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ABSTRACT
Surgical tool tracking is an essential building block for computer assisted inter-
ventions (CAI) and applications like video summarization, workflow analysis and
surgical navigation. Vision-based instrument tracking in laparoscopic surgical data
faces significant challenges such as fast instrument motion, multiple simultaneous
instruments, and re-initialization due to out-of-view conditions or instrument oc-
clusions. In this paper, we propose a real-time multiple object tracking framework
for whole laparoscopic tools, which extends an existing single object tracker. We in-
troduce a geometric object descriptor, which helps with overlapping bounding box
disambiguation, fast motion and optimal assignment between existing trajectories
and new hypotheses. We achieve 99.51% and 75.64% average accuracy on ex-vivo
robotic data and in-vivo laparoscopic sequences respectively from the Endovis’15
Instrument Tracking Dataset. The proposed geometric descriptor increased the per-
formance on laparoscopic data by 32%, significantly reducing identity switches, false
negatives and false positives. Overall, the proposed pipeline can successfully recover
trajectories over long-sequences and it runs in real-time at approximately 25-29 fps.
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1. Introduction

Computer assisted interventions (CAI) rely on the understanding and mapping of the
surgical environment and surgical instrument tracking is a key CAI building block.
The position and motion of the surgical instruments can enable skill analysis, phase
detection, motion estimation, tool-tissue interaction and pave the way towards image
guided interventions.

Recent approaches towards developing vision-based instrument tracking algorithms
have focused on demonstrating feasibility in single object bounding box tracking
[10, 6, 7]. A scale adaptive search strategy, as well as a probabilistic segmentation
of background pixels were proposed as tools to increase tracking robustness during
long sequences [10]. A recent comparison study of multiple vision-based single object
trackers in minimally invasive surgery (MIS) data shows excellent performance on
ex-vivo robotic sequences [6]. However, in-vivo laparoscopic videos lead to significant
drops in performance. Due to their formulation, most single object tracking approaches
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cannot handle out of view conditions, multiple instruments and occlusions.
Alternative approaches focus on pose estimation of the surgical tools [21, 9] allowing

for a more flexible representation than a bounding box. State of the art neural networks
can be leveraged to localise instrument joints and model tool articulation [9]. Moreover,
such tool parametrisation allows for multi-instrument disambiguation. Overall, current
methods rely on additional information such as robot kinematics and 3D CAD tool
models [21] which might hinder clinical translation, they cannot handle tool occlusion
[21, 10, 9, 18] or recover temporal trajectories [21, 9] and real-time capabilities are
prohibitive [10, 9].

Few tracking frameworks have been proposed to handle multiple tool trajectories
over long sequences [18, 16]. For example, a weakly supervised neural network trained
on frame-level presence labels has shown promising results localising tool tips [16].
They also present a quantitative evaluation of long-term trajectory information in
cholecystectomy surgeries. However, due to the formulation based on presence labels,
their approach cannot handle multiple similar tools in the same frame.

Most importantly, the majority of proposed methods focus on tracking a point cen-
tered on the tool tip or the bounding box enclosing it [10, 6, 16]. While efficient, such
approaches will fail due to occlusion during tool-tissue or tool-tool interactions. How-
ever, full surgical instrument tracking is not straight-forward because tools tend to be
rigid, elongated shapes that triangulate at the surgical site and bounding boxes are not
effective labels for them, with the background anatomy covering the majority of the
bounded area. MIS also involves multiple surgical tools entering and leaving the sur-
gical view. Simply deploying multiple independent single object trackers for each tool
would fail through drift accumulation, occlusions and poor scaling of computational
complexity.

An interesting research direction would be to leverage the complementary strengths
of the above methods. Single object trackers generally focus on robustness to scene
appearance such as smoke, scale changes, illumination variation and fast motion of the
tools, while being efficient. Alternately, pose estimation approaches can successfully
disambiguate multiple overlapping tools and cope with occlusions due to their intuitive
whole tool parametrisation.

In this paper, we formulate multiple-instrument tracking as a global optimization
problem where the presence of more instruments only marginally increases computa-
tional time. We introduce a tracking manager, which maintains multiple simultaneous
tool trajectories. We reformulate an existing tracker [20] to handle bounding boxes
containing large areas of background, shared resources across trackers and increased
efficiency. A novel geometric descriptor assists tool overlap disambiguation and fast
motion handling. Experimentally, we provide an enhanced breakdown of tracking er-
rors by adapting well-known multiple object tracking metrics CLEAR-MOT [4] to the
surgical domain. Our proposed tracking pipeline was carefully designed to add func-
tionality on top of key insights from previous promising techniques, while running in
real-time (25-29 fps).

2. Methods

Our tracking pipeline fuses global (frame-level) to local (single object) scales to ensure
real-time performance (see Fig 1). At a global scale, a binary segmentation model can
be run at 1 fps in order to initialise new tracks. Since multiple promising solutions
exist in the literature for surgical tool segmentation neural networks [17, 2], this paper
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Figure 1. Overview of the proposed tracking pipeline.

focuses instead on the tracking aspect. The segmentation maps can further provide la-
bels for training a discriminative appearance model, alongside frame-level computation
of superpixels and their associated feature vectors. The appearance model generates
superpixel-based confidence maps, which localize tools for each frame. An online up-
date scheme is employed to ensure the appearance model captures any changes in the
environment and is able to learn from new frames.

At a local scale, single objects are tracked using a simple yet effective novel geometric
descriptor. A tracker manager ensures long-term trajectories by leveraging the global
confidence maps to generate candidate positions for each tracked object. The rest of
this section introduces core insights from Yang et al. [20], followed by our proposed
approach.

2.1. Single object tracker

Tracking is formulated using a Bayesian framework [20] where a motion model
p(Xt|Xt−1) is combined with an observation model p(Yt|Xt):

p(Xt|Y1:t) = αp(Yt|Xt)

∫
p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1 (1)

where α is a normalisation term. The aim is to estimate the object state Xt at frame
t, given the previous observations Y1:t. Given an observation Yt, the likelihood of it be-
longing to the target or the background is approximated using a robust discriminative
appearance model. Its role is to fuse low and mid-level structural information about
the whole object, thus enabling recovery from drift and handling scale variation.
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2.1.1. Appearance model

A discriminative appearance model is trained based on the first n frames of the se-
quence. Given a bounding box at frame t, r superpixels are extracted {sp(t, r)} [1],
each represented by a feature vector f rt . After clustering the superpixel features, a
score Sc

i is assigned to each cluster clst(i), which indicates the likelihood of its mem-
bers belonging to the target. Each resulting cluster clst(i) is characterised by its center
clstc(i), its radius rc(i) and its own members {f rt |f rt ∈ clst(i)}.

Yang et al. [20] considered all superpixels inside the active bounding box as the
target area, which is a common assumption implying the region of interest/ bounding
box contains very few background pixels [10]. When tracking whole tools, bounding
boxes contain numerous background pixels, breaking the above assumption. Moreover,
previous work [20] requires a user to manually segment a bounding box around the
object in the first 4 frames of a video to extract positive and negative samples for the
appearance model training. Such user intervention would not be feasible in the context
of surgical tool tracking. We introduce a binary segmentation model as a solution to
both these issues. Segmentation masks can be obtained automatically, which ultimately
will be used to extract labels to inform the appearance model of the target location.
As a result, a fully automatic framework tailored to tracking surgical tools can be
achieved.

Finally, the trained appearance model is represented by the set of clusters and their
associated cluster scores {(clst(i), Sc

i )}. With every new frame, a confidence map is
estimated for an active bounding box by propagating cluster scores at the pixel level.
High confidence values show high likelihood of target presence (see Fig. 1).

To adapt to changes in the scene, a sliding window update scheme of size H is
used where a new instance is added every U frames as a circular buffer. An instance
comprises of the bounding box and superpixels at frame t. The appearance model is up-
dated every W frames by recomputing the clusters and associated scores {(clst(i), Sc

i )}
for the new collection of superpixels and labels [20]. In our experiments, we empirically
selected H = 5, U = 25 and W = 50.

2.1.2. Efficient implementation

We represent the motion model in Eq. 1 by generating a range of potential object loca-
tions with intermediary scales from the bounding box at state t− 1 and the matching
candidate bounding box at state t. Each bounding box is scored by aggregating the
corresponding confidence map values and the best one is chosen (Fig. 1).

Feature vectors f rt are extracted from each superpixel sp(t, r), computed by concate-
nating the average RGB channels and average Cr, a and S from the YCrCb, Lab and
HLS colour spaces respectively (6 bins). A variation of KMeans [13] is used to cluster
the superpixel descriptors {f rt } as we found KMeans (k=30) generalises well across
different videos and helps fast confidence map estimation. For efficiency, superpixels
and the confidence map are computed at the frame level and as a result, all trackers
share the same appearance model and update strategy.

2.2. Internal object representation

Similar appearance across multiple tools can make it difficult to disambiguate when
their corresponding bounding boxes overlap. Instead, we propose to leverage additional
geometrical information and temporal constraints.
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The state Xt of a tracked object is formulated as Xt = ({pt}, Xa
t , X

s
t ). Given a

bounding box (encoded as width and height in Xs
t ), a set of points {pt} are sampled

from the bounding box using the confidence map as the sampling probability. Then, the
principal axis of the surgical tool Xa

t is estimated from {pt} using principal component
analysis. This assumes a single tool in the region, however, practically bounding boxes
from multiple tools generally overlap. Also, changes in the scene due specularity can
lead to false negatives in the confidence map. To handle these cases when updating the
object tracker, prior information from state Xt−1 is used to ensure the set of points pt
does not contain outliers.

Let {ct} be the initial set of candidate points at frame t. Two sequential pruning
strategies are proposed. The first stage is based on the intuition that the set of points
{pt} at state t will not differ significantly from state t− 1.

{pt} = {cit} ∗ δ(dN({pt−1}, {cit})) ∗ δ(d(Xa
t−1, c

i
t)) (2)

where dN(x, y) represents the distances from each element in X to its nearest neighbour
in Y. Secondly, the axis of the tool at state t should be similar to Xa

t−1. The distances

from points {cit} to the previous axis orientation Xa
t−1 can be computed as:

d(Xa
t−1, c

i
t) = d((cit − pt−1)− < (cit − pt−1), Xa

t−1 > Xa
t−1) (3)

where pt−1 represents the centroid of the points at state t−1 and < ·, · > represents
the dot product. The δ function then selects which candidate points are valid:

δ(vi) =

{
1, vi <= dmax(v)

0, otherwise
(4)

In both cases, dmax(v) was empirically set to the 80th percentile of the sorted vector
v for all experiments.

2.3. Multiple object tracking management

Tracked objects are initialized based on the connected components of the binary seg-
mentation map with the geometric descriptor Xt and a unique trajectory ID. With
each new frame, the MOT manager ensures candidate bounding boxes either match an
existing trajectory or initialize new tracked objects. If there are no candidate bound-
ing boxes, any existing tracked objects are marked as disappeared for 2 frames, after
which they are deleted. Reliable data assignment between any candidate bounding
boxes and existing tracks is critical.

Such matching can be formulated as a minimization of the total distance error be-
tween candidate objects Ct and existing tracks Xt−1. The Munkres algorithm [15] was
used to obtain the optimal solution with polynomial runtime complexity. The inter-
section over union (IoU) is commonly used as a similarity metric between bounding
boxes in order to perform the matching. However, this approach fails during fast mo-
tion or object overlap. We propose a distance error, which leverages the geometric
object representation in order to improve the track assignment:
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Figure 2. Successful tool disambiguation in sequence L-1. Comparison of tracking without (A) and with (B)
the geometric object representation. Confidence map values corresponding to each tracked object are placed

above each frame, where high values (red) represent the target and low values (blue) the background. The

estimated axis Xa
t is overlaid with light green for B-L-1.

D = β(1− IoU(Xs
t−1, C

s
t )) + (1− β)(1− < Xa

t−1, C
a
t >) (5)

Thus, the data assignment will favour bounding boxes with high overlap and similar
axis orientation, which can help disambiguate between multiple tools. In practice, β
was empirically set to 0.7 in all experiments.

Fig. 2 highlights the importance of both the proposed geometric descriptor (Sec.
2.2) and distance error D (Eq. 5) in cases where the bounding boxes overlap. In row A,
the candidate bounding box encompasses both tools when they intersect. Without any
instrument axis information, the right-hand tracker gets updated with the candidate
bounding box based solely on the IoU overlap. The left-hand tracker is deactivated
since there are no remaining available matches. On the other hand, row B shows that
using the proposed geometric descriptor in the tracker update as well as in the data
assignment can successfully disambiguate multiple tools interacting.
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3. Experimental Setup

We provide a detailed analysis of the performance of the proposed tracker as well as
qualitative results on robotic and laparoscopic data.

3.1. Metrics

The main error sources in tracking include: false positives (FP) - drifting away from
the target, ID switches (IDSW) - switching to tracking a different tool or false nega-
tives (FN) - complete failure to track. Generally, surgical tool tracking studies report
a single localisation error which does not reflect these failure modes. While having
high accuracy is desirable, tracking can provide other information about the environ-
ment, such as tool trajectories. We move towards the CLEAR-MOT [4] benchmarking
approach used in the vision MOT literature.

Namely, the tracking accuracy (MOTA) aggregates the main error sources over the
the number of objects at each frame dett. The tracking precision (MOTP) illustrates
how well the exact position of the bounding box is estimated.

MOTA = 1−
∑

t(FNt + FPt + IDSWt)∑
dett

(6)

MOTP =

∑
i,t di,t∑
tmt

(7)

where di,t is the distance between tracked object i and its corresponding candidate at
frame t and mt is the number of matches found at frame t.

While surgical tool tracking was previously evaluated using MOTA and MOTP
in [16], we provide a more detailed breakdown of the individual sources of error lead-
ing to a more in depth understanding of algorithm performance. The quality of the
estimated trajectories can be summarized with the following metrics: mostly tracked
(MT), partially tracked (PT) and mostly lost (ML). An object trajectory is consid-
ered mostly tracked if it was successfully tracked for more than 80% of its lifespan.
If a track is recovered for less than 20% of its length, the target object is considered
mostly lost. The remaining objects can be considered partially tracked. These metrics
should be considered together with the ground truth number of trajectories (GT) in
each sequence.

3.2. Data

We enhanced the existing Endovis’15 Instrument Sub-challenge 1 with annotations for
whole tool bounding boxes and object trajectories for the sequences in the training
dataset. Augmenting the robotic training data is straight-forward since segmentation
masks are available at every frame. However, the trajectories in laparoscopic sequences
were manually annotated since the ground truth segmentation masks were provided
at 1 fps. Once an object leaves the frame and re-enters, a new ID is assigned - as
proposed in [14].

1https://endovissub-instrument.grand-challenge.org/
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Table 1. Quantitative evaluation without (A) and with (B) the geometric descriptor for robotic (R) and

laparoscopic (L) sequences.

MOTA ↑ MOTP ↑ IDS ↓ FP ↓ FN ↓ MT ↑ PT ↑ ML ↓ GT
A - R-1 97.47 72.34 3 9 44 2 0 0 2
A - R-2 99.29 86.26 0 4 4 1 0 0 1
A - R-3 100.00 75.91 0 0 0 1 0 0 1
A - R-4 98.93 78.29 0 6 6 1 0 0 1
A - Avg 98.92 78.20
A - L-1 47.76 84.14 22 6 7 9 3 0 12
A - L-2 24.49 82.97 20 11 6 4 1 0 5
A - L-3 82.22 92.54 6 1 1 7 1 0 8
A - L-4 20.00 87.23 29 3 4 2 0 0 2
A - Avg 43.62 86.72

B - R-1 100.00 70.36 0 0 0 2 0 0 2
B - R-2 99.29 82.23 0 4 4 1 0 0 1
B - R-3 100.00 78.16 0 0 0 1 0 0 1
B - R-4 98.75 72.46 0 7 7 1 0 0 1
B - Avg 99.51 75.80
B - L-1 77.61 78.11 7 4 4 11 1 0 12
B - L-2 69.39 69.80 8 6 1 5 0 0 5
B - L-3 91.11 80.79 2 1 1 7 1 0 8
B - L-4 64.44 75.16 16 0 0 2 0 0 2
B - Avg 75.64 75.97

Additionally, the provided segmentation masks are used as input in place of a bi-
nary segmentation model (Section 2) in order to isolate and evaluate the tracker’s
performance, uncoupled from any segmentation errors.

We use four 45 seconds sequences from the ex-vivo robotic data and four 45 seconds
sequences of in-vivo laparoscopic videos. The robotic data contains a sequence with
multiple tools and some situations where the bounding boxes overlap as a result of
the tools approaching each other. The laparoscopic dataset illustrates extremely chal-
lenging situations such as multiple tools, tool overlap, out of view, blood, smoke, tool
occlusions, presence of surgical objects (i.e. meshes, clips) and fast motion. Table 1
shows the results obtained with the proposed tracking pipeline with and without the
geometric descriptor respectively. The arrows indicate if a larger (↑) or smaller (↓)
value is better.

3.3. Results

The proposed tracking pipeline achieved 99.51% average accuracy on ex-vivo robotic
data when using the geometric descriptor compared to 98.92% average accuracy with-
out. Note that the biggest improvement can be observed for R-1, the only sequence
containing multiple instruments with bounding box overlap.

The proposed MOT achieved 75.64% average accuracy on the in-vivo laparoscopic
sequences, compared to 43.62% without the integration of the geometric descriptor.
Note the high number of ground truth tracks for the laparoscopic videos, which indi-
cates tools frequently going in and out of the field of view.

Overall, the use of the geometric descriptor significantly decreased the number of
identity switches, false positives and false negatives. The proposed multiple object
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Figure 3. Proposed tracking on robotic sequences. The corresponding confidence maps for each tracker are
overlayed with the estimated axis {Xa

t } (light green) as well as the frame number in the upper-left corner.

tracker recovered more than 80% of the trajectory of all tools in the robotic data
and of 25 out of 27 tracks on the laparoscopic data. Importantly, no tracks have been
completely lost in either dataset.

Qualitative results are presented in Fig. 3 and 4. The tracker can handle multiple
instruments (R-1), tool interaction with bounding box overlap (R-1), scale change
(R-3, L-3), changes in appearance (R-2, L-1,3,4) and fast motion (L-1,3,4) over long
sequences. Note the objects in Fig. 3 R-1 can be successfully tracked when their bound-
ing boxes overlap due to the proposed estimation of the geometric descriptor. The last
2 columns of R-1 show that the distance and axis similarity based pruning of outliers
correctly filters out any points selected on the neighbouring tool.

Direct comparison of errors with previous techniques is not possible due to dif-
ferences in methodology (tracking tool tips vs. whole tool) and evaluation (different
metrics) [7]. For example, a previous study achieves average MOTA and MOTP scores
of 36.5% and 67.4% respectively while tracking tool tips in laparoscopic data [16]. How-
ever, most previous work focused on the feasibility and increased accuracy of single
object tracking. Common metrics used consist of accuracy around a feature point on
the tool tip or percentage of frames where the object is localized within a distance
threshold [6, 10]. An additional fixed penalty can be added to the overall accuracy
metric for each frame with tracking failure. While having high accuracy is desirable,
when moving towards multiple object tracking, other information about the environ-
ment is needed - i.e. tool trajectories, a detailed breakdown of where and why tracking
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Figure 4. Proposed tracking on laparoscopic data (L-1,3,4). The corresponding confidence maps for each

tracker are overlayed with the estimated axis {Xa
t } (light green) as well as the frame number in the upper-left

corner.

fails during long-term sequences. In surgery, particularly, there is a lack of maturity
on datasets to benchmark tracking algorithms during long-term sequences with an
increasing number of surgical tools. As future work, we plan to create such a dataset,
similar to our previous work in segmentation: CaDIS [11].

4. Conclusion

We proposed a whole-object tracking pipeline for multiple laparoscopic instruments
in MIS. Our results indicate that the proposed method is robust and can handle
the challenges specific to MIS environments such as fast motion, tool interactions,
multiple surgical tools and out of view conditions. We provided a tracking performance
breakdown into sources of error, which could encourage the development of techniques
tailored to specific clinical applications. For example, instrument pose accuracy would
be critical to surgical navigation as opposed to workflow analysis applications, which
would benefit more from good trajectories with a low number of identity switches.
On the other hand, for applications with tool tissue interaction, having as few false
negatives as possible might be more important.

Future work will include improving our appearance model to handle the initializa-
tion of new tracks at every frame. We will also look into making the bounding box
estimation smoother over time to remove some of the jittering effect introduced by the

10



superpixels.
Alternately, the tracking by detection paradigm consistently reaches state of the

art performance in multiple vision benchmarking datasets [5, 19, 3]. Such MOT tech-
niques generally rely on a real-time highly accurate detector being run at every frame,
while a tracker manager ensures long-term trajectories with optimal data assignment.
Promising results have been recently reported in surgical instrument segmentation
[12, 8, 17, 7] which could greatly contribute towards an improved multiple object
tracker.

5. Supplemental material

A video of the proposed tracking on robotic and laparoscopic video sequences is pro-
vided as supplemental material.
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