges’ parameter estimates, internal consistency and inter-rater

reliability were both acceptable, SSR = .83 and r = .68. No judge and only five of the

175 responses (3%) had misfit scores more than two standard deviations above their

respective means. For the non-expert judges’ parameter estimates, internal consistency

was acceptable, SSR = .66 , but inter-rater reliability was low, r = .39. No judge and

only three responses (2%) had misfit scores more than two standard deviations above

their respective means.

We interpret these findings as evidence that comparative judgement conducted by

experts produced a reliable scale of quality for responses to the task, whereas that

conducted by the non-experts did not. We further interpret this to mean that despite the

diversity of views of proofs across the literature, mathematicians do broadly agree on

what they would like people to say about proof.

4.2. Validity

To investigate whether the expert judgement-based parameter estimates formed

a measure of response quality that was not only internally meaningful but valid, we

used three methods: comparison of expert and non-expert reliability, comparison of

mathematician and student response rankings, and a detailed content analysis of the

responses.

First, the reliability analysis reported above provides evidence not just that the

experts were consistent with one another, but also that their judgements were based on

the mathematical content of the responses rather than surface features such as quality

of prose. In contrast, the non-experts, who by definition made their judgements based

on features other than mathematical content, were substantially less consistent with

one another. Importantly, the non-experts were not consistent with the experts. The

correlation between the two scales was modest, r = .54, as shown in Figure 1, and

was lower than the inter-rater reliability of the experts, r = .68; this difference was

significant, Z = 2.06, p = .04. In summary, the outcomes of the non-expert judging
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Figure 1: Scatter plot comparing the experts’ and non-experts’ parameter estimates.

support evidence for the divergent validity of the expert outcomes. In the remainder of

the article we analyse only the experts’ parameter estimates.

Second, we compared parameter estimates for mathematicians’ and students’ re-

sponses using a two-sample t-test. On average, mathematicians’ responses received

higher parameter estimates (N = 45,M = 1.23,SD = 1.15) than undergraduates’ re-

sponses (N = 130,M =−0.43,SD = 1.34), as shown in Figure 2. This difference was

significant, t(88.75) = 7.95, p < .001, with a large effect size of d = 1.32. We interpret

these findings as evidence that comparative judgement provided a valid measure of

quality for responses to our task: as we would expect, experts consistently judged

responses from research mathematicians as better than responses from undergraduate

mathematicians.

Third, we conducted a detailed content analysis of the responses; we report this in a

separate section below.
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Figure 2: Comparison of experts’ parameter estimates assigned to responses from undergraduate and research

mathematicians.

4.3. Content analysis

The above analyses support the claim that comparative judgement yielded a reliable

and valid scaled rank order of responses to the task. To further investigate validity we

analysed the contents of the undergraduate and research mathematicians’ responses,

following the principles of thematic analysis set out by Braun and Clarke (2006). This

facilitated a detailed analysis of what features of the responses were favoured in the

experts’ judging decisions, and a comparison of the differences between students’ and

mathematicians’ responses.

To provide the reader with a sense of the types of responses provided by the two

groups of participants, Table 1 shows the top three task responses from the research

mathematicians and undergraduates, along with their overall ranked position within the

parameter estimates. The three top responses all came from research mathematicians,

although two undergraduate responses were included in the top ten. A full list of re-

sponses, ordered by parameter estimates, is available at [FigShare URL pending].
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Rank Response
Research mathematician responses.

1st. A logically coherent argument establishing the truth of an assertion from a kno-
wn and agreed base.

2nd. A comprehensive logical argument that a statement is true, based on clearly
formulated assumptions and following generally accepted lines of reasoning
and level of detail.

3rd. A proof is a checkable record of reasoning establishing a fact from agreed, more
basic assumptions.

Undergraduate responses.
9th. Proof is a logical argument in mathematics which uses previously proven theo-

rems and ideas to build upon and generate new mathematics. It is there to show
whether something is true or not.

10th. A reasoning or logic that shows that a statement is the inevitable result of a set
of assumptions.

11th. Proof means to show something to be true by using things already proved to
show the new thing your [sic] trying to prove to be true.

Table 1: The top three task responses from the research mathematicians and from the undergraduates, along

with their overall ranked position within the parameter estimates.

4.3.1. Content analysis: coding

To analyse the content of all 175 responses, we developed a coding scheme via

an iterative process of identifying common themes in subsets of the data. First, two

researchers together examined a subset of 10 responses, generating an initial scheme

of eight codes. Both researchers then independently applied this scheme to 10 further

responses, noting possible additions to and mergers of the codes. Discrepancies were

discussed and a new scheme with an additional two codes was generated. This process

was repeated with a further set of 10 responses, leading to an 11-code scheme to be

applied to the entire dataset.

A third researcher then joined the analysis team to replace a member who was

no longer available. Both researchers analysed all 175 responses, noting points of

uncertainty for further discussion and possible necessary amendments. In a penultimate

analysis session, discrepancies were discussed, and a further four codes were added.

Finally, both researchers re-examined all 175 scripts looking for evidence of these four
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new codes. To evaluate inter-coder reliability, we examined pooled Cohen’s Kappa;

this yielded κ = 0.79, indicating acceptable inter-coder reliability. Given the volume of

interaction throughout the coding process, this κ is likely an over-estimate of true inter-

coder reliability. However, 0.79 is high enough to suggest that reliability is acceptable.

All remaining disagreements were discussed case by case, until a consensus was found

for each code as applied to each response. The resulting 15 codes, with frequencies of

occurrence in the mathematicians’ and students’ responses, appear in Table 2.

Code Description Experts UGs χ2 p
Argume- Reference to an ‘argument’, 80% 21% 50.90 <.001*
ntation ‘chain of reasoning’ or ‘derivation’.
Object Naming the object to be proved, 80% 82% 0.05 .820

e.g. ‘theorem’, ‘statement’, ‘result’.
Certainty Reference to ‘truth’ or ‘correctness’. 44% 76% 15.44 <.001*
Established Reference to ‘agreed assumptions’ 38% 29% 1.13 .287
knowledge or ‘shared knowledge’.
Conviction Reference to the readers’ increased 22% 2% 22.39 <.001*

conviction in the statement.
Conditions Reference to the domain of applica- 20% 25% 0.40 .529

bility for a statement.
Explanation Reference to ‘how’ or ‘why’ the 16% 23% 1.13 .287

statement is true.
Verification Reference to ‘confirms’, ‘validates’, 16% 9% 1.38 .240

‘checks’, ‘justifies’, or ‘shows if...’.
Axiom Use of the term ‘axiom’. 13% 8% 0.90 .341
Deconstr- Reference to ‘breaking down’ the 7% 5% 0.10 .749
uction theorem into familiar truths.
Discovery Reference to proving something ‘not 7% 9% 0.28 .596

already known’.
Incontro- Reference to ‘undoubted’, ‘cannot 7% 13% 1.36 .244
vertability be argued with’.
Empiricism Reference to empirical evidence. 4% 8% 1.36 .376
Falsification Reference to disproving a statement. 2% 27% 12.48 <.001*
Generality Reference to ‘all cases’. 0% 18% 9.17 .002*

Table 2: ‘Explain’ task content analysis coding scheme. Each code was assigned to each response at most

once. Experts = research-active mathematicians, UGs = undergraduate students. Codes ordered by frequency

in expert responses. Significance determined based on alpha-level adjustment using the Holm-Bonferroni

method.
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4.3.2. Comparing students’ and mathematicians’ responses

To compare the responses given by students and mathematicians, independent chi-

squared tests were run for each of the 15 codes; results are also shown in Table 2. For

five codes there were significant differences between students’ and mathematicians’

responses. Mathematicians were significantly more likely to refer to argumentation and

conviction, and students were significantly more likely to refer to certainty, falsification

and generality. We discuss students’ emphasis on falsification and generality first as

we believe these to be artefacts of the immediate educational environment from which

they were recruited. We then discuss the differences we find more epistemologically

interesting.

The students were all from an introductory real analysis course with two features

that might have promoted the student emphasis on falsification and generality. First,

‘true or false’ tasks were a common feature of formative and summative assessment,

likely promoting a connection between proof and falsification. Second, emphasis on

quantifiers was a common feature of lectured information, likely leading students to

refer to generality in their explanations of proof. The emphasis on quantifiers and

generality might be similar in other real analysis courses, although the UK context

meant that this was a first-year, first-semester course, so it might be less explicit where

real analysis is taught later. The extensive use of ‘true or false’ tasks is almost certainly

unusual. We thus hesitate to suggest that one should expect similar findings in different

contexts.

The remaining differences are consistent with the broad sweep of research on

epistemological beliefs and their development. The notion that proofs provide certainty,

more common in students’ responses, is consistent with an idea of mathematics as the

business of truth, and proof as the business of demonstrating that truth. Certainty can also

be viewed as consistent with the day-to-day experience of students via the ‘definition-

theorem-proof’ structure of much undergraduate mathematics (Moore, 1994), where

proofs are often presented as bearing authority (Harel and Sowder, 1998). It is worth

noting, however, that although certainty was more common in students’ responses, it

was also the third most frequently applied code for mathematicians’ responses. Thinking
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of proof in terms of certainty does not necessarily indicate a lack of sophistication.

The notion that proofs involve argumentation and provide conviction, more com-

mon in mathematicians’ responses, suggest a socially constructed view of mathematics

in which proofs are written for an audience. This is consistent with some charac-

terisations put forth by philosophers, mathematicians and educators. Our frequency

analysis provides evidence that of the various views of proof discussed in the literature,

argumentation is most important in the views of working mathematicians: 80% of

mathematicians’ responses included it.

4.3.3. Features most valued by mathematician judges

We shift now from comparing responses to identifying the content most rewarded

by the mathematician judges. We first examined the Spearman’s rank-order correlations

between response codes and parameter estimates; see Table 3. Only argumentation

yielded a significant relationship with parameter estimates. This is consistent with the

chi-squared analyses, confirming argumentation as the most important aspect of proof

to the mathematicians in their judgements as well as in their stated views.

Code r p
Argumentation 0.48 < .001*

Object 0.14 .059
Certainty 0.00 .981

Established knowledge 0.21 .005
Conviction 0.14 .073
Conditions 0.00 .959
Explanation -0.11 .141
Verification 0.10 .178

Axiom 0.21 .006
Deconstruction -0.02 .812

Discovery 0.12 .123
Incontrovertibility 0.17 .095

Empiricism -0.10 .207
Falsification -0.02 .788
Generality -0.12 .115

Table 3: Spearman rank-order correlation coefficients showing relationships between parameter estimates

of proof conception quality and individual codes. Significance determined based on alpha-level adjustment

using the Holm-Bonferroni method.

.
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We then conducted regression analyses predicting parameter estimates based on

the coding. Our first regression model used all 15 codes and yielded four significant

predictors; see Table 4. Our second model used only those four codes; again, see Table 4.

Code 15-code model 4-code model
B SE β p B SE β p

Argumentation 1.47 0.21 7.07 < .001* 1.52 0.19 7.83 < .001
Object 0.64 0.25 2.53 .013* 0.66 0.24 2.78 .006
Certainty 0.18 0.23 0.78 .436
Established knowl-

edge

0.57 0.23 2.47 .015* 0.78 0.20 3.89 < .001

Conviction 0.43 0.41 1.06 .292
Conditions 0.20 0.23 0.88 .380
Explanation -0.35 0.24 -1.48 .140
Verification 0.39 0.31 1.24 .218
Axiom 0.49 0.35 1.40 .164
Deconstruction 0.07 0.41 0.18 .856
Discovery 0.49 0.35 1.41 .162
Incontrovertibility 0.63 0.30 2.11 .036* 0.59 0.28 2.02 .045
Empiricism -0.39 0.36 -1.07 .285
Falsification 0.00 0.25 0.01 .993
Generality -0.05 0.29 -0.19 .850

Table 4: Forced-entry multiple regression model predicting parameter estimates with coded analysis of proof

conceptions. For the 15-code model R2 = .38, p < .001, and for the four-code model, using significant

predictors from the 15-code model, R2 = .33, p < .001.

Again, argumentation was identified by the regression analyses as most closely

associated with high value in the mathematicians’ judgements. The relatively high

value associated to responses coded as referring to the object being proven (the theorem,

claim or similar) probably reflects clarity of responses: more than 80% of all responses

featured a reference to such an object, so those that did not perhaps suffered from a lack

of clarity or specificity. The remaining codes associated with high value captured the

views that proofs build on established knowledge and should be incontrovertible. Both

17



are consistent with the values and norms of mathematics suggested by Dawkins and

Weber (2017). Although these codes appeared less frequently than argumentation in

mathematicians’ responses to the ‘explain’ task, mathematicians deemed them important

when presented. Again this provides empirical evidence on how mathematicians view

their craft.

5. Discussion

We view our work as making two original and rigorously generated contributions:

first, an empirical contribution to the theoretical debate around the meaning of proof;

second, a methodological contribution regarding a novel application of comparative

judgment to the domain of mathematical beliefs.

Empirically, we documented responses of students and mathematicians to a task

asking them to explain what mathematicians mean by proof. We provided evidence that

mathematicians commonly think of proof in terms of argumentation: this was reflected

both in the number of mathematicians who included reference to argumentation in

their own responses and in the statistical modelling identifying the priorities of the

mathematician judges. Also valued by mathematicians were characterisations of proof

in terms of certainty (from the frequency analysis) and in terms of building on established

knowledge and generating incontrovertible arguments (from the statistical modelling).

These are all themes that appear in the extant literature: what we add here is empirical

evidence on their relative importance to mathematicians in describing their craft.

Methodologically, we established that comparative judgment can be applied suc-

cessfully in the realm of beliefs, where reliable and valid instruments are difficult to

generate and where other approaches necessarily involve coarse-grained analyses or lack

the capacity for systematic quantitative comparison. Using comparative judgement with

expert judges, we were able to generate a reliable scaled rank order of responses to an

open-ended task without using a pre-determined definition of proof. Regarding validity,

we presented three distinct pieces of evidence suggesting that our parameter estimates

function as a meaningful measure of response quality. First, we found relatively poor

performance of non-expert judges, suggesting that the original judgements were based
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on mathematical expertise. Second, mathematicians’ responses ranked higher than

those from undergraduates, showing that mathematical expertise was systematically

related to parameter estimates. Third, this difference was the result of content-based

differences among the responses and was consistent with the literature on students’ and

mathematicians’ experiences with proof.

Together, these findings have implications for research on both comparative judg-

ment and beliefs. To the comparative judgment literature, we add another context for

which the method appears to have utility. To the beliefs and conceptions literature, we

offer a new tool for quantifying and understanding explicitly-stated beliefs on potentially

wide-ranging topics.
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